CINXE.COM
Daubechies wavelet - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Daubechies wavelet - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"589a2014-4100-4a53-8c5e-098ed6a003c7","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Daubechies_wavelet","wgTitle":"Daubechies wavelet","wgCurRevisionId":1251646719,"wgRevisionId":1251646719,"wgArticleId":554121,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Articles needing additional references from August 2009","All articles needing additional references","Wikipedia articles needing clarification from September 2019","All Wikipedia articles needing clarification","Commons category link is on Wikidata","Articles with example MATLAB/Octave code","Data compression","Orthogonal wavelets"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en", "wgPageContentModel":"wikitext","wgRelevantPageName":"Daubechies_wavelet","wgRelevantArticleId":554121,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1172774","wgCheckUserClientHintsHeadersJsApi":[ "brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.pygments":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.pygments.view","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc", "skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.pygments%2CwikimediaBadges%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/a/a3/Daubechies20LowPassHighPass2DFilterM.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="875"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/a/a3/Daubechies20LowPassHighPass2DFilterM.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="583"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Daubechies20LowPassHighPass2DFilterM.png/640px-Daubechies20LowPassHighPass2DFilterM.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="466"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Daubechies wavelet - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Daubechies_wavelet"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Daubechies_wavelet&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Daubechies_wavelet"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Daubechies_wavelet rootpage-Daubechies_wavelet skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Daubechies+wavelet" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Daubechies+wavelet" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Daubechies+wavelet" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Daubechies+wavelet" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Construction" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Construction"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Construction</span> </div> </a> <ul id="toc-Construction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_scaling_sequences_of_lowest_approximation_order" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#The_scaling_sequences_of_lowest_approximation_order"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>The scaling sequences of lowest approximation order</span> </div> </a> <ul id="toc-The_scaling_sequences_of_lowest_approximation_order-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Implementation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Implementation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Implementation</span> </div> </a> <button aria-controls="toc-Implementation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Implementation subsection</span> </button> <ul id="toc-Implementation-sublist" class="vector-toc-list"> <li id="toc-Transform,_D4" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transform,_D4"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Transform, D4</span> </div> </a> <ul id="toc-Transform,_D4-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inverse_transform,_D4" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inverse_transform,_D4"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Inverse transform, D4</span> </div> </a> <ul id="toc-Inverse_transform,_D4-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Binomial-QMF" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Binomial-QMF"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Binomial-QMF</span> </div> </a> <ul id="toc-Binomial-QMF-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Daubechies wavelet</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 8 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-8" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">8 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Vlnky_Daubechies" title="Vlnky Daubechies – Czech" lang="cs" hreflang="cs" data-title="Vlnky Daubechies" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Daubechies-Wavelets" title="Daubechies-Wavelets – German" lang="de" hreflang="de" data-title="Daubechies-Wavelets" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Ondelette_de_Daubechies" title="Ondelette de Daubechies – French" lang="fr" hreflang="fr" data-title="Ondelette de Daubechies" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Falki_Daubechies" title="Falki Daubechies – Polish" lang="pl" hreflang="pl" data-title="Falki Daubechies" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D0%B9%D0%B2%D0%BB%D0%B5%D1%82%D1%8B_%D0%94%D0%BE%D0%B1%D0%B5%D1%88%D0%B8" title="Вейвлеты Добеши – Russian" lang="ru" hreflang="ru" data-title="Вейвлеты Добеши" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Daubechies_wavelet" title="Daubechies wavelet – Simple English" lang="en-simple" hreflang="en-simple" data-title="Daubechies wavelet" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%92%D0%B5%D0%B9%D0%B2%D0%BB%D0%B5%D1%82%D0%B8_%D0%94%D0%BE%D0%B1%D0%B5%D1%88%D1%96" title="Вейвлети Добеші – Ukrainian" lang="uk" hreflang="uk" data-title="Вейвлети Добеші" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%A4%9A%E8%B4%9D%E8%A5%BF%E5%B0%8F%E6%B3%A2" title="多贝西小波 – Chinese" lang="zh" hreflang="zh" data-title="多贝西小波" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1172774#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Daubechies_wavelet" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Daubechies_wavelet" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Daubechies_wavelet"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Daubechies_wavelet&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Daubechies_wavelet&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Daubechies_wavelet"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Daubechies_wavelet&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Daubechies_wavelet&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Daubechies_wavelet" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Daubechies_wavelet" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Daubechies_wavelet&oldid=1251646719" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Daubechies_wavelet&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Daubechies_wavelet&id=1251646719&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDaubechies_wavelet"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDaubechies_wavelet"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Daubechies_wavelet&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Daubechies_wavelet&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Daubechies_wavelets" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1172774" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Orthogonal wavelets</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Daubechies_wavelet" title="Special:EditPage/Daubechies wavelet">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i> <a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&q=%22Daubechies+wavelet%22">"Daubechies wavelet"</a> – <a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&q=%22Daubechies+wavelet%22+-wikipedia&tbs=ar:1">news</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&q=%22Daubechies+wavelet%22&tbs=bkt:s&tbm=bks">newspapers</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&q=%22Daubechies+wavelet%22+-wikipedia">books</a> <b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Daubechies+wavelet%22">scholar</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Daubechies+wavelet%22&acc=on&wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">August 2009</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Daubechies20LowPassHighPass2DFilterM.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Daubechies20LowPassHighPass2DFilterM.png/406px-Daubechies20LowPassHighPass2DFilterM.png" decoding="async" width="406" height="296" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a3/Daubechies20LowPassHighPass2DFilterM.png/609px-Daubechies20LowPassHighPass2DFilterM.png 1.5x, //upload.wikimedia.org/wikipedia/commons/a/a3/Daubechies20LowPassHighPass2DFilterM.png 2x" data-file-width="800" data-file-height="583" /></a><figcaption>Daubechies 20 2-d wavelet (Wavelet Fn X Scaling Fn)</figcaption></figure> <p>The <b>Daubechies wavelets</b>, based on the work of <a href="/wiki/Ingrid_Daubechies" title="Ingrid Daubechies">Ingrid Daubechies</a>, are a family of <a href="/wiki/Orthogonal_wavelet" title="Orthogonal wavelet">orthogonal wavelets</a> defining a <a href="/wiki/Discrete_wavelet_transform" title="Discrete wavelet transform">discrete wavelet transform</a> and characterized by a maximal number of vanishing <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moments</a> for some given <a href="/wiki/Support_(mathematics)" title="Support (mathematics)">support</a>. With each wavelet type of this class, there is a scaling function (called the <i>father wavelet</i>) which generates an orthogonal <a href="/wiki/Multiresolution_analysis" title="Multiresolution analysis">multiresolution analysis</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Daubechies_wavelet&action=edit&section=1" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In general the Daubechies wavelets are chosen to have the highest number <i>A</i> of vanishing moments, (this does not imply the best smoothness) for given support width (number of coefficients) 2<i>A</i>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> There are two naming schemes in use, D<i>N</i> using the length or number of taps, and db<i>A</i> referring to the number of vanishing moments. So D4 and db2 are the same wavelet transform. </p><p>Among the 2<sup><i>A</i>−1</sup> possible solutions of the algebraic equations for the moment and orthogonality conditions, the one is chosen whose scaling filter has extremal phase. The wavelet transform is also easy to put into practice using the <a href="/wiki/Fast_wavelet_transform" title="Fast wavelet transform">fast wavelet transform</a>. Daubechies wavelets are widely used in solving a broad range of problems, e.g. self-similarity properties of a signal or <a href="/wiki/Fractal" title="Fractal">fractal</a> problems, signal discontinuities, etc. </p><p>The Daubechies wavelets are not defined in terms of the resulting scaling and wavelet functions; in fact, they are not possible to write down in <a href="/wiki/Closed_form_expression" class="mw-redirect" title="Closed form expression">closed form</a>. The graphs below are generated using the <a href="/wiki/Cascade_algorithm" title="Cascade algorithm">cascade algorithm</a>, a numeric technique consisting of inverse-transforming [1 0 0 0 0 ... ] an appropriate number of times. </p> <table class="wikitable"> <tbody><tr> <td>Scaling and wavelet functions </td> <td><span typeof="mw:File"><a href="/wiki/File:Daubechies4-functions.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Daubechies4-functions.svg/360px-Daubechies4-functions.svg.png" decoding="async" width="360" height="270" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Daubechies4-functions.svg/540px-Daubechies4-functions.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Daubechies4-functions.svg/720px-Daubechies4-functions.svg.png 2x" data-file-width="1000" data-file-height="750" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Daubechies12-functions.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/0/0b/Daubechies12-functions.png" decoding="async" width="360" height="252" class="mw-file-element" data-file-width="360" data-file-height="252" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Daubechies20-functions.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/2/24/Daubechies20-functions.png" decoding="async" width="360" height="252" class="mw-file-element" data-file-width="360" data-file-height="252" /></a></span> </td></tr> <tr> <td>Amplitudes of the frequency spectra of the above functions </td> <td><span typeof="mw:File"><a href="/wiki/File:Daubechies4-spectrum.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Daubechies4-spectrum.svg/360px-Daubechies4-spectrum.svg.png" decoding="async" width="360" height="270" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Daubechies4-spectrum.svg/540px-Daubechies4-spectrum.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Daubechies4-spectrum.svg/720px-Daubechies4-spectrum.svg.png 2x" data-file-width="1000" data-file-height="750" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Daubechies12-spectrum.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/0/08/Daubechies12-spectrum.png" decoding="async" width="360" height="252" class="mw-file-element" data-file-width="360" data-file-height="252" /></a></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Daubechies20-spectrum.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/0/07/Daubechies20-spectrum.png" decoding="async" width="360" height="252" class="mw-file-element" data-file-width="360" data-file-height="252" /></a></span> </td></tr></tbody></table> <p>Note that the spectra shown here are not the frequency response of the high and low pass filters, but rather the amplitudes of the continuous Fourier transforms of the scaling (blue) and wavelet (red) functions. </p><p>Daubechies orthogonal wavelets D2–D20 resp. db1–db10 are commonly used. Each wavelet has a number of <i>zero moments</i> or <i>vanishing moments</i> equal to half the number of coefficients. For example, D2 has one vanishing moment, D4 has two, etc. A vanishing moment limits the wavelets ability to represent <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> behaviour or information in a signal. For example, D2, with one vanishing moment, easily encodes polynomials of one coefficient, or constant signal components. D4 encodes polynomials with two coefficients, i.e. constant and linear signal components; and D6 encodes 3-polynomials, i.e. constant, linear and <a href="/wiki/Quadratic_polynomial" class="mw-redirect" title="Quadratic polynomial">quadratic</a> signal components. This ability to encode signals is nonetheless subject to the phenomenon of <i>scale leakage</i>, and the lack of shift-invariance, which arise from the discrete shifting operation (below) during application of the transform. Sub-sequences which represent linear, <a href="/wiki/Quadratic_polynomial" class="mw-redirect" title="Quadratic polynomial">quadratic</a> (for example) signal components are treated differently by the transform depending on whether the points align with even- or odd-numbered locations in the sequence. The lack of the important property of <a href="/wiki/Translational_invariance" class="mw-redirect" title="Translational invariance">shift-invariance</a>, has led to the development of several different versions of a <a href="/wiki/Shift_invariant_wavelet_transform" class="mw-redirect" title="Shift invariant wavelet transform">shift-invariant (discrete) wavelet transform</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Construction">Construction</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Daubechies_wavelet&action=edit&section=2" title="Edit section: Construction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Confusing plainlinks metadata ambox ambox-style ambox-confusing" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>may be <a href="/wiki/Wikipedia:Vagueness" title="Wikipedia:Vagueness">confusing or unclear</a> to readers</b>. In particular, there is undefined math symbols (e.g. a, p, P).<span class="hide-when-compact"> Please help <a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify">clarify the section</a>. There might be a discussion about this on <a href="/wiki/Talk:Daubechies_wavelet" title="Talk:Daubechies wavelet">the talk page</a>.</span> <span class="date-container"><i>(<span class="date">September 2019</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>Both the scaling sequence (low-pass filter) and the wavelet sequence (band-pass filter) (see <a href="/wiki/Orthogonal_wavelet" title="Orthogonal wavelet">orthogonal wavelet</a> for details of this construction) will here be normalized to have sum equal 2 and sum of squares equal 2. In some applications, they are normalised to have sum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}}"></span>, so that both sequences and all shifts of them by an even number of coefficients are orthonormal to each other. </p><p>Using the general representation for a scaling sequence of an orthogonal discrete wavelet transform with approximation order <i>A</i>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(Z)=2^{1-A}(1+Z)^{A}p(Z),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>A</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>Z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mi>p</mi> <mo stretchy="false">(</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(Z)=2^{1-A}(1+Z)^{A}p(Z),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4f69e9781f6ee5fcdf38f90272217bced8b76ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.809ex; height:3.176ex;" alt="{\displaystyle a(Z)=2^{1-A}(1+Z)^{A}p(Z),}"></span></dd></dl> <p>with <i>N</i> = 2<i>A</i>, <i>p</i> having real coefficients, <i>p</i>(1) = 1 and deg(<i>p</i>) = <i>A</i> − 1, one can write the orthogonality condition as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(Z)a\left(Z^{-1}\right)+a(-Z)a\left(-Z^{-1}\right)=4,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mi>a</mi> <mrow> <mo>(</mo> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mo>−<!-- − --></mo> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>4</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(Z)a\left(Z^{-1}\right)+a(-Z)a\left(-Z^{-1}\right)=4,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3207f29d245d205ff6c434387fc643c424900923" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:36.379ex; height:3.343ex;" alt="{\displaystyle a(Z)a\left(Z^{-1}\right)+a(-Z)a\left(-Z^{-1}\right)=4,}"></span></dd></dl> <p>or equally as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2-X)^{A}P(X)+X^{A}P(2-X)=2^{A}\qquad (*),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mo>−<!-- − --></mo> <mi>X</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mi>P</mi> <mo stretchy="false">(</mo> <mn>2</mn> <mo>−<!-- − --></mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mspace width="2em" /> <mo stretchy="false">(</mo> <mo>∗<!-- ∗ --></mo> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2-X)^{A}P(X)+X^{A}P(2-X)=2^{A}\qquad (*),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daef1982f783ab6e7aa025ee2809305b3d6633c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.621ex; height:3.176ex;" alt="{\displaystyle (2-X)^{A}P(X)+X^{A}P(2-X)=2^{A}\qquad (*),}"></span></dd></dl> <p>with the Laurent-polynomial </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X:={\frac {1}{2}}\left(2-Z-Z^{-1}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>−<!-- − --></mo> <mi>Z</mi> <mo>−<!-- − --></mo> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X:={\frac {1}{2}}\left(2-Z-Z^{-1}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7689099539ea7f0e209f7292539e9bd93d480e67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.806ex; height:5.176ex;" alt="{\displaystyle X:={\frac {1}{2}}\left(2-Z-Z^{-1}\right)}"></span></dd></dl> <p>generating all symmetric sequences and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(-Z)=2-X(Z).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mo>−<!-- − --></mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(-Z)=2-X(Z).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/388697e456f97c835b925ae1bcc6512da3fc30f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.496ex; height:2.843ex;" alt="{\displaystyle X(-Z)=2-X(Z).}"></span> Further, <i>P</i>(<i>X</i>) stands for the symmetric Laurent-polynomial </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X(Z))=p(Z)p\left(Z^{-1}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mi>p</mi> <mrow> <mo>(</mo> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X(Z))=p(Z)p\left(Z^{-1}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81cd8f1ffc69ceebf8df9bb606f8dbd9a1d29e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.543ex; height:3.343ex;" alt="{\displaystyle P(X(Z))=p(Z)p\left(Z^{-1}\right).}"></span></dd></dl> <p>Since </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(e^{iw})=1-\cos(w)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>w</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(e^{iw})=1-\cos(w)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a46fdf2f71dcc745bf323117105a0b43b903db8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.535ex; height:3.176ex;" alt="{\displaystyle X(e^{iw})=1-\cos(w)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(e^{iw})p(e^{-iw})=|p(e^{iw})|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>w</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mi>p</mi> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>w</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>w</mi> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(e^{iw})p(e^{-iw})=|p(e^{iw})|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08cddbf5cf6aac19c71e3e64f8673e39d563ae24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:24.93ex; height:3.343ex;" alt="{\displaystyle p(e^{iw})p(e^{-iw})=|p(e^{iw})|^{2}}"></span></dd></dl> <p><i>P</i> takes nonnegative values on the segment [0,2]. </p><p>Equation (*) has one minimal solution for each <i>A</i>, which can be obtained by division in the ring of truncated <a href="/wiki/Power_series" title="Power series">power series</a> in <i>X</i>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{A}(X)=\sum _{k=0}^{A-1}{\binom {A+k-1}{A-1}}2^{-k}X^{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>A</mi> <mo>+</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>A</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msup> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{A}(X)=\sum _{k=0}^{A-1}{\binom {A+k-1}{A-1}}2^{-k}X^{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ef986b8178d705eb3fc9161c7cb5b1828eb23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.068ex; height:7.509ex;" alt="{\displaystyle P_{A}(X)=\sum _{k=0}^{A-1}{\binom {A+k-1}{A-1}}2^{-k}X^{k}.}"></span></dd></dl> <p>Obviously, this has positive values on (0,2). </p><p>The homogeneous equation for (*) is antisymmetric about <i>X</i> = 1 and has thus the general solution </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{A}(X-1)R\left((X-1)^{2}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>R</mi> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{A}(X-1)R\left((X-1)^{2}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09be942338b00e32965a9bd3edfac7d554b7197a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.415ex; height:3.343ex;" alt="{\displaystyle X^{A}(X-1)R\left((X-1)^{2}\right),}"></span></dd></dl> <p>with <i>R</i> some polynomial with real coefficients. That the sum </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X)=P_{A}(X)+X^{A}(X-1)R\left((X-1)^{2}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>R</mi> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X)=P_{A}(X)+X^{A}(X-1)R\left((X-1)^{2}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5b152cc558207b4400dfcf8fb3db5593c4db2f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:42.601ex; height:3.343ex;" alt="{\displaystyle P(X)=P_{A}(X)+X^{A}(X-1)R\left((X-1)^{2}\right)}"></span></dd></dl> <p>shall be nonnegative on the interval [0,2] translates into a set of linear restrictions on the coefficients of <i>R</i>. The values of <i>P</i> on the interval [0,2] are bounded by some quantity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4^{A-r},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>−<!-- − --></mo> <mi>r</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4^{A-r},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e5b64a615dcd7c1e1ac87e36f0416ec6cd769e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.294ex; height:3.009ex;" alt="{\displaystyle 4^{A-r},}"></span> maximizing <i>r</i> results in a linear program with infinitely many inequality conditions. </p><p>To solve </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X(Z))=p(Z)p\left(Z^{-1}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo stretchy="false">(</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mi>p</mi> <mrow> <mo>(</mo> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X(Z))=p(Z)p\left(Z^{-1}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e93eee947e34548fa07fc5c10d4efe9e7fac740" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.509ex; height:3.343ex;" alt="{\displaystyle P(X(Z))=p(Z)p\left(Z^{-1}\right)}"></span></dd></dl> <p>for <i>p</i> one uses a technique called spectral factorization resp. Fejér-Riesz-algorithm. The polynomial <i>P</i>(<i>X</i>) splits into linear factors </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(X)=(X-\mu _{1})\cdots (X-\mu _{N}),\qquad N=A+1+2\deg(R).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>⋯<!-- ⋯ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em" /> <mi>N</mi> <mo>=</mo> <mi>A</mi> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mi>deg</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(X)=(X-\mu _{1})\cdots (X-\mu _{N}),\qquad N=A+1+2\deg(R).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb9040d7d0c1ccbf3a43f5cebf77e6fcaa4b57c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.624ex; height:2.843ex;" alt="{\displaystyle P(X)=(X-\mu _{1})\cdots (X-\mu _{N}),\qquad N=A+1+2\deg(R).}"></span></dd></dl> <p>Each linear factor represents a Laurent-polynomial </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(Z)-\mu =-{\frac {1}{2}}Z+1-\mu -{\frac {1}{2}}Z^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>Z</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>Z</mi> <mo>+</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(Z)-\mu =-{\frac {1}{2}}Z+1-\mu -{\frac {1}{2}}Z^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d043d8badc0383756811261dfba74958ffd8519" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:35.422ex; height:5.176ex;" alt="{\displaystyle X(Z)-\mu =-{\frac {1}{2}}Z+1-\mu -{\frac {1}{2}}Z^{-1}}"></span></dd></dl> <p>that can be factored into two linear factors. One can assign either one of the two linear factors to <i>p</i>(<i>Z</i>), thus one obtains 2<sup><i>N</i></sup> possible solutions. For extremal phase one chooses the one that has all complex roots of <i>p</i>(<i>Z</i>) inside or on the unit circle and is thus real. </p><p>For Daubechies wavelet transform, a pair of linear filters is used. Each filter of the pair should be a <a href="/wiki/Quadrature_mirror_filter" title="Quadrature mirror filter">quadrature mirror filter</a>. Solving the coefficient of the linear filter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01acb7953ba52c2aa44264b5d0f8fd223aa178a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.807ex; height:2.009ex;" alt="{\displaystyle c_{i}}"></span> using the quadrature mirror filter property results in the following solution for the coefficient values for filter of order 4. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{0}={\frac {1+{\sqrt {3}}}{4{\sqrt {2}}}},\quad c_{1}={\frac {3+{\sqrt {3}}}{4{\sqrt {2}}}},\quad c_{2}={\frac {3-{\sqrt {3}}}{4{\sqrt {2}}}},\quad c_{3}={\frac {1-{\sqrt {3}}}{4{\sqrt {2}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> <mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> <mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> <mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> <mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{0}={\frac {1+{\sqrt {3}}}{4{\sqrt {2}}}},\quad c_{1}={\frac {3+{\sqrt {3}}}{4{\sqrt {2}}}},\quad c_{2}={\frac {3-{\sqrt {3}}}{4{\sqrt {2}}}},\quad c_{3}={\frac {1-{\sqrt {3}}}{4{\sqrt {2}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88f906f947d021d6dc73d1f28f60fb9b420882bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:63.104ex; height:6.843ex;" alt="{\displaystyle c_{0}={\frac {1+{\sqrt {3}}}{4{\sqrt {2}}}},\quad c_{1}={\frac {3+{\sqrt {3}}}{4{\sqrt {2}}}},\quad c_{2}={\frac {3-{\sqrt {3}}}{4{\sqrt {2}}}},\quad c_{3}={\frac {1-{\sqrt {3}}}{4{\sqrt {2}}}}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="The_scaling_sequences_of_lowest_approximation_order">The scaling sequences of lowest approximation order</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Daubechies_wavelet&action=edit&section=3" title="Edit section: The scaling sequences of lowest approximation order"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Below are the coefficients for the scaling functions for D2-20. The wavelet coefficients are derived by reversing the order of the <a href="/wiki/Wavelet#Scaling_function" title="Wavelet">scaling function</a> coefficients and then reversing the sign of every second one, (i.e., D4 wavelet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \approx }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>≈<!-- ≈ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \approx }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f58f4c2b73283ce8a5ad28fb3746f2a8c998789" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.125ex; margin-bottom: -0.297ex; width:1.808ex; height:1.509ex;" alt="{\displaystyle \approx }"></span> {−0.1830127, −0.3169873, 1.1830127, −0.6830127}). Mathematically, this looks like <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{k}=(-1)^{k}a_{N-1-k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{k}=(-1)^{k}a_{N-1-k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/991e37e2a7e85911efa5351711e54e1e74ff8dfc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.21ex; height:3.176ex;" alt="{\displaystyle b_{k}=(-1)^{k}a_{N-1-k}}"></span> where <i>k</i> is the coefficient index, <i>b</i> is a coefficient of the wavelet sequence and <i>a</i> a coefficient of the scaling sequence. <i>N</i> is the wavelet index, i.e., 2 for D2. </p> <div style="font-size:83%"> <table class="wikitable"> <caption><b>Orthogonal Daubechies coefficients (normalized to have sum 2)</b> </caption> <tbody><tr> <th>D2 (<a href="/wiki/Haar_wavelet" title="Haar wavelet">Haar</a>) </th> <th>D4 </th> <th>D6 </th> <th>D8 </th> <th>D10 </th> <th>D12 </th> <th>D14 </th> <th>D16 </th> <th>D18 </th> <th>D20 </th></tr> <tr> <td>1 </td> <td>0.6830127 </td> <td>0.47046721 </td> <td>0.32580343 </td> <td>0.22641898 </td> <td>0.15774243 </td> <td>0.11009943 </td> <td>0.07695562 </td> <td>0.05385035 </td> <td>0.03771716 </td></tr> <tr> <td>1 </td> <td>1.1830127 </td> <td>1.14111692 </td> <td>1.01094572 </td> <td>0.85394354 </td> <td>0.69950381 </td> <td>0.56079128 </td> <td>0.44246725 </td> <td>0.34483430 </td> <td>0.26612218 </td></tr> <tr> <td> </td> <td>0.3169873 </td> <td>0.650365 </td> <td>0.89220014 </td> <td>1.02432694 </td> <td>1.06226376 </td> <td>1.03114849 </td> <td>0.95548615 </td> <td>0.85534906 </td> <td>0.74557507 </td></tr> <tr> <td> </td> <td>−0.1830127 </td> <td>−0.19093442 </td> <td>−0.03957503 </td> <td>0.19576696 </td> <td>0.44583132 </td> <td>0.66437248 </td> <td>0.82781653 </td> <td>0.92954571 </td> <td>0.97362811 </td></tr> <tr> <td> </td> <td> </td> <td>−0.12083221 </td> <td>−0.26450717 </td> <td>−0.34265671 </td> <td>−0.31998660 </td> <td>−0.20351382 </td> <td>−0.02238574 </td> <td>0.18836955 </td> <td>0.39763774 </td></tr> <tr> <td> </td> <td> </td> <td>0.0498175 </td> <td>0.0436163 </td> <td>−0.04560113 </td> <td>−0.18351806 </td> <td>−0.31683501 </td> <td>−0.40165863 </td> <td>−0.41475176 </td> <td>−0.35333620 </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td>0.0465036 </td> <td>0.10970265 </td> <td>0.13788809 </td> <td>0.1008467 </td> <td>6.68194092 × 10<sup>−4</sup> </td> <td>−0.13695355 </td> <td>−0.27710988 </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td>−0.01498699 </td> <td>−0.00882680 </td> <td>0.03892321 </td> <td>0.11400345 </td> <td>0.18207636 </td> <td>0.21006834 </td> <td>0.18012745 </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td> </td> <td>−0.01779187 </td> <td>−0.04466375 </td> <td>−0.05378245 </td> <td>−0.02456390 </td> <td>0.043452675 </td> <td>0.13160299 </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td> </td> <td>4.71742793 × 10<sup>−3</sup> </td> <td>7.83251152 × 10<sup>−4</sup> </td> <td>−0.02343994 </td> <td>−0.06235021 </td> <td>−0.09564726 </td> <td>−0.10096657 </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>6.75606236 × 10<sup>−3</sup> </td> <td>0.01774979 </td> <td>0.01977216 </td> <td>3.54892813 × 10<sup>−4</sup> </td> <td>−0.04165925 </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>−1.52353381 × 10<sup>−3</sup> </td> <td>6.07514995 × 10<sup>−4</sup> </td> <td>0.01236884 </td> <td>0.03162417 </td> <td>0.04696981 </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>−2.54790472 × 10<sup>−3</sup> </td> <td>−6.88771926 × 10<sup>−3</sup> </td> <td>−6.67962023 × 10<sup>−3</sup> </td> <td>5.10043697 × 10<sup>−3</sup> </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>5.00226853 × 10<sup>−4</sup> </td> <td>−5.54004549 × 10<sup>−4</sup> </td> <td>−6.05496058 × 10<sup>−3</sup> </td> <td>−0.01517900 </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>9.55229711 × 10<sup>−4</sup> </td> <td>2.61296728 × 10<sup>−3</sup> </td> <td>1.97332536 × 10<sup>−3</sup> </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>−1.66137261 × 10<sup>−4</sup> </td> <td>3.25814671 × 10<sup>−4</sup> </td> <td>2.81768659 × 10<sup>−3</sup> </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>−3.56329759 × 10<sup>−4</sup> </td> <td>−9.69947840 × 10<sup>−4</sup> </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>5.5645514 × 10<sup>−5</sup> </td> <td>−1.64709006 × 10<sup>−4</sup> </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>1.32354367 × 10<sup>−4</sup> </td></tr> <tr> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>−1.875841 × 10<sup>−5</sup> </td></tr></tbody></table> </div> <p>Parts of the construction are also used to derive the biorthogonal <a href="/wiki/Cohen%E2%80%93Daubechies%E2%80%93Feauveau_wavelet" title="Cohen–Daubechies–Feauveau wavelet">Cohen–Daubechies–Feauveau wavelets</a> (CDFs). </p> <div class="mw-heading mw-heading2"><h2 id="Implementation">Implementation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Daubechies_wavelet&action=edit&section=4" title="Edit section: Implementation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>While software such as <a href="/wiki/Mathematica" class="mw-redirect" title="Mathematica">Mathematica</a> supports Daubechies wavelets directly<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> a basic implementation is possible in <a href="/wiki/MATLAB" title="MATLAB">MATLAB</a> (in this case, Daubechies 4). This implementation uses periodization to handle the problem of finite length signals. Other, more sophisticated methods are available, but often it is not necessary to use these as it only affects the very ends of the transformed signal. The periodization is accomplished in the forward transform directly in MATLAB vector notation, and the inverse transform by using the <code>circshift()</code> function: </p> <div class="mw-heading mw-heading3"><h3 id="Transform,_D4"><span id="Transform.2C_D4"></span>Transform, D4</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Daubechies_wavelet&action=edit&section=5" title="Edit section: Transform, D4"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is assumed that <i>S</i>, a column vector with an even number of elements, has been pre-defined as the signal to be analyzed. Note that the D4 coefficients are [1 + <span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;">3</span></span>, 3 + <span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;">3</span></span>, 3 − <span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;">3</span></span>, 1 − <span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;">3</span></span>]/4. </p> <div class="mw-highlight mw-highlight-lang-matlab mw-content-ltr" dir="ltr"><pre><span></span><span class="n">N</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">length</span><span class="p">(</span><span class="n">S</span><span class="p">);</span> <span class="n">sqrt3</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">sqrt</span><span class="p">(</span><span class="mi">3</span><span class="p">);</span> <span class="n">s_odd</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">S</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">2</span><span class="p">:</span><span class="n">N</span><span class="o">-</span><span class="mi">1</span><span class="p">);</span> <span class="n">s_even</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">S</span><span class="p">(</span><span class="mi">2</span><span class="p">:</span><span class="mi">2</span><span class="p">:</span><span class="n">N</span><span class="p">);</span> <span class="n">s</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="p">(</span><span class="n">sqrt3</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">*</span><span class="n">s_odd</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="p">(</span><span class="mi">3</span><span class="o">+</span><span class="n">sqrt3</span><span class="p">)</span><span class="o">*</span><span class="n">s_even</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="p">(</span><span class="mi">3</span><span class="o">-</span><span class="n">sqrt3</span><span class="p">)</span><span class="o">*</span><span class="p">[</span><span class="n">s_odd</span><span class="p">(</span><span class="mi">2</span><span class="p">:</span><span class="n">N</span><span class="o">/</span><span class="mi">2</span><span class="p">);</span><span class="n">s_odd</span><span class="p">(</span><span class="mi">1</span><span class="p">)]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">sqrt3</span><span class="p">)</span><span class="o">*</span><span class="p">[</span><span class="n">s_even</span><span class="p">(</span><span class="mi">2</span><span class="p">:</span><span class="n">N</span><span class="o">/</span><span class="mi">2</span><span class="p">);</span><span class="n">s_even</span><span class="p">(</span><span class="mi">1</span><span class="p">)];</span> <span class="n">d</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">sqrt3</span><span class="p">)</span><span class="o">*</span><span class="p">[</span><span class="n">s_odd</span><span class="p">(</span><span class="n">N</span><span class="o">/</span><span class="mi">2</span><span class="p">);</span><span class="n">s_odd</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="n">N</span><span class="o">/</span><span class="mi">2</span><span class="o">-</span><span class="mi">1</span><span class="p">)]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="p">(</span><span class="n">sqrt3</span><span class="o">-</span><span class="mi">3</span><span class="p">)</span><span class="o">*</span><span class="p">[</span><span class="n">s_even</span><span class="p">(</span><span class="n">N</span><span class="o">/</span><span class="mi">2</span><span class="p">);</span><span class="n">s_even</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="n">N</span><span class="o">/</span><span class="mi">2</span><span class="o">-</span><span class="mi">1</span><span class="p">)]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="p">(</span><span class="mi">3</span><span class="o">+</span><span class="n">sqrt3</span><span class="p">)</span><span class="o">*</span><span class="n">s_odd</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="o">-</span><span class="n">sqrt3</span><span class="p">)</span><span class="o">*</span><span class="n">s_even</span> <span class="n">s</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">s</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="p">(</span><span class="mi">4</span><span class="o">*</span><span class="nb">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="p">));</span> <span class="n">d</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">d</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="p">(</span><span class="mi">4</span><span class="o">*</span><span class="nb">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="p">));</span> </pre></div> <div class="mw-heading mw-heading3"><h3 id="Inverse_transform,_D4"><span id="Inverse_transform.2C_D4"></span>Inverse transform, D4</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Daubechies_wavelet&action=edit&section=6" title="Edit section: Inverse transform, D4"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-highlight mw-highlight-lang-matlab mw-content-ltr" dir="ltr"><pre><span></span><span class="n">d1</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">d</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="p">((</span><span class="nb">sqrt</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="nb">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="p">));</span> <span class="n">s2</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">s</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="p">((</span><span class="nb">sqrt</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="nb">sqrt</span><span class="p">(</span><span class="mi">2</span><span class="p">));</span> <span class="n">s1</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">s2</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nb">circshift</span><span class="p">(</span><span class="n">d1</span><span class="p">,</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span> <span class="n">S</span><span class="p">(</span><span class="mi">2</span><span class="p">:</span><span class="mi">2</span><span class="p">:</span><span class="n">N</span><span class="p">)</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">d1</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nb">sqrt</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">4</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">s1</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="p">(</span><span class="nb">sqrt</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">4</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nb">circshift</span><span class="p">(</span><span class="n">s1</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span> <span class="n">S</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">2</span><span class="p">:</span><span class="n">N</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="n">s1</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nb">sqrt</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">S</span><span class="p">(</span><span class="mi">2</span><span class="p">:</span><span class="mi">2</span><span class="p">:</span><span class="n">N</span><span class="p">);</span> </pre></div> <div class="mw-heading mw-heading2"><h2 id="Binomial-QMF">Binomial-QMF</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Daubechies_wavelet&action=edit&section=7" title="Edit section: Binomial-QMF"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It was shown by <a href="/wiki/Ali_Akansu" title="Ali Akansu">Ali Akansu</a> in 1990 that the <a href="/wiki/Binomial_QMF" title="Binomial QMF">binomial quadrature mirror filter bank</a> (binomial QMF) is identical to the Daubechies wavelet filter, and its performance was ranked among known subspace solutions from a discrete-time signal processing perspective.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> It was an extension of the prior work on <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficient</a> and <a href="/wiki/Hermite_polynomials" title="Hermite polynomials">Hermite polynomials</a> that led to the development of the Modified Hermite Transformation (MHT) in 1987.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> The magnitude square functions of <a href="/wiki/Binomial-QMF" class="mw-redirect" title="Binomial-QMF">Binomial-QMF</a> filters are the unique maximally flat functions in a two-band perfect reconstruction QMF (PR-QMF) design formulation that is related to the wavelet regularity in the continuous domain.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Daubechies_wavelet&action=edit&section=8" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The application of Daubechies wavelet transform as a watermarking scheme has been proved effective. This approach operates in a proficient multi-resolution frequency domain, enabling the incorporation of an encrypted digital logo in the format of QR codes.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></li></ul> <ul><li>Daubechies wavelet approximation can be used to analyze Griffith crack behavior in nonlocal magneto-elastic horizontally shear (SH) wave propagation within a finite-thickness, infinitely long homogeneous isotropic strip. <sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup></li></ul> <ul><li>Daubechies wavelet cepstral coefficients can be useful in the context of Parkinson's disease detection. Daubechies wavelets, known for their efficient multi-resolution analysis, are utilized to extract cepstral features from vocal signal data. These wavelet-based coefficients can act as discriminative features for accurately identifying patterns indicative of Parkinson's disease, offering a novel approach to diagnostic methodologies.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup></li></ul> <ul><li>When it comes to analysis and detection of Community Acquired Pneumonia (CAP), Complex Daubechies wavelets can be used to identify intricate details of the CAP affected areas in infected lungs to produce accurate results. <sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup></li></ul> <ul><li>The elastohydrodynamic lubrication problem involves the study of lubrication regimes in which the deformation of the contacting surfaces significantly influences the lubricating film. Daubechies wavelets can address the challenges associated with accurately modeling and simulating such intricate lubrication phenomena. Daubechies wavelets allows for a more detailed and refined exploration of the interactions between the lubricant and the contacting surfaces.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup></li></ul> <ul><li>Daubechies Wavelet can extract intricate details and features from the vibroacoustic signals, offering a comprehensive diagnostic approach for evaluating the condition and performance of diesel engines in combine harvesters. The Daubechies Wavelet spectrum serves as a powerful analytical tool, allowing the researchers to identify patterns, anomalies, and characteristic signatures within the signals associated with different engine conditions. This detailed spectral analysis aids in enhancing the accuracy of diagnostic assessments, enabling a more nuanced understanding of the vibrational and acoustic characteristics indicative of engine health or potential issues.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup></li></ul> <ul><li>In practical terms, the Daubechies wavelets facilitate a finely tuned examination of the temporal and spatial characteristics of dynamic waves within elastic materials. This approach enables a more nuanced understanding of how elastic solids respond to varying dynamic conditions over time. The integration of Daubechies wavelets into the finite wavelet domain method likely contributes to a more versatile and robust analytical framework for studying transient dynamic waves in elastic solids.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup></li></ul> <ul><li>The brachistochrone problem can be formulated and expressed as a variational problem, emphasizing the importance of finding the optimal curve that minimizes the time of descent. By introducing Daubechies wavelets into the mathematical framework, scaling functions associated with these wavelets can construct an approximation of the optimal curve. Daubechies wavelets, with their ability to capture both high and low-frequency components of a function, prove instrumental in achieving a detailed representation of the brachistochrone curve.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Daubechies_wavelet&action=edit&section=9" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Fast_wavelet_transform" title="Fast wavelet transform">Fast wavelet transform</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Daubechies_wavelet&action=edit&section=10" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992, p. 194.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"> <a rel="nofollow" class="external text" href="http://reference.wolfram.com/mathematica/ref/DaubechiesWavelet.html">Daubechies Wavelet in Mathematica. Note that in there <i>n</i> is <i>n</i>/2 from the text.</a></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">A.N. Akansu, <a rel="nofollow" class="external text" href="http://web.njit.edu/~ali/NJITSYMP1990/AkansuNJIT1STWAVELETSSYMPAPRIL301990.pdf">An Efficient QMF-Wavelet Structure</a> (Binomial-QMF Daubechies Wavelets), Proc. 1st NJIT Symposium on Wavelets, April 1990.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">A.N. Akansu, R.A. Haddad and H. Caglar, <a rel="nofollow" class="external text" href="http://web.njit.edu/~akansu/PAPERS/Akansu-BinomialQMF-SPIESept1990.pdf">Perfect Reconstruction Binomial QMF-Wavelet Transform</a>, Proc. SPIE Visual Communications and Image Processing, pp. 609–618, vol. 1360, Lausanne, Sept. 1990.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">A.N. Akansu, Statistical Adaptive Transform Coding of Speech Signals. Ph.D. Thesis. Polytechnic University, 1987.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">R.A. Haddad and A.N. Akansu, "A New Orthogonal Transform for Signal Coding," IEEE Transactions on Acoustics, Speech and Signal Processing, vol.36, no.9, pp. 1404-1411, September 1988.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">H. Caglar and A.N. Akansu, <a rel="nofollow" class="external text" href="http://web.njit.edu/~akansu/PAPERS/CaglarAkansuBernstein.pdf">A Generalized Parametric PR-QMF Design Technique Based on Bernstein Polynomial Approximation</a>, IEEE Trans. Signal Process., pp. 2314–2321, July 1993.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">O. Herrmann, <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/1083275">On the Approximation Problem in Nonrecursive Digital Filter Design</a>, IEEE Trans. Circuit Theory, vol CT-18, no. 3, pp. 411–413, May 1971.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFUmerMajidSyeda2019" class="citation journal cs1">Umer, Aziz Waqas; Majid, Khan; Syeda, Iram Batool (18 December 2019). <a rel="nofollow" class="external text" href="https://link.springer.com/article/10.1007/s11042-019-08570-5">"A new watermarking scheme based on Daubechies wavelet and chaotic map for quick response code images"</a>. <i>Multimedia Tools and Applications</i>. <b>79</b> (9–10): 6891–6914. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11042-019-08570-5">10.1007/s11042-019-08570-5</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Multimedia+Tools+and+Applications&rft.atitle=A+new+watermarking+scheme+based+on+Daubechies+wavelet+and+chaotic+map+for+quick+response+code+images&rft.volume=79&rft.issue=9%E2%80%9310&rft.pages=6891-6914&rft.date=2019-12-18&rft_id=info%3Adoi%2F10.1007%2Fs11042-019-08570-5&rft.aulast=Umer&rft.aufirst=Aziz+Waqas&rft.au=Majid%2C+Khan&rft.au=Syeda%2C+Iram+Batool&rft_id=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11042-019-08570-5&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADaubechies+wavelet" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJyotirmoyNantuSoumen2023" class="citation journal cs1">Jyotirmoy, Mouley; Nantu, Sarkar; Soumen, De (5 January 2023). <a rel="nofollow" class="external text" href="https://www.tandfonline.com/doi/full/10.1080/17455030.2022.2163060?scroll=top&needAccess=true">"Griffith crack analysis in nonlocal magneto-elastic strip using Daubechies wavelets"</a>. <i>Waves in Random and Complex Media</i>: 1–19. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F17455030.2022.2163060">10.1080/17455030.2022.2163060</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Waves+in+Random+and+Complex+Media&rft.atitle=Griffith+crack+analysis+in+nonlocal+magneto-elastic+strip+using+Daubechies+wavelets&rft.pages=1-19&rft.date=2023-01-05&rft_id=info%3Adoi%2F10.1080%2F17455030.2022.2163060&rft.aulast=Jyotirmoy&rft.aufirst=Mouley&rft.au=Nantu%2C+Sarkar&rft.au=Soumen%2C+De&rft_id=https%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Ffull%2F10.1080%2F17455030.2022.2163060%3Fscroll%3Dtop%26needAccess%3Dtrue&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADaubechies+wavelet" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSoumayaTaoufiqAbdelkrim2020" class="citation journal cs1">Soumaya, Zayrit; Taoufiq, Belhoussine Drissi; Abdelkrim, Ammoumou (2020). <a rel="nofollow" class="external text" href="https://content.wolfram.com/uploads/sites/13/2020/09/29-3-6.pdf">"Daubechies Wavelet Cepstral Coefficients for Parkinson's Disease Detection"</a> <span class="cs1-format">(PDF)</span>. <i>Complex Systems</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Complex+Systems&rft.atitle=Daubechies+Wavelet+Cepstral+Coefficients+for+Parkinson%27s+Disease+Detection&rft.date=2020&rft.aulast=Soumaya&rft.aufirst=Zayrit&rft.au=Taoufiq%2C+Belhoussine+Drissi&rft.au=Abdelkrim%2C+Ammoumou&rft_id=https%3A%2F%2Fcontent.wolfram.com%2Fuploads%2Fsites%2F13%2F2020%2F09%2F29-3-6.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADaubechies+wavelet" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNatzinaNadineShojaaYubin2020" class="citation journal cs1">Natzina, Juanita S.R.F; Nadine, Suzanne S.R.F; Shojaa, Ayed Aljasar; Yubin, Xu; Muhammad, Saqib (2020). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/342566849">"Analysis and Detection of Community Acquired Pneumonia Using PSPNET with Complex Daubechies Wavelets"</a>. <i>Indian Journal of Computer Science and Engineering (IJCSE)</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Indian+Journal+of+Computer+Science+and+Engineering+%28IJCSE%29&rft.atitle=Analysis+and+Detection+of+Community+Acquired+Pneumonia+Using+PSPNET+with+Complex+Daubechies+Wavelets&rft.date=2020&rft.aulast=Natzina&rft.aufirst=Juanita+S.R.F&rft.au=Nadine%2C+Suzanne+S.R.F&rft.au=Shojaa%2C+Ayed+Aljasar&rft.au=Yubin%2C+Xu&rft.au=Muhammad%2C+Saqib&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F342566849&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADaubechies+wavelet" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFS.C.S.I.Sharada2020" class="citation journal cs1">S.C., Shiralashetti; S.I., Hanaji; Sharada, S.Naregal (28 July 2020). <a rel="nofollow" class="external text" href="https://pubs.aip.org/aip/acp/article-abstract/2246/1/020029/727421/Daubechies-wavelet-based-numerical-method-for-the">"Daubechies wavelet based numerical method for the solution of grease elastohydrodynamic lubrication problem"</a>. <i>International Conference on Mathematical Sciences and Applications</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Conference+on+Mathematical+Sciences+and+Applications&rft.atitle=Daubechies+wavelet+based+numerical+method+for+the+solution+of+grease+elastohydrodynamic+lubrication+problem&rft.date=2020-07-28&rft.aulast=S.C.&rft.aufirst=Shiralashetti&rft.au=S.I.%2C+Hanaji&rft.au=Sharada%2C+S.Naregal&rft_id=https%3A%2F%2Fpubs.aip.org%2Faip%2Facp%2Farticle-abstract%2F2246%2F1%2F020029%2F727421%2FDaubechies-wavelet-based-numerical-method-for-the&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADaubechies+wavelet" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFL_LYuYu_OM_M2020" class="citation journal cs1">L L, Titova; Yu, M Chernik; Yu O, Gumenyuk; M M, Korobko (2020). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1088/1755-1315/548/3/032030/meta">"Research of Daubechies Wavelet spectrum of vibroacoustic signals for diagnostic of diesel engines of combine harvesters"</a>. <i>IOP Conference Series: Earth and Environmental Science</i>. <b>548</b>: 032030. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1755-1315%2F548%2F3%2F032030">10.1088/1755-1315/548/3/032030</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IOP+Conference+Series%3A+Earth+and+Environmental+Science&rft.atitle=Research+of+Daubechies+Wavelet+spectrum+of+vibroacoustic+signals+for+diagnostic+of+diesel+engines+of+combine+harvesters&rft.volume=548&rft.pages=032030&rft.date=2020&rft_id=info%3Adoi%2F10.1088%2F1755-1315%2F548%2F3%2F032030&rft.aulast=L+L&rft.aufirst=Titova&rft.au=Yu%2C+M+Chernik&rft.au=Yu+O%2C+Gumenyuk&rft.au=M+M%2C+Korobko&rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F1755-1315%2F548%2F3%2F032030%2Fmeta&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADaubechies+wavelet" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNastosSaravanos2021" class="citation journal cs1">Nastos, Christos; Saravanos, Dimitris (7 September 2021). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/full/10.1002/nme.6822">"Multiresolution Daubechies finite wavelet domain method for transient dynamic wave analysis in elastic solids"</a>. <i>International Journal for Numerical Methods in Engineering</i>. <b>122</b> (23): 7078–7100. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fnme.6822">10.1002/nme.6822</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+for+Numerical+Methods+in+Engineering&rft.atitle=Multiresolution+Daubechies+finite+wavelet+domain+method+for+transient+dynamic+wave+analysis+in+elastic+solids&rft.volume=122&rft.issue=23&rft.pages=7078-7100&rft.date=2021-09-07&rft_id=info%3Adoi%2F10.1002%2Fnme.6822&rft.aulast=Nastos&rft.aufirst=Christos&rft.au=Saravanos%2C+Dimitris&rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2Ffull%2F10.1002%2Fnme.6822&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADaubechies+wavelet" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDimitriouNastosSaravanos2022" class="citation journal cs1">Dimitriou, Dimitris; Nastos, Christos; Saravanos, Dimitris (14 May 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1016/j.wavemoti.2022.102958">"Multiresolution finite wavelet domain method for efficient modeling of guided waves in composite beams"</a>. <i>Wave Motion</i>. <b>112</b>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.wavemoti.2022.102958">10.1016/j.wavemoti.2022.102958</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wave+Motion&rft.atitle=Multiresolution+finite+wavelet+domain+method+for+efficient+modeling+of+guided+waves+in+composite+beams&rft.volume=112&rft.date=2022-05-14&rft_id=info%3Adoi%2F10.1016%2Fj.wavemoti.2022.102958&rft.aulast=Dimitriou&rft.aufirst=Dimitris&rft.au=Nastos%2C+Christos&rft.au=Saravanos%2C+Dimitris&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%2Fj.wavemoti.2022.102958&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADaubechies+wavelet" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAzadAmjad2021" class="citation journal cs1">Azad, Kasnazani; Amjad, AliPanah (2021). <a rel="nofollow" class="external text" href="https://cmde.tabrizu.ac.ir/article_10333.html">"Solving brachistochrone problem via scaling functions of Daubechies wavelets"</a>. <i>Computational Methods for Differential Equations</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Computational+Methods+for+Differential+Equations&rft.atitle=Solving+brachistochrone+problem+via+scaling+functions+of+Daubechies+wavelets&rft.date=2021&rft.aulast=Azad&rft.aufirst=Kasnazani&rft.au=Amjad%2C+AliPanah&rft_id=https%3A%2F%2Fcmde.tabrizu.ac.ir%2Farticle_10333.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADaubechies+wavelet" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Daubechies_wavelet&action=edit&section=11" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Daubechies_wavelets" class="extiw" title="commons:Category:Daubechies wavelets">Daubechies wavelets</a></span>.</div></div> </div> <ul><li>Ingrid Daubechies: <i>Ten Lectures on Wavelets</i>, SIAM 1992.</li> <li><a rel="nofollow" class="external text" href="http://web.njit.edu/~akansu/s1.htm">Proc. 1st NJIT Symposium on Wavelets, Subbands and Transforms, April 1990.</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAkansuHaddad1992" class="citation cs2">Akansu, Ali N.; Haddad, Richard A. (1992), <i>Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets</i>, Boston, MA: Academic Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-12-047141-6" title="Special:BookSources/978-0-12-047141-6"><bdi>978-0-12-047141-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Multiresolution+Signal+Decomposition%3A+Transforms%2C+Subbands%2C+and+Wavelets&rft.place=Boston%2C+MA&rft.pub=Academic+Press&rft.date=1992&rft.isbn=978-0-12-047141-6&rft.aulast=Akansu&rft.aufirst=Ali+N.&rft.au=Haddad%2C+Richard+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADaubechies+wavelet" class="Z3988"></span></li> <li>A.N. Akansu, <a rel="nofollow" class="external text" href="https://web.njit.edu/~akansu/PAPERS/Akansu-FilterBanksWaveletsSP-SPIEOct1993.pdf">Filter Banks and Wavelets in Signal Processing: A Critical Review</a>, Proc. SPIE Video Communications and PACS for Medical Applications (Invited Paper), pp. 330-341, vol. 1977, Berlin, Oct. 1993.</li> <li><a rel="nofollow" class="external text" href="http://mate.dm.uba.ar/~hafg/">Carlos Cabrelli, Ursula Molter</a>: "Generalized Self-similarity", <i>Journal of Mathematical Analysis and Applications</i>, 230: 251–260, 1999.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20050421032443/http://etd.lib.fsu.edu/theses/available/etd-11242003-185039/">Hardware implementation of wavelets</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Daubechies_wavelets">"Daubechies wavelets"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Daubechies+wavelets&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DDaubechies_wavelets&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADaubechies+wavelet" class="Z3988"></span>.</li> <li>I. Kaplan, <a rel="nofollow" class="external text" href="http://www.bearcave.com/misl/misl_tech/wavelets/daubechies/index.html">The Daubechies D4 Wavelet Transform</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJensenla_Cour-Harbo2001" class="citation book cs1">Jensen; la Cour-Harbo (2001). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20081202170023/http://www.control.auc.dk/~alc/ripples.html"><i>Ripples in Mathematics</i></a>. Berlin: Springer. pp. 157–160. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-41662-5" title="Special:BookSources/3-540-41662-5"><bdi>3-540-41662-5</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.control.auc.dk/~alc/ripples.html">the original</a> on 2008-12-02<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-12-10</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Ripples+in+Mathematics&rft.place=Berlin&rft.pages=157-160&rft.pub=Springer&rft.date=2001&rft.isbn=3-540-41662-5&rft.au=Jensen&rft.au=la+Cour-Harbo&rft_id=http%3A%2F%2Fwww.control.auc.dk%2F~alc%2Fripples.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADaubechies+wavelet" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://sites.google.com/site/jackieneoshen/">Jianhong (Jackie) Shen</a> and <a href="/wiki/Gilbert_Strang" title="Gilbert Strang">Gilbert Strang</a>, <i>Applied and Computational Harmonic Analysis</i>, <b>5</b>(3), <a rel="nofollow" class="external text" href="https://doi.org/10.1006/acha.1997.0234"><i>Asymptotics of Daubechies Filters, Scaling Functions, and Wavelets</i></a>.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Data_compression_methods" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Compression_methods" title="Template:Compression methods"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Compression_methods" title="Template talk:Compression methods"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Compression_methods" title="Special:EditPage/Template:Compression methods"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Data_compression_methods" style="font-size:114%;margin:0 4em"><a href="/wiki/Data_compression" title="Data compression">Data compression</a> methods</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Lossless_compression" title="Lossless compression">Lossless</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Entropy_coding" title="Entropy coding">Entropy type</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adaptive_coding" title="Adaptive coding">Adaptive coding</a></li> <li><a href="/wiki/Arithmetic_coding" title="Arithmetic coding">Arithmetic</a></li> <li><a href="/wiki/Asymmetric_numeral_systems" title="Asymmetric numeral systems">Asymmetric numeral systems</a></li> <li><a href="/wiki/Golomb_coding" title="Golomb coding">Golomb</a></li> <li><a href="/wiki/Huffman_coding" title="Huffman coding">Huffman</a> <ul><li><a href="/wiki/Adaptive_Huffman_coding" title="Adaptive Huffman coding">Adaptive</a></li> <li><a href="/wiki/Canonical_Huffman_code" title="Canonical Huffman code">Canonical</a></li> <li><a href="/wiki/Modified_Huffman_coding" title="Modified Huffman coding">Modified</a></li></ul></li> <li><a href="/wiki/Range_coding" title="Range coding">Range</a></li> <li><a href="/wiki/Shannon_coding" title="Shannon coding">Shannon</a></li> <li><a href="/wiki/Shannon%E2%80%93Fano_coding" title="Shannon–Fano coding">Shannon–Fano</a></li> <li><a href="/wiki/Shannon%E2%80%93Fano%E2%80%93Elias_coding" title="Shannon–Fano–Elias coding">Shannon–Fano–Elias</a></li> <li><a href="/wiki/Tunstall_coding" title="Tunstall coding">Tunstall</a></li> <li><a href="/wiki/Unary_coding" title="Unary coding">Unary</a></li> <li><a href="/wiki/Universal_code_(data_compression)" title="Universal code (data compression)">Universal</a> <ul><li><a href="/wiki/Exponential-Golomb_coding" title="Exponential-Golomb coding">Exp-Golomb</a></li> <li><a href="/wiki/Fibonacci_coding" title="Fibonacci coding">Fibonacci</a></li> <li><a href="/wiki/Elias_gamma_coding" title="Elias gamma coding">Gamma</a></li> <li><a href="/wiki/Levenshtein_coding" title="Levenshtein coding">Levenshtein</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Dictionary_coder" title="Dictionary coder">Dictionary type</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Byte_pair_encoding" title="Byte pair encoding">Byte pair encoding</a></li> <li><a href="/wiki/LZ77_and_LZ78" title="LZ77 and LZ78">Lempel–Ziv</a> <ul><li><a href="/wiki/842_(compression_algorithm)" title="842 (compression algorithm)">842</a></li> <li><a href="/wiki/LZ4_(compression_algorithm)" title="LZ4 (compression algorithm)">LZ4</a></li> <li><a href="/wiki/LZJB" class="mw-redirect" title="LZJB">LZJB</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer" title="Lempel–Ziv–Oberhumer">LZO</a></li> <li><a href="/wiki/LZRW" title="LZRW">LZRW</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Storer%E2%80%93Szymanski" title="Lempel–Ziv–Storer–Szymanski">LZSS</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch" title="Lempel–Ziv–Welch">LZW</a></li> <li><a href="/wiki/LZWL" title="LZWL">LZWL</a></li> <li><a href="/wiki/Snappy_(compression)" title="Snappy (compression)">Snappy</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Other types</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Burrows%E2%80%93Wheeler_transform" title="Burrows–Wheeler transform">BWT</a></li> <li><a href="/wiki/Context_tree_weighting" title="Context tree weighting">CTW</a></li> <li><a href="/wiki/Context_mixing" title="Context mixing">CM</a></li> <li><a href="/wiki/Delta_encoding" title="Delta encoding">Delta</a> <ul><li><a href="/wiki/Incremental_encoding" title="Incremental encoding">Incremental</a></li></ul></li> <li><a href="/wiki/Dynamic_Markov_compression" title="Dynamic Markov compression">DMC</a></li> <li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a></li> <li><a href="/wiki/Grammar-based_code" title="Grammar-based code">Grammar</a> <ul><li><a href="/wiki/Re-Pair" title="Re-Pair">Re-Pair</a></li> <li><a href="/wiki/Sequitur_algorithm" title="Sequitur algorithm">Sequitur</a></li></ul></li> <li><a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">LDCT</a></li> <li><a href="/wiki/Move-to-front_transform" title="Move-to-front transform">MTF</a></li> <li><a href="/wiki/PAQ" title="PAQ">PAQ</a></li> <li><a href="/wiki/Prediction_by_partial_matching" title="Prediction by partial matching">PPM</a></li> <li><a href="/wiki/Run-length_encoding" title="Run-length encoding">RLE</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Hybrid</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li>LZ77 + Huffman <ul><li><a href="/wiki/Deflate" title="Deflate">Deflate</a></li> <li><a href="/wiki/LZX" title="LZX">LZX</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Stac" title="Lempel–Ziv–Stac">LZS</a></li></ul></li> <li>LZ77 + ANS <ul><li><a href="/wiki/LZFSE" title="LZFSE">LZFSE</a></li></ul></li> <li>LZ77 + Huffman + ANS <ul><li><a href="/wiki/Zstd" title="Zstd">Zstandard</a></li></ul></li> <li>LZ77 + Huffman + context <ul><li><a href="/wiki/Brotli" title="Brotli">Brotli</a></li></ul></li> <li>LZSS + Huffman <ul><li><a href="/wiki/LHA_(file_format)" title="LHA (file format)">LHA/LZH</a></li></ul></li> <li>LZ77 + Range <ul><li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Markov_chain_algorithm" title="Lempel–Ziv–Markov chain algorithm">LZMA</a></li> <li>LZHAM</li></ul></li> <li>RLE + BWT + MTF + Huffman <ul><li><a href="/wiki/Bzip2" title="Bzip2">bzip2</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Lossy_compression" title="Lossy compression">Lossy</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Transform_coding" title="Transform coding">Transform type</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">Discrete cosine transform</a> <ul><li><a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">DCT</a></li> <li><a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">MDCT</a></li></ul></li> <li><a href="/wiki/Discrete_sine_transform" title="Discrete sine transform">DST</a></li> <li><a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">FFT</a></li> <li><a href="/wiki/Wavelet_transform" title="Wavelet transform">Wavelet</a> <ul><li><a class="mw-selflink selflink">Daubechies</a></li> <li><a href="/wiki/Discrete_wavelet_transform" title="Discrete wavelet transform">DWT</a></li> <li><a href="/wiki/Set_partitioning_in_hierarchical_trees" title="Set partitioning in hierarchical trees">SPIHT</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Predictive type</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a> <ul><li><a href="/wiki/Adaptive_differential_pulse-code_modulation" title="Adaptive differential pulse-code modulation">ADPCM</a></li></ul></li> <li><a href="/wiki/Linear_predictive_coding" title="Linear predictive coding">LPC</a> <ul><li><a href="/wiki/Algebraic_code-excited_linear_prediction" title="Algebraic code-excited linear prediction">ACELP</a></li> <li><a href="/wiki/Code-excited_linear_prediction" title="Code-excited linear prediction">CELP</a></li> <li><a href="/wiki/Log_area_ratio" title="Log area ratio">LAR</a></li> <li><a href="/wiki/Line_spectral_pairs" title="Line spectral pairs">LSP</a></li> <li><a href="/wiki/Warped_linear_predictive_coding" title="Warped linear predictive coding">WLPC</a></li></ul></li> <li>Motion <ul><li><a href="/wiki/Motion_compensation" title="Motion compensation">Compensation</a></li> <li><a href="/wiki/Motion_estimation" title="Motion estimation">Estimation</a></li> <li><a href="/wiki/Motion_vector" class="mw-redirect" title="Motion vector">Vector</a></li></ul></li> <li><a href="/wiki/Psychoacoustics" title="Psychoacoustics">Psychoacoustic</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Data_compression#Audio" title="Data compression">Audio</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bit_rate" title="Bit rate">Bit rate</a> <ul><li><a href="/wiki/Average_bitrate" title="Average bitrate">ABR</a></li> <li><a href="/wiki/Constant_bitrate" title="Constant bitrate">CBR</a></li> <li><a href="/wiki/Variable_bitrate" title="Variable bitrate">VBR</a></li></ul></li> <li><a href="/wiki/Companding" title="Companding">Companding</a></li> <li><a href="/wiki/Convolution" title="Convolution">Convolution</a></li> <li><a href="/wiki/Dynamic_range" title="Dynamic range">Dynamic range</a></li> <li><a href="/wiki/Latency_(audio)" title="Latency (audio)">Latency</a></li> <li><a href="/wiki/Nyquist%E2%80%93Shannon_sampling_theorem" title="Nyquist–Shannon sampling theorem">Nyquist–Shannon theorem</a></li> <li><a href="/wiki/Sampling_(signal_processing)" title="Sampling (signal processing)">Sampling</a></li> <li><a href="/wiki/Silence_compression" title="Silence compression">Silence compression</a></li> <li><a href="/wiki/Sound_quality" title="Sound quality">Sound quality</a></li> <li><a href="/wiki/Speech_coding" title="Speech coding">Speech coding</a></li> <li><a href="/wiki/Sub-band_coding" title="Sub-band coding">Sub-band coding</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Audio_codec" title="Audio codec">Codec</a> parts</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/A-law_algorithm" title="A-law algorithm">A-law</a></li> <li><a href="/wiki/%CE%9C-law_algorithm" title="Μ-law algorithm">μ-law</a></li> <li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a> <ul><li><a href="/wiki/Adaptive_differential_pulse-code_modulation" title="Adaptive differential pulse-code modulation">ADPCM</a></li> <li><a href="/wiki/Delta_modulation" title="Delta modulation">DM</a></li></ul></li> <li><a href="/wiki/Fourier_transform" title="Fourier transform">FT</a> <ul><li><a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">FFT</a></li></ul></li> <li><a href="/wiki/Linear_predictive_coding" title="Linear predictive coding">LPC</a> <ul><li><a href="/wiki/Algebraic_code-excited_linear_prediction" title="Algebraic code-excited linear prediction">ACELP</a></li> <li><a href="/wiki/Code-excited_linear_prediction" title="Code-excited linear prediction">CELP</a></li> <li><a href="/wiki/Log_area_ratio" title="Log area ratio">LAR</a></li> <li><a href="/wiki/Line_spectral_pairs" title="Line spectral pairs">LSP</a></li> <li><a href="/wiki/Warped_linear_predictive_coding" title="Warped linear predictive coding">WLPC</a></li></ul></li> <li><a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">MDCT</a></li> <li><a href="/wiki/Psychoacoustics" title="Psychoacoustics">Psychoacoustic model</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Image_compression" title="Image compression">Image</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chroma_subsampling" title="Chroma subsampling">Chroma subsampling</a></li> <li><a href="/wiki/Coding_tree_unit" title="Coding tree unit">Coding tree unit</a></li> <li><a href="/wiki/Color_space" title="Color space">Color space</a></li> <li><a href="/wiki/Compression_artifact" title="Compression artifact">Compression artifact</a></li> <li><a href="/wiki/Image_resolution" title="Image resolution">Image resolution</a></li> <li><a href="/wiki/Macroblock" title="Macroblock">Macroblock</a></li> <li><a href="/wiki/Pixel" title="Pixel">Pixel</a></li> <li><a href="/wiki/Peak_signal-to-noise_ratio" title="Peak signal-to-noise ratio">PSNR</a></li> <li><a href="/wiki/Quantization_(image_processing)" title="Quantization (image processing)">Quantization</a></li> <li><a href="/wiki/Standard_test_image" title="Standard test image">Standard test image</a></li> <li><a href="/wiki/Texture_compression" title="Texture compression">Texture compression</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Methods</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chain_code" title="Chain code">Chain code</a></li> <li><a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">DCT</a></li> <li><a href="/wiki/Deflate" title="Deflate">Deflate</a></li> <li><a href="/wiki/Fractal_compression" title="Fractal compression">Fractal</a></li> <li><a href="/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem" class="mw-redirect" title="Karhunen–Loève theorem">KLT</a></li> <li><a href="/wiki/Pyramid_(image_processing)" title="Pyramid (image processing)">LP</a></li> <li><a href="/wiki/Run-length_encoding" title="Run-length encoding">RLE</a></li> <li><a href="/wiki/Wavelet_transform" title="Wavelet transform">Wavelet</a> <ul><li><a class="mw-selflink selflink">Daubechies</a></li> <li><a href="/wiki/Discrete_wavelet_transform" title="Discrete wavelet transform">DWT</a></li> <li><a href="/wiki/Embedded_zerotrees_of_wavelet_transforms" title="Embedded zerotrees of wavelet transforms">EZW</a></li> <li><a href="/wiki/Set_partitioning_in_hierarchical_trees" title="Set partitioning in hierarchical trees">SPIHT</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Data_compression#Video" title="Data compression">Video</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bit_rate" title="Bit rate">Bit rate</a> <ul><li><a href="/wiki/Average_bitrate" title="Average bitrate">ABR</a></li> <li><a href="/wiki/Constant_bitrate" title="Constant bitrate">CBR</a></li> <li><a href="/wiki/Variable_bitrate" title="Variable bitrate">VBR</a></li></ul></li> <li><a href="/wiki/Display_resolution" title="Display resolution">Display resolution</a></li> <li><a href="/wiki/Film_frame" title="Film frame">Frame</a></li> <li><a href="/wiki/Frame_rate" title="Frame rate">Frame rate</a></li> <li><a href="/wiki/Video_compression_picture_types" title="Video compression picture types">Frame types</a></li> <li><a href="/wiki/Interlaced_video" title="Interlaced video">Interlace</a></li> <li><a href="/wiki/Video#Characteristics_of_video_streams" title="Video">Video characteristics</a></li> <li><a href="/wiki/Video_quality" title="Video quality">Video quality</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Video_codec" title="Video codec">Codec</a> parts</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Discrete_cosine_transform" title="Discrete cosine transform">DCT</a></li> <li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a></li> <li><a href="/wiki/Deblocking_filter" title="Deblocking filter">Deblocking filter</a></li> <li><a href="/wiki/Lapped_transform" title="Lapped transform">Lapped transform</a></li> <li>Motion <ul><li><a href="/wiki/Motion_compensation" title="Motion compensation">Compensation</a></li> <li><a href="/wiki/Motion_estimation" title="Motion estimation">Estimation</a></li> <li><a href="/wiki/Motion_vector" class="mw-redirect" title="Motion vector">Vector</a></li></ul></li> <li><a href="/wiki/Wavelet_transform" title="Wavelet transform">Wavelet</a> <ul><li><a class="mw-selflink selflink">Daubechies</a></li> <li><a href="/wiki/Discrete_wavelet_transform" title="Discrete wavelet transform">DWT</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Information_theory" title="Information theory">Theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Compressed_data_structure" title="Compressed data structure">Compressed data structures</a> <ul><li><a href="/wiki/Compressed_suffix_array" title="Compressed suffix array">Compressed suffix array</a></li> <li><a href="/wiki/FM-index" title="FM-index">FM-index</a></li></ul></li> <li><a href="/wiki/Entropy_(information_theory)" title="Entropy (information theory)">Entropy</a></li> <li><a href="/wiki/Information_theory" title="Information theory">Information theory</a> <ul><li><a href="/wiki/Timeline_of_information_theory" title="Timeline of information theory">Timeline</a></li></ul></li> <li><a href="/wiki/Kolmogorov_complexity" title="Kolmogorov complexity">Kolmogorov complexity</a></li> <li><a href="/wiki/Prefix_code" title="Prefix code">Prefix code</a></li> <li><a href="/wiki/Quantization_(signal_processing)" title="Quantization (signal processing)">Quantization</a></li> <li><a href="/wiki/Rate%E2%80%93distortion_theory" title="Rate–distortion theory">Rate–distortion</a></li> <li><a href="/wiki/Redundancy_(information_theory)" title="Redundancy (information theory)">Redundancy</a></li> <li><a href="/wiki/Data_compression_symmetry" title="Data compression symmetry">Symmetry</a></li> <li><a href="/wiki/Smallest_grammar_problem" title="Smallest grammar problem">Smallest grammar problem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Community</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hutter_Prize" title="Hutter Prize">Hutter Prize</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">People</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mark_Adler" title="Mark Adler">Mark Adler</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Compression_formats" title="Template:Compression formats">Compression formats</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Compression_software" title="Template:Compression software">Compression software</a> (<a href="/wiki/Codec" title="Codec">codecs</a>)</li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐rfmrd Cached time: 20241122140953 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.460 seconds Real time usage: 1.177 seconds Preprocessor visited node count: 1702/1000000 Post‐expand include size: 96648/2097152 bytes Template argument size: 1022/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 5/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 68191/5000000 bytes Lua time usage: 0.270/10.000 seconds Lua memory usage: 6252107/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 726.147 1 -total 17.44% 126.643 1 Template:Reflist 16.08% 116.743 6 Template:Navbox 15.33% 111.312 1 Template:Compression_methods 15.18% 110.211 9 Template:Cite_journal 11.30% 82.063 1 Template:Refimprove 10.53% 76.427 2 Template:Ambox 10.07% 73.101 1 Template:Short_description 6.65% 48.273 1 Template:Commons_category 6.38% 46.341 1 Template:Sister_project --> <!-- Saved in parser cache with key enwiki:pcache:idhash:554121-0!canonical and timestamp 20241122140953 and revision id 1251646719. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Daubechies_wavelet&oldid=1251646719">https://en.wikipedia.org/w/index.php?title=Daubechies_wavelet&oldid=1251646719</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Data_compression" title="Category:Data compression">Data compression</a></li><li><a href="/wiki/Category:Orthogonal_wavelets" title="Category:Orthogonal wavelets">Orthogonal wavelets</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_August_2009" title="Category:Articles needing additional references from August 2009">Articles needing additional references from August 2009</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_September_2019" title="Category:Wikipedia articles needing clarification from September 2019">Wikipedia articles needing clarification from September 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_needing_clarification" title="Category:All Wikipedia articles needing clarification">All Wikipedia articles needing clarification</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li><li><a href="/wiki/Category:Articles_with_example_MATLAB/Octave_code" title="Category:Articles with example MATLAB/Octave code">Articles with example MATLAB/Octave code</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 17 October 2024, at 07:12<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Daubechies_wavelet&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-chdqs","wgBackendResponseTime":176,"wgPageParseReport":{"limitreport":{"cputime":"0.460","walltime":"1.177","ppvisitednodes":{"value":1702,"limit":1000000},"postexpandincludesize":{"value":96648,"limit":2097152},"templateargumentsize":{"value":1022,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":68191,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 726.147 1 -total"," 17.44% 126.643 1 Template:Reflist"," 16.08% 116.743 6 Template:Navbox"," 15.33% 111.312 1 Template:Compression_methods"," 15.18% 110.211 9 Template:Cite_journal"," 11.30% 82.063 1 Template:Refimprove"," 10.53% 76.427 2 Template:Ambox"," 10.07% 73.101 1 Template:Short_description"," 6.65% 48.273 1 Template:Commons_category"," 6.38% 46.341 1 Template:Sister_project"]},"scribunto":{"limitreport-timeusage":{"value":"0.270","limit":"10.000"},"limitreport-memusage":{"value":6252107,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-rfmrd","timestamp":"20241122140953","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Daubechies wavelet","url":"https:\/\/en.wikipedia.org\/wiki\/Daubechies_wavelet","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1172774","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1172774","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-03-26T11:31:10Z","dateModified":"2024-10-17T07:12:06Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/a\/a3\/Daubechies20LowPassHighPass2DFilterM.png","headline":"orthogonal wavelets"}</script> </body> </html>