CINXE.COM
Search results for: technology transfer models
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: technology transfer models</title> <meta name="description" content="Search results for: technology transfer models"> <meta name="keywords" content="technology transfer models"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="technology transfer models" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="technology transfer models"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16022</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: technology transfer models</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16022</span> University-Industry Technology Transfer and Technology Transfer Offices in Emerging Economies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Carlos%20Rodr%C3%ADguez">José Carlos Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20G%C3%B3mez"> Mario Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to get insight on the nature of university-industry technology transfer (UITT) and technology transfer offices (TTOs) activity at universities in the case of emerging economies. In relation to the process of transferring knowledge/technology in the case of emerging economies, knowledge/technology transfer in these economies are more reactive than in developed economies due to differences in maturity of technologies. It is assumed in this paper that knowledge/technology transfer is a complex phenomenon, and thus the paper contributes to get insight on the nature of UITT and TTOs creation in the case of emerging economies by using a system dynamics model of knowledge/technology transfer in these countries. The paper recognizes the differences between industrialized countries and emerging economies on these phenomena. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=university-industry%20technology%20transfer" title="university-industry technology transfer">university-industry technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20offices" title=" technology transfer offices"> technology transfer offices</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models" title=" technology transfer models"> technology transfer models</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20economies" title=" emerging economies"> emerging economies</a> </p> <a href="https://publications.waset.org/abstracts/88464/university-industry-technology-transfer-and-technology-transfer-offices-in-emerging-economies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16021</span> Patent License of Transfer Technology: Challenges and Opportunities in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agung%20Sujatmiko">Agung Sujatmiko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the purposes of patent licensing was to transfer technology from developed countries to developing countries. For this reason, the role of the patent license agreement was very important and had a function as a tool to achieve technological development. This goal was very good, but in fact, many problems and obstacles arose in its implementation, so the technology transfer that had been implemented had not given good results. For this reason, it was necessary to find a solution so that technology could switch properly. The problem approach used the statutory and conceptual approaches. The analysis used was deductive by analyzing general laws and regulations and then concluding. Several regulations related to technology transfer were the main source to find answers to why technology transfer was difficult to achieve and what caused it. Once the cause was known, a solution would be sought. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=license" title="license">license</a>, <a href="https://publications.waset.org/abstracts/search?q=patent" title=" patent"> patent</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a>, <a href="https://publications.waset.org/abstracts/search?q=tie%20in%20clause" title=" tie in clause"> tie in clause</a> </p> <a href="https://publications.waset.org/abstracts/168971/patent-license-of-transfer-technology-challenges-and-opportunities-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16020</span> Diversity and Intensity of International Technology Transfer and their Impacts on Organizational Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seongryong%20Kang">Seongryong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Woonjin%20Kim"> Woonjin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungjoo%20Lee"> Sungjoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the environment of fierce competition and globalized economy, international technology collaboration has gained increasing attention as a way to improve innovation efficiency. While international technology transfer helps a firm to acquire necessary technology in a short period of time, it also has a risk; embedding external technology from overseas partners may cause a transaction cost due to the regional, cultural and language barriers, which tend to offset the benefits of such transfer. Though a number of previous studies have focused on the effects of technology in-transfer on firm performance, few have conducted in the context of international technology transfer. To fill this gap, this study aims to investigate the impact of international technology in-transfer on firm performance – both innovation and financial performance, with a particular emphasis on the diversity and intensity of such transfer. To do this, we adopted technology balance payment (TBP) data of Korean firms from 2010 to 2011, where an intermediate regression analysis was used to identify the intermediate effects of absorptive capacity. The analysis results indicate that i) the diversity and intensity of international technology transfer influence innovation performance by improving R&D capability positively; and ii) the diversity has a positive impact but the intensity has a negative impact on financial performance through the intermediation of R&D intensity. The research findings are expected to provide meaningful implications for establishing global technology strategy and developing policy programs to facilitate technology transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity" title="diversity">diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity" title=" intensity"> intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20technology%20acquisition" title=" international technology acquisition"> international technology acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title=" technology transfer"> technology transfer</a> </p> <a href="https://publications.waset.org/abstracts/71199/diversity-and-intensity-of-international-technology-transfer-and-their-impacts-on-organizational-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16019</span> An Investigation into Enablers and Barriers of Reverse Technology Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirmal%20Kundu">Nirmal Kundu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Bhar"> Chandan Bhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Visveswaran%20Pandurangan"> Visveswaran Pandurangan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technology is the most valued possession for a country or an organization. The economic development depends not on stock of technology but on the capabilities how the technology is being exploited. The technology transfer is the best way how the developing countries have an access to state-of- the-art technology. Traditional technology transfer is a unidirectional phenomenon where technology is transferred from developed to developing countries. But now there is a change of wind. There is a general agreement that global shift of economic power is under way from west to east. As China and India are making the transition from users to producers, and producers to innovators, this has increasing important implications on economy, technology and policy of global trade. As a result, Reverse technology transfer has become a phenomenon and field of study in technology management. The term “Reverse Technology Transfer” is not well defined. Initially the concept of Reverse technology transfer was associated with the phenomenon of “Brain drain” from developing to developed countries. In the second phase, Reverse Technology Transfer was associated with the transfer of knowledge and technology from subsidiaries to multinationals. Finally, time has come now to extend the concept of reverse technology transfer to two different organizations or countries related or unrelated by traditional technology transfer but the transfer or has essentially received the technology through traditional mode of technology transfer. The objective of this paper is to study; 1) the present status of Reverse technology transfer, 2) the factors which are the enablers and barriers of Reverse technology transfer and 3) how the reverse technology transfer strategy can be integrated in the technology policy of a country which will give the countries an economic boost. The research methodology used in this study is a combination of literature review, case studies and key informant interviews. The literature review includes both published as well as unpublished sources of literature. In case study, attempt has been made to study the records of reverse technology transfer that have been occurred in developing countries. In case of key informant interviews, informal telephonic discussions have been carried out with the key executives of the organizations (industry, university and research institutions) who are actively engaged in the process of technology transfer- traditional as well as reverse. Reverse technology transfer is possible only by creating technological capabilities. Following four important enablers coupled with government active and aggressive action can help to build technology base to reach to the goal of Reverse technology transfer 1) Imitation to innovation, 2) Reverse engineering, 3) Collaborative R & D approach, and 4) Preventing reverse brain drain. The barriers that come in the way are the mindset of over dependence, over subordination and parent–child attitude (not adult attitude). Exploitation of these enablers and overcoming the barriers of reverse technology transfer, the developing countries like India and China can prove that going “reverse” is the best way to move forward and again establish themselves as leader of the future world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barriers%20of%20reverse%20technology%20transfer" title="barriers of reverse technology transfer">barriers of reverse technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=enablers%20of%20reverse%20technology%20transfer" title=" enablers of reverse technology transfer"> enablers of reverse technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20transfer" title=" knowledge transfer"> knowledge transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20technology%20transfer" title=" reverse technology transfer"> reverse technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title=" technology transfer"> technology transfer</a> </p> <a href="https://publications.waset.org/abstracts/35014/an-investigation-into-enablers-and-barriers-of-reverse-technology-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16018</span> Technology Transfer and FDI: Some Lessons for Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assaad%20Ghazouani">Assaad Ghazouani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedia%20Teraoui"> Hedia Teraoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this article is to try to see if the FDI actually contributes to technology transfer in Tunisia or are there other sources that can guarantee this transfer? The answer to this problem was gradual as we followed an approach using economic theory, the reality of Tunisia and econometric and statistical tools. We examined the relationship between technology transfer and FDI in Tunisia over a period of 40 years from 1970 to 2010. We estimated in two stages: first, a growth equation, then we have learned from this regression residue (proxy technology), secondly, we regressed on European FDI, exports of manufactures, imports of goods from the European Union in addition to other variables to test the robustness of the results and describing the level of infrastructure in the country. It follows from our study that technology transfer does not originate primarily and exclusively in the FDI and the latter is econometrically weakly with technology transfer and spill over effect of FDI does not seem to occur according to our results. However, the relationship between technology transfer and imports is negative and significant. Although this result is cons-intuitive, is recurrent in the literature of panel data. It has also given rise to intense debate on the microeconomic modelling as well as on the empirical applications. Technology transfer through trade or foreign investment has become a catalyst for growth recognized by numerous empirical studies in particular. However, the relationship technology transfer FDI is more complex than it appears. This complexity is due, primarily, but not exclusively to the close link between FDI and the characteristics of the host country. This is essentially the host's responsibility to establish general conditions, transparent and conducive to investment, and to strengthen human and institutional capacity necessary for foreign capital flows that can have real effects on growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title="technology transfer">technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=foreign%20direct%20investment" title=" foreign direct investment"> foreign direct investment</a>, <a href="https://publications.waset.org/abstracts/search?q=economics" title=" economics"> economics</a>, <a href="https://publications.waset.org/abstracts/search?q=finance" title=" finance"> finance</a> </p> <a href="https://publications.waset.org/abstracts/6103/technology-transfer-and-fdi-some-lessons-for-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16017</span> Patterns and Effects of International Trade in Technology: Firm-Level Evidence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heeyong%20Noh">Heeyong Noh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongryong%20Kang"> Seongryong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungjoo%20Lee"> Sungjoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world becomes increasingly interconnected, firms have tried to explore market opportunities not only in the domestic market but also abroad. In particular, transactions of intangible assets in the global market now take on great importance. Accordingly, technology transfer activities such as patent licensing, copyright transfer, or workforce trainings which are considered significant to leverage an organization’s internal capabilities, are occurring more frequently and briskly across the world than ever before. Though a number of studies have addressed the issues regarding technology transfer, most of them have focused on university-industry technology transfer. Of course, some have investigated international technology transfer phenomenon but used patent citations data as a proxy. In order to understand the phenomena more clearly, it would be necessary to collect and analyze data that can measure technology transfer activities between firms more directly. Therefore, this study aims to examine the patterns of international trade in technology by employing data about international technology in-licensing activities in Korean firms. We also investigate the effect of international technology in-licensing strategy on a firm’s innovation performance. The research findings are expected to help R&D managers understand how firms have absorbed technological knowledge from foreign firms in the form of licensing and further develop effective international collaboration strategies. In addition, significant implications can be offered for political decision-making regarding technology trade within increasing international interconnections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=international%20technology%20trade" title="international technology trade">international technology trade</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20trade%20effect" title=" technology trade effect"> technology trade effect</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title=" technology transfer"> technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=R%26D%20managers" title=" R&D managers"> R&D managers</a> </p> <a href="https://publications.waset.org/abstracts/29039/patterns-and-effects-of-international-trade-in-technology-firm-level-evidence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16016</span> Mask-Prompt-Rerank: An Unsupervised Method for Text Sentiment Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yufen%20Qin">Yufen Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text sentiment transfer is an important branch of text style transfer. The goal is to generate text with another sentiment attribute based on a text with a specific sentiment attribute while maintaining the content and semantic information unrelated to sentiment unchanged in the process. There are currently two main challenges in this field: no parallel corpus and text attribute entanglement. In response to the above problems, this paper proposed a novel solution: Mask-Prompt-Rerank. Use the method of masking the sentiment words and then using prompt regeneration to transfer the sentence sentiment. Experiments on two sentiment benchmark datasets and one formality transfer benchmark dataset show that this approach makes the performance of small pre-trained language models comparable to that of the most advanced large models, while consuming two orders of magnitude less computing and memory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=language%20model" title="language model">language model</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=prompt" title=" prompt"> prompt</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20sentiment%20transfer" title=" text sentiment transfer"> text sentiment transfer</a> </p> <a href="https://publications.waset.org/abstracts/173904/mask-prompt-rerank-an-unsupervised-method-for-text-sentiment-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16015</span> Technical and Vocational Education and Technology Transfer: Departments of Electrical Engineering at the Public Authority for Applied Education and Training, PAAE&T, Kuwait, a case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Al-Ali">Salah Al-Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The role of technology transfer in technical and vocational education is significant since lecturers, trainers, and students can obtain the updated knowledge, skills, and attitudes that are currently being practiced by local and international businesses and industries. Technology transfer can indeed close the gap between what is being learned and practiced in technical and vocational institutions and the world of work. However, the success of technology transfer in technical and vocational education perspectives would depend entirely on the quality of management. It is their responsibility when signing an agreement with internal or external providers of technology, to include calluses that enable academic staff in related specialty to interact positively and freely with the supplier of technology. In other terms, ensuring no clear or hidden restriction is imposed by the supplier of technology to acquire the know-how and know-why that are embedded in the agreement. In this paper, I present some of the empirical results and observations which describe the interactions between the supplier of technology (Electrical Engineering System) and the recipient of the technology (PAAE&T) in the field of technology transfer. In another word, whether the PAAE&T have taken the opportunity while building its new headquarter, the transfer of technology from the supplier of an electrical engineering system to its academic staff in its various Electrical Engineering Academic Departments at the PAAE&T colleges and institutions. The paper argues that, for effective and efficient transfer of technology, the recipient (PAAE&T) must ensure that the agreement with the supplier of the Electrical Engineering System must include calluses that would allow the PAAE&T academic staff in its various Electrical Engineering Academic Departments in its various colleges and institutions to acquire the technology embedded in the agreement. The paper concludes that the transfer of technology and the building of a local scientific and technical infrastructure must be viewed by Kuwaiti decision-makers as complementary to one another. Thus, reducing, to great extent, the level of dependence on expatriates, particularly in the essential sectors of the economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vocational%20and%20technical%20education" title="vocational and technical education">vocational and technical education</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title=" technology transfer"> technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancing%20indigenous%20capabilities" title=" enhancing indigenous capabilities"> enhancing indigenous capabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwait" title=" Kuwait"> Kuwait</a> </p> <a href="https://publications.waset.org/abstracts/148701/technical-and-vocational-education-and-technology-transfer-departments-of-electrical-engineering-at-the-public-authority-for-applied-education-and-training-paaet-kuwait-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16014</span> Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mst.%20Tuhin%20Akter">Mst. Tuhin Akter</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharun%20Akter%20Khushbu"> Sharun Akter Khushbu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Shaqib"> S. M. Shaqib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strawberry%20freshness%20evaluation" title="strawberry freshness evaluation">strawberry freshness evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20network" title=" deep neural network"> deep neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title=" transfer learning"> transfer learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20augmentation" title=" image augmentation"> image augmentation</a> </p> <a href="https://publications.waset.org/abstracts/177872/efficient-deep-neural-networks-for-real-time-strawberry-freshness-monitoring-a-transfer-learning-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16013</span> Finite Element Modeling of Heat and Moisture Transfer in Porous Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20D.%20Thi">V. D. Thi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Li"> M. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khelifa"> M. Khelifa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Ganaoui"> M. El Ganaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Rogaume"> Y. Rogaume</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20transfer" title=" moisture transfer"> moisture transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/71098/finite-element-modeling-of-heat-and-moisture-transfer-in-porous-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16012</span> Forster Energy Transfer and Optoelectronic Properties of (PFO/TiO2)/Fluorol 7GA Hybrid Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bandar%20Ali%20Al-Asbahi">Bandar Ali Al-Asbahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hafizuddin%20Haji%20Jumali"> Mohammad Hafizuddin Haji Jumali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forster energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/TiO2 nanoparticles (NPs) as a donor and Fluorol 7GA as an acceptor has been studied. The energy transfer parameters were calculated by using mathematical models. The dominant mechanism responsible for the energy transfer between the donor and acceptor molecules was Forster-type, as evidenced by large values of quenching rate constant, energy transfer rate constant and critical distance of energy transfer. Moreover, these composites which were used as an emissive layer in organic light emitting diodes, were investigated in terms of current density–voltage and electroluminescence spectra. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20transfer%20parameters" title="energy transfer parameters">energy transfer parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=forster-type" title=" forster-type"> forster-type</a>, <a href="https://publications.waset.org/abstracts/search?q=electroluminescence" title=" electroluminescence"> electroluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20light%20emitting%20diodes" title=" organic light emitting diodes "> organic light emitting diodes </a> </p> <a href="https://publications.waset.org/abstracts/1635/forster-energy-transfer-and-optoelectronic-properties-of-pfotio2fluorol-7ga-hybrid-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16011</span> Response Surface Methodology to Optimize the Performance of a Co2 Geothermal Thermosyphon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badache%20Messaoud">Badache Messaoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geothermal thermosyphons (GTs) are increasingly used in many heating and cooling geothermal applications owing to their high heat transfer performance. This paper proposes a response surface methodology (RSM) to investigate and optimize the performance of a CO2 geothermal thermosyphon. The filling ratio (FR), temperature, and flow rate of the heat transfer fluid are selected as the designing parameters, and heat transfer rate and effectiveness are adopted as response parameters (objective functions). First, a dedicated experimental GT test bench filled with CO2 was built and subjected to different test conditions. An RSM was used to establish corresponding models between the input parameters and responses. Various diagnostic tests were used to assess evaluate the quality and validity of the best-fit models, which explain respectively 98.9% and 99.2% of the output result’s variability. Overall, it is concluded from the RSM analysis that the heat transfer fluid inlet temperatures and the flow rate are the factors that have the greatest impact on heat transfer (Q) rate and effectiveness (εff), while the FR has only a slight effect on Q and no effect on εff. The maximal heat transfer rate and effectiveness achieved are 1.86 kW and 47.81%, respectively. Moreover, these optimal values are associated with different flow rate levels (mc level = 1 for Q and -1 for εff), indicating distinct operating regions for maximizing Q and εff within the GT system. Therefore, a multilevel optimization approach is necessary to optimize both the heat transfer rate and effectiveness simultaneously. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20thermosiphon" title="geothermal thermosiphon">geothermal thermosiphon</a>, <a href="https://publications.waset.org/abstracts/search?q=co2" title=" co2"> co2</a>, <a href="https://publications.waset.org/abstracts/search?q=Response%20surface%20methodology" title=" Response surface methodology"> Response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20performance" title=" heat transfer performance"> heat transfer performance</a> </p> <a href="https://publications.waset.org/abstracts/168575/response-surface-methodology-to-optimize-the-performance-of-a-co2-geothermal-thermosyphon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16010</span> Applicable Law to Intellectual and Industrial Property Agreements According to Turkish Private International Law and Rome I Regulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sema%20Cortoglu%20Koca">Sema Cortoglu Koca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intellectual and industrial property rules, have a substantial effect on the sustainable development. Intellectual and industrial property rights, as temporary privileges over the products of intellectual activity, determine the supervision of information and technology. The level and scope of intellectual property protection thus influence the flow of technology between developed and developing countries. In addition, intellectual and industrial property rights are based on the notion of balance. Since they are time-limited rights, they reconcile private and public benefits. That is, intellectual and industrial property rights respond to both private interests and public interests by rewarding innovators and by promoting the dissemination of ideas, respectively. Intellectual and industrial property rights can, therefore, be a tool for sustainable development. If countries can balance their private and public interests according to their particular context and circumstances, they can ensure the intellectual and industrial property which promotes innovation and technology transfer relevant for them. People, enterprises and countries who need technology, can transfer developed technology which is acquired by people, enterprises and countries so as to decrease their technological necessity and improve their technology. Because of the significance of intellectual and industrial property rights on the technology transfer law as mentioned above, this paper is confined to intellectual and industrial property agreements especially technology transfer contracts. These are license contract, know-how contract, franchise agreement, joint venture agreement, management agreement, research and development agreement. In Turkey, technology transfer law is still a developing subject. For developing countries, technology transfer regulations are very important for their private international law because these countries do not know which technology transfer law is applicable when conflicts arise. In most technology transfer contracts having international elements, the parties choose a law to govern their contracts. Where the parties do not choose a law, either expressly or impliedly, and matters which is not excluded in party autonomy, the court has to determine the applicable law to contracts in a matter of capacity, material, the formal and essential validity of contracts. For determining the proper law of technology transfer contracts, it is tried to build a rule for applying all technology transfer contracts. This paper is confined to the applicable law to intellectual and industrial property agreements according to ‘5718 Turkish Act on Private International Law and Civil Procedure’ and ‘Regulation (EC) No 593/2008 of the European Parliament and of the Council of 17 June 2008 on the law applicable to contractual obligations (Rome I)’. Like these complex contracts, to find a rule can be really difficult. We can arrange technology transfer contracts in groups, and we can determine the rule and connecting factors to these groups. For the contracts which are not included in these groups, we can determine a special rule considering the characteristics of the contract. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intellectual%20and%20industrial%20property%20agreements" title="intellectual and industrial property agreements">intellectual and industrial property agreements</a>, <a href="https://publications.waset.org/abstracts/search?q=Rome%20I%20regulation" title=" Rome I regulation"> Rome I regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title=" technology transfer"> technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkish%20act%20on%20private%20international%20law%20and%20civil%20procedure" title=" Turkish act on private international law and civil procedure"> Turkish act on private international law and civil procedure</a> </p> <a href="https://publications.waset.org/abstracts/93389/applicable-law-to-intellectual-and-industrial-property-agreements-according-to-turkish-private-international-law-and-rome-i-regulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16009</span> Gas Condensing Unit with Inner Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dagnija%20Blumberga">Dagnija Blumberga</a>, <a href="https://publications.waset.org/abstracts/search?q=Toms%20Prodanuks"> Toms Prodanuks</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivars%20Veidenbergs"> Ivars Veidenbergs</a>, <a href="https://publications.waset.org/abstracts/search?q=Andra%20Blumberga"> Andra Blumberga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas condensing units with inner tubes heat exchangers represent third generation technology and differ from second generation heat and mass transfer units, which are fulfilled by passive filling material layer. The first one improves heat and mass transfer by increasing cooled contact surface of gas and condensate drops and film formed in inner tubes heat exchanger. This paper presents a selection of significant factors which influence the heat and mass transfer. Experimental planning is based on the research and analysis of main three independent variables; velocity of water and gas as well as density of spraying. Empirical mathematical models show that the coefficient of heat transfer is used as dependent parameter which depends on two independent variables; water and gas velocity. Empirical model is proved by the use of experimental data of two independent gas condensing units in Lithuania and Russia. Experimental data are processed by the use of heat transfer criteria-Kirpichov number. Results allow drawing the graphical nomogram for the calculation of heat and mass transfer conditions in the innovative and energy efficient gas cooling unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20condensing%20unit" title="gas condensing unit">gas condensing unit</a>, <a href="https://publications.waset.org/abstracts/search?q=filling" title=" filling"> filling</a>, <a href="https://publications.waset.org/abstracts/search?q=inner%20heat%20exchanger" title=" inner heat exchanger"> inner heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=package" title=" package"> package</a>, <a href="https://publications.waset.org/abstracts/search?q=spraying" title=" spraying"> spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=tunes" title=" tunes"> tunes</a> </p> <a href="https://publications.waset.org/abstracts/56372/gas-condensing-unit-with-inner-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16008</span> Heat Transfer Enhancement by Turbulent Impinging Jet with Jet's Velocity Field Excitations Using OpenFOAM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naseem%20Uddin">Naseem Uddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impinging jets are used in variety of engineering and industrial applications. This paper is based on numerical simulations of heat transfer by turbulent impinging jet with velocity field excitations using different Reynolds Averaged Navier-Stokes Equations models. Also Detached Eddy Simulations are conducted to investigate the differences in the prediction capabilities of these two simulation approaches. In this paper the excited jet is simulated in non-commercial CFD code OpenFOAM with the goal to understand the influence of dynamics of impinging jet on heat transfer. The jet’s frequencies are altered keeping in view the preferred mode of the jet. The Reynolds number based on mean velocity and diameter is 23,000 and jet’s outlet-to-target wall distance is 2. It is found that heat transfer at the target wall can be influenced by judicious selection of amplitude and frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excitation" title="excitation">excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=impinging%20jet" title=" impinging jet"> impinging jet</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20models" title=" turbulence models"> turbulence models</a> </p> <a href="https://publications.waset.org/abstracts/59849/heat-transfer-enhancement-by-turbulent-impinging-jet-with-jets-velocity-field-excitations-using-openfoam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16007</span> Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20Paulsen">Sean Paulsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Casey"> Michael Casey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title="transfer learning">transfer learning</a>, <a href="https://publications.waset.org/abstracts/search?q=fMRI" title=" fMRI"> fMRI</a>, <a href="https://publications.waset.org/abstracts/search?q=self-supervised" title=" self-supervised"> self-supervised</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20decoding" title=" brain decoding"> brain decoding</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer" title=" transformer"> transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=multitask%20training" title=" multitask training"> multitask training</a> </p> <a href="https://publications.waset.org/abstracts/165380/self-supervised-pretraining-on-sequences-of-functional-magnetic-resonance-imaging-data-for-transfer-learning-to-brain-decoding-tasks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16006</span> Prediction of Oxygen Transfer and Gas Hold-Up in Pneumatic Bioreactors Containing Viscous Newtonian Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caroline%20E.%20Mendes">Caroline E. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=Alberto%20C.%20Badino"> Alberto C. Badino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pneumatic reactors have been widely employed in various sectors of the chemical industry, especially where are required high heat and mass transfer rates. This study aimed to obtain correlations that allow the prediction of gas hold-up (Ԑ) and volumetric oxygen transfer coefficient (kLa), and compare these values, for three models of pneumatic reactors on two scales utilizing Newtonian fluids. Values of kLa were obtained using the dynamic pressure-step method, while was used for a new proposed measure. Comparing the three models of reactors studied, it was observed that the mass transfer was superior to draft-tube airlift, reaching of 0.173 and kLa of 0.00904s-1. All correlations showed good fit to the experimental data (R2≥94%), and comparisons with correlations from the literature demonstrate the need for further similar studies due to shortage of data available, mainly for airlift reactors and high viscosity fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20column" title="bubble column">bubble column</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20loop%20airlift" title=" internal loop airlift"> internal loop airlift</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20hold-up" title=" gas hold-up"> gas hold-up</a>, <a href="https://publications.waset.org/abstracts/search?q=kLa" title=" kLa"> kLa</a> </p> <a href="https://publications.waset.org/abstracts/2744/prediction-of-oxygen-transfer-and-gas-hold-up-in-pneumatic-bioreactors-containing-viscous-newtonian-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16005</span> The Appropriate Patent System to Promote Economic Growth in Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Fooladi">Mohammad Reza Fooladi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The patent system which fits with industrial and economic situation in the country, by strengthening research and development, technology transfer and increasing foreign investment can provide economic and industrial growth of the countries. However, the extent and manner of support should be commensurate with the country's conditions and comply with significant rules to have a positive effect on research and development, technology transfer and the amount of foreign investment. The present article tries to while reviewing the state of effectiveness of the patent system on economic growth, to illustrate the characteristics of the patent system fits Afghanistan and according to this matter provide the necessary recommendations about the improvement of laws and regulations related to the patent in Afghanistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patent" title="patent">patent</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title=" economic growth"> economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title=" technology transfer"> technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Afghanistan" title=" Afghanistan"> Afghanistan</a> </p> <a href="https://publications.waset.org/abstracts/68380/the-appropriate-patent-system-to-promote-economic-growth-in-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16004</span> A Study to Design a Survey to Encourage the University-Industry Relation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lizbeth%20Puerta">Lizbeth Puerta</a>, <a href="https://publications.waset.org/abstracts/search?q=Enselmina%20Mar%C3%ADn"> Enselmina Marín</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to present a survey to be applied to professors of public universities, to identify the factors that benefit or hinder the university-industry relation. Hence, this research studies some elements that integrate the variables: Knowledge management, technology management, and technology transfer; to define the existence of a relation between these variables and the industry necessities of innovation. This study is exploratory, descriptive and non-experimental. The research question is: What is the impact of the knowledge management, the technology management, and the technology transfer, made by administrative support areas of the public universities, in the industries innovation? Thus, literature review was made to identify some elements that should be considered to design a survey that allows to obtain valid information to the study variables. After this, the survey was developed, and the Content Validity Analysis was made through the Lawshe Model. The analysis indicated that the Content Validity Index (CVI) was 0.80. Hence, it was determined that this survey presents acceptable psychometric properties to be used as an evaluation tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=innovation" title="innovation">innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title=" knowledge management"> knowledge management</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20management" title=" technology management"> technology management</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title=" technology transfer"> technology transfer</a> </p> <a href="https://publications.waset.org/abstracts/35491/a-study-to-design-a-survey-to-encourage-the-university-industry-relation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16003</span> Li-Fi Technology: Data Transmission through Visible Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahzad%20Hassan">Shahzad Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Saeed"> Kamran Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication" title="communication">communication</a>, <a href="https://publications.waset.org/abstracts/search?q=LED" title=" LED"> LED</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Fi" title=" Li-Fi"> Li-Fi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wi-Fi" title=" Wi-Fi"> Wi-Fi</a> </p> <a href="https://publications.waset.org/abstracts/75851/li-fi-technology-data-transmission-through-visible-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16002</span> On the Influence of Thermal Radiation Upon Heat Transfer Characteristics of a Porous Media Under Local Thermal Non-Equilibrium Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Mahmoudi">Yasser Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Karimi"> Nader Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work investigates numerically the effect of thermal radiation from the solid phase on the rate of heat transfer inside a porous medium. Forced convection heat transfer process within a pipe filled with a porous media is considered. The Darcy-Brinkman-Forchheimer model is utilized to represent the fluid transport within the porous medium. A local thermal non-equilibrium (LTNE), two-equation model is used to represent the energy transport for the solid and fluid phases. The radiative heat transfer equation is solved by discrete ordinate method (DOM) to compute the radiative heat flux in the porous medium. Two primary approaches (models A and B) are used to represent the boundary conditions for constant wall heat flux. The effects of radiative heat transfer on the Nusselt numbers of the two phases are examined by comparing the results obtained by the application of models A and B. The fluid Nusselt numbers calculated by the application of models A and B show that the Nusselt number obtained by model A for the radiative case is higher than those predicted for the non-radiative case. However, for model B the fluid Nusselt numbers obtained for the radiative and non-radiative cases are similar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title="porous media">porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20thermal%20non-equilibrium" title=" local thermal non-equilibrium"> local thermal non-equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection%20heat%20transfer" title=" forced convection heat transfer"> forced convection heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation"> thermal radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Discrete%20Ordinate%20Method%20%28DOM%29" title=" Discrete Ordinate Method (DOM)"> Discrete Ordinate Method (DOM)</a> </p> <a href="https://publications.waset.org/abstracts/7823/on-the-influence-of-thermal-radiation-upon-heat-transfer-characteristics-of-a-porous-media-under-local-thermal-non-equilibrium-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16001</span> Impact of Reverse Technology Transfer on Innovation Capabilities: An Econometric Analysis for Mexican Transnational Corporations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lissette%20Alejandra%20Lara">Lissette Alejandra Lara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20Gomez"> Mario Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Carlos%20Rodriguez"> Jose Carlos Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ransnational corporations (TNCs) as units in which it is possible technology and knowledge transfer across borders and the potential for generating innovation and contributing in economic development both in home and host countries have been widely acknowledged in the foreign direct investment (FDI) literature. Particularly, the accelerated expansion of emerging countries TNCs in the last decades has guided an uprising research stream that measure the presence of reverse technology transfer, defined as the extent to which emerging countries’ TNCs use outward FDI in a host country through certain mechanisms to absorb and transfer knowledge thus improving its technological capabilities in the home country. The objective of this paper is to test empirically the presence of reverse technology transfer and its impact on the innovation capabilities in Mexican transnational corporations (MXTNCs) as a part of the emerging countries TNCs that have successfully entered to industrialized markets. Using a panel dataset of 22 MXTNCs over the period 1994-2015, the results of the econometric model demonstrate that the amount of Mexican outward FDI and the research and development (R&D) expenditure in host developed countries had a positive impact on the innovation capabilities at the firm and industry level. There is also evidence that management of acquired brands and the organizational structure of Mexican subsidiaries improved these capabilities. Implications for internationalization strategies of emerging countries corporations and future research guidelines are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emerging%20countries" title="emerging countries">emerging countries</a>, <a href="https://publications.waset.org/abstracts/search?q=foreign%20direct%20investment" title=" foreign direct investment"> foreign direct investment</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20capabilities" title=" innovation capabilities"> innovation capabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=Mexican%20transnational%20corporations" title=" Mexican transnational corporations"> Mexican transnational corporations</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20technology%20transfer" title=" reverse technology transfer"> reverse technology transfer</a> </p> <a href="https://publications.waset.org/abstracts/75313/impact-of-reverse-technology-transfer-on-innovation-capabilities-an-econometric-analysis-for-mexican-transnational-corporations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16000</span> Key Issues in Transfer Stage of BOT Project: Experience from China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Liguang">Wang Liguang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Xueqing"> Zhang Xueqing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The build-operate-transfer (BOT) project delivery system has provided effective routes to mobilize private sector funds, innovative technologies, management skills and operational efficiencies for public infrastructure development and have been widely used in China during the last 20 years. Many BOT projects in China will be smoothly transferred to the government soon and the transfer stage, which is considered as the last stage, must be studied carefully and handled well to achieve the overall success of BOT projects. There will be many issues faced by both the public sector and private sector in the transfer stage of BOT projects, including project post-assessment, technology and documents transfer, personal training and staff transition, etc. and sometimes additional legislation is needed for future operation and management of facilities. However, most previous studies focused on the bidding, financing, and building and operation stages instead of transfer stage. This research identifies nine key issues in the transfer stage of BOT projects through a comprehensive study on three cases in China, and the expert interview and expert discussion meetings are held to validate the key issues and give detail analysis. A proposed framework of transfer management is prepared based on the experiences derived and lessons drawn from the case studies and expert interview and discussions, which is expected to improve the transfer management of BOT projects in practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BOT%20project" title="BOT project">BOT project</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20issues" title=" key issues"> key issues</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20management" title=" transfer management"> transfer management</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20stage" title=" transfer stage"> transfer stage</a> </p> <a href="https://publications.waset.org/abstracts/76322/key-issues-in-transfer-stage-of-bot-project-experience-from-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15999</span> Numerical and Experimental Study on Bed-Wall Heat Transfer in Conical Fluidized Bed Combustor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ik%E2%80%93Tae%20Im">Ik–Tae Im</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Abdelmotalib"> H. M. Abdelmotalib</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Youssef"> M. A. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Young"> S. B. Young</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the flow characteristics and bed-to-wall heat transfer in a gas-solid conical fluidized bed combustor were investigated using both experimental and numerical methods. The computational fluid dynamic (CFD) simulations were carried out using a commercial software, Fluent V6.3. A two-fluid Eulerian-Eulerian model was applied in order to simulate the gas–solid flow and heat transfer in a conical sand-air bed with 30o con angle and 22 cm static bed height. Effect of different fluidizing number varying in the range of 1.5 - 2.3, drag models namely (Syamlal-O’Brien and Gidaspow), and friction viscosity on flow and bed-to-wall heat transfer were analyzed. Both bed pressure drop and heat transfer coefficient increased with increasing inlet gas velocity. The Gidaspow drag model showed a better agreement with experimental results than other drag model. The friction viscosity had no clear effect on both hydrodynamics and heat transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/27804/numerical-and-experimental-study-on-bed-wall-heat-transfer-in-conical-fluidized-bed-combustor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15998</span> Investigation on an Innovative Way to Connect RC Beam and Steel Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20H.%20El-Masry">Ahmed H. El-Masry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Dabaon"> Mohamed A. Dabaon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20F.%20El-Shafiey"> Tarek F. El-Shafiey</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20El-Hakim%20A.%20Khalil"> Abd El-Hakim A. Khalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20column" title="composite column">composite column</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20column" title=" steel column"> steel column</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20part" title=" transfer part"> transfer part</a> </p> <a href="https://publications.waset.org/abstracts/27407/investigation-on-an-innovative-way-to-connect-rc-beam-and-steel-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15997</span> Enhancing Sustainable Stingless Beekeeping Production through Technology Transfer and Human Resource Development in Relationship with Extension Agents Work Performance among Malaysian Beekeepers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Aliyu%20Isah">Ibrahim Aliyu Isah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Mansor%20Ismail"> Mohd Mansor Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Hassan"> Salim Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Norsida%20Man"> Norsida Man</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatoyin%20Olagunju"> Oluwatoyin Olagunju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stingless beekeeping is not only a profitable activity for Malaysian beekeepers but also for the Malaysian economy. However, natural honey has faced some difficulties, which resulted in low production due to a lack of information on improved technology as well as the capacity and potential building of stingless beekeeping farmers, which depend mostly on information received from the extension agents. Hence, it is the responsibility of the extension agents to give useful information on the available technology and develop the capacity of the farmers to make the right decision that will improve their level of production. This study assessed how technology transfer and human resource development skills influence the work performance of the extension agents toward sustainable beekeeping production among beekeepers. The study sought to establish the role of relevant technology transfer and human resource development skills in effective performance. The research design was a descriptive and quantitative survey of stingless beekeepers on technology transfer and human resource development by the extension agent. Data was obtained from 54 beekeeping farmers and was analyzed using descriptive and inferential statistics. The results revealed that technology skill, technology dissemination skill, technology evaluation skill, Decision-making process skill, Leadership development skill and work performance were rated moderate by stingless beekeeping farmers, while Social skill was rated high. A significant and positive correlation (P<0.01) existed between all variables and performance. Regression results showed that leadership development skills, Decision-making process skills, and social skills are significant (P=.05), while technology skills, technology dissemination skills, and technology evaluation skills are not significant. The highest contributing factor is social skill (β=.446). Beekeeping is a profitable project in Malaysia and can be sustained if the extension services and programs are well carried out by competent extension agents and relevant agricultural government agencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beekeeping" title="beekeeping">beekeeping</a>, <a href="https://publications.waset.org/abstracts/search?q=extension%20agents" title=" extension agents"> extension agents</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20resource%20development" title=" human resource development"> human resource development</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title=" technology transfer"> technology transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20performance" title=" work performance"> work performance</a> </p> <a href="https://publications.waset.org/abstracts/172800/enhancing-sustainable-stingless-beekeeping-production-through-technology-transfer-and-human-resource-development-in-relationship-with-extension-agents-work-performance-among-malaysian-beekeepers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15996</span> Bio-Heat Transfer in Various Transcutaneous Stimulation Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trevor%20E.%20Davis">Trevor E. Davis</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Cassar"> Isaac Cassar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Kai%20Lo"> Yi-Kai Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wentai%20Liu"> Wentai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioheat%20transfer" title="bioheat transfer">bioheat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprosthetics" title=" neuroprosthetics"> neuroprosthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=TENS" title=" TENS"> TENS</a>, <a href="https://publications.waset.org/abstracts/search?q=transcutaneous%20stimulation" title=" transcutaneous stimulation"> transcutaneous stimulation</a> </p> <a href="https://publications.waset.org/abstracts/14551/bio-heat-transfer-in-various-transcutaneous-stimulation-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15995</span> Analysis of Tactile Perception of Textiles by Fingertip Skin Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Izabela%20L.%20Ciesielska-Wr%CF%8Cbel">Izabela L. Ciesielska-Wrόbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the skin, so-called Hand of Textiles (HoT). Many objective and subjective techniques have been developed to analyze HoT, however none of them provide exact overall information concerning the sensation of textiles through the skin. As the human skin is a complex heterogeneous hyperelastic body composed of many particles, some simplifications had to be made at the stage of building the models. The same concerns models of woven structures, however their utilitarian value was maintained. The models reflect only friction between skin and woven textiles, deformation of the skin and fabrics when “touching” textiles and heat transfer from the surface of the skin into direction of textiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fingertip%20skin%20models" title="fingertip skin models">fingertip skin models</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20models" title=" finite element models"> finite element models</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20of%20textiles" title=" modelling of textiles"> modelling of textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=sensation%20of%20textiles%20through%20the%20skin" title=" sensation of textiles through the skin"> sensation of textiles through the skin</a> </p> <a href="https://publications.waset.org/abstracts/26064/analysis-of-tactile-perception-of-textiles-by-fingertip-skin-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15994</span> A Comparative Analysis of Innovation Maturity Models: Towards the Development of a Technology Management Maturity Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolett%20Deutsch">Nikolett Deutsch</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89va%20Pint%C3%A9r"> Éva Pintér</a>, <a href="https://publications.waset.org/abstracts/search?q=P%C3%A9ter%20Bag%C3%B3"> Péter Bagó</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikl%C3%B3s%20Het%C3%A9nyi"> Miklós Hetényi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strategic technology management has emerged and evolved parallelly with strategic management paradigms. It focuses on the opportunity for organizations operating mainly in technology-intensive industries to explore and exploit technological capabilities upon which competitive advantage can be obtained. As strategic technology management involves multifunction within an organization, requires broad and diversified knowledge, and must be developed and implemented with business objectives to enable a firm’s profitability and growth, excellence in strategic technology management provides unique opportunities for organizations in terms of building a successful future. Accordingly, a framework supporting the evaluation of the technological readiness level of management can significantly contribute to developing organizational competitiveness through a better understanding of strategic-level capabilities and deficiencies in operations. In the last decade, several innovation maturity assessment models have appeared and become designated management tools that can serve as references for future practical approaches expected to be used by corporate leaders, strategists, and technology managers to understand and manage technological capabilities and capacities. The aim of this paper is to provide a comprehensive review of the state-of-the-art innovation maturity frameworks, to investigate the critical lessons learned from their application, to identify the similarities and differences among the models, and identify the main aspects and elements valid for the field and critical functions of technology management. To this end, a systematic literature review was carried out considering the relevant papers and articles published in highly ranked international journals around the 27 most widely known innovation maturity models from four relevant digital sources. Key findings suggest that despite the diversity of the given models, there is still room for improvement regarding the common understanding of innovation typologies, the full coverage of innovation capabilities, and the generalist approach to the validation and practical applicability of the structure and content of the models. Furthermore, the paper proposes an initial structure by considering the maturity assessment of the technological capacities and capabilities - i.e., technology identification, technology selection, technology acquisition, technology exploitation, and technology protection - covered by strategic technology management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=innovation%20capabilities" title="innovation capabilities">innovation capabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20maturity%20models" title=" innovation maturity models"> innovation maturity models</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20audit" title=" technology audit"> technology audit</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20management" title=" technology management"> technology management</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20management%20maturity%20models" title=" technology management maturity models"> technology management maturity models</a> </p> <a href="https://publications.waset.org/abstracts/182990/a-comparative-analysis-of-innovation-maturity-models-towards-the-development-of-a-technology-management-maturity-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15993</span> Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Kaya">Burcu Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan-Martin%20Kaiser"> Jan-Martin Kaiser</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl-Friedrich%20Becker"> Karl-Friedrich Becker</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanja%20Braun"> Tanja Braun</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus-Dieter%20Lang"> Klaus-Dieter Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20analysis" title="dielectric analysis">dielectric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20packages" title=" electronic packages"> electronic packages</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20molding%20compounds" title=" epoxy molding compounds"> epoxy molding compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20molding%20process" title=" transfer molding process"> transfer molding process</a> </p> <a href="https://publications.waset.org/abstracts/46904/optimization-of-the-transfer-molding-process-by-implementation-of-online-monitoring-techniques-for-electronic-packages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models&page=534">534</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models&page=535">535</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20transfer%20models&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>