CINXE.COM
(PDF) Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology | Peter Ma - Academia.edu
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="9bUFYYVuMUgX5VUisQ45i57+jgM+yV3CW61qFOD6NuQaORNcf0PQ5JnD51TI4XQOJDRuJbTUfK+s5JZedt4ZeA==" /> <meta name="citation_title" content="Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology" /> <meta name="citation_publication_date" content="1999/01/01" /> <meta name="citation_journal_title" content="J Biomed Mater Res" /> <meta name="citation_author" content="Peter Ma" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/54611190/Poly_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering_I_Preparation_and_morphology" /> <meta name="twitter:title" content="Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology" /> <meta name="twitter:description" content="Tissue engineering has shown great promise for creating biological alternatives for implants. In this approach, scaffolding plays a pivotal role. Hydroxyapatite mimics the natural bone mineral and has shown good bonebonding properties. This paper" /> <meta name="twitter:image" content="http://a.academia-assets.com/images/twitter-card.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/54611190/Poly_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering_I_Preparation_and_morphology" /> <meta property="og:title" content="Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Tissue engineering has shown great promise for creating biological alternatives for implants. In this approach, scaffolding plays a pivotal role. Hydroxyapatite mimics the natural bone mineral and has shown good bonebonding properties. This paper" /> <meta property="article:author" content="https://independent.academia.edu/PeterMa1" /> <meta name="description" content="Tissue engineering has shown great promise for creating biological alternatives for implants. In this approach, scaffolding plays a pivotal role. Hydroxyapatite mimics the natural bone mineral and has shown good bonebonding properties. This paper" /> <title>(PDF) Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology | Peter Ma - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/54611190/Poly_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering_I_Preparation_and_morphology" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '3fc4601e7ca7f3c56efd437e416c7062ddea86d9'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1734150818000); window.Aedu.timeDifference = new Date().getTime() - 1734150818000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","author":[{"@context":"https://schema.org","@type":"Person","name":"Peter Ma"}],"contributor":[],"dateCreated":"2021-10-01","datePublished":"1999-01-01","headline":"Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology","image":"https://attachments.academia-assets.com/70893473/thumbnails/1.jpg","inLanguage":"en","keywords":["Biomedical Engineering","Tissue Engineering","Hydroxyapatite","Biomedical Materials","Bone Tissue Engineering","Pore Size","Phase Separation","Microstructures","Three Dimensional","Lactic Acid","Mechanical Property","Thermally induced phase separation"],"publication":"J Biomed Mater Res","publisher":{"@context":"https://schema.org","@type":"Organization","name":null},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}],"thumbnailUrl":"https://attachments.academia-assets.com/70893473/thumbnails/1.jpg","url":"https://www.academia.edu/54611190/Poly_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering_I_Preparation_and_morphology"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "3b42e8f8203d772c69c060523ebf25ebf3c28e943076672a66c66438ab042d36", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="6glYOL139K8deHhsp3smILiG/Y9PbdXxMlAI8+UO+rQFhU4FR1oVA5NeyhrelGulAkwdqcVw9JzFGfS5cyrVKA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/54611190/Poly_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering_I_Preparation_and_morphology" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="gopzdBVnaQzmTSZjXG2zaxDxqoA8/T6F5MKMfHsxvh9tBmVJ70qIoGhrlBUlgv7uqjtKprbgH+gTi3A27RWRgw==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-9c3aee17884517704b99164df3bf08122e978aed622298001f4470844ed827e5.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 33046521; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F54611190%2FPoly_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering_I_Preparation_and_morphology%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F54611190%2FPoly_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering_I_Preparation_and_morphology%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":70893473,"identifier":"Attachment_70893473","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":54611190,"created_at":"2021-10-01T07:09:07.808-07:00","from_world_paper_id":175369439,"updated_at":"2024-11-25T02:39:27.793-08:00","_data":{"grobid_abstract":"Tissue engineering has shown great promise for creating biological alternatives for implants. In this approach, scaffolding plays a pivotal role. Hydroxyapatite mimics the natural bone mineral and has shown good bonebonding properties. This paper describes the preparation and morphologies of three-dimensional porous composites from poly(L-lactic acid) (PLLA) or poly(D,L-lactic acid-coglycolic acid) (PLGA) solution and hydroxyapatite (HAP). A thermally induced phase separation technique was used to create the highly porous composite scaffolds for bone-tissue engineering. Freeze drying of the phase-separated polymer/ HAP/solvent mixtures produced hard and tough foams with a co-continuous structure of interconnected pores and a polymer/HAP composite skeleton. The microstructure of the pores and the walls was controlled by varying the polymer concentration, HAP content, quenching temperature, polymer, and solvent utilized. The porosity increased with decreasing polymer concentration and HAP content. Foams with porosity as high as 95% were achieved. Pore sizes ranging from several microns to a few hundred microns were obtained. The composite foams showed a significant improvement in mechanical properties over pure polymer foams. They are promising scaffolds for bone-tissue engineering.","publication_date":"1999,,","publication_name":"J Biomed Mater Res","grobid_abstract_attachment_id":"70893473"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology","broadcastable":true,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [33046521]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loginModal = {}; window.loginModal.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":70893473,"attachmentType":"pdf"}"><img alt="First page of “Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/70893473/mini_magick20211001-797-11g77c7.png?1633099004" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="33046521" href="https://independent.academia.edu/PeterMa1"><img alt="Profile image of Peter Ma" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />Peter Ma</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">1999, J Biomed Mater Res</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">10 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 54611190; const worksViewsPath = "/v0/works/views?subdomain_param=api&work_ids%5B%5D=54611190"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { try { const viewCountNumber = parseInt(viewCount, 10); if (viewCountNumber === 0) { // Remove the whole views element if there are zero views. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); return; } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (!viewCountBody) { throw new Error('Failed to find work views element'); } viewCountBody.textContent = `${commaizedViewCount} views`; } catch (error) { // Remove the whole views element if there was some issue parsing. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); throw new Error(`Failed to parse view count: ${viewCount}`, error); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">Tissue engineering has shown great promise for creating biological alternatives for implants. In this approach, scaffolding plays a pivotal role. Hydroxyapatite mimics the natural bone mineral and has shown good bonebonding properties. This paper describes the preparation and morphologies of three-dimensional porous composites from poly(L-lactic acid) (PLLA) or poly(D,L-lactic acid-coglycolic acid) (PLGA) solution and hydroxyapatite (HAP). A thermally induced phase separation technique was used to create the highly porous composite scaffolds for bone-tissue engineering. Freeze drying of the phase-separated polymer/ HAP/solvent mixtures produced hard and tough foams with a co-continuous structure of interconnected pores and a polymer/HAP composite skeleton. The microstructure of the pores and the walls was controlled by varying the polymer concentration, HAP content, quenching temperature, polymer, and solvent utilized. The porosity increased with decreasing polymer concentration and HAP content. Foams with porosity as high as 95% were achieved. Pore sizes ranging from several microns to a few hundred microns were obtained. The composite foams showed a significant improvement in mechanical properties over pure polymer foams. They are promising scaffolds for bone-tissue engineering.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":70893473,"attachmentType":"pdf","workUrl":"https://www.academia.edu/54611190/Poly_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering_I_Preparation_and_morphology"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":70893473,"attachmentType":"pdf","workUrl":"https://www.academia.edu/54611190/Poly_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering_I_Preparation_and_morphology"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="70893473" data-landing_url="https://www.academia.edu/54611190/Poly_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering_I_Preparation_and_morphology" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="72976771" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/72976771/Poly_a_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering">Poly(a-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33046521" href="https://independent.academia.edu/PeterMa1">Peter Ma</a></div><p class="ds-related-work--metadata ds2-5-body-xs">1999</p><p class="ds-related-work--abstract ds2-5-body-sm">creating biological alternatives for implants. In this ap-proach, scaffolding plays a pivotal role. Hydroxyapatite mimics the natural bone mineral and has shown good bone-bonding properties. This paper describes the preparation and morphologies of three-dimensional porous composites from poly(L-lactic acid) (PLLA) or poly(D,L-lactic acid-co-glycolic acid) (PLGA) solution and hydroxyapatite (HAP). A thermally induced phase separation technique was used to create the highly porous composite scaffolds for bone-tissue engineering. Freeze drying of the phase-separated polymer/ HAP/solvent mixtures produced hard and tough foams with a co-continuous structure of interconnected pores and a polymer/HAP composite skeleton. The microstructure of the pores and the walls was controlled by varying the poly-mer concentration, HAP content, quenching temperature, polymer, and solvent utilized. The porosity increased with decreasing polymer concentration and HAP content. Foams with porosity as high a...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Poly(a-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering","attachmentId":81683326,"attachmentType":"pdf","work_url":"https://www.academia.edu/72976771/Poly_a_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/72976771/Poly_a_hydroxyl_acids_hydroxyapatite_porous_composites_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="124429447" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/124429447/A_method_of_fabrication_of_porous_carbonated_hydroxyapatite_scaffolds_for_bone_tissue_engineering">A method of fabrication of porous carbonated hydroxyapatite scaffolds for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="110264322" href="https://independent.academia.edu/GurinAlex">Alex Gurin</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2008</p><p class="ds-related-work--abstract ds2-5-body-sm">A method to produce porous carbonated hydroxyapatite ceramics was developed which is based on vacuum impregnation of cellular polyurethane (PU) matrixes with a ceramic slip. The polyurethane foams were burnt off and the samples were converted into porous carbonated hydroxyapatite (CHA) ceramics by sintering in a furnace at 600 to 650°C using a sintering additive. The ceramics had 60-90% interconnected porosity, necessary to facilitate cell seeding and fixation which is an important requirement for use in bone tissue engineering. The optimal composition of ceramic slip and the sintering conditions were found. PU foams with a different number of pores per inch (ppi) were used and the strength testing of ceramics was carried out. It is suggested that the experimental ceramics would be useful in bone replacement and reconstruction.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A method of fabrication of porous carbonated hydroxyapatite scaffolds for bone tissue engineering","attachmentId":118656353,"attachmentType":"pdf","work_url":"https://www.academia.edu/124429447/A_method_of_fabrication_of_porous_carbonated_hydroxyapatite_scaffolds_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/124429447/A_method_of_fabrication_of_porous_carbonated_hydroxyapatite_scaffolds_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="54611061" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/54611061/Engineering_new_bone_tissuein_vitro_on_highly_porous_poly_hydroxyl_acids_hydroxyapatite_composite_scaffolds">Engineering new bone tissuein vitro on highly porous poly(?-hydroxyl acids)/hydroxyapatite composite scaffolds</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33046521" href="https://independent.academia.edu/PeterMa1">Peter Ma</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Biomedical Materials Research, 2001</p><p class="ds-related-work--abstract ds2-5-body-sm">Engineering new bone tissue with cells and a synthetic extracellular matrix (scaffolding) represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). In the present work, highly porous poly(L-lactic acid) (PLLA) and PLLA/hydroxyapatite (HAP) composite scaffolds were prepared with a thermally induced phase separation technique. The scaffolds were seeded with osteoblastic cells and cultured in vitro. In the pure PLLA scaffolds, the osteoblasts attached primarily on the outer surface of the polymer. In contrast, the osteoblasts penetrated deep into the PLLA/HAP scaffolds and were uniformly distributed. The osteoblast survival percentage in the PLLA/HAP scaffolds was superior to that in the PLLA scaffolds. The osteoblasts proliferated in both types of the scaffolds, but the cell number was always higher in the PLLA/HAP composite scaffolds during 6 weeks of in vitro cultivation. Bone-specific markers (mRNAs encoding bone sialoprotein and osteocalcin) were expressed more abundantly in the PLLA/HAP composite scaffolds than in the PLLA scaffolds. The new tissue increased continuously in the PLLA/HAP composite scaffolds, whereas new tissue formed only near the surface of pure PLLA scaffolds. These results demonstrate that HAP imparts osteoconductivity and the highly porous PLLA/ HAP composite scaffolds are superior to pure PLLA scaffolds for bone tissue engineering.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Engineering new bone tissuein vitro on highly porous poly(?-hydroxyl acids)/hydroxyapatite composite scaffolds","attachmentId":70893429,"attachmentType":"pdf","work_url":"https://www.academia.edu/54611061/Engineering_new_bone_tissuein_vitro_on_highly_porous_poly_hydroxyl_acids_hydroxyapatite_composite_scaffolds","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/54611061/Engineering_new_bone_tissuein_vitro_on_highly_porous_poly_hydroxyl_acids_hydroxyapatite_composite_scaffolds"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="17516340" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/17516340/Structure_and_properties_of_nano_hydroxyapatite_polymer_composite_scaffolds_for_bone_tissue_engineering">Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="37284697" href="https://independent.academia.edu/GuobaoWei">Guobao Wei</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Biomaterials, 2004</p><p class="ds-related-work--abstract ds2-5-body-sm">To better mimic the mineral component and the microstructure of natural bone, novel nano-hydroxyapatite (NHAP)/polymer composite scaffolds with high porosity and well-controlled pore architectures were prepared using thermally induced phase separation (TIPS) techniques. The morphologies, mechanical properties and protein adsorption capacities of the composite scaffolds were investigated. The high porosity (90% and above) was easily achieved and the pore size was adjusted by varying phase separation parameters. The NHAP particles were dispersed in the pore walls of the scaffolds and bound to the polymer very well. NHAP/polymer scaffolds prepared using pure solvent system had a regular anisotropic but open 3D pore structure similar to plain polymer scaffolds while micro-hydroxyapatite (MHAP)/polymer scaffolds had a random irregular pore structure. The introduction of HAP greatly increased the mechanical properties and improved the protein adsorption capacity. In a dioxane/water mixture solvent system, NHAP-incorporated poly(l-lactic acid) (PLLA) scaffolds developed a fibrous morphology which in turn increased the protein adsorption three fold over non fibrous scaffolds. The results suggest that the newly developed NHAP/polymer composite scaffolds may serve as an excellent 3D substrate for cell attachment and migration in bone tissue engineering. r</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering","attachmentId":39553362,"attachmentType":"pdf","work_url":"https://www.academia.edu/17516340/Structure_and_properties_of_nano_hydroxyapatite_polymer_composite_scaffolds_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/17516340/Structure_and_properties_of_nano_hydroxyapatite_polymer_composite_scaffolds_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="98747146" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/98747146/One_pot_method_to_synthesize_three_dimensional_porous_hydroxyapatite_nanocomposite_for_bone_tissue_engineering">One pot method to synthesize three-dimensional porous hydroxyapatite nanocomposite for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="48659175" href="https://independent.academia.edu/sarkarchandrani">chandrani sarkar</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Porous Materials, 2019</p><p class="ds-related-work--abstract ds2-5-body-sm">A three-dimensional porous hydroxyapatite nanocomposite has been synthesized by a simple, less energy consuming and cost effective one-pot method. In this study, gelatin foam has been used as pore forming agent and incorporated in carboxymethyl cellulose-hydroxyapatite system in composite formation stage. A three-dimensional porous polymers-hydroxyapatite nanocomposite has been formed as a final product. The synthesized porous nanocomposite has been thoroughly characterized by different techniques. It was found that the nanocomposite is highly porous with almost 80% porosity, and has multi-scale pores from 2.5 to 900 μm in size. Furthermore, the synthesized porous composite has compressive strength ~ 11.8 ± 1.5 MPa and modulus ~ 0.243 ± 0.031 GPa, in the range of cancellous bone. Moreover, the nanocomposite provides favorable environment to cells for proliferation, high alkaline phosphatase (ALP) activity and extracellular mineralization. In vitro degradation of synthesized nanocomposites was tested in simulated body fluid. Results ascertained that the synthesized porous hydroxyapatite nanocomposite would be a promising scaffold for bone tissue engineering.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"One pot method to synthesize three-dimensional porous hydroxyapatite nanocomposite for bone tissue engineering","attachmentId":100014858,"attachmentType":"pdf","work_url":"https://www.academia.edu/98747146/One_pot_method_to_synthesize_three_dimensional_porous_hydroxyapatite_nanocomposite_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/98747146/One_pot_method_to_synthesize_three_dimensional_porous_hydroxyapatite_nanocomposite_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="77229276" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/77229276/Brief_communication_Original_Preparation_of_a_novel_porous_scaffold_from_poly_lactic_co_glycolic_acid_hydroxyapatite">Brief communication (Original). Preparation of a novel porous scaffold from poly(lactic-co-glycolic acid)/hydroxyapatite</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33136116" href="https://utoronto.academia.edu/FarzanehPourasgari">Farzaneh Pourasgari</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Asian Biomedicine, 2011</p><p class="ds-related-work--abstract ds2-5-body-sm">Background: Scaffolds for bone tissue engineering must meet functional requirements, porosity, biocompatibility, and biodegradability. Different polymeric scaffolds have been designed to satisfy these properties. Composite materials could improve mechanical properties compared with polymers, and structural integrity and flexibility compared with brittle ceramics. Objective: Fabricate poly (lactic-co-glycolic acid) (PLGA) /hydroxyapatite (HA) porous scaffolds by freezeextraction method, and evaluate the possibility for optimizing their biocompatibility by changing their HA content. Methods: Porous PLGA/HA composites structure were prepared by freezing a polymer solution, and then the solvent was extracted by a non-solvent and subsequently air-dried. The scaffolds were coated with triblock copolymer and sterilized by ultraviolet light. Human mesenchymal stem cells were cultured on the prepared scaffolds and were studied after three days by 4, 6-diamidino-2-phenylindole (DAPI) fluoresc...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Brief communication (Original). Preparation of a novel porous scaffold from poly(lactic-co-glycolic acid)/hydroxyapatite","attachmentId":84665570,"attachmentType":"pdf","work_url":"https://www.academia.edu/77229276/Brief_communication_Original_Preparation_of_a_novel_porous_scaffold_from_poly_lactic_co_glycolic_acid_hydroxyapatite","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/77229276/Brief_communication_Original_Preparation_of_a_novel_porous_scaffold_from_poly_lactic_co_glycolic_acid_hydroxyapatite"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="4741509" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/4741509/Porous_scaffolds_of_polycaprolactone_reinforced_with_in_situ_generated_hydroxyapatite_for_bone_tissue_engineering">Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="4740575" href="https://unimore.academia.edu/MassimoMessori">Massimo Messori</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Materials Science-materials in Medicine, 2010</p><p class="ds-related-work--abstract ds2-5-body-sm">Polycaprolactone/hydroxyapatite (PCL/HA) composites were prepared by in situ generation of HA in the polymer solution starting from the precursors calcium nitrate tetrahydrate and ammonium dihydrogen phosphate via sol–gel process. Highly interconnected porosity was achieved by means of the salt-leaching technique using a mixture of sodium chloride and sodium bicarbonate as porogens. Structure and morphology of the PCL/HA composites were investigated by scanning electron microscopy, and mechanical properties were determined by means of tensile and compression tests. The possibility to employ the developed composites as scaffolds for bone tissue regeneration was assessed by cytotoxicity test of the PCL/HA composites extracts and cell adhesion and proliferation in vitro studies.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering","attachmentId":49649647,"attachmentType":"pdf","work_url":"https://www.academia.edu/4741509/Porous_scaffolds_of_polycaprolactone_reinforced_with_in_situ_generated_hydroxyapatite_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/4741509/Porous_scaffolds_of_polycaprolactone_reinforced_with_in_situ_generated_hydroxyapatite_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="20292914" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/20292914/Preparation_of_a_novel_porous_scaffold_from_poly_lacticco_glycolic_acid_hydroxyapatite">Preparation of a novel porous scaffold from poly(lacticco-glycolic acid)/hydroxyapatite</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33136116" href="https://utoronto.academia.edu/FarzanehPourasgari">Farzaneh Pourasgari</a></div><p class="ds-related-work--abstract ds2-5-body-sm">Background: Scaffolds for bone tissue engineering must meet functional requirements, porosity, biocompatibility, and biodegradability. Different polymeric scaffolds have been designed to satisfy these properties. Composite materials could improve mechanical properties compared with polymers, and structural integrity and flexibility compared with brittle ceramics. Objective: Fabricate poly (lactic-co-glycolic acid) (PLGA) /hydroxyapatite (HA) porous scaffolds by freezeextraction method, and evaluate the possibility for optimizing their biocompatibility by changing their HA content. Methods: Porous PLGA/HA composites structure were prepared by freezing a polymer solution, and then the solvent was extracted by a non-solvent and subsequently air-dried. The scaffolds were coated with triblock copolymer and sterilized by ultraviolet light. Human mesenchymal stem cells were cultured on the prepared scaffolds and were studied after three days by 4, 6-diamidino-2-phenylindole (DAPI) fluorescence microscopy. Results: Microstructural studies with SEM showed the formation of about 50 micrometer size porous structure and interconnected porosity so that cells were adhered well into the structure of the coated samples. DAPI fluorescence microscopy showed more cell adhesion to the coated scaffolds and cell diffusion into the pores are visible. Direct assay of cell proliferation performed with MTT test showed cell growing on the scaffold similar to or more than on control samples. Conclusion: The triblock-coated PLGA/HA porous scaffolds may provide cell adhesion and proliferation, demonstrating their potential application in bone engineering.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Preparation of a novel porous scaffold from poly(lacticco-glycolic acid)/hydroxyapatite","attachmentId":41212590,"attachmentType":"pdf","work_url":"https://www.academia.edu/20292914/Preparation_of_a_novel_porous_scaffold_from_poly_lacticco_glycolic_acid_hydroxyapatite","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/20292914/Preparation_of_a_novel_porous_scaffold_from_poly_lacticco_glycolic_acid_hydroxyapatite"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="115476126" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/115476126/Bioceramic_hydroxyapatite_based_scaffold_with_a_porous_structure_using_honeycomb_as_a_natural_polymeric_Porogen_for_bone_tissue_engineering">Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="173042090" href="https://undip.academia.edu/PuspaHening">Puspa Hening</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Biomaterials Research, 2021</p><p class="ds-related-work--abstract ds2-5-body-sm">Background The application of bioceramic hydroxyapatite (HA) derived from materials high in calcium to tissue engineering has been of concern, namely scaffold. Scaffold pores allow for cell mobility metabolic processes, and delivery of oxygen and nutrients by blood vessel. Thus, pore architecture affects cell seeding efficiency, cell viability, migration, morphology, cell proliferation, cell differentiation, angiogenesis, mechanical strength of scaffolds, and, eventually, bone formation. Therefore, to improve the efficacy of bone regeneration, several important parameters of the pore architecture of scaffolds must be carefully controlled, including pore size, geometry, orientation, uniformity, interconnectivity, and porosity, which are interrelated and whose coordination affects the effectiveness of bone tissue engineering. The honeycomb (HCB) as natural polymeric porogen is used to pore forming agent of scaffolds. It is unique for fully interconnected and oriented pores of uniform ...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering","attachmentId":111872600,"attachmentType":"pdf","work_url":"https://www.academia.edu/115476126/Bioceramic_hydroxyapatite_based_scaffold_with_a_porous_structure_using_honeycomb_as_a_natural_polymeric_Porogen_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/115476126/Bioceramic_hydroxyapatite_based_scaffold_with_a_porous_structure_using_honeycomb_as_a_natural_polymeric_Porogen_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="32016522" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/32016522/Poly_lactide_co_glycolide_hydroxyapatite_composite_scaffolds_for_bone_tissue_engineering">Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="61998754" href="https://independent.academia.edu/KangMinAhn">Kang-Min Ahn</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Biomaterials, 2006</p><p class="ds-related-work--abstract ds2-5-body-sm">Biodegradable polymer/bioceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. However, conventional methods for fabricating polymer/bioceramic composite scaffolds often use organic solvents (e.g., the solvent casting and particulate leaching (SC/PL) method), which might be harmful to cells or tissues. Furthermore, the polymer solutions may coat the ceramics and hinder their exposure to the scaffold surface, which may decrease the likelihood that the seeded osteogenic cells will make contact with the bioactive ceramics. In this study, a novel method for fabricating a polymer/nano-bioceramic composite scaffold with high exposure of the bioceramics to the scaffold surface was developed for efficient bone tissue engineering. Poly(D,L-lactic-co-glycolic acid)/nano-hydroxyapatite (PLGA/HA) composite scaffolds were fabricated by the gas forming and particulate leaching (GF/PL) method without the use of organic solvents. The GF/PL method exposed HA nanoparticles at the scaffold surface significantly more than the conventional SC/PL method does. The GF/PL scaffolds showed interconnected porous structures without a skin layer and exhibited superior enhanced mechanical properties to those of scaffolds fabricated by the SC/PL method. Both types of scaffolds were seeded with rat calvarial osteoblasts and cultured in vitro or were subcutaneously implanted into athymic mice for eight weeks. The GF/PL scaffolds exhibited significantly higher cell growth, alkaline phosphatase activity, and mineralization compared to the SC/PL scaffolds in vitro. Histological analyses and calcium content quantification of the regenerated tissues five and eight weeks after implantation showed that bone formation was more extensive on the GF/PL scaffolds than on the SC/PL scaffolds. Compared to the SC/PL scaffolds, the enhanced bone formation on the GF/PL scaffolds may have resulted from the higher exposure of HA nanoparticles at the scaffold surface, which allowed for direct contact with the transplanted cells and stimulated the cell proliferation and osteogenic differentiation. These results show that the biodegradable polymer/ bioceramic composite scaffolds fabricated by the novel GF/PL method enhance bone regeneration compared with those fabricated by the conventional SC/PL method. r</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering","attachmentId":52282494,"attachmentType":"pdf","work_url":"https://www.academia.edu/32016522/Poly_lactide_co_glycolide_hydroxyapatite_composite_scaffolds_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/32016522/Poly_lactide_co_glycolide_hydroxyapatite_composite_scaffolds_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":70893473,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":70893473,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_70893473" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="1059660" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/1059660/Fabrication_of_porous_hydroxyapatite_gelatin_composite_scaffolds_for_bone_tissue_engineering">Fabrication of porous hydroxyapatite-gelatin composite scaffolds for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="903559" href="https://tissueeng.academia.edu/MehdiKazemzadehNarbat">Mehdi Kazemzadeh-Narbat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Iranian Biomedical Journal, 2006</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Fabrication of porous hydroxyapatite-gelatin composite scaffolds for bone tissue engineering","attachmentId":6483668,"attachmentType":"pdf","work_url":"https://www.academia.edu/1059660/Fabrication_of_porous_hydroxyapatite_gelatin_composite_scaffolds_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/1059660/Fabrication_of_porous_hydroxyapatite_gelatin_composite_scaffolds_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="122732514" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/122732514/Polyurethane_foam_nano_hydroxyapatite_composite_as_a_suitable_scaffold_for_bone_tissue_regeneration">Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2837040" href="https://tums.academia.edu/nbaheiraei">nafiseh baheiraei</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Materials Science and Engineering: C, 2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration","attachmentId":117337973,"attachmentType":"pdf","work_url":"https://www.academia.edu/122732514/Polyurethane_foam_nano_hydroxyapatite_composite_as_a_suitable_scaffold_for_bone_tissue_regeneration","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/122732514/Polyurethane_foam_nano_hydroxyapatite_composite_as_a_suitable_scaffold_for_bone_tissue_regeneration"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="3988364" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/3988364/Porous_hydroxyapatite_for_artificial_bone_applications">Porous hydroxyapatite for artificial bone applications</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="3364553" href="https://malaya.academia.edu/SRamesh">S. Ramesh</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Science and Technology of Advanced Materials, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Porous hydroxyapatite for artificial bone applications","attachmentId":31542499,"attachmentType":"pdf","work_url":"https://www.academia.edu/3988364/Porous_hydroxyapatite_for_artificial_bone_applications","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/3988364/Porous_hydroxyapatite_for_artificial_bone_applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="93281749" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/93281749/Interconnected_porous_hydroxyapatite_ceramics_for_bone_tissue_engineering">Interconnected porous hydroxyapatite ceramics for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="96759932" href="https://osaka-u.academia.edu/TsuyoshiMurase">Tsuyoshi Murase</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of The Royal Society Interface, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Interconnected porous hydroxyapatite ceramics for bone tissue engineering","attachmentId":96061657,"attachmentType":"pdf","work_url":"https://www.academia.edu/93281749/Interconnected_porous_hydroxyapatite_ceramics_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/93281749/Interconnected_porous_hydroxyapatite_ceramics_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="27157326" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/27157326/In_vitro_analysis_of_biodegradable_polymer_blend_hydroxyapatite_composites_for_bone_tissue_engineering">In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="51224428" href="https://independent.academia.edu/PrashantKumta">Prashant Kumta</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Biomedical Materials Research, 1999</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering","attachmentId":47406645,"attachmentType":"pdf","work_url":"https://www.academia.edu/27157326/In_vitro_analysis_of_biodegradable_polymer_blend_hydroxyapatite_composites_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/27157326/In_vitro_analysis_of_biodegradable_polymer_blend_hydroxyapatite_composites_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="13690468" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/13690468/Porous_polymer_hydroxyapatite_scaffolds_characterization_and_biocompatibility_investigations">Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="52861099" href="https://independent.academia.edu/TimothyDouglas3">Timothy Douglas</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="32829651" href="https://agh.academia.edu/ElzbietaPamula">Elzbieta Pamula</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Materials Science: Materials in Medicine, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations","attachmentId":45054675,"attachmentType":"pdf","work_url":"https://www.academia.edu/13690468/Porous_polymer_hydroxyapatite_scaffolds_characterization_and_biocompatibility_investigations","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/13690468/Porous_polymer_hydroxyapatite_scaffolds_characterization_and_biocompatibility_investigations"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="68832289" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/68832289/Synthesis_and_characterization_of_nano_hydroxyapatite_rods_poly_l_lactide_acid_composite_scaffolds_for_bone_tissue_engineering">Synthesis and characterization of nano-hydroxyapatite rods/poly(l-lactide acid) composite scaffolds for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="56571525" href="https://independent.academia.edu/RinaTannenbaum">Rina Tannenbaum</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Composites Part A: Applied Science and Manufacturing, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Synthesis and characterization of nano-hydroxyapatite rods/poly(l-lactide acid) composite scaffolds for bone tissue engineering","attachmentId":79166381,"attachmentType":"pdf","work_url":"https://www.academia.edu/68832289/Synthesis_and_characterization_of_nano_hydroxyapatite_rods_poly_l_lactide_acid_composite_scaffolds_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/68832289/Synthesis_and_characterization_of_nano_hydroxyapatite_rods_poly_l_lactide_acid_composite_scaffolds_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="55724069" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/55724069/Biocompatibility_and_Physico_Chemical_Properties_of_Highly_Porous_PLA_HA_Scaffolds_for_Bone_Reconstruction">Biocompatibility and Physico-Chemical Properties of Highly Porous PLA/HA Scaffolds for Bone Reconstruction</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="194851173" href="https://independent.academia.edu/RajanChoudhary14">Rajan Choudhary</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Polymers</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Biocompatibility and Physico-Chemical Properties of Highly Porous PLA/HA Scaffolds for Bone Reconstruction","attachmentId":71459896,"attachmentType":"pdf","work_url":"https://www.academia.edu/55724069/Biocompatibility_and_Physico_Chemical_Properties_of_Highly_Porous_PLA_HA_Scaffolds_for_Bone_Reconstruction","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/55724069/Biocompatibility_and_Physico_Chemical_Properties_of_Highly_Porous_PLA_HA_Scaffolds_for_Bone_Reconstruction"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="90719166" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/90719166/Porous_Polyethylene_Coated_with_Functionalized_Hydroxyapatite_Particles_as_a_Bone_Reconstruction_Material">Porous Polyethylene Coated with Functionalized Hydroxyapatite Particles as a Bone Reconstruction Material</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="23313594" href="https://independent.academia.edu/AmerMahmood">Amer Mahmood</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Materials (Basel, Switzerland), 2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Porous Polyethylene Coated with Functionalized Hydroxyapatite Particles as a Bone Reconstruction Material","attachmentId":94204393,"attachmentType":"pdf","work_url":"https://www.academia.edu/90719166/Porous_Polyethylene_Coated_with_Functionalized_Hydroxyapatite_Particles_as_a_Bone_Reconstruction_Material","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/90719166/Porous_Polyethylene_Coated_with_Functionalized_Hydroxyapatite_Particles_as_a_Bone_Reconstruction_Material"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="92588251" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/92588251/Effect_of_pore_architecture_on_osteoblast_adhesion_and_proliferation_on_hydroxyapatite_poly_D_L_lactic_acid_based_bone_scaffolds">Effect of pore architecture on osteoblast adhesion and proliferation on hydroxyapatite/poly(D,L) lactic acid-based bone scaffolds</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="249425177" href="https://independent.academia.edu/KimNga36">Kim Nga</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of the Iranian Chemical Society, 2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Effect of pore architecture on osteoblast adhesion and proliferation on hydroxyapatite/poly(D,L) lactic acid-based bone scaffolds","attachmentId":95557671,"attachmentType":"pdf","work_url":"https://www.academia.edu/92588251/Effect_of_pore_architecture_on_osteoblast_adhesion_and_proliferation_on_hydroxyapatite_poly_D_L_lactic_acid_based_bone_scaffolds","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/92588251/Effect_of_pore_architecture_on_osteoblast_adhesion_and_proliferation_on_hydroxyapatite_poly_D_L_lactic_acid_based_bone_scaffolds"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="8753194" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/8753194/Synthesis_and_characterization_of_nanocomposite_scaffolds_based_on_triblock_copolymer_of_L_lactide_%CE%B5_caprolactone_and_nano_hydroxyapatite_for_bone_tissue_engineering">Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="18713573" href="https://merc.academia.edu/alizamanian">ali zamanian</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering","attachmentId":35107810,"attachmentType":"pdf","work_url":"https://www.academia.edu/8753194/Synthesis_and_characterization_of_nanocomposite_scaffolds_based_on_triblock_copolymer_of_L_lactide_%CE%B5_caprolactone_and_nano_hydroxyapatite_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/8753194/Synthesis_and_characterization_of_nanocomposite_scaffolds_based_on_triblock_copolymer_of_L_lactide_%CE%B5_caprolactone_and_nano_hydroxyapatite_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="86839659" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/86839659/Fabrication_of_poly_lactic_acid_hydroxyapatite_PLA_HAp_porous_nanocomposite_for_bone_regeneration">Fabrication of poly (lactic acid)/hydroxyapatite (PLA/HAp) porous nanocomposite for bone regeneration</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="53809585" href="https://independent.academia.edu/ThuHuongH">Ho Thu Huong</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Nanotechnology, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Fabrication of poly (lactic acid)/hydroxyapatite (PLA/HAp) porous nanocomposite for bone regeneration","attachmentId":91204147,"attachmentType":"pdf","work_url":"https://www.academia.edu/86839659/Fabrication_of_poly_lactic_acid_hydroxyapatite_PLA_HAp_porous_nanocomposite_for_bone_regeneration","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/86839659/Fabrication_of_poly_lactic_acid_hydroxyapatite_PLA_HAp_porous_nanocomposite_for_bone_regeneration"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="85379012" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/85379012/Novel_Trends_into_the_Development_of_Natural_Hydroxyapatite_Based_Polymeric_Composites_for_Bone_Tissue_Engineering">Novel Trends into the Development of Natural Hydroxyapatite-Based Polymeric Composites for Bone Tissue Engineering</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="35254658" href="https://pub.academia.edu/EcaterinaAndronescu">Ecaterina Andronescu</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Polymers, 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Novel Trends into the Development of Natural Hydroxyapatite-Based Polymeric Composites for Bone Tissue Engineering","attachmentId":90094432,"attachmentType":"pdf","work_url":"https://www.academia.edu/85379012/Novel_Trends_into_the_Development_of_Natural_Hydroxyapatite_Based_Polymeric_Composites_for_Bone_Tissue_Engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/85379012/Novel_Trends_into_the_Development_of_Natural_Hydroxyapatite_Based_Polymeric_Composites_for_Bone_Tissue_Engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="38139143" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/38139143/Poly_ethylene_glycol_fish_scale_derived_hydroxyapatite_composite_porous_scaffold_for_bone_tissue_engineering">Poly ethylene glycol/fish scale-derived hydroxyapatite composite porous scaffold for bone tissue engineering</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="100225397" href="https://nitsilchar.academia.edu/PAYELDEB">PAYEL DEB</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IOP Conf. Series: Materials Science and Engineering (2018) , 2018</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Poly ethylene glycol/fish scale-derived hydroxyapatite composite porous scaffold for bone tissue engineering","attachmentId":58170486,"attachmentType":"pdf","work_url":"https://www.academia.edu/38139143/Poly_ethylene_glycol_fish_scale_derived_hydroxyapatite_composite_porous_scaffold_for_bone_tissue_engineering","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/38139143/Poly_ethylene_glycol_fish_scale_derived_hydroxyapatite_composite_porous_scaffold_for_bone_tissue_engineering"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1131" href="https://www.academia.edu/Documents/in/Biomedical_Engineering">Biomedical Engineering</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="2699" href="https://www.academia.edu/Documents/in/Tissue_Engineering">Tissue Engineering</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="6216" href="https://www.academia.edu/Documents/in/Hydroxyapatite">Hydroxyapatite</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="83617" href="https://www.academia.edu/Documents/in/Biomedical_Materials">Biomedical Materials</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="127505" href="https://www.academia.edu/Documents/in/Bone_Tissue_Engineering">Bone Tissue Engineering</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="139273" href="https://www.academia.edu/Documents/in/Pore_Size">Pore Size</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="415784" href="https://www.academia.edu/Documents/in/Phase_Separation">Phase Separation</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="473797" href="https://www.academia.edu/Documents/in/Microstructures">Microstructures</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="504035" href="https://www.academia.edu/Documents/in/Three_Dimensional">Three Dimensional</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1074508" href="https://www.academia.edu/Documents/in/Lactic_Acid">Lactic Acid</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="2724508" href="https://www.academia.edu/Documents/in/Mechanical_Property">Mechanical Property</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="3016094" href="https://www.academia.edu/Documents/in/Thermally_induced_phase_separation">Thermally induced phase separation</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>