CINXE.COM

On the joint-effect of class imbalance and overlap: a critical review | Artificial Intelligence Review

<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="No"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>On the joint-effect of class imbalance and overlap: a critical review | Artificial Intelligence Review</title> <meta name="twitter:site" content="@SpringerLink"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="On the joint-effect of class imbalance and overlap: a critical review"/> <meta name="twitter:description" content="Artificial Intelligence Review - Current research on imbalanced data recognises that class imbalance is aggravated by other data intrinsic characteristics, among which class overlap stands out as..."/> <meta name="twitter:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig1_HTML.png"/> <meta name="journal_id" content="10462"/> <meta name="dc.title" content="On the joint-effect of class imbalance and overlap: a critical review"/> <meta name="dc.source" content="Artificial Intelligence Review 2022 55:8"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Springer"/> <meta name="dc.date" content="2022-03-24"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2022 The Author(s), under exclusive licence to Springer Nature B.V."/> <meta name="dc.rights" content="2022 The Author(s), under exclusive licence to Springer Nature B.V."/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="Current research on imbalanced data recognises that class imbalance is aggravated by other data intrinsic characteristics, among which class overlap stands out as one of the most harmful. The combination of these two problems creates a new and difficult scenario for classification tasks and has been discussed in several research works over the past two decades. In this paper, we argue that despite some insightful information can be derived from related research, the joint-effect of class overlap and imbalance is still not fully understood, and advocate for the need to move towards a unified view of the class overlap problem in imbalanced domains. To that end, we start by performing a thorough analysis of existing literature on the joint-effect of class imbalance and overlap, elaborating on important details left undiscussed on the original papers, namely the impact of data domains with different characteristics and the behaviour of classifiers with distinct learning biases. This leads to the hypothesis that class overlap comprises multiple representations, which are important to accurately measure and analyse in order to provide a full characterisation of the problem. Accordingly, we devise two novel taxonomies, one for class overlap measures and the other for class overlap-based approaches, both resonating with the distinct representations of class overlap identified. This paper therefore presents a global and unique view on the joint-effect of class imbalance and overlap, from precursor work to recent developments in the field. It meticulously discusses some concepts taken as implicit in previous research, explores new perspectives in light of the limitations found, and presents new ideas that will hopefully inspire researchers to move towards a unified view on the problem and the development of suitable strategies for imbalanced and overlapped domains."/> <meta name="prism.issn" content="1573-7462"/> <meta name="prism.publicationName" content="Artificial Intelligence Review"/> <meta name="prism.publicationDate" content="2022-03-24"/> <meta name="prism.volume" content="55"/> <meta name="prism.number" content="8"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="6207"/> <meta name="prism.endingPage" content="6275"/> <meta name="prism.copyright" content="2022 The Author(s), under exclusive licence to Springer Nature B.V."/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://link.springer.com/article/10.1007/s10462-022-10150-3"/> <meta name="prism.doi" content="doi:10.1007/s10462-022-10150-3"/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1007/s10462-022-10150-3.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/article/10.1007/s10462-022-10150-3"/> <meta name="citation_journal_title" content="Artificial Intelligence Review"/> <meta name="citation_journal_abbrev" content="Artif Intell Rev"/> <meta name="citation_publisher" content="Springer Netherlands"/> <meta name="citation_issn" content="1573-7462"/> <meta name="citation_title" content="On the joint-effect of class imbalance and overlap: a critical review"/> <meta name="citation_volume" content="55"/> <meta name="citation_issue" content="8"/> <meta name="citation_publication_date" content="2022/12"/> <meta name="citation_online_date" content="2022/03/24"/> <meta name="citation_firstpage" content="6207"/> <meta name="citation_lastpage" content="6275"/> <meta name="citation_article_type" content="Article"/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1007/s10462-022-10150-3"/> <meta name="DOI" content="10.1007/s10462-022-10150-3"/> <meta name="size" content="807510"/> <meta name="citation_doi" content="10.1007/s10462-022-10150-3"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1007/s10462-022-10150-3&amp;api_key="/> <meta name="description" content="Current research on imbalanced data recognises that class imbalance is aggravated by other data intrinsic characteristics, among which class overlap stands"/> <meta name="dc.creator" content="Santos, Miriam Seoane"/> <meta name="dc.creator" content="Abreu, Pedro Henriques"/> <meta name="dc.creator" content="Japkowicz, Nathalie"/> <meta name="dc.creator" content="Fern&#225;ndez, Alberto"/> <meta name="dc.creator" content="Soares, Carlos"/> <meta name="dc.creator" content="Wilk, Szymon"/> <meta name="dc.creator" content="Santos, Jo&#227;o"/> <meta name="dc.subject" content="Artificial Intelligence"/> <meta name="dc.subject" content="Computer Science, general"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Knowl Data Eng; citation_title=To combat multi-class imbalanced problems by means of over-sampling techniques; citation_author=L Abdi, S Hashemi; citation_volume=28; citation_issue=1; citation_publication_date=2015; citation_pages=238-251; citation_doi=10.1109/TKDE.2015.2458858; citation_id=CR1"/> <meta name="citation_reference" content="Akbani R, Kwek S, Japkowicz N (2004) Applying support vector machines to imbalanced datasets. In: European conference on machine learning. Springer, pp 39&#8211;50"/> <meta name="citation_reference" content="citation_journal_title=Pattern Recogn Lett; citation_title=A hybrid method to face class overlap and class imbalance on neural networks and multi-class scenarios; citation_author=R Alejo, RM Valdovinos, V Garc&#237;a, JH Pacheco-Sanchez; citation_volume=34; citation_issue=4; citation_publication_date=2013; citation_pages=380-388; citation_doi=10.1016/j.patrec.2012.09.003; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=Stat Anal Data Min ASA Data Sci J; citation_title=Measurement of data complexity for classification problems with unbalanced data; citation_author=N Anwar, G Jones, S Ganesh; citation_volume=7; citation_issue=3; citation_publication_date=2014; citation_pages=194-211; citation_doi=10.1002/sam.11228; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=Pattern Anal Appl; citation_title=Experimenting multiresolution analysis for identifying regions of different classification complexity; citation_author=G Armano, E Tamponi; citation_volume=19; citation_issue=1; citation_publication_date=2016; citation_pages=129-137; citation_doi=10.1007/s10044-014-0446-y; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=Pattern Anal Appl; citation_title=New applications of ensembles of classifiers; citation_author=R Barandela, RM Valdovinos, JS S&#225;nchez; citation_volume=6; citation_issue=3; citation_publication_date=2003; citation_pages=245-256; citation_doi=10.1007/s10044-003-0192-z; citation_id=CR6"/> <meta name="citation_reference" content="Barella VH, Costa EP, Carvalho A, Pl F (2014) Clusteross: a new undersampling method for imbalanced learning. In: Proceedings of the 3th Brazilian conference on intelligent systems. Academic Press"/> <meta name="citation_reference" content="Barella VH, Garcia LP, de&#160;Souto MP, Lorena AC, de&#160;Carvalho A (2018) Data complexity measures for imbalanced classification tasks. In: 2018 international joint conference on neural networks (IJCNN). IEEE, pp 1&#8211;8"/> <meta name="citation_reference" content="citation_journal_title=Inf Sci; citation_title=Assessing the data complexity of imbalanced datasets; citation_author=VH Barella, LP Garcia, MC Souto, AC Lorena, AC Carvalho; citation_volume=553; citation_publication_date=2021; citation_pages=83-109; citation_doi=10.1016/j.ins.2020.12.006; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Knowl Data Eng; citation_title=Mwmote-majority weighted minority oversampling technique for imbalanced data set learning; citation_author=S Barua, M Islam, X Yao, K Murase; citation_volume=26; citation_issue=2; citation_publication_date=2014; citation_pages=405-425; citation_doi=10.1109/TKDE.2012.232; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=ACM SIGKDD Explor Newsl; citation_title=A study of the behavior of several methods for balancing machine learning training data; citation_author=GE Batista, RC Prati, MC Monard; citation_volume=6; citation_issue=1; citation_publication_date=2004; citation_pages=20-29; citation_doi=10.1145/1007730.1007735; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Fuzzy Syst; citation_title=Fsvm-cil: fuzzy support vector machines for class imbalance learning; citation_author=R Batuwita, V Palade; citation_volume=18; citation_issue=3; citation_publication_date=2010; citation_pages=558-571; citation_doi=10.1109/TFUZZ.2010.2042721; citation_id=CR12"/> <meta name="citation_reference" content="citation_journal_title=Knowl Based Syst; citation_title=An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme; citation_author=J Bi, C Zhang; citation_volume=158; citation_publication_date=2018; citation_pages=81-93; citation_doi=10.1016/j.knosys.2018.05.037; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=Pattern Anal Appl; citation_title=Dealing with overlap and imbalance: a new metric and approach; citation_author=Z Borsos, C Lemnaru, R Potolea; citation_volume=21; citation_issue=2; citation_publication_date=2018; citation_pages=381-395; citation_doi=10.1007/s10044-016-0583-6; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=Mach Learn; citation_title=Bagging predictors; citation_author=L Breiman; citation_volume=24; citation_issue=2; citation_publication_date=1996; citation_pages=123-140; citation_doi=10.1007/BF00058655; citation_id=CR15"/> <meta name="citation_reference" content="citation_journal_title=Knowl Inf Syst; citation_title=Dbmute: density-based majority under-sampling technique; citation_author=C Bunkhumpornpat, K Sinapiromsaran; citation_volume=50; citation_issue=3; citation_publication_date=2017; citation_pages=827-850; citation_doi=10.1007/s10115-016-0957-5; citation_id=CR16"/> <meta name="citation_reference" content="Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2009) Safe-level-smote: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 475&#8211;482"/> <meta name="citation_reference" content="Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2011) Mute: majority under-sampling technique. In: 2011 8th international conference on information, communications and signal processing. IEEE, pp 1&#8211;4"/> <meta name="citation_reference" content="citation_journal_title=Appl Intell; citation_title=Dbsmote: density-based synthetic minority over-sampling technique; citation_author=C Bunkhumpornpat, K Sinapiromsaran, C Lursinsap; citation_volume=36; citation_issue=3; citation_publication_date=2012; citation_pages=664-684; citation_doi=10.1007/s10489-011-0287-y; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Knowl Data Eng; citation_title=Integrated oversampling for imbalanced time series classification; citation_author=H Cao, XL Li, DYK Woon, SK Ng; citation_volume=25; citation_issue=12; citation_publication_date=2013; citation_pages=2809-2822; citation_doi=10.1109/TKDE.2013.37; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=J Artif Intell Res; citation_title=Smote: synthetic minority over-sampling technique; citation_author=NV Chawla, KW Bowyer, LO Hall, WP Kegelmeyer; citation_volume=16; citation_publication_date=2002; citation_pages=321-357; citation_doi=10.1613/jair.953; citation_id=CR21"/> <meta name="citation_reference" content="Chawla NV, Lazarevic A, Hall LO, Bowyer KW (2003) Smoteboost: improving prediction of the minority class in boosting. In: European conference on principles of data mining and knowledge discovery. Springer, pp 107&#8211;119"/> <meta name="citation_reference" content="Chen S (2017) An improved synthetic minority over-sampling technique for imbalanced data set learning. Degree thesis of Department of Information Engineering, National Tsing Hua University, pp 1&#8211;59"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Neural Netw; citation_title=Ramoboost: ranked minority oversampling in boosting; citation_author=S Chen, H He, EA Garcia; citation_volume=21; citation_issue=10; citation_publication_date=2010; citation_pages=1624-1642; citation_doi=10.1109/TNN.2010.2066988; citation_id=CR25"/> <meta name="citation_reference" content="citation_journal_title=Softw Qual J; citation_title=Tackling class overlap and imbalance problems in software defect prediction; citation_author=L Chen, B Fang, Z Shang, Y Tang; citation_volume=26; citation_issue=1; citation_publication_date=2018; citation_pages=97-125; citation_doi=10.1007/s11219-016-9342-6; citation_id=CR23"/> <meta name="citation_reference" content="Chen X, Zhang L, Wei X, Lu X (2021) An effective method using clustering-based adaptive decomposition and editing-based diversified oversamping for multi-class imbalanced datasets. Appl Intell 51(4):1918&#8211;1933"/> <meta name="citation_reference" content="Cieslak DA, Chawla NV, Striegel A (2006) Combating imbalance in network intrusion datasets. In: GrC, Citeseer, pp 732&#8211;737"/> <meta name="citation_reference" content="citation_journal_title=Artif Intell Med; citation_title=Learning from imbalanced data in surveillance of nosocomial infection; citation_author=G Cohen, M Hilario, H Sax, S Hugonnet, A Geissbuhler; citation_volume=37; citation_issue=1; citation_publication_date=2006; citation_pages=7-18; citation_doi=10.1016/j.artmed.2005.03.002; citation_id=CR28"/> <meta name="citation_reference" content="Correia A, Soares C, Jorge A (2019) Dataset morphing to analyze the performance of collaborative filtering. In: International conference on discovery science. Springer, pp 29&#8211;39"/> <meta name="citation_reference" content="Costa AJ, Santos MS, Soares C, Abreu PH (2020) Analysis of imbalance strategies recommendation using a meta-learning approach. In: 7th ICML workshop on automated machine learning (AutoML-ICML2020), pp 1&#8211;10"/> <meta name="citation_reference" content="Cummins L (2013) Combining and choosing case base maintenance algorithms. PhD thesis, University College Cork"/> <meta name="citation_reference" content="Das B, Krishnan NC, Cook DJ (2014a) Handling imbalanced and overlapping classes in smart environments prompting dataset. In: Data mining for service. Springer, pp 199&#8211;219"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Knowl Data Eng; citation_title=Racog and wracog: two probabilistic oversampling techniques; citation_author=B Das, NC Krishnan, DJ Cook; citation_volume=27; citation_issue=1; citation_publication_date=2014; citation_pages=222-234; citation_doi=10.1109/TKDE.2014.2324567; citation_id=CR33"/> <meta name="citation_reference" content="citation_journal_title=Pattern Recogn; citation_title=Handling data irregularities in classification: foundations, trends, and future challenges; citation_author=S Das, S Datta, B Chaudhuri; citation_volume=81; citation_publication_date=2018; citation_pages=674-693; citation_doi=10.1016/j.patcog.2018.03.008; citation_id=CR34"/> <meta name="citation_reference" content="de&#160;Melo VV, Lorena AC (2018) Using complexity measures to evolve synthetic classification datasets. In: 2018 International joint conference on neural networks (IJCNN). IEEE, pp 1&#8211;8"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Evol Comput; citation_title=A fast and elitist multiobjective genetic algorithm: Nsga-ii; citation_author=K Deb, A Pratap, S Agarwal, T Meyarivan; citation_volume=6; citation_issue=2; citation_publication_date=2002; citation_pages=182-197; citation_doi=10.1109/4235.996017; citation_id=CR35"/> <meta name="citation_reference" content="Denil M, Trappenberg T (2010) Overlap versus imbalance. In: Canadian conference on artificial intelligence. Springer, pp 220&#8211;231"/> <meta name="citation_reference" content="citation_journal_title=Inf Sci; citation_title=Geometric smote a geometrically enhanced drop-in replacement for smote; citation_author=G Douzas, F Bacao; citation_volume=501; citation_publication_date=2019; citation_pages=118-135; citation_doi=10.1016/j.ins.2019.06.007; citation_id=CR37"/> <meta name="citation_reference" content="citation_journal_title=Inf Sci; citation_title=Improving imbalanced learning through a heuristic oversampling method based on k-means and smote; citation_author=G Douzas, F Bacao, F Last; citation_volume=465; citation_publication_date=2018; citation_pages=1-20; citation_doi=10.1016/j.ins.2018.06.056; citation_id=CR38"/> <meta name="citation_reference" content="Eshelman LJ (1991) The chc adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In: Foundations of genetic algorithms, vol&#160;1. Elsevier, pp 265&#8211;283"/> <meta name="citation_reference" content="citation_journal_title=Kdd; citation_title=A density-based algorithm for discovering clusters in large spatial databases with noise; citation_author=M Ester, HP Kriegel, J Sander, X Xu; citation_volume=96; citation_publication_date=1996; citation_pages=226-231; citation_id=CR40"/> <meta name="citation_reference" content="citation_journal_title=Knowl Based Syst; citation_title=Entropy-based fuzzy support vector machine for imbalanced datasets; citation_author=Q Fan, Z Wang, D Li, D Gao, H Zha; citation_volume=115; citation_publication_date=2017; citation_pages=87-99; citation_doi=10.1016/j.knosys.2016.09.032; citation_id=CR41"/> <meta name="citation_reference" content="citation_journal_title=Inf Sci; citation_title=Evolutionary inversion of class distribution in overlapping areas for multi-class imbalanced learning; citation_author=ER Fernandes, AC Carvalho; citation_volume=494; citation_publication_date=2019; citation_pages=141-154; citation_doi=10.1016/j.ins.2019.04.052; citation_id=CR42"/> <meta name="citation_reference" content="citation_title=Data Intrinsic Characteristics; citation_publication_date=2018; citation_id=CR43; citation_author=A Fern&#225;ndez; citation_author=S Garc&#237;a; citation_author=M Galar; citation_author=R Prati; citation_author=B Krawczyk; citation_author=F Herrera; citation_publisher=Springer"/> <meta name="citation_reference" content="citation_title=Ensemble Learning; citation_publication_date=2018; citation_id=CR44; citation_author=A Fern&#225;ndez; citation_author=S Garc&#237;a; citation_author=M Galar; citation_author=R Prati; citation_author=B Krawczyk; citation_author=F Herrera; citation_publisher=Springer"/> <meta name="citation_reference" content="Fern&#225;ndez A, Garc&#237;a S, Galar M, Prati RC, Krawczyk B, Herrera F (2018c) Dimensionality reduction for imbalanced learning. In: Learning from imbalanced data sets. Springer, pp 227&#8211;251"/> <meta name="citation_reference" content="citation_title=Learning From Imbalanced Data Sets; citation_publication_date=2018; citation_id=CR46; citation_author=A Fern&#225;ndez; citation_author=S Garc&#237;a; citation_author=M Galar; citation_author=RC Prati; citation_author=B Krawczyk; citation_author=F Herrera; citation_publisher=Springer"/> <meta name="citation_reference" content="citation_journal_title=J Artif Intell Res; citation_title=Smote for learning from imbalanced data: progress and challenges, marking the 15-year anniversary; citation_author=A Fern&#225;ndez, S Garcia, F Herrera, NV Chawla; citation_volume=61; citation_publication_date=2018; citation_pages=863-905; citation_doi=10.1613/jair.1.11192; citation_id=CR47"/> <meta name="citation_reference" content="Fran&#231;a TR, Miranda PB, Prud&#234;ncio RB, Lorenaz AC, Nascimento AC (2020) A many-objective optimization approach for complexity-based data set generation. In: 2020 IEEE congress on evolutionary computation (CEC). IEEE, pp 1&#8211;8"/> <meta name="citation_reference" content="citation_journal_title=J Comput Syst Sci; citation_title=A decision-theoretic generalization of on-line learning and an application to boosting; citation_author=Y Freund, RE Schapire; citation_volume=55; citation_issue=1; citation_publication_date=1997; citation_pages=119-139; citation_doi=10.1006/jcss.1997.1504; citation_id=CR49"/> <meta name="citation_reference" content="citation_journal_title=Ann Stat; citation_title=Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors); citation_author=J Friedman, T Hastie, R Tibshirani; citation_volume=28; citation_issue=2; citation_publication_date=2000; citation_pages=337-407; citation_doi=10.1214/aos/1016218223; citation_id=CR50"/> <meta name="citation_reference" content="citation_journal_title=Chemom Intell Lab Syst; citation_title=Feature selection and classification by minimizing overlap degree for class-imbalanced data in metabolomics; citation_author=GH Fu, YJ Wu, MJ Zong, LZ Yi; citation_volume=196; citation_publication_date=2020; citation_pages=103906; citation_doi=10.1016/j.chemolab.2019.103906; citation_id=CR51"/> <meta name="citation_reference" content="citation_journal_title=Pattern Recogn; citation_title=Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers; citation_author=M Galar, A Fern&#225;ndez, E Barrenechea, H Bustince, F Herrera; citation_volume=46; citation_issue=12; citation_publication_date=2013; citation_pages=3412-3424; citation_doi=10.1016/j.patcog.2013.04.018; citation_id=CR52"/> <meta name="citation_reference" content="citation_journal_title=Pattern Recogn; citation_title=Drcw-ovo: distance-based relative competence weighting combination for one-vs-one strategy in multi-class problems; citation_author=M Galar, A Fern&#225;ndez, E Barrenechea, F Herrera; citation_volume=48; citation_issue=1; citation_publication_date=2015; citation_pages=28-42; citation_doi=10.1016/j.patcog.2014.07.023; citation_id=CR53"/> <meta name="citation_reference" content="citation_journal_title=Evol Comput; citation_title=Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy; citation_author=S Garc&#237;a, F Herrera; citation_volume=17; citation_issue=3; citation_publication_date=2009; citation_pages=275-306; citation_doi=10.1162/evco.2009.17.3.275; citation_id=CR54"/> <meta name="citation_reference" content="Garc&#237;a V, Alejo R, S&#225;nchez J, Sotoca J, Mollineda R (2006) Combined effects of class imbalance and class overlap on instance-based classification. In: International conference on intelligent data engineering and automated learning. Springer, pp 371&#8211;378"/> <meta name="citation_reference" content="Garc&#237;a V, Mollineda R, S&#225;nchez J, Alejo R, Sotoca J (2007a) When overlapping unexpectedly alters the class imbalance effects. In: Iberian conference on pattern recognition and image analysis. Springer, pp 499&#8211;506"/> <meta name="citation_reference" content="Garc&#237;a V, S&#225;nchez J, Mollineda R (2007b) An empirical study of the behavior of classifiers on imbalanced and overlapped data sets. In: Iberoamerican congress on pattern recognition. Springer, pp 397&#8211;406"/> <meta name="citation_reference" content="citation_journal_title=Pattern Anal Appl; citation_title=On the k-nn performance in a challenging scenario of imbalance and overlapping; citation_author=V Garc&#237;a, R Mollineda, J S&#225;nchez; citation_volume=11; citation_issue=3&#8211;4; citation_publication_date=2008; citation_pages=269-280; citation_doi=10.1007/s10044-007-0087-5; citation_id=CR58"/> <meta name="citation_reference" content="citation_journal_title=Expert Syst Appl; citation_title=Understanding the apparent superiority of over-sampling through an analysis of local information for class-imbalanced data; citation_author=V Garc&#237;a, J S&#225;nchez, A Marqu&#233;s, R Florencia, G Rivera; citation_volume=158; citation_publication_date=2020; citation_pages=113026; citation_doi=10.1016/j.eswa.2019.113026; citation_id=CR59"/> <meta name="citation_reference" content="Greene J (2001) Feature subset selection using thornton&#8217;s separability index and its applicability to a number of sparse proximity-based classifiers. In: Proceedings of annual symposium of the pattern recognition association of South Africa"/> <meta name="citation_reference" content="citation_journal_title=Appl Sci; citation_title=A new under-sampling method to face class overlap and imbalance; citation_author=A Guzm&#225;n-Ponce, RM Valdovinos, JS S&#225;nchez, JR Marcial-Romero; citation_volume=10; citation_issue=15; citation_publication_date=2020; citation_pages=5164; citation_doi=10.3390/app10155164; citation_id=CR61"/> <meta name="citation_reference" content="citation_journal_title=Expert Syst Appl; citation_title=Learning from class-imbalanced data: review of methods and applications; citation_author=G Haixiang, L Yijing, J Shang, G Mingyun, H Yuanyue, G Bing; citation_volume=73; citation_publication_date=2017; citation_pages=220-239; citation_doi=10.1016/j.eswa.2016.12.035; citation_id=CR62"/> <meta name="citation_reference" content="Han H, Wang WY, Mao BH (2005) Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: International conference on intelligent computing. Springer, pp 878&#8211;887"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Inf Theory; citation_title=The condensed nearest neighbor rule (corresp.); citation_author=P Hart; citation_volume=14; citation_issue=3; citation_publication_date=1968; citation_pages=515-516; citation_doi=10.1109/TIT.1968.1054155; citation_id=CR64"/> <meta name="citation_reference" content="He H, Bai Y, Garcia E, Li S (2008) Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: IEEE international joint conference on neural networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE, pp 1322&#8211;1328"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Pattern Anal Mach Intell; citation_title=Complexity measures of supervised classification problems; citation_author=T Ho, M Basu; citation_volume=24; citation_issue=3; citation_publication_date=2002; citation_pages=289-300; citation_doi=10.1109/34.990132; citation_id=CR66"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Pattern Anal Mach Intell; citation_title=Comparing images using the hausdorff distance; citation_author=DP Huttenlocher, GA Klanderman, WJ Rucklidge; citation_volume=15; citation_issue=9; citation_publication_date=1993; citation_pages=850-863; citation_doi=10.1109/34.232073; citation_id=CR67"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Pattern Anal Mach Intell; citation_title=Statistical pattern recognition: a review; citation_author=A Jain, R Duin, J Mao; citation_volume=22; citation_issue=1; citation_publication_date=2000; citation_pages=4-37; citation_doi=10.1109/34.824819; citation_id=CR68"/> <meta name="citation_reference" content="Japkowicz N (2001) Concept-learning in the presence of between-class and within-class imbalances. In: Conference of the Canadian society for computational studies of intelligence. Springer, pp 67&#8211;77"/> <meta name="citation_reference" content="citation_journal_title=ACM SIGKDD Explor Newsl; citation_title=Class imbalances versus small disjuncts; citation_author=T Jo, N Japkowicz; citation_volume=6; citation_issue=1; citation_publication_date=2004; citation_pages=40-49; citation_doi=10.1145/1007730.1007737; citation_id=CR70"/> <meta name="citation_reference" content="citation_journal_title=Neurocomputing; citation_title=Constructing a multi-class classifier using one-against-one approach with different binary classifiers; citation_author=S Kang, S Cho, P Kang; citation_volume=149; citation_publication_date=2015; citation_pages=677-682; citation_doi=10.1016/j.neucom.2014.08.006; citation_id=CR71"/> <meta name="citation_reference" content="citation_journal_title=ACM Comput Surv (CSUR); citation_title=A systematic review on imbalanced data challenges in machine learning: applications and solutions; citation_author=H Kaur, HS Pannu, AK Malhi; citation_volume=52; citation_issue=4; citation_publication_date=2019; citation_pages=1-36; citation_id=CR72"/> <meta name="citation_reference" content="citation_journal_title=Appl Soft Comput; citation_title=An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets; citation_author=G Kov&#225;cs; citation_volume=83; citation_publication_date=2019; citation_pages=105662; citation_doi=10.1016/j.asoc.2019.105662; citation_id=CR73"/> <meta name="citation_reference" content="citation_journal_title=Int J Appl Math Comput Sci; citation_title=Ccr: a combined cleaning and resampling algorithm for imbalanced data classification; citation_author=M Koziarski, M Wozniak; citation_volume=27; citation_issue=4; citation_publication_date=2017; citation_pages=727-736; citation_doi=10.1515/amcs-2017-0050; citation_id=CR74"/> <meta name="citation_reference" content="citation_journal_title=Neurocomputing; citation_title=Radial-based oversampling for noisy imbalanced data classification; citation_author=M Koziarski, B Krawczyk, M Wozniak; citation_volume=343; citation_publication_date=2019; citation_pages=19-33; citation_doi=10.1016/j.neucom.2018.04.089; citation_id=CR75"/> <meta name="citation_reference" content="citation_journal_title=Progr. Artif. Intell.; citation_title=Learning from imbalanced data: open challenges and future directions; citation_author=B Krawczyk; citation_volume=5; citation_issue=4; citation_publication_date=2016; citation_pages=221-232; citation_doi=10.1007/s13748-016-0094-0; citation_id=CR76"/> <meta name="citation_reference" content="citation_journal_title=Icml Citeseer; citation_title=Addressing the curse of imbalanced training sets: one-sided selection; citation_author=M Kubat, S Matwin; citation_volume=97; citation_publication_date=1997; citation_pages=179-186; citation_id=CR77"/> <meta name="citation_reference" content="Lango M, Brzezinski D, Firlik S, Stefanowski J (2017) Discovering minority sub-clusters and local difficulty factors from imbalanced data. In: International conference on discovery science. Springer, pp 324&#8211;339"/> <meta name="citation_reference" content="Lango M, Brzezinski D, Stefanowski J (2018) Imweights: classifying imbalanced data using local and neighborhood information. In: Second international workshop on learning with imbalanced domains: theory and applications, PMLR, pp 95&#8211;109"/> <meta name="citation_reference" content="Laurikkala J (2001) Improving identification of difficult small classes by balancing class distribution. In: Conference on artificial intelligence in medicine in Europe. Springer, pp 63&#8211;66"/> <meta name="citation_reference" content="citation_journal_title=Expert Syst Appl; citation_title=An overlap-sensitive margin classifier for imbalanced and overlapping data; citation_author=HK Lee, SB Kim; citation_volume=98; citation_publication_date=2018; citation_pages=72-83; citation_doi=10.1016/j.eswa.2018.01.008; citation_id=CR81"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Knowl Data Eng; citation_title=A set of complexity measures designed for applying meta-learning to instance selection; citation_author=E Leyva, A Gonz&#225;lez, R Perez; citation_volume=27; citation_issue=2; citation_publication_date=2014; citation_pages=354-367; citation_doi=10.1109/TKDE.2014.2327034; citation_id=CR82"/> <meta name="citation_reference" content="citation_journal_title=Swarm Evol Comput; citation_title=A novel error-correcting output codes algorithm based on genetic programming; citation_author=KS Li, HR Wang, KH Liu; citation_volume=50; citation_publication_date=2019; citation_pages=100564; citation_doi=10.1016/j.swevo.2019.100564; citation_id=CR83"/> <meta name="citation_reference" content="citation_journal_title=IJDAR; citation_title=Partial discriminative training for classification of overlapping classes in document analysis; citation_author=C Liu; citation_volume=11; citation_issue=2; citation_publication_date=2008; citation_pages=53; citation_doi=10.1007/s10032-008-0069-1; citation_id=CR84"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Syst Man Cybern Part B (Cybern); citation_title=Exploratory undersampling for class-imbalance learning; citation_author=XY Liu, J Wu, ZH Zhou; citation_volume=39; citation_issue=2; citation_publication_date=2008; citation_pages=539-550; citation_id=CR85"/> <meta name="citation_reference" content="citation_journal_title=Inf Sci; citation_title=An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics; citation_author=V L&#243;pez, A Fern&#225;ndez, S Garc&#237;a, V Palade, F Herrera; citation_volume=250; citation_publication_date=2013; citation_pages=113-141; citation_doi=10.1016/j.ins.2013.07.007; citation_id=CR86"/> <meta name="citation_reference" content="citation_journal_title=Neurocomputing; citation_title=Analysis of complexity indices for classification problems: cancer gene expression data; citation_author=AC Lorena, IG Costa, N Spola&#244;r, MC Souto; citation_volume=75; citation_issue=1; citation_publication_date=2012; citation_pages=33-42; citation_doi=10.1016/j.neucom.2011.03.054; citation_id=CR87"/> <meta name="citation_reference" content="citation_journal_title=ACM Comput Surv (CSUR); citation_title=How complex is your classification problem? A survey on measuring classification complexity; citation_author=AC Lorena, LP Garcia, J Lehmann, MC Souto, TK Ho; citation_volume=52; citation_issue=5; citation_publication_date=2019; citation_pages=1-34; citation_doi=10.1145/3347711; citation_id=CR88"/> <meta name="citation_reference" content="citation_journal_title=Soft Comput; citation_title=Addressing data complexity for imbalanced data sets: analysis of smote-based oversampling and evolutionary undersampling; citation_author=J Luengo, A Fern&#225;ndez, S Garc&#237;a, F Herrera; citation_volume=15; citation_issue=10; citation_publication_date=2011; citation_pages=1909-1936; citation_doi=10.1007/s00500-010-0625-8; citation_id=CR89"/> <meta name="citation_reference" content="citation_title=Clustering in Bioinformatics and Drug Discovery; citation_publication_date=2010; citation_id=CR90; citation_author=J MacCuish; citation_author=N MacCuish; citation_publisher=CRC Press"/> <meta name="citation_reference" content="citation_journal_title=Inf Sci; citation_title=Towards uci+: a mindful repository design; citation_author=N Maci&#224;, E Bernad&#243;-Mansilla; citation_volume=261; citation_publication_date=2014; citation_pages=237-262; citation_doi=10.1016/j.ins.2013.08.059; citation_id=CR91"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Syst Man Cybern Part B (Cybern); citation_title=Two-parameter fisher criterion; citation_author=W Malina; citation_volume=31; citation_issue=4; citation_publication_date=2001; citation_pages=629-636; citation_doi=10.1109/3477.938265; citation_id=CR92"/> <meta name="citation_reference" content="Mani I, Zhang I (2003) knn approach to unbalanced data distributions: a case study involving information extraction. In: Proceedings of workshop on learning from imbalanced datasets, ICML United States, vol 126"/> <meta name="citation_reference" content="citation_journal_title=J Mach Learn Res; citation_title=Classification of imbalanced data with a geometric digraph family; citation_author=A Manukyan, E Ceyhan; citation_volume=17; citation_issue=1; citation_publication_date=2016; citation_pages=6504-6543; citation_id=CR94"/> <meta name="citation_reference" content="citation_journal_title=AAAI; citation_title=Complexity-guided case discovery for case based reasoning; citation_author=S Massie, S Craw, N Wiratunga; citation_volume=5; citation_publication_date=2005; citation_pages=216-221; citation_id=CR95"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Softw Eng; citation_title=Local versus global lessons for defect prediction and effort estimation; citation_author=T Menzies, A Butcher, D Cok, A Marcus, L Layman, F Shull, B Turhan, T Zimmermann; citation_volume=39; citation_issue=6; citation_publication_date=2012; citation_pages=822-834; citation_doi=10.1109/TSE.2012.83; citation_id=CR97"/> <meta name="citation_reference" content="Mercier M, Santos M, Abreu P, Soares C, Soares J, Santos J (2018) Analysing the footprint of classifiers in overlapped and imbalanced contexts. In: International symposium on intelligent data analysis. Springer, pp 200&#8211;212"/> <meta name="citation_reference" content="citation_journal_title=Mach Learn; citation_title=Instance spaces for machine learning classification; citation_author=MA Mu&#241;oz, L Villanova, D Baatar, K Smith-Miles; citation_volume=107; citation_issue=1; citation_publication_date=2018; citation_pages=109-147; citation_doi=10.1007/s10994-017-5629-5; citation_id=CR99"/> <meta name="citation_reference" content="citation_journal_title=J Intell Inf Syst; citation_title=Types of minority class examples and their influence on learning classifiers from imbalanced data; citation_author=K Napierala, J Stefanowski; citation_volume=46; citation_issue=3; citation_publication_date=2016; citation_pages=563-597; citation_doi=10.1007/s10844-015-0368-1; citation_id=CR100"/> <meta name="citation_reference" content="Napiera&#322;a K, Stefanowski J, Wilk S (2010) Learning from imbalanced data in presence of noisy and borderline examples. In: International conference on rough sets and current trends in computing. Springer, pp 158&#8211;167"/> <meta name="citation_reference" content="citation_journal_title=Expert Syst Appl; citation_title=Adaptive semi-unsupervised weighted oversampling (a-suwo) for imbalanced datasets; citation_author=I Nekooeimehr, SK Lai-Yuen; citation_volume=46; citation_publication_date=2016; citation_pages=405-416; citation_doi=10.1016/j.eswa.2015.10.031; citation_id=CR102"/> <meta name="citation_reference" content="citation_journal_title=Comput Biol Med; citation_title=A new dataset evaluation method based on category overlap; citation_author=S Oh; citation_volume=41; citation_issue=2; citation_publication_date=2011; citation_pages=115-122; citation_doi=10.1016/j.compbiomed.2010.12.006; citation_id=CR103"/> <meta name="citation_reference" content="citation_journal_title=Universitat Ramon Llull, La Salle; citation_title=Documentation for the data complexity library in c++; citation_author=A Orriols-Puig, N Macia, TK Ho; citation_volume=196; citation_publication_date=2010; citation_pages=1-40; citation_id=CR104"/> <meta name="citation_reference" content="citation_journal_title=Knowl Inf Syst; citation_title=Revisiting data complexity metrics based on morphology for overlap and imbalance: snapshot, new overlap number of balls metrics and singular problems prospect; citation_author=JD Pascual-Triana, D Charte, M Andr&#233;s Arroyo, A Fern&#225;ndez, F Herrera; citation_volume=63; citation_issue=7; citation_publication_date=2021; citation_pages=1961-1989; citation_doi=10.1007/s10115-021-01577-1; citation_id=CR105"/> <meta name="citation_reference" content="Prati RGB, Monard M (2004) Class imbalances versus class overlapping: an analysis of a learning system behavior. In: Mexican international conference on artificial intelligence. Springer, pp 312&#8211;321"/> <meta name="citation_reference" content="Rivolli A, Garcia LP, Soares C, Vanschoren J, de&#160;Carvalho AC (2018) Characterizing classification datasets: a study of meta-features for meta-learning. arXiv:180810406 "/> <meta name="citation_reference" content="citation_journal_title=Inf Sci; citation_title=Smote-ipf: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering; citation_author=J S&#225;ez, J Luengo, J Stefanowski, F Herrera; citation_volume=291; citation_publication_date=2015; citation_pages=184-203; citation_doi=10.1016/j.ins.2014.08.051; citation_id=CR108"/> <meta name="citation_reference" content="citation_journal_title=IEEE Access; citation_title=Addressing the overlapping data problem in classification using the one-vs-one decomposition strategy; citation_author=JA S&#225;ez, M Galar, B Krawczyk; citation_volume=7; citation_publication_date=2019; citation_pages=83396-83411; citation_doi=10.1109/ACCESS.2019.2925300; citation_id=CR109"/> <meta name="citation_reference" content="citation_journal_title=J Biomed Inform; citation_title=A new cluster-based oversampling method for improving survival prediction of hepatocellular carcinoma patients; citation_author=M Santos, P Abreu, P Garc&#237;a-Laencina, A Sim&#227;o, A Carvalho; citation_volume=58; citation_publication_date=2015; citation_pages=49-59; citation_doi=10.1016/j.jbi.2015.09.012; citation_id=CR110"/> <meta name="citation_reference" content="citation_journal_title=IEEE Comput Intell Mag; citation_title=Cross-validation for imbalanced datasets: avoiding overoptimistic and overfitting approaches; citation_author=M Santos, J Soares, P Abreu, H Ara&#250;jo, J Santos; citation_volume=13; citation_issue=3; citation_publication_date=2018; citation_pages=59-76; citation_doi=10.1109/MCI.2018.2866730; citation_id=CR111"/> <meta name="citation_reference" content="citation_journal_title=Appl Math Sci; citation_title=K-neighbor over-sampling with cleaning data: a new approach to improve classification performance in data sets with class imbalance; citation_author=B Santoso, H Wijayanto, KA Notodiputro, B Sartono; citation_volume=12; citation_issue=10; citation_publication_date=2018; citation_pages=449-460; citation_id=CR112"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Syst Man, Cybern Part A Syst Hum; citation_title=Rusboost: a hybrid approach to alleviating class imbalance; citation_author=C Seiffert, TM Khoshgoftaar, J Hulse, A Napolitano; citation_volume=40; citation_issue=1; citation_publication_date=2009; citation_pages=185-197; citation_doi=10.1109/TSMCA.2009.2029559; citation_id=CR113"/> <meta name="citation_reference" content="citation_journal_title=J Biomed Inform; citation_title=Identification of target gene and prognostic evaluation for lung adenocarcinoma using gene expression meta-analysis, network analysis and neural network algorithms; citation_author=G Selvaraj, S Kaliamurthi, A Kaushik, A Khan, Y Wei, W Cho, K Gu, D Wei; citation_volume=86; citation_publication_date=2018; citation_pages=120-134; citation_doi=10.1016/j.jbi.2018.09.004; citation_id=CR114"/> <meta name="citation_reference" content="citation_journal_title=Inf Sci; citation_title=Medical decision support system for extremely imbalanced datasets; citation_author=S Shilaskar, A Ghatol, P Chatur; citation_volume=384; citation_publication_date=2017; citation_pages=205-219; citation_doi=10.1016/j.ins.2016.08.077; citation_id=CR115"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Pattern Anal Mach Intell; citation_title=Multiresolution estimates of classification complexity; citation_author=S Singh; citation_volume=25; citation_issue=12; citation_publication_date=2003; citation_pages=1534-1539; citation_doi=10.1109/TPAMI.2003.1251146; citation_id=CR117"/> <meta name="citation_reference" content="citation_journal_title=Pattern Anal Appl; citation_title=Prism-a novel framework for pattern recognition; citation_author=S Singh; citation_volume=6; citation_issue=2; citation_publication_date=2003; citation_pages=134-149; citation_doi=10.1007/s10044-002-0186-2; citation_id=CR118"/> <meta name="citation_reference" content="citation_journal_title=Stat Anal Data Min ASA Data Sci J; citation_title=Weighted k-nearest neighbor based data complexity metrics for imbalanced datasets; citation_author=D Singh, A Gosain, A Saha; citation_volume=13; citation_issue=4; citation_publication_date=2020; citation_pages=394-404; citation_doi=10.1002/sam.11463; citation_id=CR116"/> <meta name="citation_reference" content="Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems. Neural Comput Appl 32(16):12363&#8211;12379"/> <meta name="citation_reference" content="citation_journal_title=Mach Learn; citation_title=An instance level analysis of data complexity; citation_author=MR Smith, T Martinez, C Giraud-Carrier; citation_volume=95; citation_issue=2; citation_publication_date=2014; citation_pages=225-256; citation_doi=10.1007/s10994-013-5422-z; citation_id=CR120"/> <meta name="citation_reference" content="Sotoca JM, Sanchez J, Mollineda RA (2005) A review of data complexity measures and their applicability to pattern classification problems. Actas del III Taller Nacional de Mineria de Datos y Aprendizaje TAMIDA, pp 77&#8211;83"/> <meta name="citation_reference" content="citation_journal_title=Inteligencia Artificial Revista Iberoamericana de Inteligencia Artificial; citation_title=A meta-learning framework for pattern classication by means of data complexity measures; citation_author=JM Sotoca, RA Mollineda, JS S&#225;nchez; citation_volume=10; citation_issue=29; citation_publication_date=2006; citation_pages=31-38; citation_id=CR122"/> <meta name="citation_reference" content="citation_journal_title=Int J Mach Learn Comput; citation_title=New cluster undersampling technique for class imbalance learning; citation_author=RA Sowah, MA Agebure, GA Mills, KM Koumadi, SY Fiawoo; citation_volume=6; citation_issue=3; citation_publication_date=2016; citation_pages=205; citation_doi=10.18178/ijmlc.2016.6.3.599; citation_id=CR123"/> <meta name="citation_reference" content="Stefanowski J (2013) Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data. In: Emerging paradigms in machine learning. Springer, pp 277&#8211;306"/> <meta name="citation_reference" content="Stefanowski J (2016) Dealing with data difficulty factors while learning from imbalanced data. In: Challenges in computational statistics and data mining. Springer, pp 333&#8211;363"/> <meta name="citation_reference" content="Stefanowski J, Wilk S (2008) Selective pre-processing of imbalanced data for improving classification performance. In: International conference on data warehousing and knowledge discovery. Springer, pp 283&#8211;292"/> <meta name="citation_reference" content="citation_journal_title=IEICE Trans Inf Syst; citation_title=Improved classification for problem involving overlapping patterns; citation_author=Y Tang, J Gao; citation_volume=90; citation_issue=11; citation_publication_date=2007; citation_pages=1787-1795; citation_doi=10.1093/ietisy/e90-d.11.1787; citation_id=CR128"/> <meta name="citation_reference" content="Tang W, Mao K, Mak LO, Ng GW (2010) Classification for overlapping classes using optimized overlapping region detection and soft decision. In: 2010 13th international conference on information fusion. IEEE, pp 1&#8211;8"/> <meta name="citation_reference" content="Thornton C (1998) Separability is a learner&#8217;s best friend. In: 4th Neural computation and psychology workshop, London, 9&#8211;11 April 1997. Springer, pp 40&#8211;46"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Syst Man Commun; citation_title=Two modifications of cnn; citation_author=I Tomek; citation_volume=6; citation_publication_date=1976; citation_pages=769-772; citation_id=CR130"/> <meta name="citation_reference" content="citation_journal_title=Neurocomputing; citation_title=Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms; citation_author=P Vorraboot, S Rasmequan, K Chinnasarn, C Lursinsap; citation_volume=152; citation_publication_date=2015; citation_pages=429-443; citation_doi=10.1016/j.neucom.2014.10.007; citation_id=CR131"/> <meta name="citation_reference" content="Vuttipittayamongkol P, Elyan E (2020a) Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson&#8217;s disease. Int J Neural Syst 30(08):2050043"/> <meta name="citation_reference" content="citation_journal_title=Inf Sci; citation_title=Neighbourhood-based undersampling approach for handling imbalanced and overlapped data; citation_author=P Vuttipittayamongkol, E Elyan; citation_volume=509; citation_publication_date=2020; citation_pages=47-70; citation_doi=10.1016/j.ins.2019.08.062; citation_id=CR133"/> <meta name="citation_reference" content="Vuttipittayamongkol P, Elyan E, Petrovski A, Jayne C (2018) Overlap-based undersampling for improving imbalanced data classification. In: International conference on intelligent data engineering and automated learning. Springer, pp 689&#8211;697"/> <meta name="citation_reference" content="Vuttipittayamongkol P, Elyan E, Petrovski A (2020) On the class overlap problem in imbalanced data classification. Knowl Based Syst 106631"/> <meta name="citation_reference" content="Van&#160;der Walt CM, Barnard E (2007) Measures for the characterisation of pattern-recognition data sets. In: 18th Annual symposium of the pattern recognition association of South Africa"/> <meta name="citation_reference" content="Van&#160;der Walt CM, et&#160;al. (2008) Data measures that characterise classification problems. PhD thesis, University of Pretoria"/> <meta name="citation_reference" content="citation_journal_title=Knowl Inf Syst; citation_title=Boosting support vector machines for imbalanced data sets; citation_author=BX Wang, N Japkowicz; citation_volume=25; citation_issue=1; citation_publication_date=2010; citation_pages=1-20; citation_doi=10.1007/s10115-009-0198-y; citation_id=CR138"/> <meta name="citation_reference" content="Wang S, Yao X (2009) Diversity analysis on imbalanced data sets by using ensemble models. In: 2009 IEEE symposium on computational intelligence and data mining. IEEE, pp 324&#8211;331"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Reliab; citation_title=Using class imbalance learning for software defect prediction; citation_author=S Wang, X Yao; citation_volume=62; citation_issue=2; citation_publication_date=2013; citation_pages=434-443; citation_doi=10.1109/TR.2013.2259203; citation_id=CR140"/> <meta name="citation_reference" content="citation_journal_title=Knowl Based Syst; citation_title=Ia-suwo: an improving adaptive semi-unsupervised weighted oversampling for imbalanced classification problems; citation_author=J Wei, H Huang, L Yao, Y Hu, Q Fan, D Huang; citation_volume=203; citation_publication_date=2020; citation_pages=106116; citation_doi=10.1016/j.knosys.2020.106116; citation_id=CR141"/> <meta name="citation_reference" content="citation_journal_title=Expert Syst Appl; citation_title=Ni-mwmote: an improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems; citation_author=J Wei, H Huang, L Yao, Y Hu, Q Fan, D Huang; citation_volume=158; citation_publication_date=2020; citation_pages=113504; citation_doi=10.1016/j.eswa.2020.113504; citation_id=CR142"/> <meta name="citation_reference" content="Weng CG, Poon J (2006) A data complexity analysis on imbalanced datasets and an alternative imbalance recovering strategy. In: 2006 IEEE/WIC/ACM international conference on web intelligence (WI 2006 main conference proceedings) (WI&#8217;06). IEEE, pp 270&#8211;276"/> <meta name="citation_reference" content="citation_journal_title=IEEE Trans Syst Man Cybern; citation_title=Asymptotic properties of nearest neighbor rules using edited data; citation_author=DL Wilson; citation_volume=3; citation_publication_date=1972; citation_pages=408-421; citation_doi=10.1109/TSMC.1972.4309137; citation_id=CR144"/> <meta name="citation_reference" content="citation_journal_title=Found Comput Decis Sci; citation_title=Difficulty factors and preprocessing in imbalanced data sets: an experimental study on artificial data; citation_author=S Wojciechowski, S Wilk; citation_volume=42; citation_issue=2; citation_publication_date=2017; citation_pages=149-176; citation_doi=10.1515/fcds-2017-0007; citation_id=CR145"/> <meta name="citation_reference" content="citation_journal_title=Inf Fusion; citation_title=A survey of multiple classifier systems as hybrid systems; citation_author=M Wozniak, M Grana, E Corchado; citation_volume=16; citation_publication_date=2014; citation_pages=3-17; citation_doi=10.1016/j.inffus.2013.04.006; citation_id=CR146"/> <meta name="citation_reference" content="Xiong H, Wu J, Liu L (2010) classification with classoverlapping: a systematic study. In: Proceedings of the 1st international conference on E-Business intelligence (ICEBI2010). Atlantis Press"/> <meta name="citation_reference" content="citation_journal_title=IEEE Access; citation_title=A parameter-free cleaning method for smote in imbalanced classification; citation_author=Y Yan, R Liu, Z Ding, X Du, J Chen, Y Zhang; citation_volume=7; citation_publication_date=2019; citation_pages=23537-23548; citation_doi=10.1109/ACCESS.2019.2899467; citation_id=CR148"/> <meta name="citation_reference" content="citation_journal_title=Expert Syst Appl; citation_title=Cluster-based under-sampling approaches for imbalanced data distributions; citation_author=SJ Yen, YS Lee; citation_volume=36; citation_issue=3; citation_publication_date=2009; citation_pages=5718-5727; citation_doi=10.1016/j.eswa.2008.06.108; citation_id=CR149"/> <meta name="citation_reference" content="citation_journal_title=Pattern Recogn Lett; citation_title=Entropy-based matrix learning machine for imbalanced data sets; citation_author=C Zhu, Z Wang; citation_volume=88; citation_publication_date=2017; citation_pages=72-80; citation_doi=10.1016/j.patrec.2017.01.014; citation_id=CR150"/> <meta name="citation_reference" content="citation_journal_title=Pattern Recogn; citation_title=Synthetic minority oversampling technique for multiclass imbalance problems; citation_author=T Zhu, Y Lin, Y Liu; citation_volume=72; citation_publication_date=2017; citation_pages=327-340; citation_doi=10.1016/j.patcog.2017.07.024; citation_id=CR151"/> <meta name="citation_reference" content="citation_journal_title=Knowl-Based Syst; citation_title=Improving interpolation-based oversampling for imbalanced data learning; citation_author=T Zhu, Y Lin, Y Liu; citation_volume=187; citation_publication_date=2020; citation_pages=104826; citation_doi=10.1016/j.knosys.2019.06.034; citation_id=CR152"/> <meta name="citation_reference" content="citation_journal_title=Neurocomputing; citation_title=Ehso: evolutionary hybrid sampling in overlapping scenarios for imbalanced learning; citation_author=Y Zhu, Y Yan, Y Zhang, Y Zhang; citation_volume=417; citation_publication_date=2020; citation_pages=333-346; citation_doi=10.1016/j.neucom.2020.08.060; citation_id=CR153"/> <meta name="citation_author" content="Santos, Miriam Seoane"/> <meta name="citation_author_email" content="miriams@dei.uc.pt"/> <meta name="citation_author_institution" content="Department of Informatics Engineering, Centre for Informatics and Systems of the University of Coimbra, University of Coimbra, Coimbra, Portugal"/> <meta name="citation_author" content="Abreu, Pedro Henriques"/> <meta name="citation_author_email" content="pha@dei.uc.pt"/> <meta name="citation_author_institution" content="Department of Informatics Engineering, Centre for Informatics and Systems of the University of Coimbra, University of Coimbra, Coimbra, Portugal"/> <meta name="citation_author" content="Japkowicz, Nathalie"/> <meta name="citation_author_email" content="nathalie.japkowicz@american.edu"/> <meta name="citation_author_institution" content="Department of Computer Science, American University, Washington, USA"/> <meta name="citation_author" content="Fern&#225;ndez, Alberto"/> <meta name="citation_author_email" content="alberto@decsai.ugr.es"/> <meta name="citation_author_institution" content="Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain"/> <meta name="citation_author" content="Soares, Carlos"/> <meta name="citation_author_email" content="csoares@fe.up.pt"/> <meta name="citation_author_institution" content="Fraunhofer Portugal AICOS and LIACC, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal"/> <meta name="citation_author" content="Wilk, Szymon"/> <meta name="citation_author_email" content="szymon.wilk@cs.put.poznan.pl"/> <meta name="citation_author_institution" content="Institute of Computing Science, Poznan University of Technology, Poznan, Poland"/> <meta name="citation_author" content="Santos, Jo&#227;o"/> <meta name="citation_author_email" content="joao.santos@ipoporto.min-saude.pt"/> <meta name="citation_author_institution" content="IPO-Porto Research Centre (CI-IPOP), Porto, Portugal"/> <meta name="citation_author_institution" content="Instituto de Ci&#234;ncias Biom&#233;dicas Abel Salazar da Universidade do Porto, Porto, Portugal"/> <meta name="format-detection" content="telephone=no"/> <meta name="citation_cover_date" content="2022/12/01"/> <meta property="og:url" content="https://link.springer.com/article/10.1007/s10462-022-10150-3"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="On the joint-effect of class imbalance and overlap: a critical review - Artificial Intelligence Review"/> <meta property="og:description" content="Current research on imbalanced data recognises that class imbalance is aggravated by other data intrinsic characteristics, among which class overlap stands out as one of the most harmful. The combination of these two problems creates a new and difficult scenario for classification tasks and has been discussed in several research works over the past two decades. In this paper, we argue that despite some insightful information can be derived from related research, the joint-effect of class overlap and imbalance is still not fully understood, and advocate for the need to move towards a unified view of the class overlap problem in imbalanced domains. To that end, we start by performing a thorough analysis of existing literature on the joint-effect of class imbalance and overlap, elaborating on important details left undiscussed on the original papers, namely the impact of data domains with different characteristics and the behaviour of classifiers with distinct learning biases. This leads to the hypothesis that class overlap comprises multiple representations, which are important to accurately measure and analyse in order to provide a full characterisation of the problem. Accordingly, we devise two novel taxonomies, one for class overlap measures and the other for class overlap-based approaches, both resonating with the distinct representations of class overlap identified. This paper therefore presents a global and unique view on the joint-effect of class imbalance and overlap, from precursor work to recent developments in the field. It meticulously discusses some concepts taken as implicit in previous research, explores new perspectives in light of the limitations found, and presents new ideas that will hopefully inspire researchers to move towards a unified view on the problem and the development of suitable strategies for imbalanced and overlapped domains."/> <meta property="og:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig1_HTML.png"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-5272567b64.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-72ba046d97.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: '10462.springer.com', siteWithPath: '10462.springer.com' + window.location.pathname, twitterHashtag: '10462', cmsPrefix: 'https://studio-cms.springernature.com/studio/', publisherBrand: 'Springer', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1007/s10462-022-10150-3","Page":"article","springerJournal":true,"Publishing Model":"Open Access","page":{"attributes":{"environment":"live"}},"Country":"HK","japan":false,"doi":"10.1007-s10462-022-10150-3","Journal Id":10462,"Journal Title":"Artificial Intelligence Review","imprint":"Springer","Keywords":"Class imbalance, Class overlap, Data intrinsic characteristics, Class overlap complexity measures, Class overlap-based approaches, Class overlap representations","kwrd":["Class_imbalance","Class_overlap","Data_intrinsic_characteristics","Class_overlap_complexity_measures","Class_overlap-based_approaches","Class_overlap_representations"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"N","hasAccess":"N","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"no-access","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"pw-vgzm.415900-10.1007-s10462-022-10150-3","Full HTML":"N","Subject Codes":["SCI","SCI21000","SCI00001"],"pmc":["I","I21000","I00001"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"1573-7462","pissn":"0269-2821"},"type":"Article","category":{"pmc":{"primarySubject":"Computer Science","primarySubjectCode":"I","secondarySubjects":{"1":"Artificial Intelligence","2":"Computer Science, general"},"secondarySubjectCodes":{"1":"I21000","2":"I00001"}},"sucode":"SC6","articleType":"Article"},"attributes":{"deliveryPlatform":"oscar"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true } ], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://link.springer.com/article/10.1007/s10462-022-10150-3"/> <script type="application/ld+json">{"mainEntity":{"headline":"On the joint-effect of class imbalance and overlap: a critical review","description":"Current research on imbalanced data recognises that class imbalance is aggravated by other data intrinsic characteristics, among which class overlap stands out as one of the most harmful. The combination of these two problems creates a new and difficult scenario for classification tasks and has been discussed in several research works over the past two decades. In this paper, we argue that despite some insightful information can be derived from related research, the joint-effect of class overlap and imbalance is still not fully understood, and advocate for the need to move towards a unified view of the class overlap problem in imbalanced domains. To that end, we start by performing a thorough analysis of existing literature on the joint-effect of class imbalance and overlap, elaborating on important details left undiscussed on the original papers, namely the impact of data domains with different characteristics and the behaviour of classifiers with distinct learning biases. This leads to the hypothesis that class overlap comprises multiple representations, which are important to accurately measure and analyse in order to provide a full characterisation of the problem. Accordingly, we devise two novel taxonomies, one for class overlap measures and the other for class overlap-based approaches, both resonating with the distinct representations of class overlap identified. This paper therefore presents a global and unique view on the joint-effect of class imbalance and overlap, from precursor work to recent developments in the field. It meticulously discusses some concepts taken as implicit in previous research, explores new perspectives in light of the limitations found, and presents new ideas that will hopefully inspire researchers to move towards a unified view on the problem and the development of suitable strategies for imbalanced and overlapped domains.","datePublished":"2022-03-24T00:00:00Z","dateModified":"2022-03-24T00:00:00Z","pageStart":"6207","pageEnd":"6275","sameAs":"https://doi.org/10.1007/s10462-022-10150-3","keywords":["Class imbalance","Class overlap","Data intrinsic characteristics","Class overlap complexity measures","Class overlap-based approaches","Class overlap representations","Artificial Intelligence","Computer Science","general"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig4_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig5_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig6_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig7_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig8_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig9_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig10_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig11_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig12_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig13_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig14_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig15_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig16_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig17_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig18_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig19_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig20_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig21_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig22_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig23_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig24_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig25_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig26_HTML.png"],"isPartOf":{"name":"Artificial Intelligence Review","issn":["1573-7462","0269-2821"],"volumeNumber":"55","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Springer Netherlands","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Miriam Seoane Santos","url":"http://orcid.org/0000-0002-5912-963X","affiliation":[{"name":"University of Coimbra","address":{"name":"Department of Informatics Engineering, Centre for Informatics and Systems of the University of Coimbra, University of Coimbra, Coimbra, Portugal","@type":"PostalAddress"},"@type":"Organization"}],"email":"miriams@dei.uc.pt","@type":"Person"},{"name":"Pedro Henriques Abreu","affiliation":[{"name":"University of Coimbra","address":{"name":"Department of Informatics Engineering, Centre for Informatics and Systems of the University of Coimbra, University of Coimbra, Coimbra, Portugal","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Nathalie Japkowicz","affiliation":[{"name":"American University","address":{"name":"Department of Computer Science, American University, Washington, USA","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Alberto Fernández","affiliation":[{"name":"University of Granada","address":{"name":"Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Carlos Soares","affiliation":[{"name":"Universidade do Porto","address":{"name":"Fraunhofer Portugal AICOS and LIACC, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Szymon Wilk","affiliation":[{"name":"Poznan University of Technology","address":{"name":"Institute of Computing Science, Poznan University of Technology, Poznan, Poland","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"João Santos","affiliation":[{"name":"IPO-Porto Research Centre (CI-IPOP)","address":{"name":"IPO-Porto Research Centre (CI-IPOP), Porto, Portugal","@type":"PostalAddress"},"@type":"Organization"},{"name":"Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto","address":{"name":"Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"isAccessibleForFree":false,"hasPart":{"isAccessibleForFree":false,"cssSelector":".main-content","@type":"WebPageElement"},"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1007/s10462-022-10150-3?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-20"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/journal/10462" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Artificial Intelligence Review</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">On the joint-effect of class imbalance and overlap: a critical review</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item"> Published: <time datetime="2022-03-24">24 March 2022</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span data-test="journal-volume">Volume 55</span>, pages 6207–6275, (<span data-test="article-publication-year">2022</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> </div> </div> <div class="app-article-masthead__brand"> <a href="/journal/10462" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/10462?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/10462?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/10462?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/10462?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">Artificial Intelligence Review</span> </a> <a href="https://link.springer.com/journal/10462/aims-and-scope" class="app-article-masthead__submission-link" data-track="click_aims_and_scope" data-track-action="aims and scope" data-track-context="article page" data-track-label="link"> Aims and scope <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> <a href="https://submission.nature.com/new-submission/10462/3" class="app-article-masthead__submission-link" data-track="click_submit_manuscript" data-track-context="article masthead on springerlink article page" data-track-action="submit manuscript" data-track-label="link"> Submit manuscript <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Miriam_Seoane-Santos-Aff1" data-author-popup="auth-Miriam_Seoane-Santos-Aff1" data-author-search="Santos, Miriam Seoane" data-corresp-id="c1">Miriam Seoane Santos<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide">  <a class="js-orcid" href="http://orcid.org/0000-0002-5912-963X"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0002-5912-963X</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Pedro_Henriques-Abreu-Aff1" data-author-popup="auth-Pedro_Henriques-Abreu-Aff1" data-author-search="Abreu, Pedro Henriques">Pedro Henriques Abreu</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Nathalie-Japkowicz-Aff2" data-author-popup="auth-Nathalie-Japkowicz-Aff2" data-author-search="Japkowicz, Nathalie">Nathalie Japkowicz</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Alberto-Fern_ndez-Aff3" data-author-popup="auth-Alberto-Fern_ndez-Aff3" data-author-search="Fernández, Alberto">Alberto Fernández</a><sup class="u-js-hide"><a href="#Aff3">3</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Carlos-Soares-Aff4" data-author-popup="auth-Carlos-Soares-Aff4" data-author-search="Soares, Carlos">Carlos Soares</a><sup class="u-js-hide"><a href="#Aff4">4</a></sup>, </li><li class="c-article-author-list__item c-article-author-list__item--hide-small-screen"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Szymon-Wilk-Aff5" data-author-popup="auth-Szymon-Wilk-Aff5" data-author-search="Wilk, Szymon">Szymon Wilk</a><sup class="u-js-hide"><a href="#Aff5">5</a></sup> &amp; </li><li class="c-article-author-list__show-more" aria-label="Show all 7 authors for this article" title="Show all 7 authors for this article">…</li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Jo_o-Santos-Aff6-Aff7" data-author-popup="auth-Jo_o-Santos-Aff6-Aff7" data-author-search="Santos, João">João Santos</a><sup class="u-js-hide"><a href="#Aff6">6</a>,<a href="#Aff7">7</a></sup> </li></ul><button aria-expanded="false" class="c-article-author-list__button"><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-down-medium"></use></svg><span>Show authors</span></button> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>2218 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-citations-medium"></use> </svg>44 <span class="app-article-metrics-bar__label">Citations</span></p> </li> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-altmetric-medium"></use> </svg>1 <span class="app-article-metrics-bar__label">Altmetric</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1007/s10462-022-10150-3/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>Current research on imbalanced data recognises that class imbalance is aggravated by other data intrinsic characteristics, among which class overlap stands out as one of the most harmful. The combination of these two problems creates a new and difficult scenario for classification tasks and has been discussed in several research works over the past two decades. In this paper, we argue that despite some insightful information can be derived from related research, the joint-effect of class overlap and imbalance is still not fully understood, and advocate for the need to move towards a unified view of the class overlap problem in imbalanced domains. To that end, we start by performing a thorough analysis of existing literature on the joint-effect of class imbalance and overlap, elaborating on important details left undiscussed on the original papers, namely the impact of data domains with different characteristics and the behaviour of classifiers with distinct learning biases. This leads to the hypothesis that class overlap comprises multiple representations, which are important to accurately measure and analyse in order to provide a full characterisation of the problem. Accordingly, we devise two novel taxonomies, one for class overlap measures and the other for class overlap-based approaches, both resonating with the distinct representations of class overlap identified. This paper therefore presents a global and unique view on the joint-effect of class imbalance and overlap, from precursor work to recent developments in the field. It meticulously discusses some concepts taken as implicit in previous research, explores new perspectives in light of the limitations found, and presents new ideas that will hopefully inspire researchers to move towards a unified view on the problem and the development of suitable strategies for imbalanced and overlapped domains.</p></div></div></section> <div class="c-notes"> <p class="c-notes__text c-status-message--info"> <svg width="24" height="24" focusable="false" role="img" aria-hidden="true" class="c-status-message__icon"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-info-filled-medium"></use> </svg> This is a preview of subscription content, <a id="test-login-banner-link" href="//wayf.springernature.com?redirect_uri&#x3D;https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10462-022-10150-3%3Ferror%3Dcookies_not_supported%26code%3Df0f2f7a0-2ee6-4664-810f-566decc5e373" data-track="click" data-track-action="login" data-track-label="link" class="c-preview-message__link">log in via an institution</a> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon c-external-link__icon"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-external-link-small"></use> </svg> to check access. </p> </div> <div data-test="access-article" class="app-article-access"> <h2 class="app-article-access__heading">Access this article</h2> <div class="u-ma-16 u-clear-both"> <a href="//wayf.springernature.com?redirect_uri&#x3D;https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10462-022-10150-3%3Ferror%3Dcookies_not_supported%26code%3Df0f2f7a0-2ee6-4664-810f-566decc5e373" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-track="click" data-track-action="institution access" data-track-label="button"> <span data-test="access-via-institution">Log in via an institution</span> <svg aria-hidden="true" focusable="false" width="24" height="24" class="u-icon"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg> </a> </div> <div data-test="buy-box-mobile" class="c-article-buy-box"> <div class="sprcom-buybox-articleDarwin" id="sprcom-buybox-articleDarwin"> <!-- rendered: 2024-11-27T03:49:06.344782 --><!-- Darwin version --> <div class="buying-option" data-test-id="buy-article-darwin"> <div> <div class="c-springer-plus"> <h2 class="springer-plus-heading">Subscribe and save</h2> <div class="springer-plus"> <div class="springer-plus-headline"> <div class="springer-plus-title"> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"> <use xlink:href="#icon-eds-i-check-filled-medium"></use> </svg><span>Springer+ Basic</span> </div> <div class="dd price-amount-springer-plus"> €32.70 /Month </div> </div> <ul class="buying-option-usps"> <li>Get 10 units per month</li> <li>Download Article/Chapter or eBook</li> <li>1 Unit = 1 Article or 1 Chapter</li> <li>Cancel anytime</li> </ul><a href="https://link.springer.com/product/springer-plus" id="btn-subscribe-springerPlus" class="u-button u-button--full-width u-button--secondary" data-track="click||click_springer_subscribe" data-track-context="buy box"><span>Subscribe now </span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a> </div> <h2 class="springer-plus-heading">Buy Now</h2> </div> <div class="buybox__buy"> <form action="https://order.springer.com/public/cart" method="post"> <input type="hidden" name="type" value="article"><input type="hidden" name="doi" value="10.1007/s10462-022-10150-3"><input type="hidden" name="isxn" value="1573-7462"><input type="hidden" name="contenttitle" value="On the joint-effect of class imbalance and overlap: a critical review"><input type="hidden" name="copyrightyear" value="2022"><input type="hidden" name="year" value="2022"><input type="hidden" name="authors" value="Miriam Seoane Santos, et al."><input type="hidden" name="title" value="Artificial Intelligence Review"><input type="hidden" name="mac" value="1b541af2ce9cff9267a2f4604f0e5b3d"> <div class="u-ma-16"> <button type="submit" class="u-button--small u-button u-button--secondary u-button--full-width" onclick="dataLayer.push({&quot;event&quot;:&quot;addToCart&quot;,&quot;ecommerce&quot;:{&quot;currencyCode&quot;:&quot;EUR&quot;,&quot;add&quot;:{&quot;products&quot;:[{&quot;name&quot;:&quot;On the joint-effect of class imbalance and overlap: a critical review&quot;,&quot;id&quot;:&quot;1573-7462&quot;,&quot;price&quot;:39.95,&quot;brand&quot;:&quot;Springer Netherlands&quot;,&quot;category&quot;:&quot;Artificial Intelligence&quot;,&quot;variant&quot;:&quot;ppv-article&quot;,&quot;quantity&quot;:1}]}}});"><span>Buy article PDF 39,95 €</span></button> </div> </form> <p class="c-notes__text c-notes__vat">Price includes VAT (Hong Kong/P.R.China)<br></p> <p class="c-notes__text c-notes__usp">Instant access to the full article PDF.</p> </div> </div> <script>dataLayer.push({"ecommerce":{"currency":"EUR","impressions":[{"name":"On the joint-effect of class imbalance and overlap: a critical review","id":"1573-7462","price":39.95,"brand":"Springer Netherlands","category":"Artificial Intelligence","variant":"ppv-article","quantity":1}]}});</script> <script style="display: none"> ;(function () { if (document.cookie.indexOf("feature-monetise-subscriptions-display-springer-plus") > -1) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } // springerPlus roll out 10% starts here var springerPlusGroup = setLocalStorageSpringerPlus(); var rollOutSpringerPlus = springerPlusGroup === "B" function setLocalStorageSpringerPlus() { var selectUserKey = "springerPlusRollOut"; var springerPlusGroup = "X"; if (!window.localStorage) return springerPlusGroup; try { var selectUserValue = window.localStorage.getItem(selectUserKey) springerPlusGroup = selectUserValue || randomDistributionSpringerPlus(selectUserKey) } catch (err) { console.log(err) } return springerPlusGroup; } function randomDistributionSpringerPlus(selectUserKey) { var randomGroup = Math.random() < 0.9 ? "A" : "B" window.localStorage.setItem(selectUserKey, randomGroup) return randomGroup } if (rollOutSpringerPlus) { revealSpringerPlus(); } function revealSpringerPlus() { var article = document.getElementById("sprcom-buybox-articleDarwin"); if(article) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } } //springerPlus ends here })() </script> <style> .springer-plus .buying-option-usps > li::before { background-image: url("data:image/svg+xml,%3Csvg viewBox='0 0 100 100' xmlns='http://www.w3.org/2000/svg' fill='%230070A8'%3E%3Ccircle cx='50' cy='50' r='50'/%3E%3C/svg%3E"); } </style> </div> <article class="buybox__rent-article buybox__access-option u-sans-serif" id="deepdyve" style="display: none" data-test-id="journal-subscription"> <div class="c-box__body"> <div class="buybox__info"> <p>Rent this article via <a class="deepdyve-link" target="deepdyve" rel="nofollow" data-track="click" data-track-action="rent article" data-track-label="rent action, new buybox">DeepDyve</a> <svg focusable="false" role="img" aria-hidden="true" class="u-icon" style="vertical-align: middle"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-external-link-small"></use> </svg></p> </div> </div> <script> function deepDyveResponse(data) { if (data.status === 'ok') { [].slice.call(document.querySelectorAll('.buybox__rent-article')).forEach(function (article) { article.style.display = 'flex' var link = article.querySelector('.deepdyve-link') if (link) { link.setAttribute('href', data.url) } }) } } var script = document.createElement('script') script.src = '//www.deepdyve.com/rental-link?docId=10.1007/s10462-022-10150-3&journal=1573-7462&fieldName=journal_doi&affiliateId=springer&format=jsonp&callback=deepDyveResponse' document.body.appendChild(script) </script> </article> <div class="buybox__access-option buybox__institutional-subs-link u-sans-serif"> <p><a href="https://www.springernature.com/gp/librarians/licensing/agc/journals">Institutional subscriptions <svg aria-hidden="true" focusable="false" width="24" height="24" class="u-icon" style="vertical-align: middle"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </div> <style>.sprcom-buybox-articleDarwin .buybox__access-option{ border-top: 1px solid #cedbe0; font-size: 1rem; padding: 16px; } .sprcom-buybox-articleDarwin .c-springer-plus{ display: none; } .sprcom-buybox-articleDarwin .springer-plus{ background-color: #EBF6FF; font-family: 'Merriweather Sans', 'Helvetica Neue', Helvetica, Arial, sans-serif; padding: 16px; } .sprcom-buybox-articleDarwin .springer-plus-headline{ display: flex; justify-content: space-between; } .sprcom-buybox-articleDarwin .springer-plus-heading{ border-bottom: 1px solid #c5e0f4; border-top: 1px solid #c5e0f4; font-family: 'Merriweather Sans', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 1.125rem; font-weight: 700; margin: 0; padding: 16px; text-align: center; } .sprcom-buybox-articleDarwin .springer-plus-title{ align-items: center; display: flex; } .sprcom-buybox-articleDarwin .springer-plus-title span{ margin-left: 8px; } .sprcom-buybox-articleDarwin .springer-plus a{ background-color: #fff; border: 1px solid #025e8d; color: #025e8d; font-size: 16px; font-weight: 700; max-height: 44px; } .sprcom-buybox-articleDarwin .springer-plus a span{ margin-right: 8px; } .sprcom-buybox-articleDarwin .springer-plus a:hover{ background-color: #025e8d; border: 4px solid #025e8d; box-shadow: none; color: #fff; font-weight: 700; } .sprcom-buybox-articleDarwin .springer-plus a:visited{ color: #025e8d; } .sprcom-buybox-articleDarwin .springer-plus a:visited:hover{ color: #fff; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps{ color: #555; font-size: 1rem; line-height: 1.6; list-style: none; margin: 0; padding: 16px 0 24px 0; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps > li{ padding-left: 26px; position: relative; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps > li::before{ content: ''; height: 10px; left: 0; position: absolute; top: calc(0.8em - 5px); width: 10px; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps > li:not(:first-child){ margin-top: 4px; } </style> </div> </div> </div> <div class="u-display-none"> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig1_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig1_HTML.png" alt="" loading="lazy" width="212" height="312"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig2_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig2_HTML.png" alt="" loading="lazy" width="312" height="143"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig3_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig3_HTML.png" alt="" loading="lazy" width="312" height="122"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig4_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig4_HTML.png" alt="" loading="lazy" width="312" height="180"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5"><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 5</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig5_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig5_HTML.png" alt="" loading="lazy" width="312" height="115"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6"><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 6</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig6_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig6_HTML.png" alt="" loading="lazy" width="312" height="113"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-7"><figure><figcaption><b id="Fig7" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 7</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig7_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig7_HTML.png" alt="" loading="lazy" width="312" height="78"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-8"><figure><figcaption><b id="Fig8" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 8</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig8_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig8_HTML.png" alt="" loading="lazy" width="312" height="193"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-9"><figure><figcaption><b id="Fig9" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 9</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig9_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig9_HTML.png" alt="" loading="lazy" width="312" height="215"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-10"><figure><figcaption><b id="Fig10" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 10</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig10_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig10_HTML.png" alt="" loading="lazy" width="312" height="201"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-11"><figure><figcaption><b id="Fig11" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 11</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig11_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig11_HTML.png" alt="" loading="lazy" width="312" height="242"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-12"><figure><figcaption><b id="Fig12" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 12</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig12_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig12_HTML.png" alt="" loading="lazy" width="312" height="225"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-13"><figure><figcaption><b id="Fig13" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 13</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig13_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig13_HTML.png" alt="" loading="lazy" width="312" height="68"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-14"><figure><figcaption><b id="Fig14" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 14</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig14_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig14_HTML.png" alt="" loading="lazy" width="312" height="94"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-15"><figure><figcaption><b id="Fig15" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 15</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig15_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig15_HTML.png" alt="" loading="lazy" width="312" height="143"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-16"><figure><figcaption><b id="Fig16" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 16</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig16_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig16_HTML.png" alt="" loading="lazy" width="312" height="226"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-17"><figure><figcaption><b id="Fig17" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 17</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig17_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig17_HTML.png" alt="" loading="lazy" width="312" height="93"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-18"><figure><figcaption><b id="Fig18" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 18</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig18_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig18_HTML.png" alt="" loading="lazy" width="312" height="135"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-19"><figure><figcaption><b id="Fig19" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 19</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig19_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig19_HTML.png" alt="" loading="lazy" width="312" height="152"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-20"><figure><figcaption><b id="Fig20" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 20</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig20_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig20_HTML.png" alt="" loading="lazy" width="312" height="227"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-21"><figure><figcaption><b id="Fig21" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 21</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig21_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig21_HTML.png" alt="" loading="lazy" width="312" height="141"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-22"><figure><figcaption><b id="Fig22" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 22</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig22_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig22_HTML.png" alt="" loading="lazy" width="312" height="230"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-23"><figure><figcaption><b id="Fig23" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 23</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig23_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig23_HTML.png" alt="" loading="lazy" width="312" height="159"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-24"><figure><figcaption><b id="Fig24" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 24</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig24_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig24_HTML.png" alt="" loading="lazy" width="312" height="157"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-25"><figure><figcaption><b id="Fig25" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 25</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig25_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig25_HTML.png" alt="" loading="lazy" width="312" height="96"></picture></div></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-26"><figure><figcaption><b id="Fig26" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 26</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><picture><source type="image/webp" srcset="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig26_HTML.png?as=webp"><img src="//media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10462-022-10150-3/MediaObjects/10462_2022_10150_Fig26_HTML.png" alt="" loading="lazy" width="312" height="138"></picture></div></div></figure></div> </div> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-3-031-61816-1?as&#x3D;webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-3-031-61816-1_9?fromPaywallRec=true" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1007/978-3-031-61816-1_9">An Experimental Study of the Joint Effects of Class Imbalance and Class Overlap </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2024</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-3-030-87334-9?as&#x3D;webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-3-030-87334-9_5?fromPaywallRec=true" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1007/978-3-030-87334-9_5">Classification of Multi-class Imbalanced Data: Data Difficulty Factors and Selected Methods for Improving Classifiers </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2021</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1007%2Fs11042-024-18244-6/MediaObjects/11042_2024_18244_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s11042-024-18244-6?fromPaywallRec=true" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/s11042-024-18244-6">A literature survey on various aspect of class imbalance problem in data mining </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">03 February 2024</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732634464, embedded_user: 'null' } }); </script> <section aria-labelledby="content-related-subjects" data-test="subject-content"> <h3 id="content-related-subjects" class="c-article__sub-heading">Explore related subjects</h3> <span class="u-sans-serif u-text-s u-display-block u-mb-24">Discover the latest articles, news and stories from top researchers in related subjects.</span> <ul class="c-article-subject-list" role="list"> <li class="c-article-subject-list__subject"> <a href="/subject/artificial-intelligence" data-track="select_related_subject_1" data-track-context="related subjects from content page" data-track-label="Artificial Intelligence">Artificial Intelligence</a> </li> </ul> </section> <section data-title="Notes"><div class="c-article-section" id="notes-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="notes">Notes</h2><div class="c-article-section__content" id="notes-content"><ol class="c-article-footnote c-article-footnote--listed"><li class="c-article-footnote--listed__item" id="Fn1" data-counter="1."><div class="c-article-footnote--listed__content"><p>The reader may find supporting information in the supplementary material online at <a href="https://student.dei.uc.pt/%7emiriams/pdf-files/AIR_2021_Appendix.pdf">https://student.dei.uc.pt/~miriams/pdf-files/AIR_2021_Appendix.pdf</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn2" data-counter="2."><div class="c-article-footnote--listed__content"><p>The interested reader may find detailed information on the performance of each classifier in the supplementary material provided online at <a href="https://student.dei.uc.pt/%7emiriams/pdf-files/AIR_2021_Appendix.pdf">https://student.dei.uc.pt/~miriams/pdf-files/AIR_2021_Appendix.pdf</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn3" data-counter="3."><div class="c-article-footnote--listed__content"><p><a href="https://github.com/miriamspsantos/pycol">https://github.com/miriamspsantos/pycol</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn4" data-counter="4."><div class="c-article-footnote--listed__content"><p><a href="https://archive.ics.uci.edu">https://archive.ics.uci.edu</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn5" data-counter="5."><div class="c-article-footnote--listed__content"><p><a href="https://www.kaggle.com">https://www.kaggle.com</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn6" data-counter="6."><div class="c-article-footnote--listed__content"><p><a href="http://keel.es">http://keel.es</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn7" data-counter="7."><div class="c-article-footnote--listed__content"><p><a href="https://www.openml.org">https://www.openml.org</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn8" data-counter="8."><div class="c-article-footnote--listed__content"><p><a href="https://github.com/miriamspsantos/datagenerator">https://github.com/miriamspsantos/datagenerator</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn9" data-counter="9."><div class="c-article-footnote--listed__content"><p><a href="https://github.com/miriamspsantos/open-source-imbalance-overlap">https://github.com/miriamspsantos/open-source-imbalance-overlap</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn10" data-counter="10."><div class="c-article-footnote--listed__content"><p><a href="https://github.com/miriamspsantos/pycol">https://github.com/miriamspsantos/pycol</a>.</p></div></li></ol></div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ul class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR1">Abdi L, Hashemi S (2015) To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans Knowl Data Eng 28(1):238–251</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TKDE.2015.2458858" data-track-item_id="10.1109/TKDE.2015.2458858" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTKDE.2015.2458858" aria-label="Article reference 1" data-doi="10.1109/TKDE.2015.2458858">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&amp;title=To%20combat%20multi-class%20imbalanced%20problems%20by%20means%20of%20over-sampling%20techniques&amp;journal=IEEE%20Trans%20Knowl%20Data%20Eng&amp;doi=10.1109%2FTKDE.2015.2458858&amp;volume=28&amp;issue=1&amp;pages=238-251&amp;publication_year=2015&amp;author=Abdi%2CL&amp;author=Hashemi%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR2">Akbani R, Kwek S, Japkowicz N (2004) Applying support vector machines to imbalanced datasets. In: European conference on machine learning. Springer, pp 39–50</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR3">Alejo R, Valdovinos RM, García V, Pacheco-Sanchez JH (2013) A hybrid method to face class overlap and class imbalance on neural networks and multi-class scenarios. Pattern Recogn Lett 34(4):380–388</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.patrec.2012.09.003" data-track-item_id="10.1016/j.patrec.2012.09.003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.patrec.2012.09.003" aria-label="Article reference 3" data-doi="10.1016/j.patrec.2012.09.003">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20hybrid%20method%20to%20face%20class%20overlap%20and%20class%20imbalance%20on%20neural%20networks%20and%20multi-class%20scenarios&amp;journal=Pattern%20Recogn%20Lett&amp;doi=10.1016%2Fj.patrec.2012.09.003&amp;volume=34&amp;issue=4&amp;pages=380-388&amp;publication_year=2013&amp;author=Alejo%2CR&amp;author=Valdovinos%2CRM&amp;author=Garc%C3%ADa%2CV&amp;author=Pacheco-Sanchez%2CJH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR4">Anwar N, Jones G, Ganesh S (2014) Measurement of data complexity for classification problems with unbalanced data. Stat Anal Data Min ASA Data Sci J 7(3):194–211</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/sam.11228" data-track-item_id="10.1002/sam.11228" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fsam.11228" aria-label="Article reference 4" data-doi="10.1002/sam.11228">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3223280" aria-label="MathSciNet reference 4">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?07260392" aria-label="MATH reference 4">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&amp;title=Measurement%20of%20data%20complexity%20for%20classification%20problems%20with%20unbalanced%20data&amp;journal=Stat%20Anal%20Data%20Min%20ASA%20Data%20Sci%20J&amp;doi=10.1002%2Fsam.11228&amp;volume=7&amp;issue=3&amp;pages=194-211&amp;publication_year=2014&amp;author=Anwar%2CN&amp;author=Jones%2CG&amp;author=Ganesh%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR5">Armano G, Tamponi E (2016) Experimenting multiresolution analysis for identifying regions of different classification complexity. Pattern Anal Appl 19(1):129–137</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10044-014-0446-y" data-track-item_id="10.1007/s10044-014-0446-y" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10044-014-0446-y" aria-label="Article reference 5" data-doi="10.1007/s10044-014-0446-y">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3447882" aria-label="MathSciNet reference 5">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&amp;title=Experimenting%20multiresolution%20analysis%20for%20identifying%20regions%20of%20different%20classification%20complexity&amp;journal=Pattern%20Anal%20Appl&amp;doi=10.1007%2Fs10044-014-0446-y&amp;volume=19&amp;issue=1&amp;pages=129-137&amp;publication_year=2016&amp;author=Armano%2CG&amp;author=Tamponi%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR6">Barandela R, Valdovinos RM, Sánchez JS (2003) New applications of ensembles of classifiers. Pattern Anal Appl 6(3):245–256</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10044-003-0192-z" data-track-item_id="10.1007/s10044-003-0192-z" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10044-003-0192-z" aria-label="Article reference 6" data-doi="10.1007/s10044-003-0192-z">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2019916" aria-label="MathSciNet reference 6">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&amp;title=New%20applications%20of%20ensembles%20of%20classifiers&amp;journal=Pattern%20Anal%20Appl&amp;doi=10.1007%2Fs10044-003-0192-z&amp;volume=6&amp;issue=3&amp;pages=245-256&amp;publication_year=2003&amp;author=Barandela%2CR&amp;author=Valdovinos%2CRM&amp;author=S%C3%A1nchez%2CJS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR7">Barella VH, Costa EP, Carvalho A, Pl F (2014) Clusteross: a new undersampling method for imbalanced learning. In: Proceedings of the 3th Brazilian conference on intelligent systems. Academic Press</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR8">Barella VH, Garcia LP, de Souto MP, Lorena AC, de Carvalho A (2018) Data complexity measures for imbalanced classification tasks. In: 2018 international joint conference on neural networks (IJCNN). IEEE, pp 1–8</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR9">Barella VH, Garcia LP, de Souto MC, Lorena AC, de Carvalho AC (2021) Assessing the data complexity of imbalanced datasets. Inf Sci 553:83–109</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ins.2020.12.006" data-track-item_id="10.1016/j.ins.2020.12.006" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ins.2020.12.006" aria-label="Article reference 9" data-doi="10.1016/j.ins.2020.12.006">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4193054" aria-label="MathSciNet reference 9">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1483.68275" aria-label="MATH reference 9">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&amp;title=Assessing%20the%20data%20complexity%20of%20imbalanced%20datasets&amp;journal=Inf%20Sci&amp;doi=10.1016%2Fj.ins.2020.12.006&amp;volume=553&amp;pages=83-109&amp;publication_year=2021&amp;author=Barella%2CVH&amp;author=Garcia%2CLP&amp;author=Souto%2CMC&amp;author=Lorena%2CAC&amp;author=Carvalho%2CAC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR10">Barua S, Islam M, Yao X, Murase K (2014) Mwmote-majority weighted minority oversampling technique for imbalanced data set learning. IEEE Trans Knowl Data Eng 26(2):405–425</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TKDE.2012.232" data-track-item_id="10.1109/TKDE.2012.232" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTKDE.2012.232" aria-label="Article reference 10" data-doi="10.1109/TKDE.2012.232">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&amp;title=Mwmote-majority%20weighted%20minority%20oversampling%20technique%20for%20imbalanced%20data%20set%20learning&amp;journal=IEEE%20Trans%20Knowl%20Data%20Eng&amp;doi=10.1109%2FTKDE.2012.232&amp;volume=26&amp;issue=2&amp;pages=405-425&amp;publication_year=2014&amp;author=Barua%2CS&amp;author=Islam%2CM&amp;author=Yao%2CX&amp;author=Murase%2CK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR11">Batista GE, Prati RC, Monard MC (2004) A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor Newsl 6(1):20–29</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1145/1007730.1007735" data-track-item_id="10.1145/1007730.1007735" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1145%2F1007730.1007735" aria-label="Article reference 11" data-doi="10.1145/1007730.1007735">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20study%20of%20the%20behavior%20of%20several%20methods%20for%20balancing%20machine%20learning%20training%20data&amp;journal=ACM%20SIGKDD%20Explor%20Newsl&amp;doi=10.1145%2F1007730.1007735&amp;volume=6&amp;issue=1&amp;pages=20-29&amp;publication_year=2004&amp;author=Batista%2CGE&amp;author=Prati%2CRC&amp;author=Monard%2CMC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR12">Batuwita R, Palade V (2010) Fsvm-cil: fuzzy support vector machines for class imbalance learning. IEEE Trans Fuzzy Syst 18(3):558–571</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TFUZZ.2010.2042721" data-track-item_id="10.1109/TFUZZ.2010.2042721" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTFUZZ.2010.2042721" aria-label="Article reference 12" data-doi="10.1109/TFUZZ.2010.2042721">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&amp;title=Fsvm-cil%3A%20fuzzy%20support%20vector%20machines%20for%20class%20imbalance%20learning&amp;journal=IEEE%20Trans%20Fuzzy%20Syst&amp;doi=10.1109%2FTFUZZ.2010.2042721&amp;volume=18&amp;issue=3&amp;pages=558-571&amp;publication_year=2010&amp;author=Batuwita%2CR&amp;author=Palade%2CV"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR13">Bi J, Zhang C (2018) An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme. Knowl Based Syst 158:81–93</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.knosys.2018.05.037" data-track-item_id="10.1016/j.knosys.2018.05.037" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.knosys.2018.05.037" aria-label="Article reference 13" data-doi="10.1016/j.knosys.2018.05.037">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20empirical%20comparison%20on%20state-of-the-art%20multi-class%20imbalance%20learning%20algorithms%20and%20a%20new%20diversified%20ensemble%20learning%20scheme&amp;journal=Knowl%20Based%20Syst&amp;doi=10.1016%2Fj.knosys.2018.05.037&amp;volume=158&amp;pages=81-93&amp;publication_year=2018&amp;author=Bi%2CJ&amp;author=Zhang%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR14">Borsos Z, Lemnaru C, Potolea R (2018) Dealing with overlap and imbalance: a new metric and approach. Pattern Anal Appl 21(2):381–395</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10044-016-0583-6" data-track-item_id="10.1007/s10044-016-0583-6" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10044-016-0583-6" aria-label="Article reference 14" data-doi="10.1007/s10044-016-0583-6">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3790126" aria-label="MathSciNet reference 14">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&amp;title=Dealing%20with%20overlap%20and%20imbalance%3A%20a%20new%20metric%20and%20approach&amp;journal=Pattern%20Anal%20Appl&amp;doi=10.1007%2Fs10044-016-0583-6&amp;volume=21&amp;issue=2&amp;pages=381-395&amp;publication_year=2018&amp;author=Borsos%2CZ&amp;author=Lemnaru%2CC&amp;author=Potolea%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR15">Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BF00058655" data-track-item_id="10.1007/BF00058655" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/BF00058655" aria-label="Article reference 15" data-doi="10.1007/BF00058655">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0858.68080" aria-label="MATH reference 15">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&amp;title=Bagging%20predictors&amp;journal=Mach%20Learn&amp;doi=10.1007%2FBF00058655&amp;volume=24&amp;issue=2&amp;pages=123-140&amp;publication_year=1996&amp;author=Breiman%2CL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR16">Bunkhumpornpat C, Sinapiromsaran K (2017) Dbmute: density-based majority under-sampling technique. Knowl Inf Syst 50(3):827–850</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10115-016-0957-5" data-track-item_id="10.1007/s10115-016-0957-5" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10115-016-0957-5" aria-label="Article reference 16" data-doi="10.1007/s10115-016-0957-5">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&amp;title=Dbmute%3A%20density-based%20majority%20under-sampling%20technique&amp;journal=Knowl%20Inf%20Syst&amp;doi=10.1007%2Fs10115-016-0957-5&amp;volume=50&amp;issue=3&amp;pages=827-850&amp;publication_year=2017&amp;author=Bunkhumpornpat%2CC&amp;author=Sinapiromsaran%2CK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR17">Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2009) Safe-level-smote: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 475–482</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR18">Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2011) Mute: majority under-sampling technique. In: 2011 8th international conference on information, communications and signal processing. IEEE, pp 1–4</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR19">Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2012) Dbsmote: density-based synthetic minority over-sampling technique. Appl Intell 36(3):664–684</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10489-011-0287-y" data-track-item_id="10.1007/s10489-011-0287-y" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10489-011-0287-y" aria-label="Article reference 19" data-doi="10.1007/s10489-011-0287-y">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&amp;title=Dbsmote%3A%20density-based%20synthetic%20minority%20over-sampling%20technique&amp;journal=Appl%20Intell&amp;doi=10.1007%2Fs10489-011-0287-y&amp;volume=36&amp;issue=3&amp;pages=664-684&amp;publication_year=2012&amp;author=Bunkhumpornpat%2CC&amp;author=Sinapiromsaran%2CK&amp;author=Lursinsap%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR20">Cao H, Li XL, Woon DYK, Ng SK (2013) Integrated oversampling for imbalanced time series classification. IEEE Trans Knowl Data Eng 25(12):2809–2822</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TKDE.2013.37" data-track-item_id="10.1109/TKDE.2013.37" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTKDE.2013.37" aria-label="Article reference 20" data-doi="10.1109/TKDE.2013.37">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&amp;title=Integrated%20oversampling%20for%20imbalanced%20time%20series%20classification&amp;journal=IEEE%20Trans%20Knowl%20Data%20Eng&amp;doi=10.1109%2FTKDE.2013.37&amp;volume=25&amp;issue=12&amp;pages=2809-2822&amp;publication_year=2013&amp;author=Cao%2CH&amp;author=Li%2CXL&amp;author=Woon%2CDYK&amp;author=Ng%2CSK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR21">Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1613/jair.953" data-track-item_id="10.1613/jair.953" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1613%2Fjair.953" aria-label="Article reference 21" data-doi="10.1613/jair.953">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0994.68128" aria-label="MATH reference 21">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&amp;title=Smote%3A%20synthetic%20minority%20over-sampling%20technique&amp;journal=J%20Artif%20Intell%20Res&amp;doi=10.1613%2Fjair.953&amp;volume=16&amp;pages=321-357&amp;publication_year=2002&amp;author=Chawla%2CNV&amp;author=Bowyer%2CKW&amp;author=Hall%2CLO&amp;author=Kegelmeyer%2CWP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR22">Chawla NV, Lazarevic A, Hall LO, Bowyer KW (2003) Smoteboost: improving prediction of the minority class in boosting. In: European conference on principles of data mining and knowledge discovery. Springer, pp 107–119</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR24">Chen S (2017) An improved synthetic minority over-sampling technique for imbalanced data set learning. Degree thesis of Department of Information Engineering, National Tsing Hua University, pp 1–59</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR25">Chen S, He H, Garcia EA (2010) Ramoboost: ranked minority oversampling in boosting. IEEE Trans Neural Netw 21(10):1624–1642</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TNN.2010.2066988" data-track-item_id="10.1109/TNN.2010.2066988" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTNN.2010.2066988" aria-label="Article reference 24" data-doi="10.1109/TNN.2010.2066988">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&amp;title=Ramoboost%3A%20ranked%20minority%20oversampling%20in%20boosting&amp;journal=IEEE%20Trans%20Neural%20Netw&amp;doi=10.1109%2FTNN.2010.2066988&amp;volume=21&amp;issue=10&amp;pages=1624-1642&amp;publication_year=2010&amp;author=Chen%2CS&amp;author=He%2CH&amp;author=Garcia%2CEA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR23">Chen L, Fang B, Shang Z, Tang Y (2018) Tackling class overlap and imbalance problems in software defect prediction. Softw Qual J 26(1):97–125</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11219-016-9342-6" data-track-item_id="10.1007/s11219-016-9342-6" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11219-016-9342-6" aria-label="Article reference 25" data-doi="10.1007/s11219-016-9342-6">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&amp;title=Tackling%20class%20overlap%20and%20imbalance%20problems%20in%20software%20defect%20prediction&amp;journal=Softw%20Qual%20J&amp;doi=10.1007%2Fs11219-016-9342-6&amp;volume=26&amp;issue=1&amp;pages=97-125&amp;publication_year=2018&amp;author=Chen%2CL&amp;author=Fang%2CB&amp;author=Shang%2CZ&amp;author=Tang%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR26">Chen X, Zhang L, Wei X, Lu X (2021) An effective method using clustering-based adaptive decomposition and editing-based diversified oversamping for multi-class imbalanced datasets. Appl Intell 51(4):1918–1933</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR27">Cieslak DA, Chawla NV, Striegel A (2006) Combating imbalance in network intrusion datasets. In: GrC, Citeseer, pp 732–737</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR28">Cohen G, Hilario M, Sax H, Hugonnet S, Geissbuhler A (2006) Learning from imbalanced data in surveillance of nosocomial infection. Artif Intell Med 37(1):7–18</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.artmed.2005.03.002" data-track-item_id="10.1016/j.artmed.2005.03.002" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.artmed.2005.03.002" aria-label="Article reference 28" data-doi="10.1016/j.artmed.2005.03.002">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&amp;title=Learning%20from%20imbalanced%20data%20in%20surveillance%20of%20nosocomial%20infection&amp;journal=Artif%20Intell%20Med&amp;doi=10.1016%2Fj.artmed.2005.03.002&amp;volume=37&amp;issue=1&amp;pages=7-18&amp;publication_year=2006&amp;author=Cohen%2CG&amp;author=Hilario%2CM&amp;author=Sax%2CH&amp;author=Hugonnet%2CS&amp;author=Geissbuhler%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR29">Correia A, Soares C, Jorge A (2019) Dataset morphing to analyze the performance of collaborative filtering. In: International conference on discovery science. Springer, pp 29–39</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR30">Costa AJ, Santos MS, Soares C, Abreu PH (2020) Analysis of imbalance strategies recommendation using a meta-learning approach. In: 7th ICML workshop on automated machine learning (AutoML-ICML2020), pp 1–10</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR31">Cummins L (2013) Combining and choosing case base maintenance algorithms. PhD thesis, University College Cork</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR32">Das B, Krishnan NC, Cook DJ (2014a) Handling imbalanced and overlapping classes in smart environments prompting dataset. In: Data mining for service. Springer, pp 199–219</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR33">Das B, Krishnan NC, Cook DJ (2014b) Racog and wracog: two probabilistic oversampling techniques. IEEE Trans Knowl Data Eng 27(1):222–234</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TKDE.2014.2324567" data-track-item_id="10.1109/TKDE.2014.2324567" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTKDE.2014.2324567" aria-label="Article reference 33" data-doi="10.1109/TKDE.2014.2324567">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="http://scholar.google.com/scholar_lookup?&amp;title=Racog%20and%20wracog%3A%20two%20probabilistic%20oversampling%20techniques&amp;journal=IEEE%20Trans%20Knowl%20Data%20Eng&amp;doi=10.1109%2FTKDE.2014.2324567&amp;volume=27&amp;issue=1&amp;pages=222-234&amp;publication_year=2014&amp;author=Das%2CB&amp;author=Krishnan%2CNC&amp;author=Cook%2CDJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR34">Das S, Datta S, Chaudhuri B (2018) Handling data irregularities in classification: foundations, trends, and future challenges. Pattern Recogn 81:674–693</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.patcog.2018.03.008" data-track-item_id="10.1016/j.patcog.2018.03.008" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.patcog.2018.03.008" aria-label="Article reference 34" data-doi="10.1016/j.patcog.2018.03.008">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&amp;title=Handling%20data%20irregularities%20in%20classification%3A%20foundations%2C%20trends%2C%20and%20future%20challenges&amp;journal=Pattern%20Recogn&amp;doi=10.1016%2Fj.patcog.2018.03.008&amp;volume=81&amp;pages=674-693&amp;publication_year=2018&amp;author=Das%2CS&amp;author=Datta%2CS&amp;author=Chaudhuri%2CB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR96">de Melo VV, Lorena AC (2018) Using complexity measures to evolve synthetic classification datasets. In: 2018 International joint conference on neural networks (IJCNN). IEEE, pp 1–8</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR35">Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/4235.996017" data-track-item_id="10.1109/4235.996017" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2F4235.996017" aria-label="Article reference 36" data-doi="10.1109/4235.996017">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 36" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20fast%20and%20elitist%20multiobjective%20genetic%20algorithm%3A%20Nsga-ii&amp;journal=IEEE%20Trans%20Evol%20Comput&amp;doi=10.1109%2F4235.996017&amp;volume=6&amp;issue=2&amp;pages=182-197&amp;publication_year=2002&amp;author=Deb%2CK&amp;author=Pratap%2CA&amp;author=Agarwal%2CS&amp;author=Meyarivan%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR36">Denil M, Trappenberg T (2010) Overlap versus imbalance. In: Canadian conference on artificial intelligence. Springer, pp 220–231</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR37">Douzas G, Bacao F (2019) Geometric smote a geometrically enhanced drop-in replacement for smote. Inf Sci 501:118–135</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ins.2019.06.007" data-track-item_id="10.1016/j.ins.2019.06.007" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ins.2019.06.007" aria-label="Article reference 38" data-doi="10.1016/j.ins.2019.06.007">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 38" href="http://scholar.google.com/scholar_lookup?&amp;title=Geometric%20smote%20a%20geometrically%20enhanced%20drop-in%20replacement%20for%20smote&amp;journal=Inf%20Sci&amp;doi=10.1016%2Fj.ins.2019.06.007&amp;volume=501&amp;pages=118-135&amp;publication_year=2019&amp;author=Douzas%2CG&amp;author=Bacao%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR38">Douzas G, Bacao F, Last F (2018) Improving imbalanced learning through a heuristic oversampling method based on k-means and smote. Inf Sci 465:1–20</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ins.2018.06.056" data-track-item_id="10.1016/j.ins.2018.06.056" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ins.2018.06.056" aria-label="Article reference 39" data-doi="10.1016/j.ins.2018.06.056">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 39" href="http://scholar.google.com/scholar_lookup?&amp;title=Improving%20imbalanced%20learning%20through%20a%20heuristic%20oversampling%20method%20based%20on%20k-means%20and%20smote&amp;journal=Inf%20Sci&amp;doi=10.1016%2Fj.ins.2018.06.056&amp;volume=465&amp;pages=1-20&amp;publication_year=2018&amp;author=Douzas%2CG&amp;author=Bacao%2CF&amp;author=Last%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR39">Eshelman LJ (1991) The chc adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In: Foundations of genetic algorithms, vol 1. Elsevier, pp 265–283</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR40">Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96:226–231</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 41" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20density-based%20algorithm%20for%20discovering%20clusters%20in%20large%20spatial%20databases%20with%20noise&amp;journal=Kdd&amp;volume=96&amp;pages=226-231&amp;publication_year=1996&amp;author=Ester%2CM&amp;author=Kriegel%2CHP&amp;author=Sander%2CJ&amp;author=Xu%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR41">Fan Q, Wang Z, Li D, Gao D, Zha H (2017) Entropy-based fuzzy support vector machine for imbalanced datasets. Knowl Based Syst 115:87–99</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.knosys.2016.09.032" data-track-item_id="10.1016/j.knosys.2016.09.032" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.knosys.2016.09.032" aria-label="Article reference 42" data-doi="10.1016/j.knosys.2016.09.032">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 42" href="http://scholar.google.com/scholar_lookup?&amp;title=Entropy-based%20fuzzy%20support%20vector%20machine%20for%20imbalanced%20datasets&amp;journal=Knowl%20Based%20Syst&amp;doi=10.1016%2Fj.knosys.2016.09.032&amp;volume=115&amp;pages=87-99&amp;publication_year=2017&amp;author=Fan%2CQ&amp;author=Wang%2CZ&amp;author=Li%2CD&amp;author=Gao%2CD&amp;author=Zha%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR42">Fernandes ER, de Carvalho AC (2019) Evolutionary inversion of class distribution in overlapping areas for multi-class imbalanced learning. Inf Sci 494:141–154</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ins.2019.04.052" data-track-item_id="10.1016/j.ins.2019.04.052" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ins.2019.04.052" aria-label="Article reference 43" data-doi="10.1016/j.ins.2019.04.052">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 43" href="http://scholar.google.com/scholar_lookup?&amp;title=Evolutionary%20inversion%20of%20class%20distribution%20in%20overlapping%20areas%20for%20multi-class%20imbalanced%20learning&amp;journal=Inf%20Sci&amp;doi=10.1016%2Fj.ins.2019.04.052&amp;volume=494&amp;pages=141-154&amp;publication_year=2019&amp;author=Fernandes%2CER&amp;author=Carvalho%2CAC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR43">Fernández A, García S, Galar M, Prati R, Krawczyk B, Herrera F (2018a) Data Intrinsic Characteristics. Springer, Cham, pp 253–277</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 44" href="http://scholar.google.com/scholar_lookup?&amp;title=Data%20Intrinsic%20Characteristics&amp;pages=253-277&amp;publication_year=2018&amp;author=Fern%C3%A1ndez%2CA&amp;author=Garc%C3%ADa%2CS&amp;author=Galar%2CM&amp;author=Prati%2CR&amp;author=Krawczyk%2CB&amp;author=Herrera%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR44">Fernández A, García S, Galar M, Prati R, Krawczyk B, Herrera F (2018b) Ensemble Learning. Springer, Cham, pp 147–196</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 45" href="http://scholar.google.com/scholar_lookup?&amp;title=Ensemble%20Learning&amp;pages=147-196&amp;publication_year=2018&amp;author=Fern%C3%A1ndez%2CA&amp;author=Garc%C3%ADa%2CS&amp;author=Galar%2CM&amp;author=Prati%2CR&amp;author=Krawczyk%2CB&amp;author=Herrera%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR45">Fernández A, García S, Galar M, Prati RC, Krawczyk B, Herrera F (2018c) Dimensionality reduction for imbalanced learning. In: Learning from imbalanced data sets. Springer, pp 227–251</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR46">Fernández A, García S, Galar M, Prati RC, Krawczyk B, Herrera F (2018d) Learning From Imbalanced Data Sets, vol 11. Springer, Berlin</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-3-319-98074-4" data-track-item_id="10.1007/978-3-319-98074-4" data-track-value="book reference" data-track-action="book reference" href="https://link.springer.com/doi/10.1007/978-3-319-98074-4" aria-label="Book reference 47" data-doi="10.1007/978-3-319-98074-4">Book</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 47" href="http://scholar.google.com/scholar_lookup?&amp;title=Learning%20From%20Imbalanced%20Data%20Sets&amp;doi=10.1007%2F978-3-319-98074-4&amp;publication_year=2018&amp;author=Fern%C3%A1ndez%2CA&amp;author=Garc%C3%ADa%2CS&amp;author=Galar%2CM&amp;author=Prati%2CRC&amp;author=Krawczyk%2CB&amp;author=Herrera%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR47">Fernández A, Garcia S, Herrera F, Chawla NV (2018e) Smote for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J Artif Intell Res 61:863–905</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1613/jair.1.11192" data-track-item_id="10.1613/jair.1.11192" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1613%2Fjair.1.11192" aria-label="Article reference 48" data-doi="10.1613/jair.1.11192">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3800505" aria-label="MathSciNet reference 48">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1443.68147" aria-label="MATH reference 48">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 48" href="http://scholar.google.com/scholar_lookup?&amp;title=Smote%20for%20learning%20from%20imbalanced%20data%3A%20progress%20and%20challenges%2C%20marking%20the%2015-year%20anniversary&amp;journal=J%20Artif%20Intell%20Res&amp;doi=10.1613%2Fjair.1.11192&amp;volume=61&amp;pages=863-905&amp;publication_year=2018&amp;author=Fern%C3%A1ndez%2CA&amp;author=Garcia%2CS&amp;author=Herrera%2CF&amp;author=Chawla%2CNV"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR48">França TR, Miranda PB, Prudêncio RB, Lorenaz AC, Nascimento AC (2020) A many-objective optimization approach for complexity-based data set generation. In: 2020 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR49">Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1006/jcss.1997.1504" data-track-item_id="10.1006/jcss.1997.1504" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1006%2Fjcss.1997.1504" aria-label="Article reference 50" data-doi="10.1006/jcss.1997.1504">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1473055" aria-label="MathSciNet reference 50">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0880.68103" aria-label="MATH reference 50">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 50" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20decision-theoretic%20generalization%20of%20on-line%20learning%20and%20an%20application%20to%20boosting&amp;journal=J%20Comput%20Syst%20Sci&amp;doi=10.1006%2Fjcss.1997.1504&amp;volume=55&amp;issue=1&amp;pages=119-139&amp;publication_year=1997&amp;author=Freund%2CY&amp;author=Schapire%2CRE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR50">Friedman J, Hastie T, Tibshirani R et al (2000) Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann Stat 28(2):337–407</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1214/aos/1016218223" data-track-item_id="10.1214/aos/1016218223" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1214%2Faos%2F1016218223" aria-label="Article reference 51" data-doi="10.1214/aos/1016218223">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1106.62323" aria-label="MATH reference 51">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 51" href="http://scholar.google.com/scholar_lookup?&amp;title=Additive%20logistic%20regression%3A%20a%20statistical%20view%20of%20boosting%20%28with%20discussion%20and%20a%20rejoinder%20by%20the%20authors%29&amp;journal=Ann%20Stat&amp;doi=10.1214%2Faos%2F1016218223&amp;volume=28&amp;issue=2&amp;pages=337-407&amp;publication_year=2000&amp;author=Friedman%2CJ&amp;author=Hastie%2CT&amp;author=Tibshirani%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR51">Fu GH, Wu YJ, Zong MJ, Yi LZ (2020) Feature selection and classification by minimizing overlap degree for class-imbalanced data in metabolomics. Chemom Intell Lab Syst 196:103906</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.chemolab.2019.103906" data-track-item_id="10.1016/j.chemolab.2019.103906" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.chemolab.2019.103906" aria-label="Article reference 52" data-doi="10.1016/j.chemolab.2019.103906">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 52" href="http://scholar.google.com/scholar_lookup?&amp;title=Feature%20selection%20and%20classification%20by%20minimizing%20overlap%20degree%20for%20class-imbalanced%20data%20in%20metabolomics&amp;journal=Chemom%20Intell%20Lab%20Syst&amp;doi=10.1016%2Fj.chemolab.2019.103906&amp;volume=196&amp;publication_year=2020&amp;author=Fu%2CGH&amp;author=Wu%2CYJ&amp;author=Zong%2CMJ&amp;author=Yi%2CLZ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR52">Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F (2013) Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers. Pattern Recogn 46(12):3412–3424</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.patcog.2013.04.018" data-track-item_id="10.1016/j.patcog.2013.04.018" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.patcog.2013.04.018" aria-label="Article reference 53" data-doi="10.1016/j.patcog.2013.04.018">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 53" href="http://scholar.google.com/scholar_lookup?&amp;title=Dynamic%20classifier%20selection%20for%20one-vs-one%20strategy%3A%20avoiding%20non-competent%20classifiers&amp;journal=Pattern%20Recogn&amp;doi=10.1016%2Fj.patcog.2013.04.018&amp;volume=46&amp;issue=12&amp;pages=3412-3424&amp;publication_year=2013&amp;author=Galar%2CM&amp;author=Fern%C3%A1ndez%2CA&amp;author=Barrenechea%2CE&amp;author=Bustince%2CH&amp;author=Herrera%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR53">Galar M, Fernández A, Barrenechea E, Herrera F (2015) Drcw-ovo: distance-based relative competence weighting combination for one-vs-one strategy in multi-class problems. Pattern Recogn 48(1):28–42</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.patcog.2014.07.023" data-track-item_id="10.1016/j.patcog.2014.07.023" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.patcog.2014.07.023" aria-label="Article reference 54" data-doi="10.1016/j.patcog.2014.07.023">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 54" href="http://scholar.google.com/scholar_lookup?&amp;title=Drcw-ovo%3A%20distance-based%20relative%20competence%20weighting%20combination%20for%20one-vs-one%20strategy%20in%20multi-class%20problems&amp;journal=Pattern%20Recogn&amp;doi=10.1016%2Fj.patcog.2014.07.023&amp;volume=48&amp;issue=1&amp;pages=28-42&amp;publication_year=2015&amp;author=Galar%2CM&amp;author=Fern%C3%A1ndez%2CA&amp;author=Barrenechea%2CE&amp;author=Herrera%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR54">García S, Herrera F (2009) Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy. Evol Comput 17(3):275–306</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1162/evco.2009.17.3.275" data-track-item_id="10.1162/evco.2009.17.3.275" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1162%2Fevco.2009.17.3.275" aria-label="Article reference 55" data-doi="10.1162/evco.2009.17.3.275">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3709972" aria-label="MathSciNet reference 55">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 55" href="http://scholar.google.com/scholar_lookup?&amp;title=Evolutionary%20undersampling%20for%20classification%20with%20imbalanced%20datasets%3A%20proposals%20and%20taxonomy&amp;journal=Evol%20Comput&amp;doi=10.1162%2Fevco.2009.17.3.275&amp;volume=17&amp;issue=3&amp;pages=275-306&amp;publication_year=2009&amp;author=Garc%C3%ADa%2CS&amp;author=Herrera%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR55">García V, Alejo R, Sánchez J, Sotoca J, Mollineda R (2006) Combined effects of class imbalance and class overlap on instance-based classification. In: International conference on intelligent data engineering and automated learning. Springer, pp 371–378</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR56">García V, Mollineda R, Sánchez J, Alejo R, Sotoca J (2007a) When overlapping unexpectedly alters the class imbalance effects. In: Iberian conference on pattern recognition and image analysis. Springer, pp 499–506</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR57">García V, Sánchez J, Mollineda R (2007b) An empirical study of the behavior of classifiers on imbalanced and overlapped data sets. In: Iberoamerican congress on pattern recognition. Springer, pp 397–406</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR58">García V, Mollineda R, Sánchez J (2008) On the k-nn performance in a challenging scenario of imbalance and overlapping. Pattern Anal Appl 11(3–4):269–280</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10044-007-0087-5" data-track-item_id="10.1007/s10044-007-0087-5" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10044-007-0087-5" aria-label="Article reference 59" data-doi="10.1007/s10044-007-0087-5">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2430371" aria-label="MathSciNet reference 59">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 59" href="http://scholar.google.com/scholar_lookup?&amp;title=On%20the%20k-nn%20performance%20in%20a%20challenging%20scenario%20of%20imbalance%20and%20overlapping&amp;journal=Pattern%20Anal%20Appl&amp;doi=10.1007%2Fs10044-007-0087-5&amp;volume=11&amp;issue=3%E2%80%934&amp;pages=269-280&amp;publication_year=2008&amp;author=Garc%C3%ADa%2CV&amp;author=Mollineda%2CR&amp;author=S%C3%A1nchez%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR59">García V, Sánchez J, Marqués A, Florencia R, Rivera G (2020) Understanding the apparent superiority of over-sampling through an analysis of local information for class-imbalanced data. Expert Syst Appl 158:113026</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.eswa.2019.113026" data-track-item_id="10.1016/j.eswa.2019.113026" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.eswa.2019.113026" aria-label="Article reference 60" data-doi="10.1016/j.eswa.2019.113026">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 60" href="http://scholar.google.com/scholar_lookup?&amp;title=Understanding%20the%20apparent%20superiority%20of%20over-sampling%20through%20an%20analysis%20of%20local%20information%20for%20class-imbalanced%20data&amp;journal=Expert%20Syst%20Appl&amp;doi=10.1016%2Fj.eswa.2019.113026&amp;volume=158&amp;publication_year=2020&amp;author=Garc%C3%ADa%2CV&amp;author=S%C3%A1nchez%2CJ&amp;author=Marqu%C3%A9s%2CA&amp;author=Florencia%2CR&amp;author=Rivera%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR60">Greene J (2001) Feature subset selection using thornton’s separability index and its applicability to a number of sparse proximity-based classifiers. In: Proceedings of annual symposium of the pattern recognition association of South Africa</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR61">Guzmán-Ponce A, Valdovinos RM, Sánchez JS, Marcial-Romero JR (2020) A new under-sampling method to face class overlap and imbalance. Appl Sci 10(15):5164</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/app10155164" data-track-item_id="10.3390/app10155164" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fapp10155164" aria-label="Article reference 62" data-doi="10.3390/app10155164">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 62" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20new%20under-sampling%20method%20to%20face%20class%20overlap%20and%20imbalance&amp;journal=Appl%20Sci&amp;doi=10.3390%2Fapp10155164&amp;volume=10&amp;issue=15&amp;publication_year=2020&amp;author=Guzm%C3%A1n-Ponce%2CA&amp;author=Valdovinos%2CRM&amp;author=S%C3%A1nchez%2CJS&amp;author=Marcial-Romero%2CJR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR62">Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G (2017) Learning from class-imbalanced data: review of methods and applications. Expert Syst Appl 73:220–239</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.eswa.2016.12.035" data-track-item_id="10.1016/j.eswa.2016.12.035" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.eswa.2016.12.035" aria-label="Article reference 63" data-doi="10.1016/j.eswa.2016.12.035">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 63" href="http://scholar.google.com/scholar_lookup?&amp;title=Learning%20from%20class-imbalanced%20data%3A%20review%20of%20methods%20and%20applications&amp;journal=Expert%20Syst%20Appl&amp;doi=10.1016%2Fj.eswa.2016.12.035&amp;volume=73&amp;pages=220-239&amp;publication_year=2017&amp;author=Haixiang%2CG&amp;author=Yijing%2CL&amp;author=Shang%2CJ&amp;author=Mingyun%2CG&amp;author=Yuanyue%2CH&amp;author=Bing%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR63">Han H, Wang WY, Mao BH (2005) Borderline-smote: a new over-sampling method in imbalanced data sets learning. In: International conference on intelligent computing. Springer, pp 878–887</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR64">Hart P (1968) The condensed nearest neighbor rule (corresp.). IEEE Trans Inf Theory 14(3):515–516</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TIT.1968.1054155" data-track-item_id="10.1109/TIT.1968.1054155" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTIT.1968.1054155" aria-label="Article reference 65" data-doi="10.1109/TIT.1968.1054155">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 65" href="http://scholar.google.com/scholar_lookup?&amp;title=The%20condensed%20nearest%20neighbor%20rule%20%28corresp.%29&amp;journal=IEEE%20Trans%20Inf%20Theory&amp;doi=10.1109%2FTIT.1968.1054155&amp;volume=14&amp;issue=3&amp;pages=515-516&amp;publication_year=1968&amp;author=Hart%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR65">He H, Bai Y, Garcia E, Li S (2008) Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: IEEE international joint conference on neural networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE, pp 1322–1328</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR66">Ho T, Basu M (2002) Complexity measures of supervised classification problems. IEEE Trans Pattern Anal Mach Intell 24(3):289–300</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/34.990132" data-track-item_id="10.1109/34.990132" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2F34.990132" aria-label="Article reference 67" data-doi="10.1109/34.990132">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 67" href="http://scholar.google.com/scholar_lookup?&amp;title=Complexity%20measures%20of%20supervised%20classification%20problems&amp;journal=IEEE%20Trans%20Pattern%20Anal%20Mach%20Intell&amp;doi=10.1109%2F34.990132&amp;volume=24&amp;issue=3&amp;pages=289-300&amp;publication_year=2002&amp;author=Ho%2CT&amp;author=Basu%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR67">Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/34.232073" data-track-item_id="10.1109/34.232073" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2F34.232073" aria-label="Article reference 68" data-doi="10.1109/34.232073">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 68" href="http://scholar.google.com/scholar_lookup?&amp;title=Comparing%20images%20using%20the%20hausdorff%20distance&amp;journal=IEEE%20Trans%20Pattern%20Anal%20Mach%20Intell&amp;doi=10.1109%2F34.232073&amp;volume=15&amp;issue=9&amp;pages=850-863&amp;publication_year=1993&amp;author=Huttenlocher%2CDP&amp;author=Klanderman%2CGA&amp;author=Rucklidge%2CWJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR68">Jain A, Duin R, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/34.824819" data-track-item_id="10.1109/34.824819" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2F34.824819" aria-label="Article reference 69" data-doi="10.1109/34.824819">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 69" href="http://scholar.google.com/scholar_lookup?&amp;title=Statistical%20pattern%20recognition%3A%20a%20review&amp;journal=IEEE%20Trans%20Pattern%20Anal%20Mach%20Intell&amp;doi=10.1109%2F34.824819&amp;volume=22&amp;issue=1&amp;pages=4-37&amp;publication_year=2000&amp;author=Jain%2CA&amp;author=Duin%2CR&amp;author=Mao%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR69">Japkowicz N (2001) Concept-learning in the presence of between-class and within-class imbalances. In: Conference of the Canadian society for computational studies of intelligence. Springer, pp 67–77</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR70">Jo T, Japkowicz N (2004) Class imbalances versus small disjuncts. ACM SIGKDD Explor Newsl 6(1):40–49</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1145/1007730.1007737" data-track-item_id="10.1145/1007730.1007737" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1145%2F1007730.1007737" aria-label="Article reference 71" data-doi="10.1145/1007730.1007737">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 71" href="http://scholar.google.com/scholar_lookup?&amp;title=Class%20imbalances%20versus%20small%20disjuncts&amp;journal=ACM%20SIGKDD%20Explor%20Newsl&amp;doi=10.1145%2F1007730.1007737&amp;volume=6&amp;issue=1&amp;pages=40-49&amp;publication_year=2004&amp;author=Jo%2CT&amp;author=Japkowicz%2CN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR71">Kang S, Cho S, Kang P (2015) Constructing a multi-class classifier using one-against-one approach with different binary classifiers. Neurocomputing 149:677–682</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neucom.2014.08.006" data-track-item_id="10.1016/j.neucom.2014.08.006" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neucom.2014.08.006" aria-label="Article reference 72" data-doi="10.1016/j.neucom.2014.08.006">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 72" href="http://scholar.google.com/scholar_lookup?&amp;title=Constructing%20a%20multi-class%20classifier%20using%20one-against-one%20approach%20with%20different%20binary%20classifiers&amp;journal=Neurocomputing&amp;doi=10.1016%2Fj.neucom.2014.08.006&amp;volume=149&amp;pages=677-682&amp;publication_year=2015&amp;author=Kang%2CS&amp;author=Cho%2CS&amp;author=Kang%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR72">Kaur H, Pannu HS, Malhi AK (2019) A systematic review on imbalanced data challenges in machine learning: applications and solutions. ACM Comput Surv (CSUR) 52(4):1–36</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 73" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20systematic%20review%20on%20imbalanced%20data%20challenges%20in%20machine%20learning%3A%20applications%20and%20solutions&amp;journal=ACM%20Comput%20Surv%20%28CSUR%29&amp;volume=52&amp;issue=4&amp;pages=1-36&amp;publication_year=2019&amp;author=Kaur%2CH&amp;author=Pannu%2CHS&amp;author=Malhi%2CAK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR73">Kovács G (2019) An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets. Appl Soft Comput 83:105662</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.asoc.2019.105662" data-track-item_id="10.1016/j.asoc.2019.105662" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.asoc.2019.105662" aria-label="Article reference 74" data-doi="10.1016/j.asoc.2019.105662">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 74" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20empirical%20comparison%20and%20evaluation%20of%20minority%20oversampling%20techniques%20on%20a%20large%20number%20of%20imbalanced%20datasets&amp;journal=Appl%20Soft%20Comput&amp;doi=10.1016%2Fj.asoc.2019.105662&amp;volume=83&amp;publication_year=2019&amp;author=Kov%C3%A1cs%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR74">Koziarski M, Wozniak M (2017) Ccr: a combined cleaning and resampling algorithm for imbalanced data classification. Int J Appl Math Comput Sci 27(4):727–736</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1515/amcs-2017-0050" data-track-item_id="10.1515/amcs-2017-0050" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1515%2Famcs-2017-0050" aria-label="Article reference 75" data-doi="10.1515/amcs-2017-0050">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3727274" aria-label="MathSciNet reference 75">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1396.68097" aria-label="MATH reference 75">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 75" href="http://scholar.google.com/scholar_lookup?&amp;title=Ccr%3A%20a%20combined%20cleaning%20and%20resampling%20algorithm%20for%20imbalanced%20data%20classification&amp;journal=Int%20J%20Appl%20Math%20Comput%20Sci&amp;doi=10.1515%2Famcs-2017-0050&amp;volume=27&amp;issue=4&amp;pages=727-736&amp;publication_year=2017&amp;author=Koziarski%2CM&amp;author=Wozniak%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR75">Koziarski M, Krawczyk B, Wozniak M (2019) Radial-based oversampling for noisy imbalanced data classification. Neurocomputing 343:19–33</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neucom.2018.04.089" data-track-item_id="10.1016/j.neucom.2018.04.089" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neucom.2018.04.089" aria-label="Article reference 76" data-doi="10.1016/j.neucom.2018.04.089">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 76" href="http://scholar.google.com/scholar_lookup?&amp;title=Radial-based%20oversampling%20for%20noisy%20imbalanced%20data%20classification&amp;journal=Neurocomputing&amp;doi=10.1016%2Fj.neucom.2018.04.089&amp;volume=343&amp;pages=19-33&amp;publication_year=2019&amp;author=Koziarski%2CM&amp;author=Krawczyk%2CB&amp;author=Wozniak%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR76">Krawczyk B (2016) Learning from imbalanced data: open challenges and future directions. Progr. Artif. Intell. 5(4):221–232</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s13748-016-0094-0" data-track-item_id="10.1007/s13748-016-0094-0" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s13748-016-0094-0" aria-label="Article reference 77" data-doi="10.1007/s13748-016-0094-0">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 77" href="http://scholar.google.com/scholar_lookup?&amp;title=Learning%20from%20imbalanced%20data%3A%20open%20challenges%20and%20future%20directions&amp;journal=Progr.%20Artif.%20Intell.&amp;doi=10.1007%2Fs13748-016-0094-0&amp;volume=5&amp;issue=4&amp;pages=221-232&amp;publication_year=2016&amp;author=Krawczyk%2CB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR77">Kubat M, Matwin S et al (1997) Addressing the curse of imbalanced training sets: one-sided selection. Icml Citeseer 97:179–186</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 78" href="http://scholar.google.com/scholar_lookup?&amp;title=Addressing%20the%20curse%20of%20imbalanced%20training%20sets%3A%20one-sided%20selection&amp;journal=Icml%20Citeseer&amp;volume=97&amp;pages=179-186&amp;publication_year=1997&amp;author=Kubat%2CM&amp;author=Matwin%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR78">Lango M, Brzezinski D, Firlik S, Stefanowski J (2017) Discovering minority sub-clusters and local difficulty factors from imbalanced data. In: International conference on discovery science. Springer, pp 324–339</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR79">Lango M, Brzezinski D, Stefanowski J (2018) Imweights: classifying imbalanced data using local and neighborhood information. In: Second international workshop on learning with imbalanced domains: theory and applications, PMLR, pp 95–109</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR80">Laurikkala J (2001) Improving identification of difficult small classes by balancing class distribution. In: Conference on artificial intelligence in medicine in Europe. Springer, pp 63–66</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR81">Lee HK, Kim SB (2018) An overlap-sensitive margin classifier for imbalanced and overlapping data. Expert Syst Appl 98:72–83</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.eswa.2018.01.008" data-track-item_id="10.1016/j.eswa.2018.01.008" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.eswa.2018.01.008" aria-label="Article reference 82" data-doi="10.1016/j.eswa.2018.01.008">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 82" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20overlap-sensitive%20margin%20classifier%20for%20imbalanced%20and%20overlapping%20data&amp;journal=Expert%20Syst%20Appl&amp;doi=10.1016%2Fj.eswa.2018.01.008&amp;volume=98&amp;pages=72-83&amp;publication_year=2018&amp;author=Lee%2CHK&amp;author=Kim%2CSB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR82">Leyva E, González A, Perez R (2014) A set of complexity measures designed for applying meta-learning to instance selection. IEEE Trans Knowl Data Eng 27(2):354–367</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TKDE.2014.2327034" data-track-item_id="10.1109/TKDE.2014.2327034" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTKDE.2014.2327034" aria-label="Article reference 83" data-doi="10.1109/TKDE.2014.2327034">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 83" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20set%20of%20complexity%20measures%20designed%20for%20applying%20meta-learning%20to%20instance%20selection&amp;journal=IEEE%20Trans%20Knowl%20Data%20Eng&amp;doi=10.1109%2FTKDE.2014.2327034&amp;volume=27&amp;issue=2&amp;pages=354-367&amp;publication_year=2014&amp;author=Leyva%2CE&amp;author=Gonz%C3%A1lez%2CA&amp;author=Perez%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR83">Li KS, Wang HR, Liu KH (2019) A novel error-correcting output codes algorithm based on genetic programming. Swarm Evol Comput 50:100564</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.swevo.2019.100564" data-track-item_id="10.1016/j.swevo.2019.100564" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.swevo.2019.100564" aria-label="Article reference 84" data-doi="10.1016/j.swevo.2019.100564">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 84" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20novel%20error-correcting%20output%20codes%20algorithm%20based%20on%20genetic%20programming&amp;journal=Swarm%20Evol%20Comput&amp;doi=10.1016%2Fj.swevo.2019.100564&amp;volume=50&amp;publication_year=2019&amp;author=Li%2CKS&amp;author=Wang%2CHR&amp;author=Liu%2CKH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR84">Liu C (2008) Partial discriminative training for classification of overlapping classes in document analysis. IJDAR 11(2):53</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10032-008-0069-1" data-track-item_id="10.1007/s10032-008-0069-1" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10032-008-0069-1" aria-label="Article reference 85" data-doi="10.1007/s10032-008-0069-1">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 85" href="http://scholar.google.com/scholar_lookup?&amp;title=Partial%20discriminative%20training%20for%20classification%20of%20overlapping%20classes%20in%20document%20analysis&amp;journal=IJDAR&amp;doi=10.1007%2Fs10032-008-0069-1&amp;volume=11&amp;issue=2&amp;publication_year=2008&amp;author=Liu%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR85">Liu XY, Wu J, Zhou ZH (2008) Exploratory undersampling for class-imbalance learning. IEEE Trans Syst Man Cybern Part B (Cybern) 39(2):539–550</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 86" href="http://scholar.google.com/scholar_lookup?&amp;title=Exploratory%20undersampling%20for%20class-imbalance%20learning&amp;journal=IEEE%20Trans%20Syst%20Man%20Cybern%20Part%20B%20%28Cybern%29&amp;volume=39&amp;issue=2&amp;pages=539-550&amp;publication_year=2008&amp;author=Liu%2CXY&amp;author=Wu%2CJ&amp;author=Zhou%2CZH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR86">López V, Fernández A, García S, Palade V, Herrera F (2013) An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf Sci 250:113–141</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ins.2013.07.007" data-track-item_id="10.1016/j.ins.2013.07.007" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ins.2013.07.007" aria-label="Article reference 87" data-doi="10.1016/j.ins.2013.07.007">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 87" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20insight%20into%20classification%20with%20imbalanced%20data%3A%20empirical%20results%20and%20current%20trends%20on%20using%20data%20intrinsic%20characteristics&amp;journal=Inf%20Sci&amp;doi=10.1016%2Fj.ins.2013.07.007&amp;volume=250&amp;pages=113-141&amp;publication_year=2013&amp;author=L%C3%B3pez%2CV&amp;author=Fern%C3%A1ndez%2CA&amp;author=Garc%C3%ADa%2CS&amp;author=Palade%2CV&amp;author=Herrera%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR87">Lorena AC, Costa IG, Spolaôr N, De Souto MC (2012) Analysis of complexity indices for classification problems: cancer gene expression data. Neurocomputing 75(1):33–42</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neucom.2011.03.054" data-track-item_id="10.1016/j.neucom.2011.03.054" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neucom.2011.03.054" aria-label="Article reference 88" data-doi="10.1016/j.neucom.2011.03.054">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 88" href="http://scholar.google.com/scholar_lookup?&amp;title=Analysis%20of%20complexity%20indices%20for%20classification%20problems%3A%20cancer%20gene%20expression%20data&amp;journal=Neurocomputing&amp;doi=10.1016%2Fj.neucom.2011.03.054&amp;volume=75&amp;issue=1&amp;pages=33-42&amp;publication_year=2012&amp;author=Lorena%2CAC&amp;author=Costa%2CIG&amp;author=Spola%C3%B4r%2CN&amp;author=Souto%2CMC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR88">Lorena AC, Garcia LP, Lehmann J, Souto MC, Ho TK (2019) How complex is your classification problem? A survey on measuring classification complexity. ACM Comput Surv (CSUR) 52(5):1–34</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1145/3347711" data-track-item_id="10.1145/3347711" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1145%2F3347711" aria-label="Article reference 89" data-doi="10.1145/3347711">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 89" href="http://scholar.google.com/scholar_lookup?&amp;title=How%20complex%20is%20your%20classification%20problem%3F%20A%20survey%20on%20measuring%20classification%20complexity&amp;journal=ACM%20Comput%20Surv%20%28CSUR%29&amp;doi=10.1145%2F3347711&amp;volume=52&amp;issue=5&amp;pages=1-34&amp;publication_year=2019&amp;author=Lorena%2CAC&amp;author=Garcia%2CLP&amp;author=Lehmann%2CJ&amp;author=Souto%2CMC&amp;author=Ho%2CTK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR89">Luengo J, Fernández A, García S, Herrera F (2011) Addressing data complexity for imbalanced data sets: analysis of smote-based oversampling and evolutionary undersampling. Soft Comput 15(10):1909–1936</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s00500-010-0625-8" data-track-item_id="10.1007/s00500-010-0625-8" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s00500-010-0625-8" aria-label="Article reference 90" data-doi="10.1007/s00500-010-0625-8">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 90" href="http://scholar.google.com/scholar_lookup?&amp;title=Addressing%20data%20complexity%20for%20imbalanced%20data%20sets%3A%20analysis%20of%20smote-based%20oversampling%20and%20evolutionary%20undersampling&amp;journal=Soft%20Comput&amp;doi=10.1007%2Fs00500-010-0625-8&amp;volume=15&amp;issue=10&amp;pages=1909-1936&amp;publication_year=2011&amp;author=Luengo%2CJ&amp;author=Fern%C3%A1ndez%2CA&amp;author=Garc%C3%ADa%2CS&amp;author=Herrera%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR90">MacCuish J, MacCuish N (2010) Clustering in Bioinformatics and Drug Discovery. CRC Press, London</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1201/b10331" data-track-item_id="10.1201/b10331" data-track-value="book reference" data-track-action="book reference" href="https://doi.org/10.1201%2Fb10331" aria-label="Book reference 91" data-doi="10.1201/b10331">Book</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1277.62023" aria-label="MATH reference 91">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 91" href="http://scholar.google.com/scholar_lookup?&amp;title=Clustering%20in%20Bioinformatics%20and%20Drug%20Discovery&amp;doi=10.1201%2Fb10331&amp;publication_year=2010&amp;author=MacCuish%2CJ&amp;author=MacCuish%2CN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR91">Macià N, Bernadó-Mansilla E (2014) Towards uci+: a mindful repository design. Inf Sci 261:237–262</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ins.2013.08.059" data-track-item_id="10.1016/j.ins.2013.08.059" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ins.2013.08.059" aria-label="Article reference 92" data-doi="10.1016/j.ins.2013.08.059">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 92" href="http://scholar.google.com/scholar_lookup?&amp;title=Towards%20uci%2B%3A%20a%20mindful%20repository%20design&amp;journal=Inf%20Sci&amp;doi=10.1016%2Fj.ins.2013.08.059&amp;volume=261&amp;pages=237-262&amp;publication_year=2014&amp;author=Maci%C3%A0%2CN&amp;author=Bernad%C3%B3-Mansilla%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR92">Malina W (2001) Two-parameter fisher criterion. IEEE Trans Syst Man Cybern Part B (Cybern) 31(4):629–636</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/3477.938265" data-track-item_id="10.1109/3477.938265" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2F3477.938265" aria-label="Article reference 93" data-doi="10.1109/3477.938265">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 93" href="http://scholar.google.com/scholar_lookup?&amp;title=Two-parameter%20fisher%20criterion&amp;journal=IEEE%20Trans%20Syst%20Man%20Cybern%20Part%20B%20%28Cybern%29&amp;doi=10.1109%2F3477.938265&amp;volume=31&amp;issue=4&amp;pages=629-636&amp;publication_year=2001&amp;author=Malina%2CW"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR93">Mani I, Zhang I (2003) knn approach to unbalanced data distributions: a case study involving information extraction. In: Proceedings of workshop on learning from imbalanced datasets, ICML United States, vol 126</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR94">Manukyan A, Ceyhan E (2016) Classification of imbalanced data with a geometric digraph family. J Mach Learn Res 17(1):6504–6543</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3567457" aria-label="MathSciNet reference 95">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1392.62190" aria-label="MATH reference 95">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 95" href="http://scholar.google.com/scholar_lookup?&amp;title=Classification%20of%20imbalanced%20data%20with%20a%20geometric%20digraph%20family&amp;journal=J%20Mach%20Learn%20Res&amp;volume=17&amp;issue=1&amp;pages=6504-6543&amp;publication_year=2016&amp;author=Manukyan%2CA&amp;author=Ceyhan%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR95">Massie S, Craw S, Wiratunga N (2005) Complexity-guided case discovery for case based reasoning. AAAI 5:216–221</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 96" href="http://scholar.google.com/scholar_lookup?&amp;title=Complexity-guided%20case%20discovery%20for%20case%20based%20reasoning&amp;journal=AAAI&amp;volume=5&amp;pages=216-221&amp;publication_year=2005&amp;author=Massie%2CS&amp;author=Craw%2CS&amp;author=Wiratunga%2CN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR97">Menzies T, Butcher A, Cok D, Marcus A, Layman L, Shull F, Turhan B, Zimmermann T (2012) Local versus global lessons for defect prediction and effort estimation. IEEE Trans Softw Eng 39(6):822–834</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TSE.2012.83" data-track-item_id="10.1109/TSE.2012.83" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTSE.2012.83" aria-label="Article reference 97" data-doi="10.1109/TSE.2012.83">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 97" href="http://scholar.google.com/scholar_lookup?&amp;title=Local%20versus%20global%20lessons%20for%20defect%20prediction%20and%20effort%20estimation&amp;journal=IEEE%20Trans%20Softw%20Eng&amp;doi=10.1109%2FTSE.2012.83&amp;volume=39&amp;issue=6&amp;pages=822-834&amp;publication_year=2012&amp;author=Menzies%2CT&amp;author=Butcher%2CA&amp;author=Cok%2CD&amp;author=Marcus%2CA&amp;author=Layman%2CL&amp;author=Shull%2CF&amp;author=Turhan%2CB&amp;author=Zimmermann%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR98">Mercier M, Santos M, Abreu P, Soares C, Soares J, Santos J (2018) Analysing the footprint of classifiers in overlapped and imbalanced contexts. In: International symposium on intelligent data analysis. Springer, pp 200–212</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR99">Muñoz MA, Villanova L, Baatar D, Smith-Miles K (2018) Instance spaces for machine learning classification. Mach Learn 107(1):109–147</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10994-017-5629-5" data-track-item_id="10.1007/s10994-017-5629-5" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10994-017-5629-5" aria-label="Article reference 99" data-doi="10.1007/s10994-017-5629-5">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3743803" aria-label="MathSciNet reference 99">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1457.68235" aria-label="MATH reference 99">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 99" href="http://scholar.google.com/scholar_lookup?&amp;title=Instance%20spaces%20for%20machine%20learning%20classification&amp;journal=Mach%20Learn&amp;doi=10.1007%2Fs10994-017-5629-5&amp;volume=107&amp;issue=1&amp;pages=109-147&amp;publication_year=2018&amp;author=Mu%C3%B1oz%2CMA&amp;author=Villanova%2CL&amp;author=Baatar%2CD&amp;author=Smith-Miles%2CK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR100">Napierala K, Stefanowski J (2016) Types of minority class examples and their influence on learning classifiers from imbalanced data. J Intell Inf Syst 46(3):563–597</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10844-015-0368-1" data-track-item_id="10.1007/s10844-015-0368-1" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10844-015-0368-1" aria-label="Article reference 100" data-doi="10.1007/s10844-015-0368-1">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 100" href="http://scholar.google.com/scholar_lookup?&amp;title=Types%20of%20minority%20class%20examples%20and%20their%20influence%20on%20learning%20classifiers%20from%20imbalanced%20data&amp;journal=J%20Intell%20Inf%20Syst&amp;doi=10.1007%2Fs10844-015-0368-1&amp;volume=46&amp;issue=3&amp;pages=563-597&amp;publication_year=2016&amp;author=Napierala%2CK&amp;author=Stefanowski%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR101">Napierała K, Stefanowski J, Wilk S (2010) Learning from imbalanced data in presence of noisy and borderline examples. In: International conference on rough sets and current trends in computing. Springer, pp 158–167</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR102">Nekooeimehr I, Lai-Yuen SK (2016) Adaptive semi-unsupervised weighted oversampling (a-suwo) for imbalanced datasets. Expert Syst Appl 46:405–416</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.eswa.2015.10.031" data-track-item_id="10.1016/j.eswa.2015.10.031" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.eswa.2015.10.031" aria-label="Article reference 102" data-doi="10.1016/j.eswa.2015.10.031">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 102" href="http://scholar.google.com/scholar_lookup?&amp;title=Adaptive%20semi-unsupervised%20weighted%20oversampling%20%28a-suwo%29%20for%20imbalanced%20datasets&amp;journal=Expert%20Syst%20Appl&amp;doi=10.1016%2Fj.eswa.2015.10.031&amp;volume=46&amp;pages=405-416&amp;publication_year=2016&amp;author=Nekooeimehr%2CI&amp;author=Lai-Yuen%2CSK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR103">Oh S (2011) A new dataset evaluation method based on category overlap. Comput Biol Med 41(2):115–122</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.compbiomed.2010.12.006" data-track-item_id="10.1016/j.compbiomed.2010.12.006" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.compbiomed.2010.12.006" aria-label="Article reference 103" data-doi="10.1016/j.compbiomed.2010.12.006">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 103" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20new%20dataset%20evaluation%20method%20based%20on%20category%20overlap&amp;journal=Comput%20Biol%20Med&amp;doi=10.1016%2Fj.compbiomed.2010.12.006&amp;volume=41&amp;issue=2&amp;pages=115-122&amp;publication_year=2011&amp;author=Oh%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR104">Orriols-Puig A, Macia N, Ho TK (2010) Documentation for the data complexity library in c++. Universitat Ramon Llull, La Salle 196:1–40</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 104" href="http://scholar.google.com/scholar_lookup?&amp;title=Documentation%20for%20the%20data%20complexity%20library%20in%20c%2B%2B&amp;journal=Universitat%20Ramon%20Llull%2C%20La%20Salle&amp;volume=196&amp;pages=1-40&amp;publication_year=2010&amp;author=Orriols-Puig%2CA&amp;author=Macia%2CN&amp;author=Ho%2CTK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR105">Pascual-Triana JD, Charte D, Andrés Arroyo M, Fernández A, Herrera F (2021) Revisiting data complexity metrics based on morphology for overlap and imbalance: snapshot, new overlap number of balls metrics and singular problems prospect. Knowl Inf Syst 63(7):1961–1989</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10115-021-01577-1" data-track-item_id="10.1007/s10115-021-01577-1" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10115-021-01577-1" aria-label="Article reference 105" data-doi="10.1007/s10115-021-01577-1">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 105" href="http://scholar.google.com/scholar_lookup?&amp;title=Revisiting%20data%20complexity%20metrics%20based%20on%20morphology%20for%20overlap%20and%20imbalance%3A%20snapshot%2C%20new%20overlap%20number%20of%20balls%20metrics%20and%20singular%20problems%20prospect&amp;journal=Knowl%20Inf%20Syst&amp;doi=10.1007%2Fs10115-021-01577-1&amp;volume=63&amp;issue=7&amp;pages=1961-1989&amp;publication_year=2021&amp;author=Pascual-Triana%2CJD&amp;author=Charte%2CD&amp;author=Andr%C3%A9s%20Arroyo%2CM&amp;author=Fern%C3%A1ndez%2CA&amp;author=Herrera%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR106">Prati RGB, Monard M (2004) Class imbalances versus class overlapping: an analysis of a learning system behavior. In: Mexican international conference on artificial intelligence. Springer, pp 312–321</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR107">Rivolli A, Garcia LP, Soares C, Vanschoren J, de Carvalho AC (2018) Characterizing classification datasets: a study of meta-features for meta-learning. <a href="http://arxiv.org/abs/180810406" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/180810406">arXiv:180810406</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR108">Sáez J, Luengo J, Stefanowski J, Herrera F (2015) Smote-ipf: addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Inf Sci 291:184–203</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ins.2014.08.051" data-track-item_id="10.1016/j.ins.2014.08.051" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ins.2014.08.051" aria-label="Article reference 108" data-doi="10.1016/j.ins.2014.08.051">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 108" href="http://scholar.google.com/scholar_lookup?&amp;title=Smote-ipf%3A%20addressing%20the%20noisy%20and%20borderline%20examples%20problem%20in%20imbalanced%20classification%20by%20a%20re-sampling%20method%20with%20filtering&amp;journal=Inf%20Sci&amp;doi=10.1016%2Fj.ins.2014.08.051&amp;volume=291&amp;pages=184-203&amp;publication_year=2015&amp;author=S%C3%A1ez%2CJ&amp;author=Luengo%2CJ&amp;author=Stefanowski%2CJ&amp;author=Herrera%2CF"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR109">Sáez JA, Galar M, Krawczyk B (2019) Addressing the overlapping data problem in classification using the one-vs-one decomposition strategy. IEEE Access 7:83396–83411</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/ACCESS.2019.2925300" data-track-item_id="10.1109/ACCESS.2019.2925300" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FACCESS.2019.2925300" aria-label="Article reference 109" data-doi="10.1109/ACCESS.2019.2925300">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 109" href="http://scholar.google.com/scholar_lookup?&amp;title=Addressing%20the%20overlapping%20data%20problem%20in%20classification%20using%20the%20one-vs-one%20decomposition%20strategy&amp;journal=IEEE%20Access&amp;doi=10.1109%2FACCESS.2019.2925300&amp;volume=7&amp;pages=83396-83411&amp;publication_year=2019&amp;author=S%C3%A1ez%2CJA&amp;author=Galar%2CM&amp;author=Krawczyk%2CB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR110">Santos M, Abreu P, García-Laencina P, Simão A, Carvalho A (2015) A new cluster-based oversampling method for improving survival prediction of hepatocellular carcinoma patients. J Biomed Inform 58:49–59</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.jbi.2015.09.012" data-track-item_id="10.1016/j.jbi.2015.09.012" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.jbi.2015.09.012" aria-label="Article reference 110" data-doi="10.1016/j.jbi.2015.09.012">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 110" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20new%20cluster-based%20oversampling%20method%20for%20improving%20survival%20prediction%20of%20hepatocellular%20carcinoma%20patients&amp;journal=J%20Biomed%20Inform&amp;doi=10.1016%2Fj.jbi.2015.09.012&amp;volume=58&amp;pages=49-59&amp;publication_year=2015&amp;author=Santos%2CM&amp;author=Abreu%2CP&amp;author=Garc%C3%ADa-Laencina%2CP&amp;author=Sim%C3%A3o%2CA&amp;author=Carvalho%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR111">Santos M, Soares J, Abreu P, Araújo H, Santos J (2018) Cross-validation for imbalanced datasets: avoiding overoptimistic and overfitting approaches. IEEE Comput Intell Mag 13(3):59–76</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/MCI.2018.2866730" data-track-item_id="10.1109/MCI.2018.2866730" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FMCI.2018.2866730" aria-label="Article reference 111" data-doi="10.1109/MCI.2018.2866730">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 111" href="http://scholar.google.com/scholar_lookup?&amp;title=Cross-validation%20for%20imbalanced%20datasets%3A%20avoiding%20overoptimistic%20and%20overfitting%20approaches&amp;journal=IEEE%20Comput%20Intell%20Mag&amp;doi=10.1109%2FMCI.2018.2866730&amp;volume=13&amp;issue=3&amp;pages=59-76&amp;publication_year=2018&amp;author=Santos%2CM&amp;author=Soares%2CJ&amp;author=Abreu%2CP&amp;author=Ara%C3%BAjo%2CH&amp;author=Santos%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR112">Santoso B, Wijayanto H, Notodiputro KA, Sartono B (2018) K-neighbor over-sampling with cleaning data: a new approach to improve classification performance in data sets with class imbalance. Appl Math Sci 12(10):449–460</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 112" href="http://scholar.google.com/scholar_lookup?&amp;title=K-neighbor%20over-sampling%20with%20cleaning%20data%3A%20a%20new%20approach%20to%20improve%20classification%20performance%20in%20data%20sets%20with%20class%20imbalance&amp;journal=Appl%20Math%20Sci&amp;volume=12&amp;issue=10&amp;pages=449-460&amp;publication_year=2018&amp;author=Santoso%2CB&amp;author=Wijayanto%2CH&amp;author=Notodiputro%2CKA&amp;author=Sartono%2CB"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR113">Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A (2009) Rusboost: a hybrid approach to alleviating class imbalance. IEEE Trans Syst Man, Cybern Part A Syst Hum 40(1):185–197</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TSMCA.2009.2029559" data-track-item_id="10.1109/TSMCA.2009.2029559" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTSMCA.2009.2029559" aria-label="Article reference 113" data-doi="10.1109/TSMCA.2009.2029559">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 113" href="http://scholar.google.com/scholar_lookup?&amp;title=Rusboost%3A%20a%20hybrid%20approach%20to%20alleviating%20class%20imbalance&amp;journal=IEEE%20Trans%20Syst%20Man%2C%20Cybern%20Part%20A%20Syst%20Hum&amp;doi=10.1109%2FTSMCA.2009.2029559&amp;volume=40&amp;issue=1&amp;pages=185-197&amp;publication_year=2009&amp;author=Seiffert%2CC&amp;author=Khoshgoftaar%2CTM&amp;author=Hulse%2CJ&amp;author=Napolitano%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR114">Selvaraj G, Kaliamurthi S, Kaushik A, Khan A, Wei Y, Cho W, Gu K, Wei D (2018) Identification of target gene and prognostic evaluation for lung adenocarcinoma using gene expression meta-analysis, network analysis and neural network algorithms. J Biomed Inform 86:120–134</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.jbi.2018.09.004" data-track-item_id="10.1016/j.jbi.2018.09.004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.jbi.2018.09.004" aria-label="Article reference 114" data-doi="10.1016/j.jbi.2018.09.004">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 114" href="http://scholar.google.com/scholar_lookup?&amp;title=Identification%20of%20target%20gene%20and%20prognostic%20evaluation%20for%20lung%20adenocarcinoma%20using%20gene%20expression%20meta-analysis%2C%20network%20analysis%20and%20neural%20network%20algorithms&amp;journal=J%20Biomed%20Inform&amp;doi=10.1016%2Fj.jbi.2018.09.004&amp;volume=86&amp;pages=120-134&amp;publication_year=2018&amp;author=Selvaraj%2CG&amp;author=Kaliamurthi%2CS&amp;author=Kaushik%2CA&amp;author=Khan%2CA&amp;author=Wei%2CY&amp;author=Cho%2CW&amp;author=Gu%2CK&amp;author=Wei%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR115">Shilaskar S, Ghatol A, Chatur P (2017) Medical decision support system for extremely imbalanced datasets. Inf Sci 384:205–219</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ins.2016.08.077" data-track-item_id="10.1016/j.ins.2016.08.077" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ins.2016.08.077" aria-label="Article reference 115" data-doi="10.1016/j.ins.2016.08.077">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3592639" aria-label="MathSciNet reference 115">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 115" href="http://scholar.google.com/scholar_lookup?&amp;title=Medical%20decision%20support%20system%20for%20extremely%20imbalanced%20datasets&amp;journal=Inf%20Sci&amp;doi=10.1016%2Fj.ins.2016.08.077&amp;volume=384&amp;pages=205-219&amp;publication_year=2017&amp;author=Shilaskar%2CS&amp;author=Ghatol%2CA&amp;author=Chatur%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR117">Singh S (2003a) Multiresolution estimates of classification complexity. IEEE Trans Pattern Anal Mach Intell 25(12):1534–1539</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TPAMI.2003.1251146" data-track-item_id="10.1109/TPAMI.2003.1251146" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTPAMI.2003.1251146" aria-label="Article reference 116" data-doi="10.1109/TPAMI.2003.1251146">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 116" href="http://scholar.google.com/scholar_lookup?&amp;title=Multiresolution%20estimates%20of%20classification%20complexity&amp;journal=IEEE%20Trans%20Pattern%20Anal%20Mach%20Intell&amp;doi=10.1109%2FTPAMI.2003.1251146&amp;volume=25&amp;issue=12&amp;pages=1534-1539&amp;publication_year=2003&amp;author=Singh%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR118">Singh S (2003b) Prism-a novel framework for pattern recognition. Pattern Anal Appl 6(2):134–149</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10044-002-0186-2" data-track-item_id="10.1007/s10044-002-0186-2" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10044-002-0186-2" aria-label="Article reference 117" data-doi="10.1007/s10044-002-0186-2">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2005410" aria-label="MathSciNet reference 117">MathSciNet</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 117" href="http://scholar.google.com/scholar_lookup?&amp;title=Prism-a%20novel%20framework%20for%20pattern%20recognition&amp;journal=Pattern%20Anal%20Appl&amp;doi=10.1007%2Fs10044-002-0186-2&amp;volume=6&amp;issue=2&amp;pages=134-149&amp;publication_year=2003&amp;author=Singh%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR116">Singh D, Gosain A, Saha A (2020) Weighted k-nearest neighbor based data complexity metrics for imbalanced datasets. Stat Anal Data Min ASA Data Sci J 13(4):394–404</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/sam.11463" data-track-item_id="10.1002/sam.11463" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fsam.11463" aria-label="Article reference 118" data-doi="10.1002/sam.11463">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4176142" aria-label="MathSciNet reference 118">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?07260687" aria-label="MATH reference 118">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 118" href="http://scholar.google.com/scholar_lookup?&amp;title=Weighted%20k-nearest%20neighbor%20based%20data%20complexity%20metrics%20for%20imbalanced%20datasets&amp;journal=Stat%20Anal%20Data%20Min%20ASA%20Data%20Sci%20J&amp;doi=10.1002%2Fsam.11463&amp;volume=13&amp;issue=4&amp;pages=394-404&amp;publication_year=2020&amp;author=Singh%2CD&amp;author=Gosain%2CA&amp;author=Saha%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR119">Slowik A, Kwasnicka H (2020) Evolutionary algorithms and their applications to engineering problems. Neural Comput Appl 32(16):12363–12379</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR120">Smith MR, Martinez T, Giraud-Carrier C (2014) An instance level analysis of data complexity. Mach Learn 95(2):225–256</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10994-013-5422-z" data-track-item_id="10.1007/s10994-013-5422-z" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10994-013-5422-z" aria-label="Article reference 120" data-doi="10.1007/s10994-013-5422-z">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3188455" aria-label="MathSciNet reference 120">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1469.62290" aria-label="MATH reference 120">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 120" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20instance%20level%20analysis%20of%20data%20complexity&amp;journal=Mach%20Learn&amp;doi=10.1007%2Fs10994-013-5422-z&amp;volume=95&amp;issue=2&amp;pages=225-256&amp;publication_year=2014&amp;author=Smith%2CMR&amp;author=Martinez%2CT&amp;author=Giraud-Carrier%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR121">Sotoca JM, Sanchez J, Mollineda RA (2005) A review of data complexity measures and their applicability to pattern classification problems. Actas del III Taller Nacional de Mineria de Datos y Aprendizaje TAMIDA, pp 77–83</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR122">Sotoca JM, Mollineda RA, Sánchez JS (2006) A meta-learning framework for pattern classication by means of data complexity measures. Inteligencia Artificial Revista Iberoamericana de Inteligencia Artificial 10(29):31–38</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 122" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20meta-learning%20framework%20for%20pattern%20classication%20by%20means%20of%20data%20complexity%20measures&amp;journal=Inteligencia%20Artificial%20Revista%20Iberoamericana%20de%20Inteligencia%20Artificial&amp;volume=10&amp;issue=29&amp;pages=31-38&amp;publication_year=2006&amp;author=Sotoca%2CJM&amp;author=Mollineda%2CRA&amp;author=S%C3%A1nchez%2CJS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR123">Sowah RA, Agebure MA, Mills GA, Koumadi KM, Fiawoo SY (2016) New cluster undersampling technique for class imbalance learning. Int J Mach Learn Comput 6(3):205</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.18178/ijmlc.2016.6.3.599" data-track-item_id="10.18178/ijmlc.2016.6.3.599" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.18178%2Fijmlc.2016.6.3.599" aria-label="Article reference 123" data-doi="10.18178/ijmlc.2016.6.3.599">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 123" href="http://scholar.google.com/scholar_lookup?&amp;title=New%20cluster%20undersampling%20technique%20for%20class%20imbalance%20learning&amp;journal=Int%20J%20Mach%20Learn%20Comput&amp;doi=10.18178%2Fijmlc.2016.6.3.599&amp;volume=6&amp;issue=3&amp;publication_year=2016&amp;author=Sowah%2CRA&amp;author=Agebure%2CMA&amp;author=Mills%2CGA&amp;author=Koumadi%2CKM&amp;author=Fiawoo%2CSY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR124">Stefanowski J (2013) Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data. In: Emerging paradigms in machine learning. Springer, pp 277–306</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR125">Stefanowski J (2016) Dealing with data difficulty factors while learning from imbalanced data. In: Challenges in computational statistics and data mining. Springer, pp 333–363</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR126">Stefanowski J, Wilk S (2008) Selective pre-processing of imbalanced data for improving classification performance. In: International conference on data warehousing and knowledge discovery. Springer, pp 283–292</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR128">Tang Y, Gao J (2007) Improved classification for problem involving overlapping patterns. IEICE Trans Inf Syst 90(11):1787–1795</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/ietisy/e90-d.11.1787" data-track-item_id="10.1093/ietisy/e90-d.11.1787" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fietisy%2Fe90-d.11.1787" aria-label="Article reference 127" data-doi="10.1093/ietisy/e90-d.11.1787">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 127" href="http://scholar.google.com/scholar_lookup?&amp;title=Improved%20classification%20for%20problem%20involving%20overlapping%20patterns&amp;journal=IEICE%20Trans%20Inf%20Syst&amp;doi=10.1093%2Fietisy%2Fe90-d.11.1787&amp;volume=90&amp;issue=11&amp;pages=1787-1795&amp;publication_year=2007&amp;author=Tang%2CY&amp;author=Gao%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR127">Tang W, Mao K, Mak LO, Ng GW (2010) Classification for overlapping classes using optimized overlapping region detection and soft decision. In: 2010 13th international conference on information fusion. IEEE, pp 1–8</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR129">Thornton C (1998) Separability is a learner’s best friend. In: 4th Neural computation and psychology workshop, London, 9–11 April 1997. Springer, pp 40–46</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR130">Tomek I (1976) Two modifications of cnn. IEEE Trans Syst Man Commun 6:769–772</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=449068" aria-label="MathSciNet reference 130">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0341.68066" aria-label="MATH reference 130">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 130" href="http://scholar.google.com/scholar_lookup?&amp;title=Two%20modifications%20of%20cnn&amp;journal=IEEE%20Trans%20Syst%20Man%20Commun&amp;volume=6&amp;pages=769-772&amp;publication_year=1976&amp;author=Tomek%2CI"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR131">Vorraboot P, Rasmequan S, Chinnasarn K, Lursinsap C (2015) Improving classification rate constrained to imbalanced data between overlapped and non-overlapped regions by hybrid algorithms. Neurocomputing 152:429–443</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neucom.2014.10.007" data-track-item_id="10.1016/j.neucom.2014.10.007" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neucom.2014.10.007" aria-label="Article reference 131" data-doi="10.1016/j.neucom.2014.10.007">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 131" href="http://scholar.google.com/scholar_lookup?&amp;title=Improving%20classification%20rate%20constrained%20to%20imbalanced%20data%20between%20overlapped%20and%20non-overlapped%20regions%20by%20hybrid%20algorithms&amp;journal=Neurocomputing&amp;doi=10.1016%2Fj.neucom.2014.10.007&amp;volume=152&amp;pages=429-443&amp;publication_year=2015&amp;author=Vorraboot%2CP&amp;author=Rasmequan%2CS&amp;author=Chinnasarn%2CK&amp;author=Lursinsap%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR132">Vuttipittayamongkol P, Elyan E (2020a) Improved overlap-based undersampling for imbalanced dataset classification with application to epilepsy and Parkinson’s disease. Int J Neural Syst 30(08):2050043</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR133">Vuttipittayamongkol P, Elyan E (2020b) Neighbourhood-based undersampling approach for handling imbalanced and overlapped data. Inf Sci 509:47–70.</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ins.2019.08.062" data-track-item_id="10.1016/j.ins.2019.08.062" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ins.2019.08.062" aria-label="Article reference 133" data-doi="10.1016/j.ins.2019.08.062">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 133" href="http://scholar.google.com/scholar_lookup?&amp;title=Neighbourhood-based%20undersampling%20approach%20for%20handling%20imbalanced%20and%20overlapped%20data&amp;journal=Inf%20Sci&amp;doi=10.1016%2Fj.ins.2019.08.062&amp;volume=509&amp;pages=47-70&amp;publication_year=2020&amp;author=Vuttipittayamongkol%2CP&amp;author=Elyan%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR134">Vuttipittayamongkol P, Elyan E, Petrovski A, Jayne C (2018) Overlap-based undersampling for improving imbalanced data classification. In: International conference on intelligent data engineering and automated learning. Springer, pp 689–697</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR135">Vuttipittayamongkol P, Elyan E, Petrovski A (2020) On the class overlap problem in imbalanced data classification. Knowl Based Syst 106631</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR136">Van der Walt CM, Barnard E (2007) Measures for the characterisation of pattern-recognition data sets. In: 18th Annual symposium of the pattern recognition association of South Africa</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR137">Van der Walt CM, et al. (2008) Data measures that characterise classification problems. PhD thesis, University of Pretoria</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR138">Wang BX, Japkowicz N (2010) Boosting support vector machines for imbalanced data sets. Knowl Inf Syst 25(1):1–20</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10115-009-0198-y" data-track-item_id="10.1007/s10115-009-0198-y" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10115-009-0198-y" aria-label="Article reference 138" data-doi="10.1007/s10115-009-0198-y">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 138" href="http://scholar.google.com/scholar_lookup?&amp;title=Boosting%20support%20vector%20machines%20for%20imbalanced%20data%20sets&amp;journal=Knowl%20Inf%20Syst&amp;doi=10.1007%2Fs10115-009-0198-y&amp;volume=25&amp;issue=1&amp;pages=1-20&amp;publication_year=2010&amp;author=Wang%2CBX&amp;author=Japkowicz%2CN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR139">Wang S, Yao X (2009) Diversity analysis on imbalanced data sets by using ensemble models. In: 2009 IEEE symposium on computational intelligence and data mining. IEEE, pp 324–331</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR140">Wang S, Yao X (2013) Using class imbalance learning for software defect prediction. IEEE Trans Reliab 62(2):434–443</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TR.2013.2259203" data-track-item_id="10.1109/TR.2013.2259203" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTR.2013.2259203" aria-label="Article reference 140" data-doi="10.1109/TR.2013.2259203">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 140" href="http://scholar.google.com/scholar_lookup?&amp;title=Using%20class%20imbalance%20learning%20for%20software%20defect%20prediction&amp;journal=IEEE%20Trans%20Reliab&amp;doi=10.1109%2FTR.2013.2259203&amp;volume=62&amp;issue=2&amp;pages=434-443&amp;publication_year=2013&amp;author=Wang%2CS&amp;author=Yao%2CX"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR141">Wei J, Huang H, Yao L, Hu Y, Fan Q, Huang D (2020a) Ia-suwo: an improving adaptive semi-unsupervised weighted oversampling for imbalanced classification problems. Knowl Based Syst 203:106116</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.knosys.2020.106116" data-track-item_id="10.1016/j.knosys.2020.106116" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.knosys.2020.106116" aria-label="Article reference 141" data-doi="10.1016/j.knosys.2020.106116">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 141" href="http://scholar.google.com/scholar_lookup?&amp;title=Ia-suwo%3A%20an%20improving%20adaptive%20semi-unsupervised%20weighted%20oversampling%20for%20imbalanced%20classification%20problems&amp;journal=Knowl%20Based%20Syst&amp;doi=10.1016%2Fj.knosys.2020.106116&amp;volume=203&amp;publication_year=2020&amp;author=Wei%2CJ&amp;author=Huang%2CH&amp;author=Yao%2CL&amp;author=Hu%2CY&amp;author=Fan%2CQ&amp;author=Huang%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR142">Wei J, Huang H, Yao L, Hu Y, Fan Q, Huang D (2020b) Ni-mwmote: an improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems. Expert Syst Appl 158:113504</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.eswa.2020.113504" data-track-item_id="10.1016/j.eswa.2020.113504" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.eswa.2020.113504" aria-label="Article reference 142" data-doi="10.1016/j.eswa.2020.113504">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 142" href="http://scholar.google.com/scholar_lookup?&amp;title=Ni-mwmote%3A%20an%20improving%20noise-immunity%20majority%20weighted%20minority%20oversampling%20technique%20for%20imbalanced%20classification%20problems&amp;journal=Expert%20Syst%20Appl&amp;doi=10.1016%2Fj.eswa.2020.113504&amp;volume=158&amp;publication_year=2020&amp;author=Wei%2CJ&amp;author=Huang%2CH&amp;author=Yao%2CL&amp;author=Hu%2CY&amp;author=Fan%2CQ&amp;author=Huang%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR143">Weng CG, Poon J (2006) A data complexity analysis on imbalanced datasets and an alternative imbalance recovering strategy. In: 2006 IEEE/WIC/ACM international conference on web intelligence (WI 2006 main conference proceedings) (WI’06). IEEE, pp 270–276</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR144">Wilson DL (1972) Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans Syst Man Cybern 3:408–421</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/TSMC.1972.4309137" data-track-item_id="10.1109/TSMC.1972.4309137" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FTSMC.1972.4309137" aria-label="Article reference 144" data-doi="10.1109/TSMC.1972.4309137">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=329139" aria-label="MathSciNet reference 144">MathSciNet</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0276.62060" aria-label="MATH reference 144">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 144" href="http://scholar.google.com/scholar_lookup?&amp;title=Asymptotic%20properties%20of%20nearest%20neighbor%20rules%20using%20edited%20data&amp;journal=IEEE%20Trans%20Syst%20Man%20Cybern&amp;doi=10.1109%2FTSMC.1972.4309137&amp;volume=3&amp;pages=408-421&amp;publication_year=1972&amp;author=Wilson%2CDL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR145">Wojciechowski S, Wilk S (2017) Difficulty factors and preprocessing in imbalanced data sets: an experimental study on artificial data. Found Comput Decis Sci 42(2):149–176</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1515/fcds-2017-0007" data-track-item_id="10.1515/fcds-2017-0007" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1515%2Ffcds-2017-0007" aria-label="Article reference 145" data-doi="10.1515/fcds-2017-0007">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1365.62255" aria-label="MATH reference 145">MATH</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 145" href="http://scholar.google.com/scholar_lookup?&amp;title=Difficulty%20factors%20and%20preprocessing%20in%20imbalanced%20data%20sets%3A%20an%20experimental%20study%20on%20artificial%20data&amp;journal=Found%20Comput%20Decis%20Sci&amp;doi=10.1515%2Ffcds-2017-0007&amp;volume=42&amp;issue=2&amp;pages=149-176&amp;publication_year=2017&amp;author=Wojciechowski%2CS&amp;author=Wilk%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR146">Wozniak M, Grana M, Corchado E (2014) A survey of multiple classifier systems as hybrid systems. Inf Fusion 16:3–17</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.inffus.2013.04.006" data-track-item_id="10.1016/j.inffus.2013.04.006" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.inffus.2013.04.006" aria-label="Article reference 146" data-doi="10.1016/j.inffus.2013.04.006">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 146" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20survey%20of%20multiple%20classifier%20systems%20as%20hybrid%20systems&amp;journal=Inf%20Fusion&amp;doi=10.1016%2Fj.inffus.2013.04.006&amp;volume=16&amp;pages=3-17&amp;publication_year=2014&amp;author=Wozniak%2CM&amp;author=Grana%2CM&amp;author=Corchado%2CE"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR147">Xiong H, Wu J, Liu L (2010) classification with classoverlapping: a systematic study. In: Proceedings of the 1st international conference on E-Business intelligence (ICEBI2010). Atlantis Press</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR148">Yan Y, Liu R, Ding Z, Du X, Chen J, Zhang Y (2019) A parameter-free cleaning method for smote in imbalanced classification. IEEE Access 7:23537–23548</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/ACCESS.2019.2899467" data-track-item_id="10.1109/ACCESS.2019.2899467" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FACCESS.2019.2899467" aria-label="Article reference 148" data-doi="10.1109/ACCESS.2019.2899467">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 148" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20parameter-free%20cleaning%20method%20for%20smote%20in%20imbalanced%20classification&amp;journal=IEEE%20Access&amp;doi=10.1109%2FACCESS.2019.2899467&amp;volume=7&amp;pages=23537-23548&amp;publication_year=2019&amp;author=Yan%2CY&amp;author=Liu%2CR&amp;author=Ding%2CZ&amp;author=Du%2CX&amp;author=Chen%2CJ&amp;author=Zhang%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR149">Yen SJ, Lee YS (2009) Cluster-based under-sampling approaches for imbalanced data distributions. Expert Syst Appl 36(3):5718–5727</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.eswa.2008.06.108" data-track-item_id="10.1016/j.eswa.2008.06.108" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.eswa.2008.06.108" aria-label="Article reference 149" data-doi="10.1016/j.eswa.2008.06.108">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 149" href="http://scholar.google.com/scholar_lookup?&amp;title=Cluster-based%20under-sampling%20approaches%20for%20imbalanced%20data%20distributions&amp;journal=Expert%20Syst%20Appl&amp;doi=10.1016%2Fj.eswa.2008.06.108&amp;volume=36&amp;issue=3&amp;pages=5718-5727&amp;publication_year=2009&amp;author=Yen%2CSJ&amp;author=Lee%2CYS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR150">Zhu C, Wang Z (2017) Entropy-based matrix learning machine for imbalanced data sets. Pattern Recogn Lett 88:72–80</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.patrec.2017.01.014" data-track-item_id="10.1016/j.patrec.2017.01.014" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.patrec.2017.01.014" aria-label="Article reference 150" data-doi="10.1016/j.patrec.2017.01.014">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 150" href="http://scholar.google.com/scholar_lookup?&amp;title=Entropy-based%20matrix%20learning%20machine%20for%20imbalanced%20data%20sets&amp;journal=Pattern%20Recogn%20Lett&amp;doi=10.1016%2Fj.patrec.2017.01.014&amp;volume=88&amp;pages=72-80&amp;publication_year=2017&amp;author=Zhu%2CC&amp;author=Wang%2CZ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR151">Zhu T, Lin Y, Liu Y (2017) Synthetic minority oversampling technique for multiclass imbalance problems. Pattern Recogn 72:327–340</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.patcog.2017.07.024" data-track-item_id="10.1016/j.patcog.2017.07.024" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.patcog.2017.07.024" aria-label="Article reference 151" data-doi="10.1016/j.patcog.2017.07.024">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 151" href="http://scholar.google.com/scholar_lookup?&amp;title=Synthetic%20minority%20oversampling%20technique%20for%20multiclass%20imbalance%20problems&amp;journal=Pattern%20Recogn&amp;doi=10.1016%2Fj.patcog.2017.07.024&amp;volume=72&amp;pages=327-340&amp;publication_year=2017&amp;author=Zhu%2CT&amp;author=Lin%2CY&amp;author=Liu%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR152">Zhu T, Lin Y, Liu Y (2020a) Improving interpolation-based oversampling for imbalanced data learning. Knowl-Based Syst 187:104826</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.knosys.2019.06.034" data-track-item_id="10.1016/j.knosys.2019.06.034" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.knosys.2019.06.034" aria-label="Article reference 152" data-doi="10.1016/j.knosys.2019.06.034">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 152" href="http://scholar.google.com/scholar_lookup?&amp;title=Improving%20interpolation-based%20oversampling%20for%20imbalanced%20data%20learning&amp;journal=Knowl-Based%20Syst&amp;doi=10.1016%2Fj.knosys.2019.06.034&amp;volume=187&amp;publication_year=2020&amp;author=Zhu%2CT&amp;author=Lin%2CY&amp;author=Liu%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR153">Zhu Y, Yan Y, Zhang Y, Zhang Y (2020b) Ehso: evolutionary hybrid sampling in overlapping scenarios for imbalanced learning. Neurocomputing 417:333–346</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.neucom.2020.08.060" data-track-item_id="10.1016/j.neucom.2020.08.060" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.neucom.2020.08.060" aria-label="Article reference 153" data-doi="10.1016/j.neucom.2020.08.060">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 153" href="http://scholar.google.com/scholar_lookup?&amp;title=Ehso%3A%20evolutionary%20hybrid%20sampling%20in%20overlapping%20scenarios%20for%20imbalanced%20learning&amp;journal=Neurocomputing&amp;doi=10.1016%2Fj.neucom.2020.08.060&amp;volume=417&amp;pages=333-346&amp;publication_year=2020&amp;author=Zhu%2CY&amp;author=Yan%2CY&amp;author=Zhang%2CY&amp;author=Zhang%2CY"> Google Scholar</a>  </p></li></ul><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s10462-022-10150-3?format=refman&amp;flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>This work is funded by national funds through the FCT-Foundation for Science and Technology, I.P., within the scope of the project CISUC-UID/CEC/00326/2020 and by European Social Fund, through the Regional Operational Program Centro 2020. This work is also partially supported by Andalusian frontier regional project A-TIC-434-UGR20 and by the Spanish Ministry of Science and Technology under project PID2020-119478GB-I00 including European Regional Development Funds. This work was also partially funded by the project Safe Cities-Inovação para Construir Cidades Seguras, with the reference POCI-01-0247-FEDER-041435, co-funded by the European Regional Development Fund (ERDF), through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under the PORTUGAL 2020 Partnership Agreement. The work is further supported by the FCT Research Grant SFRH/BD/138749/2018.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Department of Informatics Engineering, Centre for Informatics and Systems of the University of Coimbra, University of Coimbra, Coimbra, Portugal</p><p class="c-article-author-affiliation__authors-list">Miriam Seoane Santos &amp; Pedro Henriques Abreu</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Department of Computer Science, American University, Washington, DC, 20016, USA</p><p class="c-article-author-affiliation__authors-list">Nathalie Japkowicz</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain</p><p class="c-article-author-affiliation__authors-list">Alberto Fernández</p></li><li id="Aff4"><p class="c-article-author-affiliation__address">Fraunhofer Portugal AICOS and LIACC, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal</p><p class="c-article-author-affiliation__authors-list">Carlos Soares</p></li><li id="Aff5"><p class="c-article-author-affiliation__address">Institute of Computing Science, Poznan University of Technology, Poznan, Poland</p><p class="c-article-author-affiliation__authors-list">Szymon Wilk</p></li><li id="Aff6"><p class="c-article-author-affiliation__address">IPO-Porto Research Centre (CI-IPOP), Porto, Portugal</p><p class="c-article-author-affiliation__authors-list">João Santos</p></li><li id="Aff7"><p class="c-article-author-affiliation__address">Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal</p><p class="c-article-author-affiliation__authors-list">João Santos</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Miriam_Seoane-Santos-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Miriam Seoane Santos</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Miriam%20Seoane%20Santos" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Miriam%20Seoane%20Santos" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Miriam%20Seoane%20Santos%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Pedro_Henriques-Abreu-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Pedro Henriques Abreu</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Pedro%20Henriques%20Abreu" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Pedro%20Henriques%20Abreu" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Pedro%20Henriques%20Abreu%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Nathalie-Japkowicz-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Nathalie Japkowicz</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Nathalie%20Japkowicz" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Nathalie%20Japkowicz" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Nathalie%20Japkowicz%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Alberto-Fern_ndez-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Alberto Fernández</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Alberto%20Fern%C3%A1ndez" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Alberto%20Fern%C3%A1ndez" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Alberto%20Fern%C3%A1ndez%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Carlos-Soares-Aff4"><span class="c-article-authors-search__title u-h3 js-search-name">Carlos Soares</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Carlos%20Soares" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Carlos%20Soares" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Carlos%20Soares%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Szymon-Wilk-Aff5"><span class="c-article-authors-search__title u-h3 js-search-name">Szymon Wilk</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Szymon%20Wilk" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Szymon%20Wilk" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Szymon%20Wilk%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Jo_o-Santos-Aff6-Aff7"><span class="c-article-authors-search__title u-h3 js-search-name">João Santos</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Jo%C3%A3o%20Santos" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Jo%C3%A3o%20Santos" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Jo%C3%A3o%20Santos%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="contributions">Contributions</h3><p>MSS Conceptualisation, Methodology, Literature Search, Investigation, Formal Analysis, Writing—Original Draft, Writing—Review and Editing, Visualisation. PHA Conceptualisation, Validation, Writing—Review and Editing, Supervision. NJ Validation, Writing—Review and Editing. AF Validation, Writing—Review and Editing. CS Validation, Writing—Review and Editing. SW Validation, Writing—Review and Editing. JS Writing—Review and Editing.</p><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:miriams@dei.uc.pt">Miriam Seoane Santos</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar1">Conflict of interest</h3> <p>The authors declare that they have no conflict of interest.</p> <h3 class="c-article__sub-heading" id="FPar2">Code availability</h3> <p><a href="https://github.com/miriamspsantos/pycol">https://github.com/miriamspsantos/pycol</a>.</p> </div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><h3 class="c-article__sub-heading">Publisher's Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"><p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=On%20the%20joint-effect%20of%20class%20imbalance%20and%20overlap%3A%20a%20critical%20review&amp;author=Miriam%20Seoane%20Santos%20et%20al&amp;contentID=10.1007%2Fs10462-022-10150-3&amp;copyright=The%20Author%28s%29%2C%20under%20exclusive%20licence%20to%20Springer%20Nature%20B.V.&amp;publication=0269-2821&amp;publicationDate=2022-03-24&amp;publisherName=SpringerNature&amp;orderBeanReset=true">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1007/s10462-022-10150-3" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1007/s10462-022-10150-3" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Santos, M.S., Abreu, P.H., Japkowicz, N. <i>et al.</i> On the joint-effect of class imbalance and overlap: a critical review. <i>Artif Intell Rev</i> <b>55</b>, 6207–6275 (2022). https://doi.org/10.1007/s10462-022-10150-3</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s10462-022-10150-3?format=refman&amp;flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2022-03-24">24 March 2022</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Issue Date<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2022-12">December 2022</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1007/s10462-022-10150-3</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><h3 class="c-article__sub-heading">Keywords</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Class%20imbalance&amp;facet-discipline=&#34;Computer%20Science&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Class imbalance</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Class%20overlap&amp;facet-discipline=&#34;Computer%20Science&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Class overlap</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Data%20intrinsic%20characteristics&amp;facet-discipline=&#34;Computer%20Science&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Data intrinsic characteristics</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Class%20overlap%20complexity%20measures&amp;facet-discipline=&#34;Computer%20Science&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Class overlap complexity measures</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Class%20overlap-based%20approaches&amp;facet-discipline=&#34;Computer%20Science&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Class overlap-based approaches</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Class%20overlap%20representations&amp;facet-discipline=&#34;Computer%20Science&#34;" data-track="click" data-track-action="view keyword" data-track-label="link">Class overlap representations</a></span></li></ul><div data-component="article-info-list"></div></div></div></div></div></section> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div data-test="collections"> </div> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div data-test="access-article" class="app-article-access"> <h2 class="app-article-access__heading">Access this article</h2> <div class="u-ma-16 u-clear-both"> <a href="//wayf.springernature.com?redirect_uri&#x3D;https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10462-022-10150-3%3Ferror%3Dcookies_not_supported%26code%3Df0f2f7a0-2ee6-4664-810f-566decc5e373" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-track="click" data-track-action="institution access" data-track-label="button"> <span data-test="access-via-institution">Log in via an institution</span> <svg aria-hidden="true" focusable="false" width="24" height="24" class="u-icon"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg> </a> </div> <div data-test="buy-box-desktop" class="c-article-buy-box"> <div class="sprcom-buybox-articleDarwin" id="sprcom-buybox-articleDarwin"> <!-- rendered: 2024-11-27T03:49:06.344782 --><!-- Darwin version --> <div class="buying-option" data-test-id="buy-article-darwin"> <div> <div class="c-springer-plus"> <h2 class="springer-plus-heading">Subscribe and save</h2> <div class="springer-plus"> <div class="springer-plus-headline"> <div class="springer-plus-title"> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"> <use xlink:href="#icon-eds-i-check-filled-medium"></use> </svg><span>Springer+ Basic</span> </div> <div class="dd price-amount-springer-plus"> €32.70 /Month </div> </div> <ul class="buying-option-usps"> <li>Get 10 units per month</li> <li>Download Article/Chapter or eBook</li> <li>1 Unit = 1 Article or 1 Chapter</li> <li>Cancel anytime</li> </ul><a href="https://link.springer.com/product/springer-plus" id="btn-subscribe-springerPlus" class="u-button u-button--full-width u-button--secondary" data-track="click||click_springer_subscribe" data-track-context="buy box"><span>Subscribe now </span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a> </div> <h2 class="springer-plus-heading">Buy Now</h2> </div> <div class="buybox__buy"> <form action="https://order.springer.com/public/cart" method="post"> <input type="hidden" name="type" value="article"><input type="hidden" name="doi" value="10.1007/s10462-022-10150-3"><input type="hidden" name="isxn" value="1573-7462"><input type="hidden" name="contenttitle" value="On the joint-effect of class imbalance and overlap: a critical review"><input type="hidden" name="copyrightyear" value="2022"><input type="hidden" name="year" value="2022"><input type="hidden" name="authors" value="Miriam Seoane Santos, et al."><input type="hidden" name="title" value="Artificial Intelligence Review"><input type="hidden" name="mac" value="1b541af2ce9cff9267a2f4604f0e5b3d"> <div class="u-ma-16"> <button type="submit" class="u-button--small u-button u-button--secondary u-button--full-width" onclick="dataLayer.push({&quot;event&quot;:&quot;addToCart&quot;,&quot;ecommerce&quot;:{&quot;currencyCode&quot;:&quot;EUR&quot;,&quot;add&quot;:{&quot;products&quot;:[{&quot;name&quot;:&quot;On the joint-effect of class imbalance and overlap: a critical review&quot;,&quot;id&quot;:&quot;1573-7462&quot;,&quot;price&quot;:39.95,&quot;brand&quot;:&quot;Springer Netherlands&quot;,&quot;category&quot;:&quot;Artificial Intelligence&quot;,&quot;variant&quot;:&quot;ppv-article&quot;,&quot;quantity&quot;:1}]}}});"><span>Buy article PDF 39,95 €</span></button> </div> </form> <p class="c-notes__text c-notes__vat">Price includes VAT (Hong Kong/P.R.China)<br></p> <p class="c-notes__text c-notes__usp">Instant access to the full article PDF.</p> </div> </div> <script>dataLayer.push({"ecommerce":{"currency":"EUR","impressions":[{"name":"On the joint-effect of class imbalance and overlap: a critical review","id":"1573-7462","price":39.95,"brand":"Springer Netherlands","category":"Artificial Intelligence","variant":"ppv-article","quantity":1}]}});</script> <script style="display: none"> ;(function () { if (document.cookie.indexOf("feature-monetise-subscriptions-display-springer-plus") > -1) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } // springerPlus roll out 10% starts here var springerPlusGroup = setLocalStorageSpringerPlus(); var rollOutSpringerPlus = springerPlusGroup === "B" function setLocalStorageSpringerPlus() { var selectUserKey = "springerPlusRollOut"; var springerPlusGroup = "X"; if (!window.localStorage) return springerPlusGroup; try { var selectUserValue = window.localStorage.getItem(selectUserKey) springerPlusGroup = selectUserValue || randomDistributionSpringerPlus(selectUserKey) } catch (err) { console.log(err) } return springerPlusGroup; } function randomDistributionSpringerPlus(selectUserKey) { var randomGroup = Math.random() < 0.9 ? "A" : "B" window.localStorage.setItem(selectUserKey, randomGroup) return randomGroup } if (rollOutSpringerPlus) { revealSpringerPlus(); } function revealSpringerPlus() { var article = document.getElementById("sprcom-buybox-articleDarwin"); if(article) { document.querySelectorAll(".c-springer-plus").forEach(function(node) { node.style.display = "block" }) } } //springerPlus ends here })() </script> <style> .springer-plus .buying-option-usps > li::before { background-image: url("data:image/svg+xml,%3Csvg viewBox='0 0 100 100' xmlns='http://www.w3.org/2000/svg' fill='%230070A8'%3E%3Ccircle cx='50' cy='50' r='50'/%3E%3C/svg%3E"); } </style> </div> <article class="buybox__rent-article buybox__access-option u-sans-serif" id="deepdyve" style="display: none" data-test-id="journal-subscription"> <div class="c-box__body"> <div class="buybox__info"> <p>Rent this article via <a class="deepdyve-link" target="deepdyve" rel="nofollow" data-track="click" data-track-action="rent article" data-track-label="rent action, new buybox">DeepDyve</a> <svg focusable="false" role="img" aria-hidden="true" class="u-icon" style="vertical-align: middle"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-external-link-small"></use> </svg></p> </div> </div> <script> function deepDyveResponse(data) { if (data.status === 'ok') { [].slice.call(document.querySelectorAll('.buybox__rent-article')).forEach(function (article) { article.style.display = 'flex' var link = article.querySelector('.deepdyve-link') if (link) { link.setAttribute('href', data.url) } }) } } var script = document.createElement('script') script.src = '//www.deepdyve.com/rental-link?docId=10.1007/s10462-022-10150-3&journal=1573-7462&fieldName=journal_doi&affiliateId=springer&format=jsonp&callback=deepDyveResponse' document.body.appendChild(script) </script> </article> <div class="buybox__access-option buybox__institutional-subs-link u-sans-serif"> <p><a href="https://www.springernature.com/gp/librarians/licensing/agc/journals">Institutional subscriptions <svg aria-hidden="true" focusable="false" width="24" height="24" class="u-icon" style="vertical-align: middle"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </div> <style>.sprcom-buybox-articleDarwin .buybox__access-option{ border-top: 1px solid #cedbe0; font-size: 1rem; padding: 16px; } .sprcom-buybox-articleDarwin .c-springer-plus{ display: none; } .sprcom-buybox-articleDarwin .springer-plus{ background-color: #EBF6FF; font-family: 'Merriweather Sans', 'Helvetica Neue', Helvetica, Arial, sans-serif; padding: 16px; } .sprcom-buybox-articleDarwin .springer-plus-headline{ display: flex; justify-content: space-between; } .sprcom-buybox-articleDarwin .springer-plus-heading{ border-bottom: 1px solid #c5e0f4; border-top: 1px solid #c5e0f4; font-family: 'Merriweather Sans', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 1.125rem; font-weight: 700; margin: 0; padding: 16px; text-align: center; } .sprcom-buybox-articleDarwin .springer-plus-title{ align-items: center; display: flex; } .sprcom-buybox-articleDarwin .springer-plus-title span{ margin-left: 8px; } .sprcom-buybox-articleDarwin .springer-plus a{ background-color: #fff; border: 1px solid #025e8d; color: #025e8d; font-size: 16px; font-weight: 700; max-height: 44px; } .sprcom-buybox-articleDarwin .springer-plus a span{ margin-right: 8px; } .sprcom-buybox-articleDarwin .springer-plus a:hover{ background-color: #025e8d; border: 4px solid #025e8d; box-shadow: none; color: #fff; font-weight: 700; } .sprcom-buybox-articleDarwin .springer-plus a:visited{ color: #025e8d; } .sprcom-buybox-articleDarwin .springer-plus a:visited:hover{ color: #fff; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps{ color: #555; font-size: 1rem; line-height: 1.6; list-style: none; margin: 0; padding: 16px 0 24px 0; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps > li{ padding-left: 26px; position: relative; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps > li::before{ content: ''; height: 10px; left: 0; position: absolute; top: calc(0.8em - 5px); width: 10px; } .sprcom-buybox-articleDarwin .springer-plus .buying-option-usps > li:not(:first-child){ margin-top: 4px; } </style> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/10462/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s10462-022-10150-3;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">&copy; 2024 Springer Nature</p> </div> </div> </footer> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10