CINXE.COM
Search results for: N. M. Arifin
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: N. M. Arifin</title> <meta name="description" content="Search results for: N. M. Arifin"> <meta name="keywords" content="N. M. Arifin"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="N. M. Arifin" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="N. M. Arifin"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: N. M. Arifin</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bachok">N. Bachok</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20L.%20Aleng"> N. L. Aleng</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Arifin"> N. M. Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ishak"> A. Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Senu"> N. Senu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boundary%20layer" title="Boundary layer">Boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinking%20sheet" title=" shrinking sheet"> shrinking sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=Brownian%20motion" title=" Brownian motion"> Brownian motion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophoresis" title=" thermophoresis"> thermophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20solution" title=" similarity solution"> similarity solution</a> </p> <a href="https://publications.waset.org/abstracts/13057/flow-and-heat-transfer-of-a-nanofluid-over-a-shrinking-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Unsteady Stagnation-Point Flow towards a Shrinking Sheet with Radiation Effect </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Ali">F. M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nazar"> R. Nazar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Arifin"> N. M. Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Pop"> I. Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20effect" title=" radiation effect"> radiation effect</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinking%20sheet%20unsteady%20flow" title=" shrinking sheet unsteady flow"> shrinking sheet unsteady flow</a> </p> <a href="https://publications.waset.org/abstracts/8265/unsteady-stagnation-point-flow-towards-a-shrinking-sheet-with-radiation-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Synthesizing and Fabrication of Pani-(SnO₂, ZnO)/rGO by Sol-Gel Method to Develop a Biosensor Thin-Films on Top Glass Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Arifin">Mohammad Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20Abdullah"> Huda Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Norshafadzila%20Mohammad%20Naim"> Norshafadzila Mohammad Naim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fabricated PANI-(SnO₂, ZnO)/rGO nanocomposite thin films for the E. coli bacteria sensor were investigated. The nanocomposite thin films were prepared by the sol-gel method and deposited on the glass substrate using the spin-coating technique. The internal structure and surface morphology of the thin films have been analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The optical properties of the films were investigated by UV-Vis spectroscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The sensitivity performance was identified by measuring the changing conductivity before and after the incubation of E. coli bacteria using current-voltage (I-V) and cyclic voltammetry (C-V) measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PANI-%28SnO%E2%82%82" title="PANI-(SnO₂">PANI-(SnO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%29%2FrGO" title=" ZnO)/rGO"> ZnO)/rGO</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria%20sensor" title=" bacteria sensor"> bacteria sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/161113/synthesizing-and-fabrication-of-pani-sno2-znorgo-by-sol-gel-method-to-develop-a-biosensor-thin-films-on-top-glass-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Effect of Magnetic Field on Mixed Convection Boundary Layer Flow over an Exponentially Shrinking Vertical Sheet with Suction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20P.%20M.%20Isa">S. S. P. M. Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Arifin"> N. M. Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nazar"> R. Nazar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bachok"> N. Bachok</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Ali"> F. M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Pop"> I. Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical study has been presented to describe the boundary layer flow and heat transfer on an exponentially shrinking sheet with a variable wall temperature and suction, in the presence of magnetic field. The governing nonlinear partial differential equations are converted into ordinary differential equations by similarity transformation, which are then solved numerically using the shooting method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented through graphs and tables for several sets of values of the parameters. The effects of the governing parameters on the flow and heat transfer characteristics are thoroughly examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponentially%20shrinking%20sheet" title="exponentially shrinking sheet">exponentially shrinking sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=suction" title=" suction"> suction</a> </p> <a href="https://publications.waset.org/abstracts/13072/effect-of-magnetic-field-on-mixed-convection-boundary-layer-flow-over-an-exponentially-shrinking-vertical-sheet-with-suction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Forced Convection Boundary Layer Flow of a Casson Fluid over a Moving Permeable Flat Plate beneath a Uniform Free Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Arifin">N. M. Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20M.%20Isa"> S. P. M. Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nazar"> R. Nazar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bachok"> N. Bachok</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Ali"> F. M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Pop"> I. Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the steady forced convection boundary layer flow of a Casson fluid past a moving permeable semi-infinite flat plate beneath a uniform free stream is investigated. The mathematical problem reduces to a pair of noncoupled ordinary differential equations by similarity transformation, which is then solved numerically using the shooting method. Both the cases when the plate moves into or out of the origin are considered. Effects of the non-Newtonian (Casson) parameter, moving parameter, suction or injection parameter and Eckert number on the flow and heat transfer characteristics are thoroughly examined. Dual solutions are found to exist for each value of the governing parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title="forced convection">forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Casson%20fluids" title=" Casson fluids"> Casson fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20flat%20plate" title=" moving flat plate"> moving flat plate</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a> </p> <a href="https://publications.waset.org/abstracts/13001/forced-convection-boundary-layer-flow-of-a-casson-fluid-over-a-moving-permeable-flat-plate-beneath-a-uniform-free-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roslinda%20Nazar">Roslinda Nazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezad%20Hafidz%20Hafidzuddin"> Ezad Hafidz Hafidzuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Norihan%20M.%20Arifin"> Norihan M. Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioan%20Pop"> Ioan Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate, and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title="boundary layer">boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=exponentially%20stretching%2Fshrinking%20sheet" title=" exponentially stretching/shrinking sheet"> exponentially stretching/shrinking sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20slip" title=" generalized slip"> generalized slip</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solutions" title=" numerical solutions"> numerical solutions</a> </p> <a href="https://publications.waset.org/abstracts/28361/numerical-solutions-of-boundary-layer-flow-over-an-exponentially-stretchingshrinking-sheet-with-generalized-slip-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> The Effect of Mgo and Rubber Nanofillers on Electrical Treeing Characteristic of XLPE Based Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Amira%20nor%20Arifin">Nur Amira nor Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tashia%20Marie%20Anthony"> Tashia Marie Anthony</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ruzlin%20Mokhtar"> Mohd Ruzlin Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Huzainie%20Shafi%20Abd%20Halim"> Huzainie Shafi Abd Halim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cross-linked polyethylene (XLPE) material is being used as the cable insulation for the past decades due to its higher working temperature of 90 ˚C and some other advantages. However, the use of XLPE as an insulating material for underground distribution cables may have subjected to the unforeseeable weather and uncontrollable environmental condition. These unfavorable condition when combine with high electric field may lead to the initiation and growth of water tree in XLPE insulation. There are several studies on numerous nanofillers incorporate into polymer matrix to hinder the growth of tree propagation. Hence, in this study aims to investigate the effect of MgO and rubber nanofillers at different concentration on the electrical tree of XLPE. The nanofillers and XLPE were mixed and later extruded. After extrusion, the material were then fabricated into the desired shape for experimental purposes. The result shows that the electrical tree propagation of XLPE filled with optimize concentration of nanofillers were much slower compared to pure XLPE. In this paper, the effect of nanofillers towards electrical treeing characteristic will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20trees" title="electrical trees">electrical trees</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofillers" title=" nanofillers"> nanofillers</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposites" title=" polymer nanocomposites"> polymer nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=XLPE" title=" XLPE"> XLPE</a> </p> <a href="https://publications.waset.org/abstracts/128302/the-effect-of-mgo-and-rubber-nanofillers-on-electrical-treeing-characteristic-of-xlpe-based-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Identification of Paleogeomorphology at Kedulan Temple, Sleman, Yogyakarta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virgina%20Claudia%20Latengke">Virgina Claudia Latengke</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhaammad%20Nur%20Arifin"> Muhaammad Nur Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanny%20Septia%20Sundari"> Vanny Septia Sundari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kedulan Temple is located in Dusun Kedulan, Sleman, Yogyakarta, Indonesia at coordinates S 07o 44’ 57’, E 110o 28’ 17’. Kedulan Temple is a trace of the relics of life in the 3 century AD. The Kedulan Temple including exhumed landforms, which the primordial landform is first surface topography, then buried under cover mass and exposed or re-inscribed. Recognized by the existence of ancient soil (paleosoil) and ancient objects. Seen from the type of soil that closes the temple, there are 13 layers of lava type, so it is estimated that the lava that buried the temple came from 13 times the eruption of Mount Merapi. The material that buries the base of this temple is the pyroclastic surge deposits in 3 layers, each of which is limited by a thin layer of paleosol, the sediments are 1445+/-50 yBP, 1175+/-50 yBP, and 1060+/-40 yBP. This temple is buried and dug again at 940+/-100 yBP. Furthermore, the temple affected by earthquake, so the floor and foundation becomes bumpy and most of the temple stone are thrown. The temple is left alone, until exposed to hot clouds at 1285 M (740+/-50yBP). Next, repeatedly buried lava in 4 periods, in 1587 M (360+/-50 yBP, 240+/-50 yBP, 200+/-50 yBP and unknown date). From studying this temple, can be known paleogeomorphology process that occurred in Yogyakarta, especially related to the volcanic activity of Mount Merapi. Until now, the water is still flowing around the temple so there is a fluvial process that began to take a role in the temple. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kedulan%20temple" title="Kedulan temple">Kedulan temple</a>, <a href="https://publications.waset.org/abstracts/search?q=paleogeomorphology" title=" paleogeomorphology"> paleogeomorphology</a>, <a href="https://publications.waset.org/abstracts/search?q=buried" title=" buried"> buried</a>, <a href="https://publications.waset.org/abstracts/search?q=mount%20Merapi" title=" mount Merapi"> mount Merapi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogyakarta" title=" Yogyakarta"> Yogyakarta</a> </p> <a href="https://publications.waset.org/abstracts/83119/identification-of-paleogeomorphology-at-kedulan-temple-sleman-yogyakarta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Potential Micro Hydro at Irrigation Canal in the Gorontalo Province and Modeling Setling Basin for Reduction of Sedimentation Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arifin%20Matoka">Arifin Matoka</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadjamuddin%20Harun"> Nadjamuddin Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=Salama%20Manjang"> Salama Manjang</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Arsyad%20Thaha"> M. Arsyad Thaha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along irrigation canals in certain areas falling water level height is have potential for micro hydro power plant (MHP), which generally MHP potential valley away from society consumer of electricity and needed a long conductor cable, so that with the MHP Irrigation is ideal are typical with an Open Flume type turbines. This study is divided into two phases research phase of the potential power that exist in irrigation channels at the Gorontalo Province and stages solution sedimentation effects. The total power generated in the irrigation channel of the results of this study at 781.83 Kw, it is quite significant for the 1737 rural households on average consumes 450 watt per household. In the field of observation, sedimentation lifting effect on the quality of electric power, at which time the turbid sediment concentrations occur significant voltage fluctuations causing damage to some household electrical appliances such as electronic equipment and lighting. This problem is solution by modeling the sedimentation tub (setling basin) to reduce sedimentation thus olso can reduce the regulation load control equipment which can minimize the cost of investment and maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation%20canals" title="irrigation canals">irrigation canals</a>, <a href="https://publications.waset.org/abstracts/search?q=microhydro%20powerplant" title=" microhydro powerplant"> microhydro powerplant</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Gorontalo%20Province" title=" Gorontalo Province"> Gorontalo Province</a> </p> <a href="https://publications.waset.org/abstracts/26782/potential-micro-hydro-at-irrigation-canal-in-the-gorontalo-province-and-modeling-setling-basin-for-reduction-of-sedimentation-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">581</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Water Management in Rice Plants of Dry Season in the Rainfed Lowland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainal%20Arifin">Zainal Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saeri"> Mohammad Saeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to determine the efficiency of irrigation use on the growth and yield of two varieties of rice. Water management research on rainfed lowland rice was carried out in dry season (DS I) 2016 in an area of 10,000 m2 in Bunbarat Village, Rubaru Subdistrict, Sumenep Regency. The research was randomized block design factorial with 8 treatments and repeated 3 times, ie Factor I (varieties): (a) Inpago 9, and (b) Sidenuk; factor II (irrigation): (a) Alternate Wetting and Drying, (b) intermittent, (c) submerged, and (d) inundated. The results showed that dominant weed species such as purslane (Portulaca oleraceae L.) and barnyard grass (Echinochloa crusgalli) were mostly found in rice cultivation with Alternate Wetting and Drying, intermittent and submerged irrigation treatment, while the lowest was inundated irrigation. The use of Sidenuk variety with Alternate Wetting and Drying irrigation yielded 5.7 t/ha dry grain harvest (dgh) and was not significantly different from the inundated watering using the Sidenuk variety (6.2 t/ha dgh). With Alternate Wetting and Drying irrigation technique, water use is more efficient as much as 1,503 m3/ha so as to produce 1 kg of grain, it needs 459 liters of water compared to inundated irrigation (665 liters/kg of grain). Results of analysis of rice farming Sidenuk variety with Alternate Wetting and Drying irrigation has the highest B/C ratio (2.56) so that economically feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20management" title="water management">water management</a>, <a href="https://publications.waset.org/abstracts/search?q=varieties" title=" varieties"> varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20season" title=" dry season"> dry season</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfed%20lowland" title=" rainfed lowland"> rainfed lowland</a> </p> <a href="https://publications.waset.org/abstracts/90333/water-management-in-rice-plants-of-dry-season-in-the-rainfed-lowland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> The Determinant Factors of Technology Adoption for Improving Firm’s Performance; Toward a Conceptual Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainal%20Arifin">Zainal Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Avanti%20Fontana"> Avanti Fontana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering that TOE framework is the most useful instrument for studying technology adoption in firm context, this paper will analyze the influence of technological, organizational and environmental (TOE) factors to the Dynamic capabilities (DCs) associated with technology adoption strategy for improving the firm’s performance. Focusing on the determinant factors of technology adoption at the firm level, the study will contribute to the broader study of resource base view (RBV) and dynamic capability (DC). There is no study connecting directly the TOE factors to the DCs, this paper proposes technology adoption as a functional competence/capability which mediates a relationship between technology adoptions with firm’s performance. The study wants to show a conceptual model of the indirect effects of DCs at the firm level, which can be key predictors of firm performance in dynamic business environment. The results of this research is mostly relevant to top corporate executives (BOD) or top management team (TMT) who seek to provide some supporting ‘hardware’ content and condition such as technological factors, organizational factors, environmental factors, and to improve firm's ‘software ‘ ability such as adaptive capability, absorptive capability and innovative capability, in order to achieve a successful technology adoption in organization. There are also mediating factors which are elaborated at this paper; timing and external network. A further research for showing its empirical results is highly recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technology%20adoption" title="technology adoption">technology adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=TOE%20framework" title=" TOE framework"> TOE framework</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20capability" title=" dynamic capability"> dynamic capability</a>, <a href="https://publications.waset.org/abstracts/search?q=resources%20based%20view" title=" resources based view "> resources based view </a> </p> <a href="https://publications.waset.org/abstracts/31897/the-determinant-factors-of-technology-adoption-for-improving-firms-performance-toward-a-conceptual-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Stability Analysis of Stagnation-Point Flow past a Shrinking Sheet in a Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Noor">Amin Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Roslinda%20Nazar"> Roslinda Nazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Norihan%20Md.%20Arifin"> Norihan Md. Arifin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a numerical and theoretical study has been performed for the stagnation-point boundary layer flow and heat transfer towards a shrinking sheet in a nanofluid. The mathematical nanofluid model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Numerical results are obtained for the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction Φ, the shrinking parameter λ and the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It is found that solutions do not exist for larger shrinking rates and dual (upper and lower branch) solutions exist when λ < -1.0. A stability analysis has been performed to show which branch solutions are stable and physically realizable. It is also found that the upper branch solutions are stable while the lower branch solutions are unstable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinking%20sheet" title=" shrinking sheet"> shrinking sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation-point%20flow" title=" stagnation-point flow"> stagnation-point flow</a> </p> <a href="https://publications.waset.org/abstracts/13088/stability-analysis-of-stagnation-point-flow-past-a-shrinking-sheet-in-a-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Economic Analysis, Growth and Yield of Grafting Tomato Varieties for Solanum torvum as a Rootstock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evy%20Latifah">Evy Latifah</a>, <a href="https://publications.waset.org/abstracts/search?q=Eko%20Widaryanto"> Eko Widaryanto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Dawam%20Maghfoer"> M. Dawam Maghfoer</a>, <a href="https://publications.waset.org/abstracts/search?q=Arifin"> Arifin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomato (<em>Lycopersicon esculentum</em> Mill.) is potential vegetables to develop, because it has high economic value and has the potential to be exported. There is a decrease in tomato productivity due to unfavorable growth conditions such as bacterial wilt, fusarium wilt, high humidity, high temperature and inappropriate production technology. Grafting technology is one alternative technology. In addition to being able to control the disease in the soil, grafting is also able to increase the growth and yield of production. Besides, it is also necessary to know the economic benefits if using grafting technology. A promising eggplant rootstock for tomato grafting is <em>Solanum torvum</em>. <em>S. torvum</em> is selected as a rootstock with high compatibility. The purpose of this research is to know the effect of grafting several varieties of tomatoes with <em>Solanum torvum</em> as a rootstock. The experiment was conducted in Agricultural Extension Center Pare. Experimental Garden of Pare Kediri sub-district from July to early December 2016. The materials used were tomato Cervo varieties, Karina, Timoty, and <em>Solanum torvum</em>. Economic analysis, growth, and yield including plant height, number of leaves, percentage of disease and tomato production were used as performance measures. The study showed that grafting tomato Timoty scion with <em>Solanum torvum</em> as rootstock had higher production. Financially, grafting tomato Timoty and Cervo scion had higher profit about. 28,6% and 16,3% compared to Timoty and Cervo variety treatment without grafting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grafting%20technology" title="grafting technology">grafting technology</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20analysis" title=" economic analysis"> economic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20of%20tomato" title=" yield of tomato"> yield of tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=Solanum%20torvum" title=" Solanum torvum"> Solanum torvum</a> </p> <a href="https://publications.waset.org/abstracts/91687/economic-analysis-growth-and-yield-of-grafting-tomato-varieties-for-solanum-torvum-as-a-rootstock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Intercropping Sugarcane and Soybean in Lowland and Upland to Support Self Sufficiency of Soybean in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saeri">Mohammad Saeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainal%20Arifin"> Zainal Arifin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to obtain information on technical and social-economic feasibility of sugarcane-soybean. To achieve these objectives, soybeans intercropping study was conducted in sugar cane crops. This assessment was conducted in two locations with different agroecosystem,ie lowland of low plain in Mojokerto, East Java, with altitude of 50m above sea level and upland of medium plain in Malang, East Javawithaltitude of 500 m above the sea level. The design used was Split plot, with the main plots, is the soybean varieties, consisting of: (a) Anjasmoro, (b) Argomulyo, and (c) Dena-1, while the subplot is bio-fertilizer, consisting of : (1) Agrimeth, (2) Agrisoy, and (3) Biovarm. The variables observed were growth, yield and yield components and economic analysis. The yield of soybean in lowland reached 0.74 t/ha of seeds with farm profit of Indonesian Rupiah 359.200. This result is relatively low due to the delay of soybean cultivation from sugar cane soup time so that sugar cane cover soybean cultivation, while in upland obtained 0.92t/ha seeds with farm profit of Indonesian Rupiah 2,015,000. Therefore, it is suggested that soybeans are planted immediately after ratoon cane so that soybean growth can be optimal before the growth of sugarcane cover the soil surface. The yield of sugar cane in the lowland reached 124.5 tons with a profit of Indonesian Rupiah. 21,200,000,- while in upland obtained by sugarcane yield equal to 78,5 ton with profit equal to Indonesian Rupiah 8,900,000,-. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intercropping" title="intercropping">intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20cane" title=" sugar cane"> sugar cane</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=profit" title=" profit"> profit</a>, <a href="https://publications.waset.org/abstracts/search?q=farming" title=" farming"> farming</a> </p> <a href="https://publications.waset.org/abstracts/90591/intercropping-sugarcane-and-soybean-in-lowland-and-upland-to-support-self-sufficiency-of-soybean-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Planning for Brownfield Regeneration in Malaysia: An Integrated Approach in Creating Sustainable Ex-Landfill Redevelopment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazifah%20Simis">Mazifah Simis</a>, <a href="https://publications.waset.org/abstracts/search?q=Azahan%20Awang"> Azahan Awang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Arifin"> Kadir Arifin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The brownfield regeneration is being implemented in developped countries. However, as a group 1 developing country in the South East Asia, the rapid development and increasing number of urban population in Malaysia have urged the needs to incorporate the brownfield regeneration into its physical planning development. The increasing number of urban ex-landfills is seen as a new resource that could overcome the issues of inadequate urban green space provisions. With regards to the new development approach in urban planning, this perception study aims to identify the sustainable planning approach based on what the stakeholders have in mind. Respondents consist of 375 local communities within four urban ex-landfill areas and 61 landscape architect and town planner officers in the Malaysian Local Authorities. Three main objectives are set to be achieved, which are (i) to identify ex-landfill issues that need to be overcome prior to the ex-landfill redevelopment (ii) to identify the most suitable types of ex-landfill redevelopment, and (iii) to identify the priority function for ex-landfill redevelopment as the public parks. From the data gathered through the survey method, the order of priorities based on stakeholders' perception was produced. The results show different perception among the stakeholders, but they agreed to the development of the public park as the main development. Hence, this study attempts to produce an integrated approach as a model for sustainable ex-landfill redevelopment that could be accepted by the stakeholders as a beneficial future development that could change the image of 296 ex-landfills in Malaysia into the urban public parks by the year 2020. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brownfield%20regeneration" title="brownfield regeneration">brownfield regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=ex-landfill%20redevelopment" title=" ex-landfill redevelopment"> ex-landfill redevelopment</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20approach" title=" integrated approach"> integrated approach</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholders%27%20perception" title=" stakeholders' perception"> stakeholders' perception</a> </p> <a href="https://publications.waset.org/abstracts/24845/planning-for-brownfield-regeneration-in-malaysia-an-integrated-approach-in-creating-sustainable-ex-landfill-redevelopment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Effect of Media Osmolarity on Vi Biosynthesis on Salmonella enterica serovar Typhi Strain C6524 Cultured on Batch System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dwi%20Arisandi%20Wijaya">Dwi Arisandi Wijaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernawati%20Arifin%20Giri-Rachman"> Ernawati Arifin Giri-Rachman</a>, <a href="https://publications.waset.org/abstracts/search?q=Neni%20Nurainy"> Neni Nurainy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Typhoid fever disease can be prevented by using a polysaccharide-based vaccine Vi which is a virulence factor of S.typhi. To produce high yield Vi polysaccharide from bacteria, it is important to know the biosynthesis of Vi polysaccharide and the regulators involved. In the In vivo condition, S. typhi faces different osmolarity, and the bacterial two-component system OmpR-EnvZ, regulate by up and down Capsular Vi polysaccharide biosynthesis. A high yielded Vi Polysaccharide strain, S. typhi strain C6524 used to study the effect of media osmolarity on Vi polysaccharide biosynthesis and the osmoregulation pattern of S. typhi strain C6524. The methods were performed by grown S. typhi strain C6524 grown on medium with 50 mM, 100 mM, and 150 mM osmolarity with the batch system. Vi polysaccharide concentration was measured by ELISA method. For further investigation of the osmoregulation pattern of strain C6524, the osmoregulator gene, OmpR, has been isolated and sequenced using the specific primer of the OmpR gene. Nucleotide sequence analysis is done with BLAST and Lallign. Amino Acid sequence analysis is done with Prosite and Multiple Sequence Alignment. The results of cultivation showed the average content of polysaccharide Vi for 50 mM, 100 mM, and 150 mM osmolarities 11.49 μg/mL, 12.06 μg/mL, and 14.53 μg/mL respectively. Analysis using Anova stated that the osmolarity treatment of 150 mM significantly affects Vi content. Analysis of nucleotide sequences shows 100% identity between S. typhi strain C6524 and Ty2. Analysis of amino acid sequences shows that the OmpR response regulator protein of the C6524 strain also has a α4-β5-α5 motif which is important for the regulatory activation system when phosphorylation occurs by domain kinase. This indicates that the regulator osmolarity response of S. typhi strain C6524 has no difference with the response regulator owned by S. typhi strain Ty2. A high Vi response rate in the 150 mM osmolarity treatment requires further research for RcsB-RcsC, another two-component system involved in Vi Biosynthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osmoregulator" title="osmoregulator">osmoregulator</a>, <a href="https://publications.waset.org/abstracts/search?q=OmpR" title=" OmpR"> OmpR</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella" title=" Salmonella"> Salmonella</a>, <a href="https://publications.waset.org/abstracts/search?q=Vi%20polysaccharide" title=" Vi polysaccharide"> Vi polysaccharide</a> </p> <a href="https://publications.waset.org/abstracts/91048/effect-of-media-osmolarity-on-vi-biosynthesis-on-salmonella-enterica-serovar-typhi-strain-c6524-cultured-on-batch-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Thermoelectric Cooler As A Heat Transfer Device For Thermal Conductivity Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Murad%20Zainal%20Abidin">Abdul Murad Zainal Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Azahar%20Mohd"> Azahar Mohd</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Idayu%20Arifin"> Nor Idayu Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nor%20Azila%20Khalid"> Siti Nor Azila Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Julzaha%20Zahari%20Mohamad%20Yusof"> Mohd Julzaha Zahari Mohamad Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A thermoelectric cooler (TEC) is an electronic component that uses ‘peltier’ effect to create a temperature difference by transferring heat between two electrical junctions of two different types of materials. TEC can also be used for heating by reversing the electric current flow and even power generation. A heat flow meter (HFM) is an equipment for measuring thermal conductivity of building materials. During the test, water is used as heat transfer medium to cool the HFM. The existing re-circulating cooler in the market is very costly, and the alternative is to use piped tap water to extract heat from HFM. However, the tap water temperature is insufficiently low to enable heat transfer to take place. The operating temperature for isothermal plates in the HFM is 40°C with the range of ±0.02°C. When the temperature exceeds the operating range, the HFM stops working, and the test cannot be conducted. The aim of the research is to develop a low-cost but energy-efficient TEC prototype that enables heat transfer without compromising the function of the HFM. The objectives of the research are a) to identify potential of TEC as a cooling device by evaluating its cooling rate and b) to determine the amount of water savings using TEC compared to normal tap water. Four (4) peltier sets were used, with two (2) sets used as pre-cooler. The cooling water is re-circulated from the reservoir into HFM using a water pump. The thermal conductivity readings, the water flow rate, and the power consumption were measured while the HFM was operating. The measured data has shown decrease in average cooling temperature difference (ΔTave) of 2.42°C and average cooling rate of 0.031°C/min. The water savings accrued from using the TEC is projected to be 8,332.8 litres/year with the application of water re-circulation. The results suggest the prototype has achieved required objectives. Further research will include comparing the cooling rate of TEC prototype against conventional tap water and to optimize its design and performance in terms of size and portability. The possible application of the prototype could also be expanded to portable storage for medicine and beverages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20cooling" title=" thermoelectric cooling"> thermoelectric cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-cooling%20device" title=" pre-cooling device"> pre-cooling device</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flow%20meter" title=" heat flow meter"> heat flow meter</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20technology" title=" sustainable technology"> sustainable technology</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/144569/thermoelectric-cooler-as-a-heat-transfer-device-for-thermal-conductivity-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Analysis of Social Factors for Achieving Social Resilience in Communities of Indonesia Special Economic Zone as a Strategy for Developing Program Management Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inda%20Annisa%20Fauzani">Inda Annisa Fauzani</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahayu%20Setyawati%20Arifin"> Rahayu Setyawati Arifin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of Special Economic Zones in Indonesia cannot be separated from the development of the communities in them. In accordance with the SEZ's objectives as a driver of economic growth, the focus of SEZ development does not only prioritize investment receipts and infrastructure development. The community as one of the stakeholders must also be considered. This becomes a challenge when the development of an SEZ has the potential to have an impact on the community in it. These impacts occur due to changes in the development of the area in the form of changes in the main regional industries and changes in the main livelihoods of the community. As a result, people can feel threats and disturbances. The community as the object of development is required to be able to have resilience in order to achieve a synergy between regional development and community development. A lack of resilience in the community can eliminate the ability to recover from disturbances and difficulty to adapt to changes that occur in their area. Social resilience is the ability of the community to be able to recover from disturbances and changes that occur. The achievement of social resilience occurs when the community gradually has the capacity in the form of coping capacity, adaptive capacity, and transformative capacity. It is hoped that when social resilience is achieved, the community will be able to develop linearly with regional development so that the benefits of this development can have a positive impact on these communities. This study aims to identify and analyze social factors that influence the achievement of social resilience in the community in Special Economic Zones in Indonesia and develop a program framework for achieving social resilience capacity in the community so that it can be used as a strategy to support the successful development of Special Economic Zones in Indonesia that provide benefits to the local community. This study uses a quantitative research method approach. Questionnaires are used as research instruments which are distributed to predetermined respondents. Respondents in this study were determined by using purposive sampling of the people living in areas that were developed into Special Economic Zones. Respondents were given a questionnaire containing questions about the influence of social factors on the achievement of social resilience. As x variables, 42 social factors are provided, while social resilience is used as y variables. The data collected from the respondents is analyzed in SPSS using Spearman Correlation to determine the relation between x and y variables. The correlated factors are then used as the basis for the preparation of programs to increase social resilience capacity in the community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20development" title="community development">community development</a>, <a href="https://publications.waset.org/abstracts/search?q=program%20management" title=" program management"> program management</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20factor" title=" social factor"> social factor</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20resilience" title=" social resilience"> social resilience</a> </p> <a href="https://publications.waset.org/abstracts/150249/analysis-of-social-factors-for-achieving-social-resilience-in-communities-of-indonesia-special-economic-zone-as-a-strategy-for-developing-program-management-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Enhanced Stability of Piezoelectric Crystalline Phase of Poly(Vinylidene Fluoride) (PVDF) and Its Copolymer upon Epitaxial Relationships</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devi%20Eka%20Septiyani%20Arifin">Devi Eka Septiyani Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jrjeng%20Ruan"> Jrjeng Ruan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As an approach to manipulate the performance of polymer thin film, epitaxy crystallization within polymer blends of poly(vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) was studied in this research, which involves the competition between phase separation and crystal growth of constitutive semicrystalline polymers. The unique piezoelectric feature of poly(vinylidene fluoride) crystalline phase is derived from the packing of molecular chains in all-trans conformation, which spatially arranges all the substituted fluorene atoms on one side of the molecular chain and hydrogen atoms on the other side. Therefore, the net dipole moment is induced across the lateral packing of molecular chains. Nevertheless, due to the mutual repulsion among fluorene atoms, this all-trans molecular conformation is not stable, and ready to change above curie temperature, where thermal energy is sufficient to cause segmental rotation. This research attempts to explore whether the epitaxial interactions between piezoelectric crystals and crystal lattice of hexamethylbenzene (HMB) crystalline platelet is able to stabilize this metastable all-trans molecular conformation or not. As an aromatic crystalline compound, the melt of HMB was surprisingly found able to dissolve the poly(vinylidene fluoride), resulting in homogeneous eutectic solution. Thus, after quenching this binary eutectic mixture to room temperature, subsequent heating or annealing processes were designed to explore the involve phase separation and crystallization behavior. The phase transition behaviors were observed in-situ by X-ray diffraction and differential scanning calorimetry (DSC). The molecular packing was observed via transmission electron microscope (TEM) and the principles of electron diffraction were brought to study the internal crystal structure epitaxially developed within thin films. Obtained results clearly indicated the occurrence of heteroepitaxy of PVDF/PVDF-TrFE on HMB crystalline platelet. Both the concentration of poly(vinylidene fluoride) and the mixing ratios of these two constitutive polymers have been adopted as the influential factors for studying the competition between the epitaxial crystallization of PVDF and P(VDF-TrFE) on HMB crystalline. Furthermore, the involved epitaxial relationship is to be deciphered and studied as a potential factor capable of guiding the wide spread of piezoelectric crystalline form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epitaxy" title="epitaxy">epitaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20platelet" title=" crystalline platelet"> crystalline platelet</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20and%20mixing%20ratio" title=" thin film and mixing ratio"> thin film and mixing ratio</a> </p> <a href="https://publications.waset.org/abstracts/46158/enhanced-stability-of-piezoelectric-crystalline-phase-of-polyvinylidene-fluoride-pvdf-and-its-copolymer-upon-epitaxial-relationships" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>