CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 433 results for author: <span class="mathjax">Wu, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Wu%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wu, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wu%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wu, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13331">arXiv:2411.13331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13331">pdf</a>, <a href="https://arxiv.org/format/2411.13331">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Versatile photonic frequency synthetic dimensions using a single Mach-Zehnder-interferometer-assisted device on thin-film lithium niobate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhao-An Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+X">Xiao-Dong Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yi-Tao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+J">Jia-Ming Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ao%2C+C">Chun Ao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zhi-Peng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+N">Nai-Jie Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+L">Lin-Ke Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J">Jun-You Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+Y">Yu-Hang Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Ya-Qi Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+S">Shuang Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+J">Jian-Shun Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13331v1-abstract-short" style="display: inline;"> Investigating physical models with photonic synthetic dimensions has been generating great interest in vast fields of science. The rapid developing thin-film lithium niobate (TFLN) platform, for its numerous advantages including high electro-optic coefficient and scalability, is well compatible with the realization of synthetic dimensions in the frequency together with spatial domain. While coupli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13331v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13331v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13331v1-abstract-full" style="display: none;"> Investigating physical models with photonic synthetic dimensions has been generating great interest in vast fields of science. The rapid developing thin-film lithium niobate (TFLN) platform, for its numerous advantages including high electro-optic coefficient and scalability, is well compatible with the realization of synthetic dimensions in the frequency together with spatial domain. While coupling resonators with fixed beam splitters is a common experimental approach, it often lacks tunability and limits coupling between adjacent lattices to sites occupying the same frequency domain positions. Here, on the contrary, we conceive the resonator arrays connected by electro-optic tunable Mach-Zehnder interferometers in our configuration instead of fixed beam splitters. By applying bias voltage and RF modulation on the interferometers, our design extends such coupling to long-range scenario and allows for continuous tuning on each coupling strength and synthetic effective magnetic flux. Therefore, our design enriches controllable coupling types that are essential for building programmable lattice networks and significantly increases versatility. As the example, we experimentally fabricate a two-resonator prototype on the TFLN platform, and on this single chip we realize well-known models including tight-binding lattices, topological Hall ladder and Creutz ladder. We directly observe the band structures in the quasi-momentum space and important phenomena such as spin-momentum locking and the Aharonov-Bohm cage effect. These results demonstrate the potential for convenient simulations of more complex models in our configuration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13331v1-abstract-full').style.display = 'none'; document.getElementById('2411.13331v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11294">arXiv:2411.11294</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11294">pdf</a>, <a href="https://arxiv.org/format/2411.11294">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Frontiers in High Energy Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Fang%2C+Y">Yaquan Fang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+C">Christina Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Ying-Ying Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shu%2C+J">Jing Shu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yusheng Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xing%2C+H">Hongxi Xing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+B">Bin Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+L">Lailin Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+C">Chen Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11294v1-abstract-short" style="display: inline;"> Numerous challenges persist in High Energy Physics (HEP), the addressing of which requires advancements in detection technology, computational methods, data analysis frameworks, and phenomenological designs. We provide a concise yet comprehensive overview of recent progress across these areas, in line with advances in quantum technology. We will discuss the potential of quantum devices in detectin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11294v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11294v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11294v1-abstract-full" style="display: none;"> Numerous challenges persist in High Energy Physics (HEP), the addressing of which requires advancements in detection technology, computational methods, data analysis frameworks, and phenomenological designs. We provide a concise yet comprehensive overview of recent progress across these areas, in line with advances in quantum technology. We will discuss the potential of quantum devices in detecting subtle effects indicative of new physics beyond the Standard Model, the transformative role of quantum algorithms and large-scale quantum computers in studying real-time non-perturbative dynamics in the early universe and at colliders, as well as in analyzing complex HEP data. Additionally, we emphasize the importance of integrating quantum properties into HEP experiments to test quantum mechanics at unprecedented high-energy scales and search for hints of new physics. Looking ahead, the continued integration of resources to fully harness these evolving technologies will enhance our efforts to deepen our understanding of the fundamental laws of nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11294v1-abstract-full').style.display = 'none'; document.getElementById('2411.11294v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> USTC-ICTS/PCFT-24-47 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06794">arXiv:2411.06794</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06794">pdf</a>, <a href="https://arxiv.org/format/2411.06794">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Emergence of steady quantum transport in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+X">Xiansong Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+C">Chu Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06794v1-abstract-short" style="display: inline;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal foot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06794v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06794v1-abstract-full" style="display: none;"> Non-equilibrium quantum transport is crucial to technological advances ranging from nanoelectronics to thermal management. In essence, it deals with the coherent transfer of energy and (quasi-)particles through quantum channels between thermodynamic baths. A complete understanding of quantum transport thus requires the ability to simulate and probe macroscopic and microscopic physics on equal footing. Using a superconducting quantum processor, we demonstrate the emergence of non-equilibrium steady quantum transport by emulating the baths with qubit ladders and realising steady particle currents between the baths. We experimentally show that the currents are independent of the microscopic details of bath initialisation, and their temporal fluctuations decrease rapidly with the size of the baths, emulating those predicted by thermodynamic baths. The above characteristics are experimental evidence of pure-state statistical mechanics and prethermalisation in non-equilibrium many-body quantum systems. Furthermore, by utilising precise controls and measurements with single-site resolution, we demonstrate the capability to tune steady currents by manipulating the macroscopic properties of the baths, including filling and spectral properties. Our investigation paves the way for a new generation of experimental exploration of non-equilibrium quantum transport in strongly correlated quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06794v1-abstract-full').style.display = 'none'; document.getElementById('2411.06794v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06759">arXiv:2411.06759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06759">pdf</a>, <a href="https://arxiv.org/format/2411.06759">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Homotopy Analysis Method with Secondary Linearization for Nonlinear Partial Differential Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+C">Cheng Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+X">Xiao-Fan Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+X">Xi-Ning Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+T">Tai-Ping Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yun-Jie Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+M">Ming-Yang Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+C">Chuang-Chao Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Huan-Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yu-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06759v1-abstract-short" style="display: inline;"> Nonlinear partial differential equations (PDEs) are crucial for modeling complex fluid dynamics and are foundational to many computational fluid dynamics (CFD) applications. However, solving these nonlinear PDEs is challenging due to the vast computational resources they demand, highlighting the pressing need for more efficient computational methods. Quantum computing offers a promising but techni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06759v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06759v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06759v1-abstract-full" style="display: none;"> Nonlinear partial differential equations (PDEs) are crucial for modeling complex fluid dynamics and are foundational to many computational fluid dynamics (CFD) applications. However, solving these nonlinear PDEs is challenging due to the vast computational resources they demand, highlighting the pressing need for more efficient computational methods. Quantum computing offers a promising but technically challenging approach to solving nonlinear PDEs. Recently, Liao proposed a framework that leverages quantum computing to accelerate the solution of nonlinear PDEs based on the homotopy analysis method (HAM), a semi-analytical technique that transforms nonlinear PDEs into a series of linear PDEs. However, the no-cloning theorem in quantum computing poses a major limitation, where directly applying quantum simulation to each HAM step results in exponential complexity growth with the HAM truncation order. This study introduces a &#34;secondary linearization&#34; approach that maps the whole HAM process into a system of linear PDEs, allowing for a one-time solution using established quantum PDE solvers. Our method preserves the exponential speedup of quantum linear PDE solvers while ensuring that computational complexity increases only polynomially with the HAM truncation order. We demonstrate the efficacy of our approach by applying it to the Burgers&#39; equation and the Korteweg-de Vries (KdV) equation. Our approach provides a novel pathway for transforming nonlinear PDEs into linear PDEs, with potential applications to fluid dynamics. This work thus lays the foundation for developing quantum algorithms capable of solving the Navier-Stokes equations, ultimately offering a promising route to accelerate their solutions using quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06759v1-abstract-full').style.display = 'none'; document.getElementById('2411.06759v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05283">arXiv:2411.05283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05283">pdf</a>, <a href="https://arxiv.org/format/2411.05283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> QSRA: A QPU Scheduling and Resource Allocation Approach for Cloud-Based Quantum Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+B">Binhan Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zhaoyun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yuchun Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05283v1-abstract-short" style="display: inline;"> Quantum cloud platforms, which rely on Noisy Intermediate-Scale Quantum (NISQ) devices, face significant challenges in efficiently managing quantum programs. This paper proposes a QPU Scheduling and Resource Allocation (QSRA) approach to address these challenges. QSRA enhances qubit utilization and reduces turnaround time by adapting CPU scheduling techniques to Quantum Processing Units (QPUs). It&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05283v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05283v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05283v1-abstract-full" style="display: none;"> Quantum cloud platforms, which rely on Noisy Intermediate-Scale Quantum (NISQ) devices, face significant challenges in efficiently managing quantum programs. This paper proposes a QPU Scheduling and Resource Allocation (QSRA) approach to address these challenges. QSRA enhances qubit utilization and reduces turnaround time by adapting CPU scheduling techniques to Quantum Processing Units (QPUs). It incorporates a subroutine for qubit allocation that takes into account qubit quality and connectivity, while also merging multiple quantum programs to further optimize qubit usage. Our evaluation of QSRA against existing methods demonstrates its effectiveness in improving both qubit utilization and turnaround time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05283v1-abstract-full').style.display = 'none'; document.getElementById('2411.05283v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04558">arXiv:2411.04558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04558">pdf</a>, <a href="https://arxiv.org/format/2411.04558">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Experimental Secure Multiparty Computation from Quantum Oblivious Transfer with Bit Commitment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+K">Kai-Yi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+A">An-Jing Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tu%2C+K">Kun Tu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+M">Ming-Han Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qi%2C+W">Wei Qi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Ya-Dong Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yu%2C+Y">Yu Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04558v1-abstract-short" style="display: inline;"> Secure multiparty computation enables collaborative computations across multiple users while preserving individual privacy, which has a wide range of applications in finance, machine learning and healthcare. Secure multiparty computation can be realized using oblivious transfer as a primitive function. In this paper, we present an experimental implementation of a quantum-secure quantum oblivious t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04558v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04558v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04558v1-abstract-full" style="display: none;"> Secure multiparty computation enables collaborative computations across multiple users while preserving individual privacy, which has a wide range of applications in finance, machine learning and healthcare. Secure multiparty computation can be realized using oblivious transfer as a primitive function. In this paper, we present an experimental implementation of a quantum-secure quantum oblivious transfer (QOT) protocol using an adapted quantum key distribution system combined with a bit commitment scheme, surpassing previous approaches only secure in the noisy storage model. We demonstrate the first practical application of the QOT protocol by solving the private set intersection, a prime example of secure multiparty computation, where two parties aim to find common elements in their datasets without revealing any other information. In our experiments, two banks can identify common suspicious accounts without disclosing any other data. This not only proves the experimental functionality of QOT, but also showcases its real-world commercial applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04558v1-abstract-full').style.display = 'none'; document.getElementById('2411.04558v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23674">arXiv:2410.23674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23674">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Atom-light-correlated quantum interferometer with memory-induced phase comb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+W">Wenfeng Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+X">Xinyun Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+J">Jie Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Z">Zeliang Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+K">Keye Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+C">Chun-Hua Yuan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yuan Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Fan%2C+B">Bixuan Fan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+W">Weiping Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+L">Liqing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23674v1-abstract-short" style="display: inline;"> Precise phase measurements by interferometers are crucial in science for detecting subtle changes, such as gravitational waves. However, phase sensitivity is typically limited by the standard quantum limit (SQL) with uncorrelated particles N. This limit can be surpassed using quantum correlations, but achieving high-quality correlations in large systems is challenging. Here, we propose and demonst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23674v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23674v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23674v1-abstract-full" style="display: none;"> Precise phase measurements by interferometers are crucial in science for detecting subtle changes, such as gravitational waves. However, phase sensitivity is typically limited by the standard quantum limit (SQL) with uncorrelated particles N. This limit can be surpassed using quantum correlations, but achieving high-quality correlations in large systems is challenging. Here, we propose and demonstrate an atom-light hybrid quantum interferometry whose sensitivity is enhanced beyond the SQL with atom-light quantum correlation and newly developed phase comb superposition via atomic-memory-assisted multiple quantum amplification. Finally, a phase sensitivity beyond the SQL of up to $8.3\pm 0.2$ dB is achieved, especially at $N=4 \times10^{13}/s$, resulting in both atomic and optical phase sensitivities of $6\times10^{-8} rad/\sqrt{Hz}$. This technique can advance sensitive quantum measurements in various fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23674v1-abstract-full').style.display = 'none'; document.getElementById('2410.23674v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20841">arXiv:2410.20841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20841">pdf</a>, <a href="https://arxiv.org/format/2410.20841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Computational Insurance and Actuarial Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Huan-Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+X">Xi-Ning Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+C">Chao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dou%2C+M">Meng-Han Dou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+C">Cheng Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yu-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20841v1-abstract-short" style="display: inline;"> In recent years, quantum computation has been rapidly advancing, driving a technological revolution with significant potential across various sectors, particularly in finance. Despite this, the insurance industry, an essential tool for mitigating unforeseen risks and losses, has received limited attention. This paper provides an initial exploration into the realm of quantum computational insurance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20841v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20841v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20841v1-abstract-full" style="display: none;"> In recent years, quantum computation has been rapidly advancing, driving a technological revolution with significant potential across various sectors, particularly in finance. Despite this, the insurance industry, an essential tool for mitigating unforeseen risks and losses, has received limited attention. This paper provides an initial exploration into the realm of quantum computational insurance and actuarial science. After introducing key insurance models and challenges, we examine quantum algorithms designed to address complex insurance issues. Our study includes experimental and numerical demonstrations of quantum applications in non-life insurance, life insurance, and reinsurance. Additionally, we explore the timeline for quantum insurance, the development of quantum-enhanced insurance products, and the challenges posed by quantum computational advancements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20841v1-abstract-full').style.display = 'none'; document.getElementById('2410.20841v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19554">arXiv:2410.19554</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19554">pdf</a>, <a href="https://arxiv.org/format/2410.19554">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.023307">10.1103/PhysRevA.109.023307 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological bosonic Bogoliubov excitations with sublattice symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+L">Ling-Xia Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wan%2C+L">Liang-Liang Wan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Si%2C+L">Liu-Gang Si</a>, <a href="/search/quant-ph?searchtype=author&amp;query=L%C3%BC%2C+X">Xin-You L眉</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Ying Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19554v1-abstract-short" style="display: inline;"> Here we investigate the internal sublattice symmetry, and thus the enriched topological classification of bosonic Bogoliubov excitations of thermodynamically stable free-boson systems with non-vanishing particle-number-nonconserving terms. Specifically, we show that such systems well described by the bosonic Bogoliubov-de Gennes Hamiltonian can be in general reduced to particle-number-conserving (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19554v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19554v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19554v1-abstract-full" style="display: none;"> Here we investigate the internal sublattice symmetry, and thus the enriched topological classification of bosonic Bogoliubov excitations of thermodynamically stable free-boson systems with non-vanishing particle-number-nonconserving terms. Specifically, we show that such systems well described by the bosonic Bogoliubov-de Gennes Hamiltonian can be in general reduced to particle-number-conserving (single-particle) ones. Building upon this observation, the sublattice symmetry is uncovered with respect to an excitation energy, which is usually hidden in the bosonic Bogoliubov-de Gennes Hamiltonian. Thus, we obtain an additional topological class, i.e., class AIII, which enriches the framework for the topological threefold way of free-boson systems. Moreover, a construction is proposed to show a category of systems respecting such a symmetry. For illustration, we resort to a one-dimensional (1D) prototypical model to demonstrate the topological excitation characterized by a winding number or symplectic polarization. By introducing the correlation function, we present an approach to measure the topological invariant. In addition, the edge excitation together with its robustness to symmetry-preserving disorders is also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19554v1-abstract-full').style.display = 'none'; document.getElementById('2410.19554v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 109, 023307 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19158">arXiv:2410.19158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19158">pdf</a>, <a href="https://arxiv.org/format/2410.19158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale magnetic ordering dynamics in a high Curie temperature ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yueh-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hal%C3%A1sz%2C+G+B">G谩bor B. Hal谩sz</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Damron%2C+J+T">Joshua T. Damron</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gai%2C+Z">Zheng Gai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+H">Huan Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+Y">Yuxin Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dahmen%2C+K+A">Karin A Dahmen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sohn%2C+C">Changhee Sohn</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Carlson%2C+E+W">Erica W. Carlson</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hua%2C+C">Chengyun Hua</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+S">Shan Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+J">Jeongkeun Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lee%2C+H+N">Ho Nyung Lee</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lawrie%2C+B+J">Benjamin J. Lawrie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19158v1-abstract-short" style="display: inline;"> Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature $\mathrm{T_c}$, but it has proven technically challenging to probe the relevant length and time scales with most conventional&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19158v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19158v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19158v1-abstract-full" style="display: none;"> Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature $\mathrm{T_c}$, but it has proven technically challenging to probe the relevant length and time scales with most conventional measurement techniques. In this study, we employ scanning nitrogen-vacancy center based magnetometry and relaxometry to reveal the critical behavior of a high-$\mathrm{T_c}$ ferromagnetic oxide near its Curie temperature. Cluster analysis of the measured temperature-dependent nanoscale magnetic textures points to a 3D universality class with a correlation length that diverges near $\mathrm{T_c}$. Meanwhile, the temperature-dependent spin dynamics, measured through all optical relaxometry suggest that the phase transition is in the XY universality class. Our results capture both static and dynamic aspects of critical behavior, providing insights into universal properties that govern phase transitions in magnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19158v1-abstract-full').style.display = 'none'; document.getElementById('2410.19158v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18892">arXiv:2410.18892</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18892">pdf</a>, <a href="https://arxiv.org/format/2410.18892">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental observation of spin defects in van der Waals material GeS$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+W">W. Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+S">S. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+N+-">N. -J. Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+X+-">X. -D. Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+L+-">L. -K. Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+J+-">J. -Y. Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+Y+-">Y. -H. Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y+-">Y. -Q. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y+-">Y. -T. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z+-">Z. -A. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ren%2C+J+-">J. -M. Ren</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ao%2C+C">C. Ao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+J+-">J. -S. Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tang%2C+J+-">J. -S. Tang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gali%2C+A">A. Gali</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C+-">C. -F. Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G+-">G. -C. Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18892v1-abstract-short" style="display: inline;"> Spin defects in atomically thin two-dimensional (2D) materials such as hexagonal boron nitride (hBN) attract significant attention for their potential quantum applications. The layered host materials not only facilitate seamless integration with optoelectronic devices but also enable the formation of heterostructures with on-demand functionality. Furthermore, their atomic thickness renders them pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18892v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18892v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18892v1-abstract-full" style="display: none;"> Spin defects in atomically thin two-dimensional (2D) materials such as hexagonal boron nitride (hBN) attract significant attention for their potential quantum applications. The layered host materials not only facilitate seamless integration with optoelectronic devices but also enable the formation of heterostructures with on-demand functionality. Furthermore, their atomic thickness renders them particularly suitable for sensing applications. However, the short coherence times of the spin defects in hBN limit them in quantum applications that require extended coherence time. One primary reason is that both boron and nitrogen atoms have non-zero nuclear spins. Here, we present another 2D material germanium disulfide ($尾$-GeS$_2$) characterized by a wide bandgap and potential nuclear-spin-free lattice. This makes it as a promising host material for spin defects that possess long-coherence time. Our findings reveal the presence of more than two distinct types of spin defects in single-crystal $尾$-GeS$_2$. Coherent control of one type defect has been successfully demonstrated at both 5 K and room temperature, and the coherence time $T_2$ can achieve tens of microseconds, 100-folds of that of negatively charged boron vacancy (V$_{\text{B}}^-$) in hBN, satisfying the minimal threshold required for metropolitan quantum networks--one of the important applications of spins. We entatively assign the observed optical signals come from substitution defects. Together with previous theoretical prediction, we believe the coherence time can be further improved with optimized lattice quality, indicating $尾$-GeS$_2$ as a promising host material for long-coherence-time spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18892v1-abstract-full').style.display = 'none'; document.getElementById('2410.18892v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17025">arXiv:2410.17025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17025">pdf</a>, <a href="https://arxiv.org/format/2410.17025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Testing Bell inequalities and probing quantum entanglement at CEPC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Youpeng Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+R">Ruobing Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ruzi%2C+A">Alim Ruzi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ban%2C+Y">Yong Ban</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17025v2-abstract-short" style="display: inline;"> We study quantum entanglement and test violation of Bell-type inequality at the Circular Electron Positron Collider (CEPC), which is one of the most attractive future colliders. It&#39;s a promising particle collider designed to search new physics, make Standard Model (SM) precision measurements, and serving as a Higgs factory. Our study is based on a fast simulation of the $Z$ boson pair production f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17025v2-abstract-full').style.display = 'inline'; document.getElementById('2410.17025v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17025v2-abstract-full" style="display: none;"> We study quantum entanglement and test violation of Bell-type inequality at the Circular Electron Positron Collider (CEPC), which is one of the most attractive future colliders. It&#39;s a promising particle collider designed to search new physics, make Standard Model (SM) precision measurements, and serving as a Higgs factory. Our study is based on a fast simulation of the $Z$ boson pair production from Higgs boson decay at $\sqrt{s} = 250$ GeV. The detector effects are also included in the simulation. The spin density matrix of the joint $ZZ$ system is parametrized using irreducible tensor operators and reconstructed from the spherical coordinates of the decay leptons. To test Bell inequalities, we construct observable quantities for the $H \to ZZ*$ process in CEPC by using the (Collins-Gisin-Linden-Massar-Popescu) CGLMP inequality, whose value is determined from the density matrix of the Z boson pairs. The sensitivity of the Bell inequality violation is observed with more than 1$蟽$ and the presence of the quantum entanglement is probed with more than 2$蟽$ confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17025v2-abstract-full').style.display = 'none'; document.getElementById('2410.17025v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16963">arXiv:2410.16963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16963">pdf</a>, <a href="https://arxiv.org/format/2410.16963">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Integrating Window-Based Correlated Decoding with Constant-Time Logical Gates for Large-Scale Quantum Computation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+J">Jiaxuan Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jia-Ning Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wei%2C+T">Tian-Hao Wei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Huan-Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+X">Xi-Ning Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Q">Qing-Song Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yu-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16963v1-abstract-short" style="display: inline;"> Large-scale quantum computation requires to be performed in the fault-tolerant manner. One crucial issue of fault-tolerant quantum computing (FTQC) is reducing the overhead of implementing logical gates. Recently proposed correlated decoding and ``algorithmic fault tolerance&#34; achieve fast logical gates that enables universal quantum computation. However, for circuits involving mid-circuit measurem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16963v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16963v1-abstract-full" style="display: none;"> Large-scale quantum computation requires to be performed in the fault-tolerant manner. One crucial issue of fault-tolerant quantum computing (FTQC) is reducing the overhead of implementing logical gates. Recently proposed correlated decoding and ``algorithmic fault tolerance&#34; achieve fast logical gates that enables universal quantum computation. However, for circuits involving mid-circuit measurements and feedback, this approach is incompatible with window-based decoding, which is a natural requirement for handling large-scale circuits. In this letter, we propose an alternative architecture that employs delayed fixup circuits, integrating window-based correlated decoding with fast transversal gates. This design significantly reduce both the frequency and duration of correlated decoding, while maintaining support for constant-time logical gates and universality across a broad class of quantum codes. More importantly, by spatial parallelism of windows, this architecture well adapts to time-optimal FTQC, making it particularly useful for large-scale computation. Using Shor&#39;s algorithm as an example, we explore the application of our architecture and reveals the promising potential of using fast transversal gates to perform large-scale quantum computing tasks with acceptable overhead on physical systems like ion traps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16963v1-abstract-full').style.display = 'none'; document.getElementById('2410.16963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15389">arXiv:2410.15389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.15389">pdf</a>, <a href="https://arxiv.org/format/2410.15389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adr9527">10.1126/sciadv.adr9527 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of quantum superposition of topological defects in a trapped ion quantum simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Cheng%2C+Z">Zhijie Cheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yukai Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+S">Shijiao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mei%2C+Q">Quanxin Mei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+G">Gangxi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+Y">Yue Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qi%2C+B">Binxiang Qi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z">Zichao Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P">Panyu Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+L">Luming Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15389v1-abstract-short" style="display: inline;"> Topological defects are discontinuities of a system protected by global properties, with wide applications in mathematics and physics. While previous experimental studies mostly focused on their classical properties, it has been predicted that topological defects can exhibit quantum superposition. Despite the fundamental interest and potential applications in understanding symmetry-breaking dynami&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15389v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15389v1-abstract-full" style="display: none;"> Topological defects are discontinuities of a system protected by global properties, with wide applications in mathematics and physics. While previous experimental studies mostly focused on their classical properties, it has been predicted that topological defects can exhibit quantum superposition. Despite the fundamental interest and potential applications in understanding symmetry-breaking dynamics of quantum phase transitions, its experimental realization still remains a challenge. Here, we report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator. By engineering long-range spin-spin interactions, we observe a spin kink splitting into a superposition of kinks at different positions, creating a ``Schrodinger kink&#39;&#39; that manifests non-locality and quantum interference. Furthermore, by preparing superposition states of neighboring kinks with different phases, we observe the propagation of the wave packet in different directions, thus unambiguously verifying the quantum coherence in the superposition states. Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15389v1-abstract-full').style.display = 'none'; document.getElementById('2410.15389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, already published in Science Advances</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Adv.10,eadr9527(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09326">arXiv:2410.09326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.09326">pdf</a>, <a href="https://arxiv.org/format/2410.09326">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Performance">cs.PF</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> QOPS: A Compiler Framework for Quantum Circuit Simulation Acceleration with Profile Guided Optimizations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yu-Tsung Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+P">Po-Hsuan Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chang%2C+K">Kai-Chieh Chang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tu%2C+C">Chia-Heng Tu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hung%2C+S">Shih-Hao Hung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09326v2-abstract-short" style="display: inline;"> Quantum circuit simulation is important in the evolution of quantum software and hardware. Novel algorithms can be developed and evaluated by performing quantum circuit simulations on classical computers before physical quantum computers are available. Unfortunately, compared with a physical quantum computer, a prolonged simulation time hampers the rapid development of quantum algorithms. Inspired&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09326v2-abstract-full').style.display = 'inline'; document.getElementById('2410.09326v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09326v2-abstract-full" style="display: none;"> Quantum circuit simulation is important in the evolution of quantum software and hardware. Novel algorithms can be developed and evaluated by performing quantum circuit simulations on classical computers before physical quantum computers are available. Unfortunately, compared with a physical quantum computer, a prolonged simulation time hampers the rapid development of quantum algorithms. Inspired by the feedback-directed optimization scheme used by classical compilers to improve the generated code, this work proposes a quantum compiler framework QOPS to enable profile-guided optimization (PGO) for quantum circuit simulation acceleration. The QOPS compiler instruments a quantum simulator to collect performance data during the circuit simulation and it then generates the optimized version of the quantum circuit based on the collected data. Experimental results show the PGO can effectively shorten the simulation time on our tested benchmark programs. Especially, the simulator-specific PGO (virtual swap) can be applied to the benchmarks to accelerate the simulation speed by a factor of 1.19. As for the hardware-independent PGO, compared with the brute force mechanism (turning on all available compilation flags), which achieves 21% performance improvement against the non-optimized version, the PGO can achieve 16% speedup with a factor of 63 less compilation time than the brute force approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09326v2-abstract-full').style.display = 'none'; document.getElementById('2410.09326v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05659">arXiv:2410.05659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05659">pdf</a>, <a href="https://arxiv.org/format/2410.05659">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental realization of direct entangling gates between dual-type qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+C">Chenxi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+C">Chuanxin Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+H">Hongxuan Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+H">Hongyuan Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mao%2C+Z">Zhichao Mao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P">Panyu Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yukai Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z">Zichao Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+L">Luming Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05659v1-abstract-short" style="display: inline;"> Dual-type qubits have become a promising way to suppress the crosstalk error of auxiliary operations in large-scale ion trap quantum computation. Here we demonstrate a direct entangling gate between dual-type qubits encoded in the $S_{1/2}$ and $D_{5/2}$ hyperfine manifolds of $^{137}\mathrm{Ba}^{+}$ ions. Our scheme is economic in the hardware, requiring only a single $532\,$nm laser system to en&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05659v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05659v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05659v1-abstract-full" style="display: none;"> Dual-type qubits have become a promising way to suppress the crosstalk error of auxiliary operations in large-scale ion trap quantum computation. Here we demonstrate a direct entangling gate between dual-type qubits encoded in the $S_{1/2}$ and $D_{5/2}$ hyperfine manifolds of $^{137}\mathrm{Ba}^{+}$ ions. Our scheme is economic in the hardware, requiring only a single $532\,$nm laser system to entangle both qubit types by driving their Raman transitions. We achieve a Bell state fidelity of $96.3(4)\%$ for the dual-type Molmer-Sorensen gate between an $S$-$D$ ion pair, comparable to that for the same-type $S$-$S$ or $D$-$D$ gates. This technique can reduce the overhead for back-and-forth conversions between dual-type qubits in the quantum circuit with wide applications in quantum error correction and ion-photon quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05659v1-abstract-full').style.display = 'none'; document.getElementById('2410.05659v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03073">arXiv:2410.03073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03073">pdf</a>, <a href="https://arxiv.org/format/2410.03073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> LEGO: QEC Decoding System Architecture for Dynamic Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yue Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liyanage%2C+N">Namitha Liyanage</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+L">Lin Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03073v2-abstract-short" style="display: inline;"> Quantum error correction (QEC) is a critical component of FTQC; the QEC decoder is an important part of Classical Computing for Quantum or C4Q. Recent years have seen fast development in real-time QEC decoders. Existing efforts to build real-time decoders have yet to achieve a critical milestone: decoding dynamic logical circuits with error-corrected readout and feed forward. Achieving this requir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03073v2-abstract-full').style.display = 'inline'; document.getElementById('2410.03073v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03073v2-abstract-full" style="display: none;"> Quantum error correction (QEC) is a critical component of FTQC; the QEC decoder is an important part of Classical Computing for Quantum or C4Q. Recent years have seen fast development in real-time QEC decoders. Existing efforts to build real-time decoders have yet to achieve a critical milestone: decoding dynamic logical circuits with error-corrected readout and feed forward. Achieving this requires significant engineering effort to adapt and reconfigure the decoders during runtime, depending on the branching of the logical circuit. We present a QEC decoder architecture called LEGO, with the ambitious goal of supporting dynamic logical operations. LEGO employs a novel abstraction called the decoding block to describe the decoding problem of a dynamic logical circuit. Moreover, decoding blocks can be combined with three other ideas to improve the efficiency, accuracy and latency of the decoder. First, they provide data and task parallelisms when combined with fusion-based decoding. Second, they can exploit the pipeline parallelism inside multi-stage decoders. Finally, they serve as basic units of work for computational resource management. Using decoding blocks, LEGO can be easily reconfigured to support all QEC settings and to easily accommodate innovations in three interdependent fields: code, logical operations and qubit hardware. In contrast, existing decoders are highly specialized to a specific QEC setting, which leads to redundant research and engineering efforts, slows down innovation, and further fragments the nascent quantum computing industry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03073v2-abstract-full').style.display = 'none'; document.getElementById('2410.03073v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11046">arXiv:2409.11046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.11046">pdf</a>, <a href="https://arxiv.org/format/2409.11046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Crosscap states and duality of Ising field theory in two dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yueshui Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Ying-Hai Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+L">Lei Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tu%2C+H">Hong-Hao Tu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11046v1-abstract-short" style="display: inline;"> We propose two distinct crosscap states for the two-dimensional (2D) Ising field theory. These two crosscap states, identifying Ising spins or dual spins (domain walls) at antipodal points, are shown to be related via the Kramers-Wannier duality transformation. We derive their Majorana free field representations and extend bosonization techniques to calculate correlation functions of the 2D Ising&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11046v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11046v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11046v1-abstract-full" style="display: none;"> We propose two distinct crosscap states for the two-dimensional (2D) Ising field theory. These two crosscap states, identifying Ising spins or dual spins (domain walls) at antipodal points, are shown to be related via the Kramers-Wannier duality transformation. We derive their Majorana free field representations and extend bosonization techniques to calculate correlation functions of the 2D Ising conformal field theory (CFT) with different crosscap boundaries. We further develop a conformal perturbation theory to calculate the Klein bottle entropy as a universal scaling function [Phys. Rev. Lett. 130, 151602 (2023)] in the 2D Ising field theory. The formalism developed in this work is applicable to many other 2D CFTs perturbed by relevant operators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11046v1-abstract-full').style.display = 'none'; document.getElementById('2409.11046v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+30 pages, 1+2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09729">arXiv:2409.09729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09729">pdf</a>, <a href="https://arxiv.org/format/2409.09729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum continual learning on a programmable superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+Z">Zhide Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+L">Liangtian Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+W">Weikang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09729v1-abstract-short" style="display: inline;"> Quantum computers may outperform classical computers on machine learning tasks. In recent years, a variety of quantum algorithms promising unparalleled potential to enhance, speed up, or innovate machine learning have been proposed. Yet, quantum learning systems, similar to their classical counterparts, may likewise suffer from the catastrophic forgetting problem, where training a model with new t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09729v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09729v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09729v1-abstract-full" style="display: none;"> Quantum computers may outperform classical computers on machine learning tasks. In recent years, a variety of quantum algorithms promising unparalleled potential to enhance, speed up, or innovate machine learning have been proposed. Yet, quantum learning systems, similar to their classical counterparts, may likewise suffer from the catastrophic forgetting problem, where training a model with new tasks would result in a dramatic performance drop for the previously learned ones. This problem is widely believed to be a crucial obstacle to achieving continual learning of multiple sequential tasks. Here, we report an experimental demonstration of quantum continual learning on a fully programmable superconducting processor. In particular, we sequentially train a quantum classifier with three tasks, two about identifying real-life images and the other on classifying quantum states, and demonstrate its catastrophic forgetting through experimentally observed rapid performance drops for prior tasks. To overcome this dilemma, we exploit the elastic weight consolidation strategy and show that the quantum classifier can incrementally learn and retain knowledge across the three distinct tasks, with an average prediction accuracy exceeding 92.3%. In addition, for sequential tasks involving quantum-engineered data, we demonstrate that the quantum classifier can achieve a better continual learning performance than a commonly used classical feedforward network with a comparable number of variational parameters. Our results establish a viable strategy for empowering quantum learning systems with desirable adaptability to multiple sequential tasks, marking an important primary experimental step towards the long-term goal of achieving quantum artificial general intelligence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09729v1-abstract-full').style.display = 'none'; document.getElementById('2409.09729v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09257">arXiv:2409.09257</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09257">pdf</a>, <a href="https://arxiv.org/format/2409.09257">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Geometric phase assisted detection of Lorentz-invariance violation from modified dispersion at high energies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yihao Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+Z">Zehua Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09257v2-abstract-short" style="display: inline;"> Many theories of quantum gravity propose Lorentz-violating dispersion relations of the form $蠅_{|\mathbf{k}|}=|\mathbf{k}|f(|\mathbf{k}|/M_\star)$, which approximately recover to the Lorentz invariance, $蠅_{|\mathbf{k}|}\approx|\mathbf{k}|$, at the energy scales much below $M_\star$. However, usually such a scale is assumed to be near the Planck scale, thus the feature of the Lorentz-violating the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09257v2-abstract-full').style.display = 'inline'; document.getElementById('2409.09257v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09257v2-abstract-full" style="display: none;"> Many theories of quantum gravity propose Lorentz-violating dispersion relations of the form $蠅_{|\mathbf{k}|}=|\mathbf{k}|f(|\mathbf{k}|/M_\star)$, which approximately recover to the Lorentz invariance, $蠅_{|\mathbf{k}|}\approx|\mathbf{k}|$, at the energy scales much below $M_\star$. However, usually such a scale is assumed to be near the Planck scale, thus the feature of the Lorentz-violating theory is weak and its experimental test becomes extremely challenging. Since the geometric phase (GP) is of accumulative and sensitive nature to weak effects, here we explore the GP acquired by an inertial atomic detector that is coupled to a quantum field with this kind of Lorentz-violating dispersion. We show that for the Lorentz-violating field theory case the GP depends on the velocity of the detector, which is quite different from the Lorentz symmetry case where the GP is independent of the detector&#39;s velocity. In particular, we show that the GP may present a drastic low-energy Lorentz violation for any $f$ that dips below unity somewhere. We apply our analysis to detecting the polymer quantization motivated by loop quantum gravity, and show the detector acquires an experimentally detectable GP with the assist of detector&#39;s velocity that below current ion collider rapidities. Furthermore, the accumulative nature of GP might facilitate the relevant detection significantly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09257v2-abstract-full').style.display = 'none'; document.getElementById('2409.09257v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures. Some additional references are added, and any comments are wellcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.07909">arXiv:2409.07909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.07909">pdf</a>, <a href="https://arxiv.org/format/2409.07909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Classifying Multipartite Continuous Variable Entanglement Structures through Data-augmented Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+X">Xiaoting Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+M">Mingsheng Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+F">Feng-Xiao Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Ya-Dong Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+Y">Yu Xiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+Q">Qiongyi He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.07909v2-abstract-short" style="display: inline;"> Neural networks have emerged as a promising paradigm for quantum information processing, yet they confront the challenge of generating training datasets with sufficient size and rich diversity, which is particularly acute when dealing with multipartite quantum systems. For instance, in the task of classifying different structures of multipartite entanglement in continuous variable systems, it is n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07909v2-abstract-full').style.display = 'inline'; document.getElementById('2409.07909v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.07909v2-abstract-full" style="display: none;"> Neural networks have emerged as a promising paradigm for quantum information processing, yet they confront the challenge of generating training datasets with sufficient size and rich diversity, which is particularly acute when dealing with multipartite quantum systems. For instance, in the task of classifying different structures of multipartite entanglement in continuous variable systems, it is necessary to simulate a large number of infinite-dimension state data that can cover as many types of non-Gaussian states as possible. Here, we develop a data-augmented neural network to complete this task with homodyne measurement data. A quantum data augmentation method based on classical data processing techniques and quantum physical principles is proposed to efficiently enhance the network performance. By testing on randomly generated tripartite and quadripartite states, we demonstrate that the network can indicate the entanglement structure among the various partitions and the accuracies are significantly improved with data augmentation. Our approach allows us to further extend the use of data-driven machine learning techniques to more complex tasks of learning quantum systems encoded in a large Hilbert space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.07909v2-abstract-full').style.display = 'none'; document.getElementById('2409.07909v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06249">arXiv:2409.06249</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06249">pdf</a>, <a href="https://arxiv.org/format/2409.06249">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Experimental investigation of coherent ergotropy in a single spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Niu%2C+Z">Zhibo Niu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yang Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yunhan Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rong%2C+X">Xing Rong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+J">Jiangfeng Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06249v1-abstract-short" style="display: inline;"> Ergotropy is defined as the maximum amount of work that can be extracted through a unitary cyclic evolution. It plays a crucial role in assessing the work capacity of a quantum system. Recently, the significance of quantum coherence in work extraction has been theoretically identified, revealing that quantum states with more coherence possess more ergotropy compared to their dephased counterparts.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06249v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06249v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06249v1-abstract-full" style="display: none;"> Ergotropy is defined as the maximum amount of work that can be extracted through a unitary cyclic evolution. It plays a crucial role in assessing the work capacity of a quantum system. Recently, the significance of quantum coherence in work extraction has been theoretically identified, revealing that quantum states with more coherence possess more ergotropy compared to their dephased counterparts. However, an experimental study of the coherent ergotropy remains absent. Here, we report an experimental investigation of the coherent ergotropy in a single spin system. Based on the method of measuring ergotropy with an ancilla qubit, both the coherent and incoherent components of the ergotropy for the non-equilibrium state were successfully extracted. The increase in ergotropy induced by the increase in the coherence of the system was observed by varying the coherence of the state. Our work reveals the interplay between quantum thermodynamics and quantum information theory, future investigations could further explore the role other quantum attributes play in thermodynamic protocols. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06249v1-abstract-full').style.display = 'none'; document.getElementById('2409.06249v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04161">arXiv:2409.04161</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04161">pdf</a>, <a href="https://arxiv.org/format/2409.04161">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> An Efficient Classical Algorithm for Simulating Short Time 2D Quantum Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yusen Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Y">Yukun Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yuan%2C+X">Xiao Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04161v1-abstract-short" style="display: inline;"> Efficient classical simulation of the Schrodinger equation is central to quantum mechanics, as it is crucial for exploring complex natural phenomena and understanding the fundamental distinctions between classical and quantum computation. Although simulating general quantum dynamics is BQP-complete, tensor networks allow efficient simulation of short-time evolution in 1D systems. However, extendin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04161v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04161v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04161v1-abstract-full" style="display: none;"> Efficient classical simulation of the Schrodinger equation is central to quantum mechanics, as it is crucial for exploring complex natural phenomena and understanding the fundamental distinctions between classical and quantum computation. Although simulating general quantum dynamics is BQP-complete, tensor networks allow efficient simulation of short-time evolution in 1D systems. However, extending these methods to higher dimensions becomes significantly challenging when the area law is violated. In this work, we tackle this challenge by introducing an efficient classical algorithm for simulating short-time dynamics in 2D quantum systems, utilizing cluster expansion and shallow quantum circuit simulation. Our algorithm has wide-ranging applications, including an efficient dequantization method for estimating quantum eigenvalues and eigenstates, simulating superconducting quantum computers, dequantizing quantum variational algorithms, and simulating constant-gap adiabatic quantum evolution. Our results reveal the inherent simplicity in the complexity of short-time 2D quantum dynamics and highlight the limitations of noisy intermediate-scale quantum hardware, particularly those confined to 2D topological structures. This work advances our understanding of the boundary between classical and quantum computation and the criteria for achieving quantum advantage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04161v1-abstract-full').style.display = 'none'; document.getElementById('2409.04161v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.12075">arXiv:2408.12075</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.12075">pdf</a>, <a href="https://arxiv.org/format/2408.12075">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.113204">10.1103/PhysRevLett.133.113204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electromagnetically-Induced-Transparency Cooling of High-Nuclear-Spin Ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Huang%2C+C">Chuanxin Huang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+C">Chenxi Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+H">Hongxuan Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+H">Hongyuan Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zuqing Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mao%2C+Z">Zhichao Mao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+S">Shijiao Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P">Panyu Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yukai Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z">Zichao Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+L">Luming Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.12075v1-abstract-short" style="display: inline;"> We report the electromagnetically-induced-transparency (EIT) cooling of $^{137}\mathrm{Ba}^{+}$ ions with a nuclear spin of $I=3/2$, which are a good candidate of qubits for future large-scale trapped ion quantum computing. EIT cooling of atoms or ions with a complex ground-state level structure is challenging due to the lack of an isolated $螞$ system, as the population can escape from the $螞$ sys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12075v1-abstract-full').style.display = 'inline'; document.getElementById('2408.12075v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.12075v1-abstract-full" style="display: none;"> We report the electromagnetically-induced-transparency (EIT) cooling of $^{137}\mathrm{Ba}^{+}$ ions with a nuclear spin of $I=3/2$, which are a good candidate of qubits for future large-scale trapped ion quantum computing. EIT cooling of atoms or ions with a complex ground-state level structure is challenging due to the lack of an isolated $螞$ system, as the population can escape from the $螞$ system to reduce the cooling efficiency. We overcome this issue by leveraging an EIT pumping laser to repopulate the cooling subspace, ensuring continuous and effective EIT cooling. We cool the two radial modes of a single $^{137}\mathrm{Ba}^{+}$ ion to average motional occupations of 0.08(5) and 0.15(7) respectively. Using the same laser parameters, we also cool all the ten radial modes of a five-ion chain to near their ground states. Our approach can be adapted to atomic species possessing similar level structures. It allows engineering of the EIT Fano-like spectrum, which can be useful for simultaneous cooling of modes across a wide frequency range, aiding in large-scale trapped-ion quantum information processing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.12075v1-abstract-full').style.display = 'none'; document.getElementById('2408.12075v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevLett.133.113204 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11900">arXiv:2408.11900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11900">pdf</a>, <a href="https://arxiv.org/format/2408.11900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Quantum highway: Observation of minimal and maximal speed limits for few and many-body states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+L">Lei Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+L">Liang Xiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11900v1-abstract-short" style="display: inline;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11900v1-abstract-full" style="display: none;"> Tracking the time evolution of a quantum state allows one to verify the thermalization rate or the propagation speed of correlations in generic quantum systems. Inspired by the energy-time uncertainty principle, bounds have been demonstrated on the maximal speed at which a quantum state can change, resulting in immediate and practical tasks. Based on a programmable superconducting quantum processor, we test the dynamics of various emulated quantum mechanical systems encompassing single- and many-body states. We show that one can test the known quantum speed limits and that modifying a single Hamiltonian parameter allows the observation of the crossover of the different bounds on the dynamics. We also unveil the observation of minimal quantum speed limits in addition to more common maximal ones, i.e., the lowest rate of change of a unitarily evolved quantum state. Our results establish a comprehensive experimental characterization of quantum speed limits and pave the way for their subsequent study in engineered non-unitary conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11900v1-abstract-full').style.display = 'none'; document.getElementById('2408.11900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures + supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11311">arXiv:2408.11311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11311">pdf</a>, <a href="https://arxiv.org/format/2408.11311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> HiMA: Hierarchical Quantum Microarchitecture for Qubit-Scaling and Quantum Process-Level Parallelism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Q">Qi Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mei%2C+Z">Zi-Hao Mei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+H">Han-Qing Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+L">Liang-Liang Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xiao-Yan Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yun-Jie Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+X">Xiao-Fan Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+C">Cheng Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kong%2C+W">Wei-Cheng Kong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jun-Chao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yu-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11311v1-abstract-short" style="display: inline;"> Quantum computing holds immense potential for addressing a myriad of intricate challenges, which is significantly amplified when scaled to thousands of qubits. However, a major challenge lies in developing an efficient and scalable quantum control system. To address this, we propose a novel Hierarchical MicroArchitecture (HiMA) designed to facilitate qubit scaling and exploit quantum process-level&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11311v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11311v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11311v1-abstract-full" style="display: none;"> Quantum computing holds immense potential for addressing a myriad of intricate challenges, which is significantly amplified when scaled to thousands of qubits. However, a major challenge lies in developing an efficient and scalable quantum control system. To address this, we propose a novel Hierarchical MicroArchitecture (HiMA) designed to facilitate qubit scaling and exploit quantum process-level parallelism. This microarchitecture is based on three core elements: (i) discrete qubit-level drive and readout, (ii) a process-based hierarchical trigger mechanism, and (iii) multiprocessing with a staggered triggering technique to enable efficient quantum process-level parallelism. We implement HiMA as a control system for a 72-qubit tunable superconducting quantum processing unit, serving a public quantum cloud computing platform, which is capable of expanding to 6144 qubits through three-layer cascading. In our benchmarking tests, HiMA achieves up to a 4.89x speedup under a 5-process parallel configuration. Consequently, to the best of our knowledge, we have achieved the highest CLOPS (Circuit Layer Operations Per Second), reaching up to 43,680, across all publicly available platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11311v1-abstract-full').style.display = 'none'; document.getElementById('2408.11311v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05429">arXiv:2408.05429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05429">pdf</a>, <a href="https://arxiv.org/format/2408.05429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Testing Bell inequalities and probing quantum entanglement at a muon collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Ruzi%2C+A">Alim Ruzi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Youpeng Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ding%2C+R">Ran Ding</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+S">Sitian Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Levin%2C+A+M">Andrew Micheal Levin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05429v2-abstract-short" style="display: inline;"> A muon collider represents a promising candidate for the next generation of particle physics experiments after the expected end of LHC operations in the early 2040s. Rare or hard-to-detect processes at the LHC, such as the production of multiple gauge bosons, become accessible at a TeV muon collider. We present here the prospects of detecting quantum entanglement and the violation of Bell inequali&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05429v2-abstract-full').style.display = 'inline'; document.getElementById('2408.05429v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05429v2-abstract-full" style="display: none;"> A muon collider represents a promising candidate for the next generation of particle physics experiments after the expected end of LHC operations in the early 2040s. Rare or hard-to-detect processes at the LHC, such as the production of multiple gauge bosons, become accessible at a TeV muon collider. We present here the prospects of detecting quantum entanglement and the violation of Bell inequalities in H to ZZ to 4l events at a potential future muon collider. We show that the spin density matrix of the Z boson pairs can be reconstructed using the kinematics of the charged leptons from the Z boson decays. Once the density matrix is determined, it is straightforward to obtain the expectation values of various Bell operators and test the quantum entanglement between the Z boson pair. Through a detailed study based on Monte-Carlo simulation, we show that the generalized CGLMP inequality can be maximally violated, and testing Bell inequalities could be established with high significance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05429v2-abstract-full').style.display = 'none'; document.getElementById('2408.05429v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures, updated version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03815">arXiv:2408.03815</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03815">pdf</a>, <a href="https://arxiv.org/format/2408.03815">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dissipation Driven Coherent Dynamics Observed in Bose-Einstein Condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+Y">Ye Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Y">Yajuan Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yue Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+J">Jilai Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mei%2C+S">Shuyao Mei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chi%2C+Z">Zhihao Chi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+T">Tian Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+C">Ce Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shi%2C+Z">Zhe-Yu Shi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yu Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+J">Jiazhong Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhai%2C+H">Hui Zhai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+W">Wenlan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03815v1-abstract-short" style="display: inline;"> We report the first experimental observation of dissipation-driven coherent quantum many-body oscillation, and this oscillation is manifested as the coherent exchange of atoms between the thermal and the condensate components in a three-dimensional partially condensed Bose gas. Firstly, we observe that the dissipation leads to two different atom loss rates between the thermal and the condensate co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03815v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03815v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03815v1-abstract-full" style="display: none;"> We report the first experimental observation of dissipation-driven coherent quantum many-body oscillation, and this oscillation is manifested as the coherent exchange of atoms between the thermal and the condensate components in a three-dimensional partially condensed Bose gas. Firstly, we observe that the dissipation leads to two different atom loss rates between the thermal and the condensate components, such that the thermal fraction increases as dissipation time increases. Therefore, this dissipation process serves as a tool to uniformly ramp up the system&#39;s temperature without introducing extra density excitation. Subsequently, a coherent pair exchange of atoms between the thermal and the condensate components occurs, resulting in coherent oscillation of atom numbers in both components. This oscillation, permanently embedded in the atom loss process, is revealed clearly when we inset a duration of dissipation-free evolution into the entire dynamics, manifested as an oscillation of total atom number at the end. Finally, we also present a theoretical calculation to support this physical mechanism, which simultaneously includes dissipation, interaction, finite temperature, and harmonic trap effects. Our work introduces a highly controllable dissipation as a new tool to control quantum many-body dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03815v1-abstract-full').style.display = 'none'; document.getElementById('2408.03815v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03801">arXiv:2408.03801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03801">pdf</a>, <a href="https://arxiv.org/format/2408.03801">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Hamiltonian learning for 300 trapped ion qubits with long-range couplings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+S+-">S. -A. Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y+-">Y. -K. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+J">J. Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">L. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lian%2C+W+-">W. -Q. Lian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yao%2C+R">R. Yao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Y+-">Y. -L. Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Y+-">Y. -Z. Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qi%2C+B+-">B. -X. Qi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P+-">P. -Y. Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+L">L. He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z+-">Z. -C. Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+L+-">L. -M. Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03801v1-abstract-short" style="display: inline;"> Quantum simulators with hundreds of qubits and engineerable Hamiltonians have the potential to explore quantum many-body models that are intractable for classical computers. However, learning the simulated Hamiltonian, a prerequisite for any applications of a quantum simulator, remains an outstanding challenge due to the fast increasing time cost with the qubit number and the lack of high-fidelity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03801v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03801v1-abstract-full" style="display: none;"> Quantum simulators with hundreds of qubits and engineerable Hamiltonians have the potential to explore quantum many-body models that are intractable for classical computers. However, learning the simulated Hamiltonian, a prerequisite for any applications of a quantum simulator, remains an outstanding challenge due to the fast increasing time cost with the qubit number and the lack of high-fidelity universal gate operations in the noisy intermediate-scale quantum era. Here we demonstrate the Hamiltonian learning of a two-dimensional ion trap quantum simulator with 300 qubits. We employ global manipulations and single-qubit-resolved state detection to efficiently learn the all-to-all-coupled Ising model Hamiltonian, with the required quantum resources scaling at most linearly with the qubit number. Our work paves the way for wide applications of large-scale ion trap quantum simulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03801v1-abstract-full').style.display = 'none'; document.getElementById('2408.03801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01155">arXiv:2408.01155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01155">pdf</a>, <a href="https://arxiv.org/format/2408.01155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient conversion from fermionic Gaussian states to matrix product states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+T">Tong Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Ying-Hai Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tu%2C+H">Hong-Hao Tu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiang%2C+T">Tao Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01155v1-abstract-short" style="display: inline;"> Fermionic Gaussian states are eigenstates of quadratic Hamiltonians and widely used in quantum many-body problems. We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states. It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems with translation invariance. If th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01155v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01155v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01155v1-abstract-full" style="display: none;"> Fermionic Gaussian states are eigenstates of quadratic Hamiltonians and widely used in quantum many-body problems. We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states. It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems with translation invariance. If the ground states of a topologically ordered system on infinite cylinders are expressed as matrix product states, then the fixed points of the transfer matrix can be harnessed to filter out the anyon eigenbasis, also known as minimally entangled states. This allows for efficient computation of universal properties such as entanglement spectrum and modular matrices. The potential of our method is demonstrated by numerical calculations in two chiral spin liquids that have the same topological orders as the bosonic Laughlin and Moore-Read states, respectively. The anyon eigenbasis for the first one has been worked out before and serves as a useful benchmark. The anyon eigenbasis of the second one is, however, not transparent and its successful construction provides a nontrivial corroboration of our method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01155v1-abstract-full').style.display = 'none'; document.getElementById('2408.01155v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21415">arXiv:2407.21415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.21415">pdf</a>, <a href="https://arxiv.org/format/2407.21415">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> In situ Qubit Frequency Tuning Circuit for Scalable Superconducting Quantum Computing: Scheme and Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+L">Lei Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Y">Yu Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+S">Shaowei Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+Z">Zhiguang Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rong%2C+T">Tao Rong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+C">Chenyin Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+T">Tianzuo Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+T">Tao Jiang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+H">Hui Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zha%2C+C">Chen Zha</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+J">Jin Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+F">Fusheng Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Q">Qingling Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+Y">Yangsen Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Rong%2C+H">Hao Rong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yan%2C+K">Kai Yan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+S">Sirui Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+S">Shaojun Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qian%2C+H">Haoran Qian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+Y">Yisen Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yulin Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yuhuai Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+G">Gang Wu</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21415v1-abstract-short" style="display: inline;"> Frequency tunable qubit plays a significant role for scalable superconducting quantum processors. The state-of-the-art room-temperature electronics for tuning qubit frequency suffers from unscalable limit, such as heating problem, linear growth of control cables, etc. Here we propose a scalable scheme to tune the qubit frequency by using in situ superconducting circuit, which is based on radio fre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21415v1-abstract-full').style.display = 'inline'; document.getElementById('2407.21415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21415v1-abstract-full" style="display: none;"> Frequency tunable qubit plays a significant role for scalable superconducting quantum processors. The state-of-the-art room-temperature electronics for tuning qubit frequency suffers from unscalable limit, such as heating problem, linear growth of control cables, etc. Here we propose a scalable scheme to tune the qubit frequency by using in situ superconducting circuit, which is based on radio frequency superconducting quantum interference device (rf-SQUID). We demonstrate both theoretically and experimentally that the qubit frequency could be modulated by inputting several single pulses into rf-SQUID. Compared with the traditional scheme, our scheme not only solves the heating problem, but also provides the potential to exponentially reduce the number of cables inside the dilute refrigerator and the room-temperature electronics resource for tuning qubit frequency, which is achieved by a time-division-multiplex (TDM) scheme combining rf-SQUID with switch arrays. With such TDM scheme, the number of cables could be reduced from the usual $\sim 3n$ to $\sim \log_2{(3n)} + 1$ for two-dimensional quantum processors comprising $n$ qubits and $\sim 2n$ couplers. Our work paves the way for large-scale control of superconducting quantum processor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21415v1-abstract-full').style.display = 'none'; document.getElementById('2407.21415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20298">arXiv:2407.20298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20298">pdf</a>, <a href="https://arxiv.org/format/2407.20298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Efficient Circuit-Based Quantum State Tomography via Sparse Entry Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+C">Chi-Kwong Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+K+Y">Kevin Yipu Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+Z">Zherui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20298v1-abstract-short" style="display: inline;"> We propose an efficient circuit-based quantum state tomography (QST) scheme to reconstruct $n$-qubit states with $k$ nonzero entries using measurements of $|蠄\rangle$ and $U_1|蠄\rangle, \dots, U_{2m}|蠄\rangle$, where $m \le k$. Each $U_j$ involves CNOT gates followed by a single-qubit gate, either Hadamard $H$ or $HD$, where $D = {\rm diag}(1,i)$, targeting a specific qubit. We provide an upper li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20298v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20298v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20298v1-abstract-full" style="display: none;"> We propose an efficient circuit-based quantum state tomography (QST) scheme to reconstruct $n$-qubit states with $k$ nonzero entries using measurements of $|蠄\rangle$ and $U_1|蠄\rangle, \dots, U_{2m}|蠄\rangle$, where $m \le k$. Each $U_j$ involves CNOT gates followed by a single-qubit gate, either Hadamard $H$ or $HD$, where $D = {\rm diag}(1,i)$, targeting a specific qubit. We provide an upper limit on the number of CNOT gates based on the nonzero entries&#39; positions in $|蠄\rangle$. This approach, applied to both state and process tomography, was tested using the Qiskit simulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20298v1-abstract-full').style.display = 'none'; document.getElementById('2407.20298v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 page, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12347">arXiv:2407.12347</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12347">pdf</a>, <a href="https://arxiv.org/format/2407.12347">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Improved Nonlocality Certification via Bouncing between Bell Operators and Inequalities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+W">Weikang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+M">Mengyao Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+Z">Zhide Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cui%2C+Z">Zhengyi Cui</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+H">Hekang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+Q">Qiujiang Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhen Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+D">Dong-Ling Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+C">Chao Song</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12347v1-abstract-short" style="display: inline;"> Bell nonlocality is an intrinsic feature of quantum mechanics, which can be certified via the violation of Bell inequalities. It is therefore a fundamental question to certify Bell nonlocality from experimental data. Here, we present an optimization scheme to improve nonlocality certification by exploring flexible mappings between Bell inequalities and Hamiltonians corresponding to the Bell operat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12347v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12347v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12347v1-abstract-full" style="display: none;"> Bell nonlocality is an intrinsic feature of quantum mechanics, which can be certified via the violation of Bell inequalities. It is therefore a fundamental question to certify Bell nonlocality from experimental data. Here, we present an optimization scheme to improve nonlocality certification by exploring flexible mappings between Bell inequalities and Hamiltonians corresponding to the Bell operators. We show that several Hamiltonian models can be mapped to new inequalities with improved classical bounds than the original one, enabling a more robust detection of nonlocality. From the other direction, we investigate the mapping from fixed Bell inequalities to Hamiltonians, aiming to maximize quantum violations while considering experimental imperfections. As a practical demonstration, we apply this method to an XXZ-like honeycomb-lattice model utilizing over 70 superconducting qubits. The successful application of this technique, as well as combining the two directions to form an optimization loop, may open new avenues for developing more practical and noise-resilient nonlocality certification techniques and enable broader experimental explorations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12347v1-abstract-full').style.display = 'none'; document.getElementById('2407.12347v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11775">arXiv:2407.11775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11775">pdf</a>, <a href="https://arxiv.org/format/2407.11775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-50333-w">10.1038/s41467-024-50333-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zenghui Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yan Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhiling Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jiahui Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+J">Jize Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiong%2C+H">Haonan Xiong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Y">Yipu Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yukai Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+H">Hongyi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+L">Luming Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11775v1-abstract-short" style="display: inline;"> For superconducting quantum processors, microwave signals are delivered to each qubit from room-temperature electronics to the cryogenic environment through coaxial cables. Limited by the heat load of cabling and the massive cost of electronics, such an architecture is not viable for millions of qubits required for fault-tolerant quantum computing. Monolithic integration of the control electronics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11775v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11775v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11775v1-abstract-full" style="display: none;"> For superconducting quantum processors, microwave signals are delivered to each qubit from room-temperature electronics to the cryogenic environment through coaxial cables. Limited by the heat load of cabling and the massive cost of electronics, such an architecture is not viable for millions of qubits required for fault-tolerant quantum computing. Monolithic integration of the control electronics and the qubits provides a promising solution, which, however, requires a coherent cryogenic microwave pulse generator that is compatible with superconducting quantum circuits. Here, we report such a signal source driven by digital-like signals, generating pulsed microwave emission with well-controlled phase, intensity, and frequency directly at millikelvin temperatures. We showcase high-fidelity readout of superconducting qubits with the microwave pulse generator. The device demonstrated here has a small footprint, negligible heat load, great flexibility to operate, and is fully compatible with today&#39;s superconducting quantum circuits, thus providing an enabling technology for large-scale superconducting quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11775v1-abstract-full').style.display = 'none'; document.getElementById('2407.11775v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 15, 5958 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06687">arXiv:2407.06687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06687">pdf</a>, <a href="https://arxiv.org/format/2407.06687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Realization of Conditional Operations through Transition Pathway Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Sheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+P">Peng Duan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yun-Jie Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+T">Tian-Le Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+P">Peng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+R">Ren-Ze Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xiao-Yan Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Z">Ze-An Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+L">Liang-Liang Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yong Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+H">Hai-Feng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+L">Lei Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tao%2C+H">Hao-Ran Tao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Z">Zhi-Fei Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yuan Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jia%2C+Z">Zhi-Long Jia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kong%2C+W">Wei-Cheng Kong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yu-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06687v2-abstract-short" style="display: inline;"> In the NISQ era, achieving large-scale quantum computing demands compact circuits to mitigate decoherence and gate error accumulation. Quantum operations with diverse degrees of freedom hold promise for circuit compression, but conventional approaches encounter challenges in simultaneously adjusting multiple parameters. Here, we propose a transition composite gate (TCG) scheme grounded on state-se&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06687v2-abstract-full').style.display = 'inline'; document.getElementById('2407.06687v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06687v2-abstract-full" style="display: none;"> In the NISQ era, achieving large-scale quantum computing demands compact circuits to mitigate decoherence and gate error accumulation. Quantum operations with diverse degrees of freedom hold promise for circuit compression, but conventional approaches encounter challenges in simultaneously adjusting multiple parameters. Here, we propose a transition composite gate (TCG) scheme grounded on state-selective transition path engineering, enabling more expressive conditional operations. We experimentally validate a controlled unitary (CU) gate as an example, with independent and continuous parameters. By adjusting the parameters of $\rm X^{12}$ gate, we obtain the CU family with a fidelity range of 95.2% to 99.0% leveraging quantum process tomography (QPT). To demonstrate the capability of circuit compression, we use TCG scheme to prepare 3-qubit Greenberger-Horne-Zeilinger (GHZ) and W states, with the fidelity of 96.77% and 95.72%. TCG can achieve the reduction in circuit depth of about 40% and 44% compared with the use of CZ gates only. Moreover, we show that short-path TCG (SPTCG) can further reduce the state-preparation circuit time cost. The TCG scheme exhibits advantages in certain quantum circuits and shows significant potential for large-scale quantum algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06687v2-abstract-full').style.display = 'none'; document.getElementById('2407.06687v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05589">arXiv:2407.05589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.05589">pdf</a>, <a href="https://arxiv.org/format/2407.05589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Improving the trainability of VQE on NISQ computers for solving portfolio optimization using convex interpolation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+S">Shengbin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+G">Guihui Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zhaoyun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+P">Peng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dou%2C+M">Menghan Dou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+H">Haiyong Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Z">Zhimin Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gu%2C+Y">Yongjian Gu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yu-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05589v1-abstract-short" style="display: inline;"> Solving combinatorial optimization problems using variational quantum algorithms (VQAs) represents one of the most promising applications in the NISQ era. However, the limited trainability of VQAs could hinder their scalability to large problem sizes. In this paper, we improve the trainability of variational quantum eigensolver (VQE) by utilizing convex interpolation to solve portfolio optimizatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05589v1-abstract-full').style.display = 'inline'; document.getElementById('2407.05589v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05589v1-abstract-full" style="display: none;"> Solving combinatorial optimization problems using variational quantum algorithms (VQAs) represents one of the most promising applications in the NISQ era. However, the limited trainability of VQAs could hinder their scalability to large problem sizes. In this paper, we improve the trainability of variational quantum eigensolver (VQE) by utilizing convex interpolation to solve portfolio optimization. The idea is inspired by the observation that the Dicke state possesses an inherent clustering property. Consequently, the energy of a state with a larger Hamming distance from the ground state intuitively results in a greater energy gap away from the ground state energy in the overall distribution trend. Based on convex interpolation, the location of the ground state can be evaluated by learning the property of a small subset of basis states in the Hilbert space. This enlightens naturally the proposals of the strategies of close-to-solution initialization, regular cost function landscape, and recursive ansatz equilibrium partition. The successfully implementation of a $40$-qubit experiment using only $10$ superconducting qubits demonstrates the effectiveness of our proposals. Furthermore, the quantum inspiration has also spurred the development of a prototype greedy algorithm. Extensive numerical simulations indicate that the hybridization of VQE and greedy algorithms achieves a mutual complementarity, combining the advantages of both global and local optimization methods. Our proposals can be extended to improve the trainability for solving other large-scale combinatorial optimization problems that are widely used in real applications, paving the way to unleash quantum advantages of NISQ computers in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05589v1-abstract-full').style.display = 'none'; document.getElementById('2407.05589v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03116">arXiv:2407.03116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03116">pdf</a>, <a href="https://arxiv.org/format/2407.03116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Hardware-efficient variational quantum algorithm in trapped-ion quantum computer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+J+-">J. -Z. Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y+-">Y. -K. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+L+-">L. -M. Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03116v1-abstract-short" style="display: inline;"> We study a hardware-efficient variational quantum algorithm ansatz tailored for the trapped-ion quantum simulator, HEA-TI. We leverage programmable single-qubit rotations and global spin-spin interactions among all ions, reducing the dependence on resource-intensive two-qubit gates in conventional gate-based methods. We apply HEA-TI to state engineering of cluster states and analyze the scaling of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03116v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03116v1-abstract-full" style="display: none;"> We study a hardware-efficient variational quantum algorithm ansatz tailored for the trapped-ion quantum simulator, HEA-TI. We leverage programmable single-qubit rotations and global spin-spin interactions among all ions, reducing the dependence on resource-intensive two-qubit gates in conventional gate-based methods. We apply HEA-TI to state engineering of cluster states and analyze the scaling of required quantum resources. We also apply HEA-TI to solve the ground state problem of chemical molecules $\mathrm{H_{2}}$, $\mathrm{LiH}$ and $\mathrm{F_{2}}$. We numerically analyze the quantum computing resources required to achieve chemical accuracy and examine the performance under realistic experimental noise and statistical fluctuation. The efficiency of this ansatz is shown to be comparable to other commonly used variational ansatzes like UCCSD, with the advantage of substantially easier implementation in the trapped-ion quantum simulator. This approach showcases the hardware-efficient ansatz as a powerful tool for the application of the near-term quantum computer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03116v1-abstract-full').style.display = 'none'; document.getElementById('2407.03116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17841">arXiv:2406.17841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17841">pdf</a>, <a href="https://arxiv.org/format/2406.17841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Probing many-body Bell correlation depth with superconducting qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+W">Weikang Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+S">Shibo Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hu%2C+M">Mengyao Hu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+J">Jiachen Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yaozu Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chuanyu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jin%2C+F">Feitong Jin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+X">Xuhao Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Y">Yu Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+Z">Ziqi Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+A">Aosai Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zou%2C+Y">Yiren Zou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+T">Tingting Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Shen%2C+F">Fanhao Shen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+J">Jiarun Zhong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bao%2C+Z">Zehang Bao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Z">Zitian Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Song%2C+Z">Zixuan Song</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Deng%2C+J">Jinfeng Deng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dong%2C+H">Hang Dong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+X">Xu Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+P">Pengfei Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jiang%2C+W">Wenjie Jiang</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17841v1-abstract-short" style="display: inline;"> Quantum nonlocality describes a stronger form of quantum correlation than that of entanglement. It refutes Einstein&#39;s belief of local realism and is among the most distinctive and enigmatic features of quantum mechanics. It is a crucial resource for achieving quantum advantages in a variety of practical applications, ranging from cryptography and certified random number generation via self-testing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17841v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17841v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17841v1-abstract-full" style="display: none;"> Quantum nonlocality describes a stronger form of quantum correlation than that of entanglement. It refutes Einstein&#39;s belief of local realism and is among the most distinctive and enigmatic features of quantum mechanics. It is a crucial resource for achieving quantum advantages in a variety of practical applications, ranging from cryptography and certified random number generation via self-testing to machine learning. Nevertheless, the detection of nonlocality, especially in quantum many-body systems, is notoriously challenging. Here, we report an experimental certification of genuine multipartite Bell correlations, which signal nonlocality in quantum many-body systems, up to 24 qubits with a fully programmable superconducting quantum processor. In particular, we employ energy as a Bell correlation witness and variationally decrease the energy of a many-body system across a hierarchy of thresholds, below which an increasing Bell correlation depth can be certified from experimental data. As an illustrating example, we variationally prepare the low-energy state of a two-dimensional honeycomb model with 73 qubits and certify its Bell correlations by measuring an energy that surpasses the corresponding classical bound with up to 48 standard deviations. In addition, we variationally prepare a sequence of low-energy states and certify their genuine multipartite Bell correlations up to 24 qubits via energies measured efficiently by parity oscillation and multiple quantum coherence techniques. Our results establish a viable approach for preparing and certifying multipartite Bell correlations, which provide not only a finer benchmark beyond entanglement for quantum devices, but also a valuable guide towards exploiting multipartite Bell correlation in a wide spectrum of practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17841v1-abstract-full').style.display = 'none'; document.getElementById('2406.17841v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages,6 figures + 14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13999">arXiv:2406.13999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13999">pdf</a>, <a href="https://arxiv.org/format/2406.13999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Individually Addressed Entangling Gates in a Two-Dimensional Ion Crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+Y+-">Y. -H. Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yi%2C+Y+-">Y. -J. Yi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y+-">Y. -K. Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y+-">Y. -Y. Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+L">L. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Y. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+Y+-">Y. -L. Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Mei%2C+Q+-">Q. -X. Mei</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+H+-">H. -X. Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+J+-">J. -Y. Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+S+-">S. -A. Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+J">J. Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Qi%2C+B+-">B. -X. Qi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhou%2C+Z+-">Z. -C. Zhou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Hou%2C+P+-">P. -Y. Hou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+L+-">L. -M. Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13999v1-abstract-short" style="display: inline;"> Two-dimensional (2D) ion crystals have become a promising way to scale up qubit numbers for ion trap quantum information processing. However, to realize universal quantum computing in this system, individually addressed high-fidelity two-qubit entangling gates still remain challenging due to the inevitable micromotion of ions in a 2D crystal as well as the technical difficulty in 2D addressing. He&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13999v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13999v1-abstract-full" style="display: none;"> Two-dimensional (2D) ion crystals have become a promising way to scale up qubit numbers for ion trap quantum information processing. However, to realize universal quantum computing in this system, individually addressed high-fidelity two-qubit entangling gates still remain challenging due to the inevitable micromotion of ions in a 2D crystal as well as the technical difficulty in 2D addressing. Here we demonstrate two-qubit entangling gates between any ion pairs in a 2D crystal of four ions. We use symmetrically placed crossed acousto-optic deflectors (AODs) to drive Raman transitions and achieve an addressing crosstalk error below 0.1%. We design and demonstrate a gate sequence by alternatingly addressing two target ions, making it compatible with any single-ion addressing techniques without crosstalk from multiple addressing beams. We further examine the gate performance versus the micromotion amplitude of the ions and show that its effect can be compensated by a recalibration of the laser intensity without degrading the gate fidelity. Our work paves the way for ion trap quantum computing with hundreds to thousands of qubits on a 2D ion crystal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13999v1-abstract-full').style.display = 'none'; document.getElementById('2406.13999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13577">arXiv:2406.13577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13577">pdf</a>, <a href="https://arxiv.org/format/2406.13577">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Genuine Multipartite Entanglement induced by a Thermal Acoustic Reservoir </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Qiu%2C+Q">Qing-Yang Qiu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lu%2C+Z">Zhi-Guang Lu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=He%2C+Q">Qiongyi He</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Ying Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=L%C3%BC%2C+X">Xin-You L眉</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13577v1-abstract-short" style="display: inline;"> Genuine multipartite entanglement (GME) is not only fundamental interesting for the study of quantum-to-classical transition, but also is essential for realizing universal quantum computing and quantum networks. Here we investigate the multipartite entanglement (ME) dynamics in a linear chain of N LC resonators interacting optomechanically with a common thermal acoustic reservoir. By presenting th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13577v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13577v1-abstract-full" style="display: none;"> Genuine multipartite entanglement (GME) is not only fundamental interesting for the study of quantum-to-classical transition, but also is essential for realizing universal quantum computing and quantum networks. Here we investigate the multipartite entanglement (ME) dynamics in a linear chain of N LC resonators interacting optomechanically with a common thermal acoustic reservoir. By presenting the exact analytical solutions of system evolution, we predict the periodic generation of non-Gaussian ME, including the discrete and continuous variables entanglement. Interestingly, the GME is obtained even though the system is in a heat bath. The mechanism relies on the special acoustic environment featuring frequency comb structure. More importantly, our proposed model also allows the periodic generation of entangled multipartite cat states (MCSs), i.e., a typical GHZ state, with high fidelity. This work fundamentally broadens the fields of ME, and have wide applications in implementing thermal-noise-resistant quantum information processing and many-body quantum simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13577v1-abstract-full').style.display = 'none'; document.getElementById('2406.13577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12631">arXiv:2406.12631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12631">pdf</a>, <a href="https://arxiv.org/format/2406.12631">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Nonreciprocal Bundle Emissions of Quantum Entangled Pairs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Bin%2C+Q">Qian Bin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jing%2C+H">Hui Jing</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Ying Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Nori%2C+F">Franco Nori</a>, <a href="/search/quant-ph?searchtype=author&amp;query=L%C3%BC%2C+X">Xin-You L眉</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12631v1-abstract-short" style="display: inline;"> Realizing precise control over multiquanta emission is crucial for quantum information processing, especially when integrated with advanced techniques of manipulating quantum states. Here, by spinning the resonator to induce the Sagnac effect, we can obtain nonreciprocal photon-phonon and photon-magnon super-Rabi oscillations under conditions of optically driving resonance transitions. Opening dis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12631v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12631v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12631v1-abstract-full" style="display: none;"> Realizing precise control over multiquanta emission is crucial for quantum information processing, especially when integrated with advanced techniques of manipulating quantum states. Here, by spinning the resonator to induce the Sagnac effect, we can obtain nonreciprocal photon-phonon and photon-magnon super-Rabi oscillations under conditions of optically driving resonance transitions. Opening dissipative channels for such super-Rabi oscillations enables the realization of directional bundle emissions of entangled photon-phonon pairs and photon-magnon pairs by transferring pure multiquanta state to bundled multiquanta outside of the system. This nonreciprocal emission is a flexible switch that can be controlled with precision, and simultaneous emissions of different entangled pairs (such as photon-phonon or photon-magnon pairs) can even emerge but in opposite directions by driving the resonator from different directions. This ability to flexibly manipulate the system allows us to achieve directional entangled multiquanta emitters, and has also potential applications for building hybrid quantum networks and on-chip quantum communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12631v1-abstract-full').style.display = 'none'; document.getElementById('2406.12631v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures, accepted by Physical Review Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12414">arXiv:2406.12414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12414">pdf</a>, <a href="https://arxiv.org/format/2406.12414">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.053706">10.1103/PhysRevA.110.053706 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Harnessing spontaneous emission of correlated photon pairs from ladder-type giant atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Gao%2C+Z">Zhao-Min Gao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+J">Jia-Qi Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Ying-Huan Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+W">Wen-Xiao Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+X">Xin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12414v2-abstract-short" style="display: inline;"> The realization of correlated multi-photon processes usually depends on the interaction between nonlinear media and atoms. However, the nonlinearity of optical materials is generally weak, making it still very challenging to achieve correlated multi-photon dynamics at the few-photon level. Meanwhile, giant atoms, with their capability for multi-point coupling, which is a novel paradigm in quantum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12414v2-abstract-full').style.display = 'inline'; document.getElementById('2406.12414v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12414v2-abstract-full" style="display: none;"> The realization of correlated multi-photon processes usually depends on the interaction between nonlinear media and atoms. However, the nonlinearity of optical materials is generally weak, making it still very challenging to achieve correlated multi-photon dynamics at the few-photon level. Meanwhile, giant atoms, with their capability for multi-point coupling, which is a novel paradigm in quantum optics, mostly focus on the single photon field. In this work, using the method described in Phys. Rev. Res. 6. 013279 (2024), we reveal that the ladder-type three-level giant atom spontaneously emits strongly correlated photon pairs with high efficiency by designing and optimizing the target function. In addition, by encoding local phases into the optimal coupling sequence, directional two-photon correlated transfer can be achieved. This method does not require a nonlinear waveguide and can be realized in the conventional environment. We show that the photon pairs emitted in both the bidirectional and the chiral case exhibit strong correlation properties in both time and space. Such correlated photon pairs have great potential applications for quantum information processing. For example, numerical results show that our proposal can realize the two-photon mediated cascaded quantum system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12414v2-abstract-full').style.display = 'none'; document.getElementById('2406.12414v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages; 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 110, 053706 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.08491">arXiv:2406.08491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.08491">pdf</a>, <a href="https://arxiv.org/format/2406.08491">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TQE.2024.3467271">10.1109/TQE.2024.3467271 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FPGA-based Distributed Union-Find Decoder for Surface Codes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liyanage%2C+N">Namitha Liyanage</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yue Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tagare%2C+S">Siona Tagare</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhong%2C+L">Lin Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.08491v2-abstract-short" style="display: inline;"> A fault-tolerant quantum computer must decode and correct errors faster than they appear to prevent exponential slowdown due to error correction. The Union-Find (UF) decoder is promising with an average time complexity slightly higher than $O(d^3)$. We report a distributed version of the UF decoder that exploits parallel computing resources for further speedup. Using an FPGA-based implementation,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08491v2-abstract-full').style.display = 'inline'; document.getElementById('2406.08491v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.08491v2-abstract-full" style="display: none;"> A fault-tolerant quantum computer must decode and correct errors faster than they appear to prevent exponential slowdown due to error correction. The Union-Find (UF) decoder is promising with an average time complexity slightly higher than $O(d^3)$. We report a distributed version of the UF decoder that exploits parallel computing resources for further speedup. Using an FPGA-based implementation, we empirically show that this distributed UF decoder has a sublinear average time complexity with regard to $d$, given $O(d^3)$ parallel computing resources. The decoding time per measurement round decreases as $d$ increases, the first time for a quantum error decoder. The implementation employs a scalable architecture called Helios that organizes parallel computing resources into a hybrid tree-grid structure. Using a Xilinx VCU129 FPGA, we successfully implement $d$ up to 21 with an average decoding time of 11.5 ns per measurement round under 0.1\% phenomenological noise, and 23.7 ns for $d=17$ under equivalent circuit-level noise. This performance is significantly faster than any existing decoder implementation. Furthermore, we show that Helios can optimize for resource efficiency by decoding $d=51$ on a Xilinx VCU129 FPGA with an average latency of 544ns per measurement round. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.08491v2-abstract-full').style.display = 'none'; document.getElementById('2406.08491v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The article extends the work in arXiv:2301.08419, which also appeared in https://ieeexplore.ieee.org/document/10313800</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06063">arXiv:2406.06063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.06063">pdf</a>, <a href="https://arxiv.org/format/2406.06063">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Enabling Large-Scale and High-Precision Fluid Simulations on Near-Term Quantum Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ma%2C+T">Teng-Yang Ma</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ye%2C+C">Chuang-Chao Ye</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+L">Liang Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+M">Ming-Yang Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+X">Xi-Ning Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+X">Xiao-Fan Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yun-Jie Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+T">Tai-Ping Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yong Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Du%2C+L">Lei Du</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+L">Liang-Liang Guo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+H">Hai-Feng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tao%2C+H">Hao-Ran Tao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+T">Tian-Le Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Yang%2C+X">Xiao-Yan Yang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+Z">Ze-An Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+P">Peng Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+S">Sheng Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhao%2C+R">Ren-Ze Zhao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Jia%2C+Z">Zhi-Long Jia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kong%2C+W">Wei-Cheng Kong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Dou%2C+M">Meng-Han Dou</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J">Jun-Chao Wang</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06063v3-abstract-short" style="display: inline;"> Quantum computational fluid dynamics (QCFD) offers a promising alternative to classical computational fluid dynamics (CFD) by leveraging quantum algorithms for higher efficiency. This paper introduces a comprehensive QCFD method, including an iterative method &#34;Iterative-QLS&#34; that suppresses error in quantum linear solver, and a subspace method to scale the solution to a larger size. We implement o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06063v3-abstract-full').style.display = 'inline'; document.getElementById('2406.06063v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06063v3-abstract-full" style="display: none;"> Quantum computational fluid dynamics (QCFD) offers a promising alternative to classical computational fluid dynamics (CFD) by leveraging quantum algorithms for higher efficiency. This paper introduces a comprehensive QCFD method, including an iterative method &#34;Iterative-QLS&#34; that suppresses error in quantum linear solver, and a subspace method to scale the solution to a larger size. We implement our method on a superconducting quantum computer, demonstrating successful simulations of steady Poiseuille flow and unsteady acoustic wave propagation. The Poiseuille flow simulation achieved a relative error of less than $0.2\%$, and the unsteady acoustic wave simulation solved a 5043-dimensional matrix. We emphasize the utilization of the quantum-classical hybrid approach in applications of near-term quantum computers. By adapting to quantum hardware constraints and offering scalable solutions for large-scale CFD problems, our method paves the way for practical applications of near-term quantum computers in computational science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06063v3-abstract-full').style.display = 'none'; document.getElementById('2406.06063v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05711">arXiv:2406.05711</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05711">pdf</a>, <a href="https://arxiv.org/format/2406.05711">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Controlling Unknown Quantum States via Data-Driven State Representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhu%2C+Y">Yan Zhu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xiao%2C+T">Tailong Xiao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zeng%2C+G">Guihua Zeng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chiribella%2C+G">Giulio Chiribella</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Ya-Dong Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05711v2-abstract-short" style="display: inline;"> Accurate control of quantum states is crucial for quantum computing and other quantum technologies. In the basic scenario, the task is to steer a quantum system towards a target state through a sequence of control operations. Determining the appropriate operations, however, generally requires information about the initial state of the system. When the initial state is not {\em a priori} known, gat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05711v2-abstract-full').style.display = 'inline'; document.getElementById('2406.05711v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05711v2-abstract-full" style="display: none;"> Accurate control of quantum states is crucial for quantum computing and other quantum technologies. In the basic scenario, the task is to steer a quantum system towards a target state through a sequence of control operations. Determining the appropriate operations, however, generally requires information about the initial state of the system. When the initial state is not {\em a priori} known, gathering this information is generally challenging for quantum systems of increasing size. To address this problem, we develop a machine-learning algorithm that uses a small amount of measurement data to construct a representation of the system&#39;s state. The algorithm compares this data-driven representation with the representation of the target state, and uses reinforcement learning to output the appropriate control operations.We illustrate the effectiveness of the algorithm showing that it achieves accurate control of unknown many-body quantum states and non-Gaussian continuous-variable states using data from a limited set of quantum measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05711v2-abstract-full').style.display = 'none'; document.getElementById('2406.05711v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02470">arXiv:2406.02470</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02470">pdf</a>, <a href="https://arxiv.org/format/2406.02470">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Meta-Designing Quantum Experiments with Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Arlt%2C+S">S枚ren Arlt</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Duan%2C+H">Haonan Duan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+F">Felix Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xie%2C+S+M">Sang Michael Xie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yuhuai Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Krenn%2C+M">Mario Krenn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02470v1-abstract-short" style="display: inline;"> Artificial Intelligence (AI) has the potential to significantly advance scientific discovery by finding solutions beyond human capabilities. However, these super-human solutions are often unintuitive and require considerable effort to uncover underlying principles, if possible at all. Here, we show how a code-generating language model trained on synthetic data can not only find solutions to specif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02470v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02470v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02470v1-abstract-full" style="display: none;"> Artificial Intelligence (AI) has the potential to significantly advance scientific discovery by finding solutions beyond human capabilities. However, these super-human solutions are often unintuitive and require considerable effort to uncover underlying principles, if possible at all. Here, we show how a code-generating language model trained on synthetic data can not only find solutions to specific problems but can create meta-solutions, which solve an entire class of problems in one shot and simultaneously offer insight into the underlying design principles. Specifically, for the design of new quantum physics experiments, our sequence-to-sequence transformer architecture generates interpretable Python code that describes experimental blueprints for a whole class of quantum systems. We discover general and previously unknown design rules for infinitely large classes of quantum states. The ability to automatically generate generalized patterns in readable computer code is a crucial step toward machines that help discover new scientific understanding -- one of the central aims of physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02470v1-abstract-full').style.display = 'none'; document.getElementById('2406.02470v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10+3 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01335">arXiv:2406.01335</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01335">pdf</a>, <a href="https://arxiv.org/format/2406.01335">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Finance">q-fin.ST</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Statistics-Informed Parameterized Quantum Circuit via Maximum Entropy Principle for Data Science and Finance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+X">Xi-Ning Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+C">Cheng Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xu%2C+X">Xiao-Fan Xu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+C">Chao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Huan-Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+T">Tai-Ping Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yun-Jie Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yu-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01335v2-abstract-short" style="display: inline;"> Quantum machine learning has demonstrated significant potential in solving practical problems, particularly in statistics-focused areas such as data science and finance. However, challenges remain in preparing and learning statistical models on a quantum processor due to issues with trainability and interpretability. In this letter, we utilize the maximum entropy principle to design a statistics-i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01335v2-abstract-full').style.display = 'inline'; document.getElementById('2406.01335v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01335v2-abstract-full" style="display: none;"> Quantum machine learning has demonstrated significant potential in solving practical problems, particularly in statistics-focused areas such as data science and finance. However, challenges remain in preparing and learning statistical models on a quantum processor due to issues with trainability and interpretability. In this letter, we utilize the maximum entropy principle to design a statistics-informed parameterized quantum circuit (SI-PQC) for efficiently preparing and training of quantum computational statistical models, including arbitrary distributions and their weighted mixtures. The SI-PQC features a static structure with trainable parameters, enabling in-depth optimized circuit compilation, exponential reductions in resource and time consumption, and improved trainability and interpretability for learning quantum states and classical model parameters simultaneously. As an efficient subroutine for preparing and learning in various quantum algorithms, the SI-PQC addresses the input bottleneck and facilitates the injection of prior knowledge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01335v2-abstract-full').style.display = 'none'; document.getElementById('2406.01335v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00486">arXiv:2406.00486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00486">pdf</a>, <a href="https://arxiv.org/format/2406.00486">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Computing for Option Portfolio Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yusen Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+J+B">Jingbo B. Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Y">Yuying Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00486v1-abstract-short" style="display: inline;"> In this paper, we introduce an efficient and end-to-end quantum algorithm tailored for computing the Value-at-Risk (VaR) and conditional Value-at-Risk (CVar) for a portfolio of European options. Our focus is on leveraging quantum computation to overcome the challenges posed by high dimensionality in VaR and CVaR estimation. While our innovative quantum algorithm is designed primarily for estimatin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00486v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00486v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00486v1-abstract-full" style="display: none;"> In this paper, we introduce an efficient and end-to-end quantum algorithm tailored for computing the Value-at-Risk (VaR) and conditional Value-at-Risk (CVar) for a portfolio of European options. Our focus is on leveraging quantum computation to overcome the challenges posed by high dimensionality in VaR and CVaR estimation. While our innovative quantum algorithm is designed primarily for estimating portfolio VaR and CVaR for European options, we also investigate the feasibility of applying a similar quantum approach to price American options. Our analysis reveals a quantum &#39;no-go&#39; theorem within the current algorithm, highlighting its limitation in pricing American options. Our results indicate the necessity of investigating alternative strategies to resolve the complementarity challenge in pricing American options in future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00486v1-abstract-full').style.display = 'none'; document.getElementById('2406.00486v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20712">arXiv:2405.20712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20712">pdf</a>, <a href="https://arxiv.org/format/2405.20712">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Simulation of open quantum systems on universal quantum computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Liu%2C+H">Huan-Yu Liu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lin%2C+X">Xiaoshui Lin</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Z">Zhao-Yun Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Xue%2C+C">Cheng Xue</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Sun%2C+T">Tai-Ping Sun</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Li%2C+Q">Qing-Song Li</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zhuang%2C+X">Xi-Ning Zhuang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+Y">Yun-Jie Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Yu-Chun Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+M">Ming Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Guo%2C+G">Guo-Ping Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20712v1-abstract-short" style="display: inline;"> The rapid development of quantum computers has enabled demonstrations of quantum advantages on various tasks. However, real quantum systems are always dissipative due to their inevitable interaction with the environment, and the resulting non-unitary dynamics make quantum simulation challenging with only unitary quantum gates. In this work, we present an innovative and scalable method to simulate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20712v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20712v1-abstract-full" style="display: none;"> The rapid development of quantum computers has enabled demonstrations of quantum advantages on various tasks. However, real quantum systems are always dissipative due to their inevitable interaction with the environment, and the resulting non-unitary dynamics make quantum simulation challenging with only unitary quantum gates. In this work, we present an innovative and scalable method to simulate open quantum systems using quantum computers. We define an adjoint density matrix as a counterpart of the true density matrix, which reduces to a mixed-unitary quantum channel and thus can be effectively sampled using quantum computers. This method has several benefits, including no need for auxiliary qubits and noteworthy scalability. Moreover, accurate long-time simulation can also be achieved as the adjoint density matrix and the true dissipated one converge to the same state. Finally, we present deployments of this theory in the dissipative quantum $XY$ model for the evolution of correlation and entropy with short-time dynamics and the disordered Heisenberg model for many-body localization with long-time dynamics. This work promotes the study of real-world many-body dynamics with quantum computers, highlighting the potential to demonstrate practical quantum advantages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20712v1-abstract-full').style.display = 'none'; document.getElementById('2405.20712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14243">arXiv:2405.14243</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.14243">pdf</a>, <a href="https://arxiv.org/format/2405.14243">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Power-Law-Exponential Interaction Induced Quantum Spiral Phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tian%2C+G">Guoqing Tian</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+Y">Ying Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=L%C3%BC%2C+X">Xin-You L眉</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14243v2-abstract-short" style="display: inline;"> We theoretically predict a kind of power-law-exponential (PLE) dipole-dipole interaction between quantum emitters in a 1D waveguide QED system. This unconventional long-range interaction is the combination of power-law growth and exponential decay couplings. Applying PLE interaction to a spin model, we uncover the rich many-body phases. Most remarkably, we find that PLE interaction can induce the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14243v2-abstract-full').style.display = 'inline'; document.getElementById('2405.14243v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14243v2-abstract-full" style="display: none;"> We theoretically predict a kind of power-law-exponential (PLE) dipole-dipole interaction between quantum emitters in a 1D waveguide QED system. This unconventional long-range interaction is the combination of power-law growth and exponential decay couplings. Applying PLE interaction to a spin model, we uncover the rich many-body phases. Most remarkably, we find that PLE interaction can induce the ordered and critical spiral phases. These spiral phases emerge from the strong frustration generated by the power-law factor of PLE interaction, hence they are absent for other types of long-range interaction, e.g., pure exponential and power-law decay interactions. Our work is also applicable for the higher dimensional systems. It fundamentally broadens the realm of many-body physics and has the significant applications in quantum simulation of strong correlated matters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14243v2-abstract-full').style.display = 'none'; document.getElementById('2405.14243v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 033290 (2024) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Wu%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10