CINXE.COM

Sandbox in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Sandbox in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } </style> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li &gt; p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*=&quot;http://arxiv.org/&quot;] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*=&quot;http://golem.ph.utexas.edu/category&quot;] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=&quot;.pdf&quot;] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=&quot;.pdf#&quot;] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^=&quot;http://&quot;] { border: 0px; color: #003399; } a[href^=&quot;http://&quot;]:visited { border: 0px; color: #330066; } a[href^=&quot;https://&quot;] { border: 0px; color: #003399; } a[href^=&quot;https://&quot;]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: &quot;A(Hover to reveal, click to &quot;hold&quot;)&quot;; font-size: 60%; } div.clickDown .clickToHide:after { content: &quot;A(Click to hide)&quot;; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- function updateSize(elt, w, h) { // adjust to the size of the user's browser area. // w and h are the original, unadjusted, width and height per row/column var parentheight = document.viewport.getHeight(); var parentwidth = $('Container').getWidth(); elt.writeAttribute({'cols': Math.floor(parentwidth/w) - 1, 'rows': Math.floor(parentheight/h) - 2 }); elt.setStyle({Width: parentwidth, Height: parentheight}); } function resizeableTextarea() { //make the textarea resize to fit available space $$('textarea#content').each( function(textarea) { var w = textarea.getWidth()/textarea.getAttribute('cols'); var h = textarea.getStyle('lineHeight').replace(/(\d*)px/, "$1"); Event.observe(window, 'resize', function(){ updateSize(textarea, w, h) }); updateSize(textarea, w, h); Form.Element.focus(textarea); }); } window.onload = function (){ resizeableTextarea(); } //--><!]]> </script> </head> <body> <div id="Container"> <textarea id='content' readonly=' readonly' rows='24' cols='60' > ### Mix, isomix and compact linearly distributive categories There are a series of structural steps by which linearly distributive categories collapses to a monoidal categories as shown in the picture below. \begin{center} \begin{imagefromfile} &quot;file_name&quot;: &quot;LDC_schematic.jpg&quot;, &quot;width&quot;: 600, &quot;unit&quot;: &quot;px&quot; \end{imagefromfile} \end{center} A **mix category** is an LDC with a **mix map** ${ m}:\bot\to\top$, and a such that: 1) The following diagram commutes \begin{tikzcd} {A \otimes B} &amp; {A \otimes(\bot \oplus B)} &amp; {(A \otimes \bot) \oplus B} \\ {(A \oplus \bot) \otimes B} &amp;&amp; {(A \otimes \top) \oplus B} \\ {A \oplus ( \bot \otimes B)} &amp; {A \oplus ( \top \otimes B)} &amp; {A \oplus B} \arrow[&quot;\simeq&quot;, from=1-1, to=1-2] \arrow[&quot;\simeq&quot;&#39;, from=1-1, to=2-1] \arrow[&quot;{{mx} := }&quot;{description}, dashed, from=1-1, to=3-3] \arrow[&quot;{\delta^L}&quot;, from=1-2, to=1-3] \arrow[&quot;{A \otimes {m} \oplus B}&quot;, from=1-3, to=2-3] \arrow[&quot;{\delta^R}&quot;&#39;, from=2-1, to=3-1] \arrow[&quot;\simeq&quot;, from=2-3, to=3-3] \arrow[&quot;{A \oplus {m} \otimes B}&quot;&#39;, from=3-1, to=3-2] \arrow[&quot;\simeq&quot;&#39;, from=3-2, to=3-3] \end{tikzcd} 2) The map, $\mx_{A,B}: A \otimes B \to A \oplus B$, called the mixor is natural in both the arguments. An **isomix category** is a mix category in which the mix map is a natural isomorphism, $m: \bot \simeq \top$. In an isomix category, the mixor is automatically a natural transformation. The mix map being an isomorphism does not imply that the mixor is a natural isomorphism. An isomix category in which the mixor is a natural isomorphism is a compact LDC. The term &quot;compact&quot; here refers to the fact that both the monoidal structures are isomorphic. All compact LDCs are linearly equivalent to the underlying monoidal categories on the tensor $\otimes$ and the par $\oplus$. </textarea> </div> <!-- Container --> </body> </html>