CINXE.COM

Generating function - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Generating function - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"669cda57-77b5-4189-b285-66d4461c7b3a","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Generating_function","wgTitle":"Generating function","wgCurRevisionId":1255348851,"wgRevisionId":1255348851,"wgArticleId":160993,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","Articles with short description","Short description is different from Wikidata","Articles that may be too long from July 2022","Articles to be expanded from April 2017","All articles to be expanded","Pages that use a deprecated format of the math tags","1730 introductions","Generating functions","Abraham de Moivre"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName": "Generating_function","wgRelevantArticleId":160993,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":90000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q860609","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform", "platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.6"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Generating function - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Generating_function"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Generating_function&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Generating_function"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Generating_function rootpage-Generating_function skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Generating+function" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Generating+function" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Generating+function" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Generating+function" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Convergence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Convergence"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Convergence</span> </div> </a> <ul id="toc-Convergence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Limitations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Limitations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Limitations</span> </div> </a> <ul id="toc-Limitations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Types" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Types"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Types</span> </div> </a> <button aria-controls="toc-Types-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Types subsection</span> </button> <ul id="toc-Types-sublist" class="vector-toc-list"> <li id="toc-Ordinary_generating_function_(OGF)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ordinary_generating_function_(OGF)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Ordinary generating function (OGF)</span> </div> </a> <ul id="toc-Ordinary_generating_function_(OGF)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Exponential_generating_function_(EGF)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exponential_generating_function_(EGF)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Exponential generating function (EGF)</span> </div> </a> <ul id="toc-Exponential_generating_function_(EGF)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson_generating_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Poisson_generating_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Poisson generating function</span> </div> </a> <ul id="toc-Poisson_generating_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lambert_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lambert_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Lambert series</span> </div> </a> <ul id="toc-Lambert_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bell_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bell_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Bell series</span> </div> </a> <ul id="toc-Bell_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dirichlet_series_generating_functions_(DGFs)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dirichlet_series_generating_functions_(DGFs)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Dirichlet series generating functions (DGFs)</span> </div> </a> <ul id="toc-Dirichlet_series_generating_functions_(DGFs)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Polynomial_sequence_generating_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Polynomial_sequence_generating_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>Polynomial sequence generating functions</span> </div> </a> <ul id="toc-Polynomial_sequence_generating_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_generating_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_generating_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.8</span> <span>Other generating functions</span> </div> </a> <ul id="toc-Other_generating_functions-sublist" class="vector-toc-list"> <li id="toc-Convolution_polynomials" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Convolution_polynomials"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.8.1</span> <span>Convolution polynomials</span> </div> </a> <ul id="toc-Convolution_polynomials-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Ordinary_generating_functions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Ordinary_generating_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Ordinary generating functions</span> </div> </a> <button aria-controls="toc-Ordinary_generating_functions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Ordinary generating functions subsection</span> </button> <ul id="toc-Ordinary_generating_functions-sublist" class="vector-toc-list"> <li id="toc-Examples_for_simple_sequences" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples_for_simple_sequences"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Examples for simple sequences</span> </div> </a> <ul id="toc-Examples_for_simple_sequences-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Rational_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rational_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Rational functions</span> </div> </a> <ul id="toc-Rational_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Operations_on_generating_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Operations_on_generating_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Operations on generating functions</span> </div> </a> <ul id="toc-Operations_on_generating_functions-sublist" class="vector-toc-list"> <li id="toc-Multiplication_yields_convolution" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Multiplication_yields_convolution"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.1</span> <span>Multiplication yields convolution</span> </div> </a> <ul id="toc-Multiplication_yields_convolution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Shifting_sequence_indices" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Shifting_sequence_indices"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.2</span> <span>Shifting sequence indices</span> </div> </a> <ul id="toc-Shifting_sequence_indices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Differentiation_and_integration_of_generating_functions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Differentiation_and_integration_of_generating_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.3</span> <span>Differentiation and integration of generating functions</span> </div> </a> <ul id="toc-Differentiation_and_integration_of_generating_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Enumerating_arithmetic_progressions_of_sequences" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Enumerating_arithmetic_progressions_of_sequences"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.4</span> <span>Enumerating arithmetic progressions of sequences</span> </div> </a> <ul id="toc-Enumerating_arithmetic_progressions_of_sequences-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-P-recursive_sequences_and_holonomic_generating_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#P-recursive_sequences_and_holonomic_generating_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span><span><i>P</i></span>-recursive sequences and holonomic generating functions</span> </div> </a> <ul id="toc-P-recursive_sequences_and_holonomic_generating_functions-sublist" class="vector-toc-list"> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.1</span> <span>Definitions</span> </div> </a> <ul id="toc-Definitions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.2</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Software_for_working_with_P-recursive_sequences_and_holonomic_generating_functions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Software_for_working_with_P-recursive_sequences_and_holonomic_generating_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.3</span> <span>Software for working with <i><span>P</span></i>-recursive sequences and holonomic generating functions</span> </div> </a> <ul id="toc-Software_for_working_with_P-recursive_sequences_and_holonomic_generating_functions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Relation_to_discrete-time_Fourier_transform" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relation_to_discrete-time_Fourier_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Relation to discrete-time Fourier transform</span> </div> </a> <ul id="toc-Relation_to_discrete-time_Fourier_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Asymptotic_growth_of_a_sequence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Asymptotic_growth_of_a_sequence"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Asymptotic growth of a sequence</span> </div> </a> <ul id="toc-Asymptotic_growth_of_a_sequence-sublist" class="vector-toc-list"> <li id="toc-Asymptotic_growth_of_the_sequence_of_squares" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Asymptotic_growth_of_the_sequence_of_squares"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.1</span> <span>Asymptotic growth of the sequence of squares</span> </div> </a> <ul id="toc-Asymptotic_growth_of_the_sequence_of_squares-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Asymptotic_growth_of_the_Catalan_numbers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Asymptotic_growth_of_the_Catalan_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.2</span> <span>Asymptotic growth of the Catalan numbers</span> </div> </a> <ul id="toc-Asymptotic_growth_of_the_Catalan_numbers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Bivariate_and_multivariate_generating_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bivariate_and_multivariate_generating_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Bivariate and multivariate generating functions</span> </div> </a> <ul id="toc-Bivariate_and_multivariate_generating_functions-sublist" class="vector-toc-list"> <li id="toc-Bivariate_case" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Bivariate_case"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7.1</span> <span>Bivariate case</span> </div> </a> <ul id="toc-Bivariate_case-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multivariate_case" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Multivariate_case"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7.2</span> <span>Multivariate case</span> </div> </a> <ul id="toc-Multivariate_case-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Representation_by_continued_fractions_(Jacobi-type_J-fractions)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Representation_by_continued_fractions_(Jacobi-type_J-fractions)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8</span> <span>Representation by continued fractions (Jacobi-type <i><span>J</span></i>-fractions)</span> </div> </a> <ul id="toc-Representation_by_continued_fractions_(Jacobi-type_J-fractions)-sublist" class="vector-toc-list"> <li id="toc-Definitions_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Definitions_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8.1</span> <span>Definitions</span> </div> </a> <ul id="toc-Definitions_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties_of_the_hth_convergent_functions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Properties_of_the_hth_convergent_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8.2</span> <span>Properties of the <i><span>h</span></i>th convergent functions</span> </div> </a> <ul id="toc-Properties_of_the_hth_convergent_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8.3</span> <span>Examples</span> </div> </a> <ul id="toc-Examples_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Examples_3" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Examples_3"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples_3-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples_3-sublist" class="vector-toc-list"> <li id="toc-Square_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Square_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Square numbers</span> </div> </a> <ul id="toc-Square_numbers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Various_techniques:_Evaluating_sums_and_tackling_other_problems_with_generating_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Various_techniques:_Evaluating_sums_and_tackling_other_problems_with_generating_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Various techniques: Evaluating sums and tackling other problems with generating functions</span> </div> </a> <ul id="toc-Various_techniques:_Evaluating_sums_and_tackling_other_problems_with_generating_functions-sublist" class="vector-toc-list"> <li id="toc-Example_1:_Formula_for_sums_of_harmonic_numbers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example_1:_Formula_for_sums_of_harmonic_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.1</span> <span>Example 1: Formula for sums of harmonic numbers</span> </div> </a> <ul id="toc-Example_1:_Formula_for_sums_of_harmonic_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example_2:_Modified_binomial_coefficient_sums_and_the_binomial_transform" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example_2:_Modified_binomial_coefficient_sums_and_the_binomial_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.2</span> <span>Example 2: Modified binomial coefficient sums and the binomial transform</span> </div> </a> <ul id="toc-Example_2:_Modified_binomial_coefficient_sums_and_the_binomial_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example_3:_Generating_functions_for_mutually_recursive_sequences" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example_3:_Generating_functions_for_mutually_recursive_sequences"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.3</span> <span>Example 3: Generating functions for mutually recursive sequences</span> </div> </a> <ul id="toc-Example_3:_Generating_functions_for_mutually_recursive_sequences-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Convolution_(Cauchy_products)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Convolution_(Cauchy_products)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Convolution (Cauchy products)</span> </div> </a> <ul id="toc-Convolution_(Cauchy_products)-sublist" class="vector-toc-list"> <li id="toc-Example:_Generating_function_for_the_Catalan_numbers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example:_Generating_function_for_the_Catalan_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2.1</span> <span>Example: Generating function for the Catalan numbers</span> </div> </a> <ul id="toc-Example:_Generating_function_for_the_Catalan_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example:_Spanning_trees_of_fans_and_convolutions_of_convolutions" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Example:_Spanning_trees_of_fans_and_convolutions_of_convolutions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2.2</span> <span>Example: Spanning trees of fans and convolutions of convolutions</span> </div> </a> <ul id="toc-Example:_Spanning_trees_of_fans_and_convolutions_of_convolutions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Implicit_generating_functions_and_the_Lagrange_inversion_formula" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Implicit_generating_functions_and_the_Lagrange_inversion_formula"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Implicit generating functions and the Lagrange inversion formula</span> </div> </a> <ul id="toc-Implicit_generating_functions_and_the_Lagrange_inversion_formula-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Introducing_a_free_parameter_(snake_oil_method)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Introducing_a_free_parameter_(snake_oil_method)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Introducing a free parameter (snake oil method)</span> </div> </a> <ul id="toc-Introducing_a_free_parameter_(snake_oil_method)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generating_functions_prove_congruences" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generating_functions_prove_congruences"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Generating functions prove congruences</span> </div> </a> <ul id="toc-Generating_functions_prove_congruences-sublist" class="vector-toc-list"> <li id="toc-The_Stirling_numbers_modulo_small_integers" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#The_Stirling_numbers_modulo_small_integers"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5.1</span> <span>The Stirling numbers modulo small integers</span> </div> </a> <ul id="toc-The_Stirling_numbers_modulo_small_integers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Congruences_for_the_partition_function" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Congruences_for_the_partition_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5.2</span> <span>Congruences for the partition function</span> </div> </a> <ul id="toc-Congruences_for_the_partition_function-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Transformations_of_generating_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transformations_of_generating_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.6</span> <span>Transformations of generating functions</span> </div> </a> <ul id="toc-Transformations_of_generating_functions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Tables_of_special_generating_functions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Tables_of_special_generating_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Tables of special generating functions</span> </div> </a> <ul id="toc-Tables_of_special_generating_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Generating function</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 26 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-26" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">26 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D8%A7%D9%84%D8%A9_%D9%85%D9%88%D9%84%D8%AF%D8%A9" title="دالة مولدة – Arabic" lang="ar" hreflang="ar" data-title="دالة مولدة" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Funci%C3%B3_generatriu" title="Funció generatriu – Catalan" lang="ca" hreflang="ca" data-title="Funció generatriu" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Vytvo%C5%99uj%C3%ADc%C3%AD_funkce_(posloupnost)" title="Vytvořující funkce (posloupnost) – Czech" lang="cs" hreflang="cs" data-title="Vytvořující funkce (posloupnost)" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Erzeugende_Funktion" title="Erzeugende Funktion – German" lang="de" hreflang="de" data-title="Erzeugende Funktion" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Funci%C3%B3n_generatriz" title="Función generatriz – Spanish" lang="es" hreflang="es" data-title="Función generatriz" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A7%D8%A8%D8%B9_%D9%85%D9%88%D9%84%D8%AF" title="تابع مولد – Persian" lang="fa" hreflang="fa" data-title="تابع مولد" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/S%C3%A9rie_g%C3%A9n%C3%A9ratrice" title="Série génératrice – French" lang="fr" hreflang="fr" data-title="Série génératrice" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Funci%C3%B3n_xeradora" title="Función xeradora – Galician" lang="gl" hreflang="gl" data-title="Función xeradora" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%83%9D%EC%84%B1%ED%95%A8%EC%88%98_(%EC%88%98%ED%95%99)" title="생성함수 (수학) – Korean" lang="ko" hreflang="ko" data-title="생성함수 (수학)" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Fungsi_pembangkit" title="Fungsi pembangkit – Indonesian" lang="id" hreflang="id" data-title="Fungsi pembangkit" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Funzione_generatrice" title="Funzione generatrice – Italian" lang="it" hreflang="it" data-title="Funzione generatrice" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%95%D7%A0%D7%A7%D7%A6%D7%99%D7%94_%D7%99%D7%95%D7%A6%D7%A8%D7%AA" title="פונקציה יוצרת – Hebrew" lang="he" hreflang="he" data-title="פונקציה יוצרת" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Voortbrengende_functie" title="Voortbrengende functie – Dutch" lang="nl" hreflang="nl" data-title="Voortbrengende functie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%AF%8D%E9%96%A2%E6%95%B0" title="母関数 – Japanese" lang="ja" hreflang="ja" data-title="母関数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Funkcja_tworz%C4%85ca" title="Funkcja tworząca – Polish" lang="pl" hreflang="pl" data-title="Funkcja tworząca" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Fun%C3%A7%C3%A3o_geradora" title="Função geradora – Portuguese" lang="pt" hreflang="pt" data-title="Função geradora" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Func%C8%9Bie_generatoare_exponen%C8%9Bial%C4%83" title="Funcție generatoare exponențială – Romanian" lang="ro" hreflang="ro" data-title="Funcție generatoare exponențială" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D1%8F%D1%89%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B8" title="Производящая функция последовательности – Russian" lang="ru" hreflang="ru" data-title="Производящая функция последовательности" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Funksionet_gjeneratrisa" title="Funksionet gjeneratrisa – Albanian" lang="sq" hreflang="sq" data-title="Funksionet gjeneratrisa" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Vytv%C3%A1raj%C3%BAca_funkcia" title="Vytvárajúca funkcia – Slovak" lang="sk" hreflang="sk" data-title="Vytvárajúca funkcia" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Genererande_funktion" title="Genererande funktion – Swedish" lang="sv" hreflang="sv" data-title="Genererande funktion" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%9F%E0%B8%B1%E0%B8%87%E0%B8%81%E0%B9%8C%E0%B8%8A%E0%B8%B1%E0%B8%99%E0%B8%81%E0%B9%88%E0%B8%AD%E0%B8%81%E0%B8%B3%E0%B9%80%E0%B8%99%E0%B8%B4%E0%B8%94" title="ฟังก์ชันก่อกำเนิด – Thai" lang="th" hreflang="th" data-title="ฟังก์ชันก่อกำเนิด" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/%C3%9Crete%C3%A7_fonksiyonu" title="Üreteç fonksiyonu – Turkish" lang="tr" hreflang="tr" data-title="Üreteç fonksiyonu" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%93%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D1%80%D0%B8%D1%81%D0%B0" title="Генератриса – Ukrainian" lang="uk" hreflang="uk" data-title="Генератриса" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AA%D9%88%D9%84%DB%8C%D8%AF%DB%8C_%D8%AF%D8%A7%D9%84%DB%81" title="تولیدی دالہ – Urdu" lang="ur" hreflang="ur" data-title="تولیدی دالہ" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%AF%8D%E5%87%BD%E6%95%B0" title="母函数 – Chinese" lang="zh" hreflang="zh" data-title="母函数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q860609#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Generating_function" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Generating_function" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Generating_function"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Generating_function&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Generating_function&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Generating_function"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Generating_function&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Generating_function&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Generating_function" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Generating_function" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Generating_function&amp;oldid=1255348851" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Generating_function&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Generating_function&amp;id=1255348851&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlQ%C4%B1sald%C4%B1c%C4%B1s%C4%B1&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGenerating_function"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrKodu&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGenerating_function"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Generating_function&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Generating_function&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q860609" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Formal power series; coefficients encode information about a sequence indexed by natural numbers</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about generating functions in mathematics. For generating functions in classical mechanics, see <a href="/wiki/Generating_function_(physics)" title="Generating function (physics)">Generating function (physics)</a>. For generators in computer programming, see <a href="/wiki/Generator_(computer_programming)" title="Generator (computer programming)">Generator (computer programming)</a>. For the moment generating function in statistics, see <a href="/wiki/Moment_generating_function" class="mw-redirect" title="Moment generating function">Moment generating function</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Very_long plainlinks metadata ambox ambox-style ambox-very_long" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>may be <a href="/wiki/Wikipedia:Article_size" title="Wikipedia:Article size">too long</a> to read and navigate comfortably</b>.<span class="hide-when-compact"> Consider <a href="/wiki/Wikipedia:Splitting" title="Wikipedia:Splitting">splitting</a> content into sub-articles, <a href="/wiki/Wikipedia:Summary_style" title="Wikipedia:Summary style">condensing</a> it, or adding <a href="/wiki/Help:Section#Subsections" title="Help:Section">subheadings</a>. Please discuss this issue on the article's <a href="/wiki/Talk:Generating_function" title="Talk:Generating function">talk page</a>.</span> <span class="date-container"><i>(<span class="date">July 2022</span>)</i></span></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>generating function</b> is a representation of an <a href="/wiki/Infinite_sequence" class="mw-redirect" title="Infinite sequence">infinite sequence</a> of numbers as the <a href="/wiki/Coefficient" title="Coefficient">coefficients</a> of a <a href="/wiki/Formal_power_series" title="Formal power series">formal power series</a>. Generating functions are often expressed in <a href="/wiki/Closed-form_expression" title="Closed-form expression">closed form</a> (rather than as a series), by some expression involving operations on the formal series. </p><p>There are various types of generating functions, including <b>ordinary generating functions</b>, <b>exponential generating functions</b>, <b>Lambert series</b>, <b>Bell series</b>, and <b>Dirichlet series</b>. Every sequence in principle has a generating function of each type (except that Lambert and Dirichlet series require indices to start at 1 rather than 0), but the ease with which they can be handled may differ considerably. The particular generating function, if any, that is most useful in a given context will depend upon the nature of the sequence and the details of the problem being addressed. </p><p>Generating functions are sometimes called <b>generating series</b>,<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> in that a series of terms can be said to be the generator of its sequence of term coefficients. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Generating functions were first introduced by <a href="/wiki/Abraham_de_Moivre" title="Abraham de Moivre">Abraham de Moivre</a> in 1730, in order to solve the general linear recurrence problem.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/George_P%C3%B3lya" title="George Pólya">George Pólya</a> writes in <i><a href="/wiki/Mathematics_and_plausible_reasoning" class="mw-redirect" title="Mathematics and plausible reasoning">Mathematics and plausible reasoning</a></i>: </p> <blockquote><p><i>The name "generating function" is due to <a href="/wiki/Laplace" class="mw-redirect" title="Laplace">Laplace</a>. Yet, without giving it a name, <a href="/wiki/Euler" class="mw-redirect" title="Euler">Euler</a> used the device of generating functions long before Laplace [..]. He applied this mathematical tool to several problems in Combinatory Analysis and the <a href="/wiki/Number_theory" title="Number theory">Theory of Numbers</a>.</i></p></blockquote> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=2" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p><i>A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to carry, the bag.</i></p><div class="templatequotecite">—&#8202;<cite><a href="/wiki/George_P%C3%B3lya" title="George Pólya">George Pólya</a>, <i><a href="/wiki/Mathematics_and_plausible_reasoning" class="mw-redirect" title="Mathematics and plausible reasoning">Mathematics and plausible reasoning</a></i> (1954)</cite></div></blockquote> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p><i>A generating function is a clothesline on which we hang up a sequence of numbers for display.</i></p><div class="templatequotecite">—&#8202;<cite><a href="/wiki/Herbert_Wilf" title="Herbert Wilf">Herbert Wilf</a>, <i><a rel="nofollow" class="external text" href="http://www.math.upenn.edu/~wilf/DownldGF.html">Generatingfunctionology</a></i> (1994)</cite></div></blockquote> <div class="mw-heading mw-heading3"><h3 id="Convergence">Convergence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=3" title="Edit section: Convergence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Unlike an ordinary series, the <i>formal</i> <a href="/wiki/Power_series" title="Power series">power series</a> is not required to <a href="/wiki/Convergent_series" title="Convergent series">converge</a>: in fact, the generating function is not actually regarded as a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a>, and the "variable" remains an <a href="/wiki/Indeterminate_(variable)" title="Indeterminate (variable)">indeterminate</a>. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers. Thus generating functions are not functions in the formal sense of a mapping from a <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a> to a <a href="/wiki/Codomain" title="Codomain">codomain</a>. </p><p>These expressions in terms of the indeterminate&#160;<span class="texhtml mvar" style="font-style:italic;">x</span> may involve arithmetic operations, differentiation with respect to&#160;<span class="texhtml mvar" style="font-style:italic;">x</span> and composition with (i.e., substitution into) other generating functions; since these operations are also defined for functions, the result looks like a function of&#160;<span class="texhtml mvar" style="font-style:italic;">x</span>. Indeed, the closed form expression can often be interpreted as a function that can be evaluated at (sufficiently small) concrete values of <span class="texhtml mvar" style="font-style:italic;">x</span>, and which has the formal series as its <a href="/wiki/Series_expansion" title="Series expansion">series expansion</a>; this explains the designation "generating functions". However such interpretation is not required to be possible, because formal series are not required to give a <a href="/wiki/Convergent_series" title="Convergent series">convergent series</a> when a nonzero numeric value is substituted for&#160;<span class="texhtml mvar" style="font-style:italic;">x</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Limitations">Limitations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=4" title="Edit section: Limitations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Not all expressions that are meaningful as functions of&#160;<span class="texhtml mvar" style="font-style:italic;">x</span> are meaningful as expressions designating formal series; for example, negative and fractional powers of&#160;<span class="texhtml mvar" style="font-style:italic;">x</span> are examples of functions that do not have a corresponding formal power series. </p> <div class="mw-heading mw-heading2"><h2 id="Types">Types</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=5" title="Edit section: Types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Ordinary_generating_function_(OGF)"><span id="Ordinary_generating_function_.28OGF.29"></span>Ordinary generating function (OGF)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=6" title="Edit section: Ordinary generating function (OGF)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When the term <i>generating function</i> is used without qualification, it is usually taken to mean an ordinary generating function. The <i>ordinary generating function</i> of a sequence <span class="texhtml"><i>a</i><sub><i>n</i></sub></span> is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(a_{n};x)=\sum _{n=0}^{\infty }a_{n}x^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(a_{n};x)=\sum _{n=0}^{\infty }a_{n}x^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad639191e7ebb6af511920f2e7a6b02eed511a9e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.932ex; height:6.843ex;" alt="{\displaystyle G(a_{n};x)=\sum _{n=0}^{\infty }a_{n}x^{n}.}"></span> If <span class="texhtml"><i>a</i><sub><i>n</i></sub></span> is the <a href="/wiki/Probability_mass_function" title="Probability mass function">probability mass function</a> of a <a href="/wiki/Discrete_random_variable" class="mw-redirect" title="Discrete random variable">discrete random variable</a>, then its ordinary generating function is called a <a href="/wiki/Probability-generating_function" title="Probability-generating function">probability-generating function</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Exponential_generating_function_(EGF)"><span id="Exponential_generating_function_.28EGF.29"></span>Exponential generating function (EGF)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=7" title="Edit section: Exponential generating function (EGF)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <i>exponential generating function</i> of a sequence <span class="texhtml"><i>a</i><sub><i>n</i></sub></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {EG} (a_{n};x)=\sum _{n=0}^{\infty }a_{n}{\frac {x^{n}}{n!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>EG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {EG} (a_{n};x)=\sum _{n=0}^{\infty }a_{n}{\frac {x^{n}}{n!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52c31459ce0cc949e236f60e905944908c12cb2f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.348ex; height:6.843ex;" alt="{\displaystyle \operatorname {EG} (a_{n};x)=\sum _{n=0}^{\infty }a_{n}{\frac {x^{n}}{n!}}.}"></span> </p><p>Exponential generating functions are generally more convenient than ordinary generating functions for <a href="/wiki/Combinatorial_enumeration" class="mw-redirect" title="Combinatorial enumeration">combinatorial enumeration</a> problems that involve labelled objects.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>Another benefit of exponential generating functions is that they are useful in transferring linear <a href="/wiki/Recurrence_relations" class="mw-redirect" title="Recurrence relations">recurrence relations</a> to the realm of <a href="/wiki/Differential_equations" class="mw-redirect" title="Differential equations">differential equations</a>. For example, take the <a href="/wiki/Fibonacci_sequence" title="Fibonacci sequence">Fibonacci sequence</a> <span class="texhtml">{<i>f<sub>n</sub></i>}</span> that satisfies the linear recurrence relation <span class="texhtml"><i>f</i><sub><i>n</i>+2</sub> = <i>f</i><sub><i>n</i>+1</sub> + <i>f</i><sub><i>n</i></sub></span>. The corresponding exponential generating function has the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {EF} (x)=\sum _{n=0}^{\infty }{\frac {f_{n}}{n!}}x^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>EF</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {EF} (x)=\sum _{n=0}^{\infty }{\frac {f_{n}}{n!}}x^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c142709069e77fe1c0a4959b2a943f70fadf1814" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.822ex; height:6.843ex;" alt="{\displaystyle \operatorname {EF} (x)=\sum _{n=0}^{\infty }{\frac {f_{n}}{n!}}x^{n}}"></span> </p><p>and its derivatives can readily be shown to satisfy the differential equation <span class="texhtml">EF″(<i>x</i>) = EF<span class="nowrap" style="padding-left:0.15em;">′</span>(<i>x</i>) + EF(<i>x</i>)</span> as a direct analogue with the recurrence relation above. In this view, the factorial term <span class="texhtml"><i>n</i>!</span> is merely a counter-term to normalise the derivative operator acting on <span class="texhtml"><i>x</i><sup><i>n</i></sup></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Poisson_generating_function">Poisson generating function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=8" title="Edit section: Poisson generating function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <i>Poisson generating function</i> of a sequence <span class="texhtml"><i>a</i><sub><i>n</i></sub></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {PG} (a_{n};x)=\sum _{n=0}^{\infty }a_{n}e^{-x}{\frac {x^{n}}{n!}}=e^{-x}\,\operatorname {EG} (a_{n};x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>PG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>EG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {PG} (a_{n};x)=\sum _{n=0}^{\infty }a_{n}e^{-x}{\frac {x^{n}}{n!}}=e^{-x}\,\operatorname {EG} (a_{n};x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4982ac1f8a9f5981ead45ad651e8b4f30c11c651" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.319ex; height:6.843ex;" alt="{\displaystyle \operatorname {PG} (a_{n};x)=\sum _{n=0}^{\infty }a_{n}e^{-x}{\frac {x^{n}}{n!}}=e^{-x}\,\operatorname {EG} (a_{n};x).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Lambert_series">Lambert series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=9" title="Edit section: Lambert series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Lambert_series" title="Lambert series">Lambert series</a></div> <p>The <i>Lambert series</i> of a sequence <span class="texhtml"><i>a</i><sub><i>n</i></sub></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {LG} (a_{n};x)=\sum _{n=1}^{\infty }a_{n}{\frac {x^{n}}{1-x^{n}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>LG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {LG} (a_{n};x)=\sum _{n=1}^{\infty }a_{n}{\frac {x^{n}}{1-x^{n}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfb4c80af50da16cff898e70c70323057ead525f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.221ex; height:6.843ex;" alt="{\displaystyle \operatorname {LG} (a_{n};x)=\sum _{n=1}^{\infty }a_{n}{\frac {x^{n}}{1-x^{n}}}.}"></span>Note that in a Lambert series the index <span class="texhtml mvar" style="font-style:italic;">n</span> starts at 1, not at 0, as the first term would otherwise be undefined. </p><p>The Lambert series coefficients in the power series expansions <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{n}:=[x^{n}]\operatorname {LG} (a_{n};x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>:=</mo> <mo stretchy="false">[</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mi>LG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{n}:=[x^{n}]\operatorname {LG} (a_{n};x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545c302a68d78c5b29be0ee431163be4aa0e726a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.089ex; height:2.843ex;" alt="{\displaystyle b_{n}:=[x^{n}]\operatorname {LG} (a_{n};x)}"></span>for integers <span class="texhtml"><i>n</i> ≥ 1</span> are related by the <a href="/wiki/Divisor_sum_identities" title="Divisor sum identities">divisor sum</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{n}=\sum _{d|n}a_{d}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>n</mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{n}=\sum _{d|n}a_{d}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2deefbe19d8b05cd8c9d0df0e31947794749310d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:12.025ex; height:6.009ex;" alt="{\displaystyle b_{n}=\sum _{d|n}a_{d}.}"></span>The <a href="/wiki/Lambert_series" title="Lambert series">main article</a> provides several more classical, or at least well-known examples related to special <a href="/wiki/Arithmetic_functions" class="mw-redirect" title="Arithmetic functions">arithmetic functions</a> in <a href="/wiki/Number_theory" title="Number theory">number theory</a>. As an example of a Lambert series identity not given in the main article, we can show that for <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>x</i></span>&#124;, &#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>xq</i></span>&#124; &lt; 1</span> we have that <sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {q^{n}x^{n}}{1-x^{n}}}=\sum _{n=1}^{\infty }{\frac {q^{n}x^{n^{2}}}{1-qx^{n}}}+\sum _{n=1}^{\infty }{\frac {q^{n}x^{n(n+1)}}{1-x^{n}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {q^{n}x^{n}}{1-x^{n}}}=\sum _{n=1}^{\infty }{\frac {q^{n}x^{n^{2}}}{1-qx^{n}}}+\sum _{n=1}^{\infty }{\frac {q^{n}x^{n(n+1)}}{1-x^{n}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6700dbee898cecb0f0f6f39f42d8b11956f5ec9c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:43.704ex; height:7.176ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {q^{n}x^{n}}{1-x^{n}}}=\sum _{n=1}^{\infty }{\frac {q^{n}x^{n^{2}}}{1-qx^{n}}}+\sum _{n=1}^{\infty }{\frac {q^{n}x^{n(n+1)}}{1-x^{n}}},}"></span> </p><p>where we have the special case identity for the generating function of the <a href="/wiki/Divisor_function" title="Divisor function">divisor function</a>, <span class="texhtml"><i>d</i>(<i>n</i>) ≡ <i>σ</i><sub>0</sub>(<i>n</i>)</span>, given by<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {x^{n}}{1-x^{n}}}=\sum _{n=1}^{\infty }{\frac {x^{n^{2}}\left(1+x^{n}\right)}{1-x^{n}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {x^{n}}{1-x^{n}}}=\sum _{n=1}^{\infty }{\frac {x^{n^{2}}\left(1+x^{n}\right)}{1-x^{n}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc5767e9318741cdf8c74a03e47499fbc82b360c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:31.58ex; height:7.343ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {x^{n}}{1-x^{n}}}=\sum _{n=1}^{\infty }{\frac {x^{n^{2}}\left(1+x^{n}\right)}{1-x^{n}}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Bell_series">Bell series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=10" title="Edit section: Bell series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Bell_series" title="Bell series">Bell series</a> of a sequence <span class="texhtml"><i>a</i><sub><i>n</i></sub></span> is an expression in terms of both an indeterminate <span class="texhtml mvar" style="font-style:italic;">x</span> and a prime <span class="texhtml mvar" style="font-style:italic;">p</span> and is given by:<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {BG} _{p}(a_{n};x)=\sum _{n=0}^{\infty }a_{p^{n}}x^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>BG</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {BG} _{p}(a_{n};x)=\sum _{n=0}^{\infty }a_{p^{n}}x^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ae998d48783f3a1168b375afc43d1529a7f76a0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.44ex; height:6.843ex;" alt="{\displaystyle \operatorname {BG} _{p}(a_{n};x)=\sum _{n=0}^{\infty }a_{p^{n}}x^{n}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Dirichlet_series_generating_functions_(DGFs)"><span id="Dirichlet_series_generating_functions_.28DGFs.29"></span>Dirichlet series generating functions (DGFs)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=11" title="Edit section: Dirichlet series generating functions (DGFs)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Formal_Dirichlet_series" class="mw-redirect" title="Formal Dirichlet series">Formal Dirichlet series</a> are often classified as generating functions, although they are not strictly formal power series. The <i>Dirichlet series generating function</i> of a sequence <span class="texhtml"><i>a</i><sub><i>n</i></sub></span> is:<sup id="cite_ref-W56_6-0" class="reference"><a href="#cite_note-W56-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {DG} (a_{n};s)=\sum _{n=1}^{\infty }{\frac {a_{n}}{n^{s}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>DG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {DG} (a_{n};s)=\sum _{n=1}^{\infty }{\frac {a_{n}}{n^{s}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95187281459d56dafbf8a18ca4b883f22b168977" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.754ex; height:6.843ex;" alt="{\displaystyle \operatorname {DG} (a_{n};s)=\sum _{n=1}^{\infty }{\frac {a_{n}}{n^{s}}}.}"></span> </p><p>The Dirichlet series generating function is especially useful when <span class="texhtml"><i>a</i><sub><i>n</i></sub></span> is a <a href="/wiki/Multiplicative_function" title="Multiplicative function">multiplicative function</a>, in which case it has an <a href="/wiki/Euler_product" title="Euler product">Euler product</a> expression<sup id="cite_ref-W59_7-0" class="reference"><a href="#cite_note-W59-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> in terms of the function's Bell series: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {DG} (a_{n};s)=\prod _{p}\operatorname {BG} _{p}(a_{n};p^{-s})\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>DG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </munder> <msub> <mi>BG</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {DG} (a_{n};s)=\prod _{p}\operatorname {BG} _{p}(a_{n};p^{-s})\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdbe85816a3e3df510d65ad55f280b6e9920a199" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:30.743ex; height:5.676ex;" alt="{\displaystyle \operatorname {DG} (a_{n};s)=\prod _{p}\operatorname {BG} _{p}(a_{n};p^{-s})\,.}"></span> </p><p>If <span class="texhtml"><i>a</i><sub><i>n</i></sub></span> is a <a href="/wiki/Dirichlet_character" title="Dirichlet character">Dirichlet character</a> then its Dirichlet series generating function is called a <a href="/wiki/Dirichlet_L-series" class="mw-redirect" title="Dirichlet L-series">Dirichlet <span class="texhtml mvar" style="font-style:italic;">L</span>-series</a>. We also have a relation between the pair of coefficients in the <a href="/wiki/Lambert_series" title="Lambert series">Lambert series</a> expansions above and their DGFs. Namely, we can prove that: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x^{n}]\operatorname {LG} (a_{n};x)=b_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mi>LG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x^{n}]\operatorname {LG} (a_{n};x)=b_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9f54db76593f74193454360c4f9eb5f8d6e5ed3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.442ex; height:2.843ex;" alt="{\displaystyle [x^{n}]\operatorname {LG} (a_{n};x)=b_{n}}"></span>if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {DG} (a_{n};s)\zeta (s)=\operatorname {DG} (b_{n};s),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>DG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>DG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {DG} (a_{n};s)\zeta (s)=\operatorname {DG} (b_{n};s),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cebfbbead7f85dc6aabb8392f60596d70493d5fa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.472ex; height:2.843ex;" alt="{\displaystyle \operatorname {DG} (a_{n};s)\zeta (s)=\operatorname {DG} (b_{n};s),}"></span>where <span class="texhtml"><i>ζ</i>(<i>s</i>)</span> is the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>The sequence <span class="texhtml mvar" style="font-style:italic;">a<sub>k</sub></span> generated by a <a href="/wiki/Dirichlet_series" title="Dirichlet series">Dirichlet series</a> generating function (DGF) corresponding to:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {DG} (a_{k};s)=\zeta (s)^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>DG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>;</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {DG} (a_{k};s)=\zeta (s)^{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b720a01d0d9c498ea9879cf2abd0ad534dee88aa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.621ex; height:2.843ex;" alt="{\displaystyle \operatorname {DG} (a_{k};s)=\zeta (s)^{m}}"></span>has the ordinary generating function:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{k=n}a_{k}x^{k}=x+{\binom {m}{1}}\sum _{2\leq a\leq n}x^{a}+{\binom {m}{2}}{\underset {ab\leq n}{\sum _{a=2}^{\infty }\sum _{b=2}^{\infty }}}x^{ab}+{\binom {m}{3}}{\underset {abc\leq n}{\sum _{a=2}^{\infty }\sum _{c=2}^{\infty }\sum _{b=2}^{\infty }}}x^{abc}+{\binom {m}{4}}{\underset {abcd\leq n}{\sum _{a=2}^{\infty }\sum _{b=2}^{\infty }\sum _{c=2}^{\infty }\sum _{d=2}^{\infty }}}x^{abcd}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>m</mi> <mn>1</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>a</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>m</mi> <mn>2</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> </mrow> <mrow> <mi>a</mi> <mi>b</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>m</mi> <mn>3</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> </mrow> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>m</mi> <mn>4</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> </mrow> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{k=n}a_{k}x^{k}=x+{\binom {m}{1}}\sum _{2\leq a\leq n}x^{a}+{\binom {m}{2}}{\underset {ab\leq n}{\sum _{a=2}^{\infty }\sum _{b=2}^{\infty }}}x^{ab}+{\binom {m}{3}}{\underset {abc\leq n}{\sum _{a=2}^{\infty }\sum _{c=2}^{\infty }\sum _{b=2}^{\infty }}}x^{abc}+{\binom {m}{4}}{\underset {abcd\leq n}{\sum _{a=2}^{\infty }\sum _{b=2}^{\infty }\sum _{c=2}^{\infty }\sum _{d=2}^{\infty }}}x^{abcd}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/640519030fa3531384a9a2809a572cf8d7e14634" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:104.331ex; height:9.343ex;" alt="{\displaystyle \sum _{k=1}^{k=n}a_{k}x^{k}=x+{\binom {m}{1}}\sum _{2\leq a\leq n}x^{a}+{\binom {m}{2}}{\underset {ab\leq n}{\sum _{a=2}^{\infty }\sum _{b=2}^{\infty }}}x^{ab}+{\binom {m}{3}}{\underset {abc\leq n}{\sum _{a=2}^{\infty }\sum _{c=2}^{\infty }\sum _{b=2}^{\infty }}}x^{abc}+{\binom {m}{4}}{\underset {abcd\leq n}{\sum _{a=2}^{\infty }\sum _{b=2}^{\infty }\sum _{c=2}^{\infty }\sum _{d=2}^{\infty }}}x^{abcd}+\cdots }"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Polynomial_sequence_generating_functions">Polynomial sequence generating functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=12" title="Edit section: Polynomial sequence generating functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The idea of generating functions can be extended to sequences of other objects. Thus, for example, polynomial sequences of <a href="/wiki/Binomial_type" title="Binomial type">binomial type</a> are generated by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{xf(t)}=\sum _{n=0}^{\infty }{\frac {p_{n}(x)}{n!}}t^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{xf(t)}=\sum _{n=0}^{\infty }{\frac {p_{n}(x)}{n!}}t^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bfb3ec67484ece87ec341a3ad667e9cf0adaa6e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.295ex; height:6.843ex;" alt="{\displaystyle e^{xf(t)}=\sum _{n=0}^{\infty }{\frac {p_{n}(x)}{n!}}t^{n}}"></span>where <span class="texhtml"><i>p</i><sub><i>n</i></sub>(<i>x</i>)</span> is a sequence of polynomials and <span class="texhtml"><i>f</i>(<i>t</i>)</span> is a function of a certain form. <a href="/wiki/Sheffer_sequence" title="Sheffer sequence">Sheffer sequences</a> are generated in a similar way. See the main article <a href="/wiki/Generalized_Appell_polynomials" title="Generalized Appell polynomials">generalized Appell polynomials</a> for more information. </p><p>Examples of <a href="/wiki/Polynomial_sequence" title="Polynomial sequence">polynomial sequences</a> generated by more complex generating functions include: </p> <ul><li><a href="/wiki/Appell_polynomials" class="mw-redirect" title="Appell polynomials">Appell polynomials</a></li> <li><a href="/wiki/Chebyshev_polynomials" title="Chebyshev polynomials">Chebyshev polynomials</a></li> <li><a href="/wiki/Difference_polynomials" title="Difference polynomials">Difference polynomials</a></li> <li><a href="/wiki/Generalized_Appell_polynomials" title="Generalized Appell polynomials">Generalized Appell polynomials</a></li> <li><a href="/wiki/Q-difference_polynomial" title="Q-difference polynomial"><span class="texhtml mvar" style="font-style:italic;">q</span>-difference polynomials</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Other_generating_functions">Other generating functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=13" title="Edit section: Other generating functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Other sequences generated by more complex generating functions include: </p> <ul><li>Double exponential generating functions. For example: <a rel="nofollow" class="external text" href="https://oeis.org/search?q=1%2C1%2C2%2C2%2C3%2C5%2C5%2C7%2C10%2C15%2C15&amp;sort=&amp;language=&amp;go=Search">Aitken's Array: Triangle of Numbers</a></li> <li>Hadamard products of generating functions and diagonal generating functions, and their corresponding <a href="/wiki/Generating_function_transformation#Hadamard_products_and_diagonal_generating_functions" title="Generating function transformation">integral transformations</a></li></ul> <div class="mw-heading mw-heading4"><h4 id="Convolution_polynomials">Convolution polynomials</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=14" title="Edit section: Convolution polynomials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Knuth's article titled "<i>Convolution Polynomials</i>"<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> defines a generalized class of <i>convolution polynomial</i> sequences by their special generating functions of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(z)^{x}=\exp {\bigl (}x\log F(z){\bigr )}=\sum _{n=0}^{\infty }f_{n}(x)z^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>x</mi> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(z)^{x}=\exp {\bigl (}x\log F(z){\bigr )}=\sum _{n=0}^{\infty }f_{n}(x)z^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2481c36af50cdc09be616ec8947076a3f6a885fd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:39.985ex; height:6.843ex;" alt="{\displaystyle F(z)^{x}=\exp {\bigl (}x\log F(z){\bigr )}=\sum _{n=0}^{\infty }f_{n}(x)z^{n},}"></span> for some analytic function <span class="texhtml mvar" style="font-style:italic;">F</span> with a power series expansion such that <span class="texhtml"><i>F</i>(0) = 1</span>. </p><p>We say that a family of polynomials, <span class="texhtml"><i>f</i><sub>0</sub>, <i>f</i><sub>1</sub>, <i>f</i><sub>2</sub>, ...</span>, forms a <i>convolution family</i> if <span class="texhtml"><a href="/wiki/Degree_of_a_polynomial" title="Degree of a polynomial">deg</a> <i>f<sub>n</sub></i> ≤ <i>n</i></span> and if the following convolution condition holds for all <span class="texhtml mvar" style="font-style:italic;">x</span>, <span class="texhtml mvar" style="font-style:italic;">y</span> and for all <span class="texhtml"><i>n</i> ≥ 0</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{n}(x+y)=f_{n}(x)f_{0}(y)+f_{n-1}(x)f_{1}(y)+\cdots +f_{1}(x)f_{n-1}(y)+f_{0}(x)f_{n}(y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{n}(x+y)=f_{n}(x)f_{0}(y)+f_{n-1}(x)f_{1}(y)+\cdots +f_{1}(x)f_{n-1}(y)+f_{0}(x)f_{n}(y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c6a76cd6a1880f4f10fbb551e263f6537718776" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:74.143ex; height:2.843ex;" alt="{\displaystyle f_{n}(x+y)=f_{n}(x)f_{0}(y)+f_{n-1}(x)f_{1}(y)+\cdots +f_{1}(x)f_{n-1}(y)+f_{0}(x)f_{n}(y).}"></span> </p><p>We see that for non-identically zero convolution families, this definition is equivalent to requiring that the sequence have an ordinary generating function of the first form given above. </p><p>A sequence of convolution polynomials defined in the notation above has the following properties: </p> <ul><li>The sequence <span class="texhtml"><i>n</i>! · <i>f<sub>n</sub></i>(<i>x</i>)</span> is of <a href="/wiki/Binomial_type" title="Binomial type">binomial type</a></li> <li>Special values of the sequence include <span class="texhtml"><i>f<sub>n</sub></i>(1) = [<i>z<sup>n</sup></i>] <i>F</i>(<i>z</i>)</span> and <span class="texhtml"><i>f<sub>n</sub></i>(0) = <i>δ</i><sub><i>n</i>,0</sub></span>, and</li> <li>For arbitrary (fixed) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y,t\in \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y,t\in \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb2604c2e32ced47b462417730dab22fa26a2c3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.911ex; height:2.509ex;" alt="{\displaystyle x,y,t\in \mathbb {C} }"></span>, these polynomials satisfy convolution formulas of the form</li></ul> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{n}(x+y)&amp;=\sum _{k=0}^{n}f_{k}(x)f_{n-k}(y)\\f_{n}(2x)&amp;=\sum _{k=0}^{n}f_{k}(x)f_{n-k}(x)\\xnf_{n}(x+y)&amp;=(x+y)\sum _{k=0}^{n}kf_{k}(x)f_{n-k}(y)\\{\frac {(x+y)f_{n}(x+y+tn)}{x+y+tn}}&amp;=\sum _{k=0}^{n}{\frac {xf_{k}(x+tk)}{x+tk}}{\frac {yf_{n-k}(y+t(n-k))}{y+t(n-k)}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mi>n</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>k</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>t</mi> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>t</mi> <mi>n</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>t</mi> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>x</mi> <mo>+</mo> <mi>t</mi> <mi>k</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>y</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo>+</mo> <mi>t</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>y</mi> <mo>+</mo> <mi>t</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{n}(x+y)&amp;=\sum _{k=0}^{n}f_{k}(x)f_{n-k}(y)\\f_{n}(2x)&amp;=\sum _{k=0}^{n}f_{k}(x)f_{n-k}(x)\\xnf_{n}(x+y)&amp;=(x+y)\sum _{k=0}^{n}kf_{k}(x)f_{n-k}(y)\\{\frac {(x+y)f_{n}(x+y+tn)}{x+y+tn}}&amp;=\sum _{k=0}^{n}{\frac {xf_{k}(x+tk)}{x+tk}}{\frac {yf_{n-k}(y+t(n-k))}{y+t(n-k)}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77980c0a505e361441c0a6620d3ee8ab9521e40f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.671ex; width:63.586ex; height:28.509ex;" alt="{\displaystyle {\begin{aligned}f_{n}(x+y)&amp;=\sum _{k=0}^{n}f_{k}(x)f_{n-k}(y)\\f_{n}(2x)&amp;=\sum _{k=0}^{n}f_{k}(x)f_{n-k}(x)\\xnf_{n}(x+y)&amp;=(x+y)\sum _{k=0}^{n}kf_{k}(x)f_{n-k}(y)\\{\frac {(x+y)f_{n}(x+y+tn)}{x+y+tn}}&amp;=\sum _{k=0}^{n}{\frac {xf_{k}(x+tk)}{x+tk}}{\frac {yf_{n-k}(y+t(n-k))}{y+t(n-k)}}.\end{aligned}}}"></span> </p><p>For a fixed non-zero parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\in \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\in \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d53146084bd2654adeb7cb529c2e96ad39e6b62f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.358ex; height:2.176ex;" alt="{\displaystyle t\in \mathbb {C} }"></span>, we have modified generating functions for these convolution polynomial sequences given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {zF_{n}(x+tn)}{(x+tn)}}=\left[z^{n}\right]{\mathcal {F}}_{t}(z)^{x},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>z</mi> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>t</mi> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>t</mi> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>]</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {zF_{n}(x+tn)}{(x+tn)}}=\left[z^{n}\right]{\mathcal {F}}_{t}(z)^{x},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e50addec72a9b314c4331c3358f64b766c379f0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.153ex; height:6.509ex;" alt="{\displaystyle {\frac {zF_{n}(x+tn)}{(x+tn)}}=\left[z^{n}\right]{\mathcal {F}}_{t}(z)^{x},}"></span> where <span class="texhtml">𝓕<sub><i>t</i></sub>(<i>z</i>)</span> is implicitly defined by a <a href="/wiki/Functional_equation" title="Functional equation">functional equation</a> of the form <span class="texhtml">𝓕<sub><i>t</i></sub>(<i>z</i>) = <i>F</i>(<i>x</i>𝓕<sub><i>t</i></sub>(<i>z</i>)<sup><i>t</i></sup>)</span>. Moreover, we can use matrix methods (as in the reference) to prove that given two convolution polynomial sequences, <span class="texhtml">⟨ <i>f<sub>n</sub></i>(<i>x</i>) ⟩</span> and <span class="texhtml">⟨ <i>g<sub>n</sub></i>(<i>x</i>) ⟩</span>, with respective corresponding generating functions, <span class="texhtml"><i>F</i>(<i>z</i>)<sup><i>x</i></sup></span> and <span class="texhtml"><i>G</i>(<i>z</i>)<sup><i>x</i></sup></span>, then for arbitrary <span class="texhtml mvar" style="font-style:italic;">t</span> we have the identity <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[z^{n}\right]\left(G(z)F\left(zG(z)^{t}\right)\right)^{x}=\sum _{k=0}^{n}F_{k}(x)G_{n-k}(x+tk).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>]</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>F</mi> <mrow> <mo>(</mo> <mrow> <mi>z</mi> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>t</mi> <mi>k</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[z^{n}\right]\left(G(z)F\left(zG(z)^{t}\right)\right)^{x}=\sum _{k=0}^{n}F_{k}(x)G_{n-k}(x+tk).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efe9b05190bae62e45913c208a17e369136f2ec2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:49.332ex; height:7.009ex;" alt="{\displaystyle \left[z^{n}\right]\left(G(z)F\left(zG(z)^{t}\right)\right)^{x}=\sum _{k=0}^{n}F_{k}(x)G_{n-k}(x+tk).}"></span> </p><p>Examples of convolution polynomial sequences include the <i>binomial power series</i>, <span class="texhtml">𝓑<sub><i>t</i></sub>(<i>z</i>) = 1 + <i>z</i>𝓑<sub><i>t</i></sub>(<i>z</i>)<sup><i>t</i></sup></span>, so-termed <i>tree polynomials</i>, the <a href="/wiki/Bell_numbers" class="mw-redirect" title="Bell numbers">Bell numbers</a>, <span class="texhtml"><i>B</i>(<i>n</i>)</span>, the <a href="/wiki/Laguerre_polynomials" title="Laguerre polynomials">Laguerre polynomials</a>, and the <a href="/wiki/Stirling_polynomial" class="mw-redirect" title="Stirling polynomial">Stirling convolution polynomials</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Ordinary_generating_functions">Ordinary generating functions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=15" title="Edit section: Ordinary generating functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Examples_for_simple_sequences">Examples for simple sequences</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=16" title="Edit section: Examples for simple sequences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Polynomials are a special case of ordinary generating functions, corresponding to finite sequences, or equivalently sequences that vanish after a certain point. These are important in that many finite sequences can usefully be interpreted as generating functions, such as the <a href="/wiki/Poincar%C3%A9_polynomial" class="mw-redirect" title="Poincaré polynomial">Poincaré polynomial</a> and others. </p><p>A fundamental generating function is that of the constant sequence <span class="nowrap">1, 1, 1, 1, 1, 1, 1, 1, 1, ...</span>, whose ordinary generating function is the <a href="/wiki/Geometric_series#Closed-form_formula" title="Geometric series">geometric series</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }x^{n}={\frac {1}{1-x}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }x^{n}={\frac {1}{1-x}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9d143f5d0e6857123138824f18759a42f1463ca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.204ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }x^{n}={\frac {1}{1-x}}.}"></span> </p><p>The left-hand side is the <a href="/wiki/Maclaurin_series" class="mw-redirect" title="Maclaurin series">Maclaurin series</a> expansion of the right-hand side. Alternatively, the equality can be justified by multiplying the power series on the left by <span class="texhtml">1 − <i>x</i></span>, and checking that the result is the constant power series 1 (in other words, that all coefficients except the one of <span class="texhtml"><i>x</i><sup>0</sup></span> are equal to 0). Moreover, there can be no other power series with this property. The left-hand side therefore designates the <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">multiplicative inverse</a> of <span class="texhtml">1 − <i>x</i></span> in the ring of power series. </p><p>Expressions for the ordinary generating function of other sequences are easily derived from this one. For instance, the substitution <span class="texhtml"><i>x</i> → <i>ax</i></span> gives the generating function for the <a href="/wiki/Geometric_progression" title="Geometric progression">geometric sequence</a> <span class="texhtml">1, <i>a</i>, <i>a</i><sup>2</sup>, <i>a</i><sup>3</sup>, ...</span> for any constant <span class="texhtml mvar" style="font-style:italic;">a</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }(ax)^{n}={\frac {1}{1-ax}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>a</mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }(ax)^{n}={\frac {1}{1-ax}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b52389c241c7b900e3e8090c0bf7b99127c59e5b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.086ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }(ax)^{n}={\frac {1}{1-ax}}.}"></span> </p><p>(The equality also follows directly from the fact that the left-hand side is the Maclaurin series expansion of the right-hand side.) In particular, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }(-1)^{n}x^{n}={\frac {1}{1+x}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }(-1)^{n}x^{n}={\frac {1}{1+x}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/befaebd3c29304d1bf2c068348daf1cc77babf53" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.815ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }(-1)^{n}x^{n}={\frac {1}{1+x}}.}"></span> </p><p>One can also introduce regular gaps in the sequence by replacing <span class="texhtml mvar" style="font-style:italic;">x</span> by some power of <span class="texhtml mvar" style="font-style:italic;">x</span>, so for instance for the sequence <span class="nowrap">1, 0, 1, 0, 1, 0, 1, 0, ...</span> (which skips over <span class="texhtml"><i>x</i>, <i>x</i><sup>3</sup>, <i>x</i><sup>5</sup>, ...</span>) one gets the generating function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }x^{2n}={\frac {1}{1-x^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }x^{2n}={\frac {1}{1-x^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/553a587d76d4d1251d57d483d0a0623f32c436ab" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.08ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }x^{2n}={\frac {1}{1-x^{2}}}.}"></span> </p><p>By squaring the initial generating function, or by finding the derivative of both sides with respect to <span class="texhtml mvar" style="font-style:italic;">x</span> and making a change of running variable <span class="texhtml"><i>n</i> → <i>n</i> + 1</span>, one sees that the coefficients form the sequence <span class="nowrap">1, 2, 3, 4, 5, ...</span>, so one has <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }(n+1)x^{n}={\frac {1}{(1-x)^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }(n+1)x^{n}={\frac {1}{(1-x)^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6547efb25f9c90fc7e8c53997edf78e84fa2acd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:25.888ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }(n+1)x^{n}={\frac {1}{(1-x)^{2}}},}"></span> </p><p>and the third power has as coefficients the <a href="/wiki/Triangular_number" title="Triangular number">triangular numbers</a> <span class="nowrap">1, 3, 6, 10, 15, 21, ...</span> whose term <span class="texhtml mvar" style="font-style:italic;">n</span> is the <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficient</a> <span class="texhtml"><span style="font-size:150%;">(</span><span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:center"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i> + 2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span><span style="font-size:150%;">)</span></span>, so that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }{\binom {n+2}{2}}x^{n}={\frac {1}{(1-x)^{3}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> <mn>2</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }{\binom {n+2}{2}}x^{n}={\frac {1}{(1-x)^{3}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15ed69282f8adecdd63796c49e97eafdf9340e49" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.886ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }{\binom {n+2}{2}}x^{n}={\frac {1}{(1-x)^{3}}}.}"></span> </p><p>More generally, for any non-negative integer <span class="texhtml mvar" style="font-style:italic;">k</span> and non-zero real value <span class="texhtml mvar" style="font-style:italic;">a</span>, it is true that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }a^{n}{\binom {n+k}{k}}x^{n}={\frac {1}{(1-ax)^{k+1}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }a^{n}{\binom {n+k}{k}}x^{n}={\frac {1}{(1-ax)^{k+1}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8953f45d6feba70cce8284beea2c8a20ea98cb2d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.135ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }a^{n}{\binom {n+k}{k}}x^{n}={\frac {1}{(1-ax)^{k+1}}}\,.}"></span> </p><p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2{\binom {n+2}{2}}-3{\binom {n+1}{1}}+{\binom {n}{0}}=2{\frac {(n+1)(n+2)}{2}}-3(n+1)+1=n^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> <mn>2</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mn>0</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2{\binom {n+2}{2}}-3{\binom {n+1}{1}}+{\binom {n}{0}}=2{\frac {(n+1)(n+2)}{2}}-3(n+1)+1=n^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb6bf2afcd6b873a190bc1bfcdd00a6a3a458cf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:71.377ex; height:6.343ex;" alt="{\displaystyle 2{\binom {n+2}{2}}-3{\binom {n+1}{1}}+{\binom {n}{0}}=2{\frac {(n+1)(n+2)}{2}}-3(n+1)+1=n^{2},}"></span> </p><p>one can find the ordinary generating function for the sequence <span class="nowrap">0, 1, 4, 9, 16, ...</span> of <a href="/wiki/Square_number" title="Square number">square numbers</a> by linear combination of binomial-coefficient generating sequences: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(n^{2};x)=\sum _{n=0}^{\infty }n^{2}x^{n}={\frac {2}{(1-x)^{3}}}-{\frac {3}{(1-x)^{2}}}+{\frac {1}{1-x}}={\frac {x(x+1)}{(1-x)^{3}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(n^{2};x)=\sum _{n=0}^{\infty }n^{2}x^{n}={\frac {2}{(1-x)^{3}}}-{\frac {3}{(1-x)^{2}}}+{\frac {1}{1-x}}={\frac {x(x+1)}{(1-x)^{3}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36417cb42242f8e3fab602b4ab8c69eda92bc301" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:66.352ex; height:6.843ex;" alt="{\displaystyle G(n^{2};x)=\sum _{n=0}^{\infty }n^{2}x^{n}={\frac {2}{(1-x)^{3}}}-{\frac {3}{(1-x)^{2}}}+{\frac {1}{1-x}}={\frac {x(x+1)}{(1-x)^{3}}}.}"></span> </p><p>We may also expand alternately to generate this same sequence of squares as a sum of derivatives of the <a href="/wiki/Geometric_series" title="Geometric series">geometric series</a> in the following form: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}G(n^{2};x)&amp;=\sum _{n=0}^{\infty }n^{2}x^{n}\\[4px]&amp;=\sum _{n=0}^{\infty }n(n-1)x^{n}+\sum _{n=0}^{\infty }nx^{n}\\[4px]&amp;=x^{2}D^{2}\left[{\frac {1}{1-x}}\right]+xD\left[{\frac {1}{1-x}}\right]\\[4px]&amp;={\frac {2x^{2}}{(1-x)^{3}}}+{\frac {x}{(1-x)^{2}}}={\frac {x(x+1)}{(1-x)^{3}}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>G</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>n</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mi>x</mi> <mi>D</mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}G(n^{2};x)&amp;=\sum _{n=0}^{\infty }n^{2}x^{n}\\[4px]&amp;=\sum _{n=0}^{\infty }n(n-1)x^{n}+\sum _{n=0}^{\infty }nx^{n}\\[4px]&amp;=x^{2}D^{2}\left[{\frac {1}{1-x}}\right]+xD\left[{\frac {1}{1-x}}\right]\\[4px]&amp;={\frac {2x^{2}}{(1-x)^{3}}}+{\frac {x}{(1-x)^{2}}}={\frac {x(x+1)}{(1-x)^{3}}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/129d178c08eecd1ea5ada33fc9e4cb3ec6b5a15c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.043ex; margin-bottom: -0.294ex; width:46.256ex; height:29.843ex;" alt="{\displaystyle {\begin{aligned}G(n^{2};x)&amp;=\sum _{n=0}^{\infty }n^{2}x^{n}\\[4px]&amp;=\sum _{n=0}^{\infty }n(n-1)x^{n}+\sum _{n=0}^{\infty }nx^{n}\\[4px]&amp;=x^{2}D^{2}\left[{\frac {1}{1-x}}\right]+xD\left[{\frac {1}{1-x}}\right]\\[4px]&amp;={\frac {2x^{2}}{(1-x)^{3}}}+{\frac {x}{(1-x)^{2}}}={\frac {x(x+1)}{(1-x)^{3}}}.\end{aligned}}}"></span> </p><p>By induction, we can similarly show for positive integers <span class="texhtml"><i>m</i> ≥ 1</span> that<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{m}=\sum _{j=0}^{m}{\begin{Bmatrix}m\\j\end{Bmatrix}}{\frac {n!}{(n-j)!}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>m</mi> </mtd> </mtr> <mtr> <mtd> <mi>j</mi> </mtd> </mtr> </mtable> <mo>}</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>j</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{m}=\sum _{j=0}^{m}{\begin{Bmatrix}m\\j\end{Bmatrix}}{\frac {n!}{(n-j)!}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb1e20e43c098072809cd6495b1b6b71b4a414da" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:25.321ex; height:7.176ex;" alt="{\displaystyle n^{m}=\sum _{j=0}^{m}{\begin{Bmatrix}m\\j\end{Bmatrix}}{\frac {n!}{(n-j)!}},}"></span> </p><p>where <span class="texhtml"><span style="font-size:150%;">{</span><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>k</i></sub></span></span><span style="font-size:150%;">}</span></span> denote the <a href="/wiki/Stirling_numbers_of_the_second_kind" title="Stirling numbers of the second kind">Stirling numbers of the second kind</a> and where the generating function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }{\frac {n!}{(n-j)!}}\,z^{n}={\frac {j!\cdot z^{j}}{(1-z)^{j+1}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>j</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>j</mi> <mo>!</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }{\frac {n!}{(n-j)!}}\,z^{n}={\frac {j!\cdot z^{j}}{(1-z)^{j+1}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/852c0846ecf6bb81bcdb14fc0342ff8f15a53141" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:29.415ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }{\frac {n!}{(n-j)!}}\,z^{n}={\frac {j!\cdot z^{j}}{(1-z)^{j+1}}},}"></span> </p><p>so that we can form the analogous generating functions over the integral <span class="texhtml mvar" style="font-style:italic;">m</span>th powers generalizing the result in the square case above. In particular, since we can write <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {z^{k}}{(1-z)^{k+1}}}=\sum _{i=0}^{k}{\binom {k}{i}}{\frac {(-1)^{k-i}}{(1-z)^{i+1}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>k</mi> <mi>i</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {z^{k}}{(1-z)^{k+1}}}=\sum _{i=0}^{k}{\binom {k}{i}}{\frac {(-1)^{k-i}}{(1-z)^{i+1}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/825af953595768e745bfba3f67ac588d8d40fd37" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:33.682ex; height:7.343ex;" alt="{\displaystyle {\frac {z^{k}}{(1-z)^{k+1}}}=\sum _{i=0}^{k}{\binom {k}{i}}{\frac {(-1)^{k-i}}{(1-z)^{i+1}}},}"></span> </p><p>we can apply a well-known finite sum identity involving the <a href="/wiki/Stirling_numbers" class="mw-redirect" title="Stirling numbers">Stirling numbers</a> to obtain that<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }n^{m}z^{n}=\sum _{j=0}^{m}{\begin{Bmatrix}m+1\\j+1\end{Bmatrix}}{\frac {(-1)^{m-j}j!}{(1-z)^{j+1}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>}</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>j</mi> </mrow> </msup> <mi>j</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }n^{m}z^{n}=\sum _{j=0}^{m}{\begin{Bmatrix}m+1\\j+1\end{Bmatrix}}{\frac {(-1)^{m-j}j!}{(1-z)^{j+1}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ba66146f01928774970de89b80c7534da263d93" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:37.741ex; height:7.343ex;" alt="{\displaystyle \sum _{n=0}^{\infty }n^{m}z^{n}=\sum _{j=0}^{m}{\begin{Bmatrix}m+1\\j+1\end{Bmatrix}}{\frac {(-1)^{m-j}j!}{(1-z)^{j+1}}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Rational_functions">Rational functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=17" title="Edit section: Rational functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Linear_recursive_sequence" class="mw-redirect" title="Linear recursive sequence">Linear recursive sequence</a></div> <p>The ordinary generating function of a sequence can be expressed as a <a href="/wiki/Rational_function" title="Rational function">rational function</a> (the ratio of two finite-degree polynomials) if and only if the sequence is a <a href="/wiki/Linear_recursive_sequence" class="mw-redirect" title="Linear recursive sequence">linear recursive sequence</a> with constant coefficients; this generalizes the examples above. Conversely, every sequence generated by a fraction of polynomials satisfies a linear recurrence with constant coefficients; these coefficients are identical to the coefficients of the fraction denominator polynomial (so they can be directly read off). This observation shows it is easy to solve for generating functions of sequences defined by a linear <a href="/wiki/Finite_difference_equation" class="mw-redirect" title="Finite difference equation">finite difference equation</a> with constant coefficients, and then hence, for explicit closed-form formulas for the coefficients of these generating functions. The prototypical example here is to derive <a href="/wiki/Binet%27s_formula" class="mw-redirect" title="Binet&#39;s formula">Binet's formula</a> for the <a href="/wiki/Fibonacci_numbers" class="mw-redirect" title="Fibonacci numbers">Fibonacci numbers</a> via generating function techniques. </p><p>We also notice that the class of rational generating functions precisely corresponds to the generating functions that enumerate <i>quasi-polynomial</i> sequences of the form <sup id="cite_ref-GFLECT_13-0" class="reference"><a href="#cite_note-GFLECT-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{n}=p_{1}(n)\rho _{1}^{n}+\cdots +p_{\ell }(n)\rho _{\ell }^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <msubsup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <msubsup> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{n}=p_{1}(n)\rho _{1}^{n}+\cdots +p_{\ell }(n)\rho _{\ell }^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/172e304e6871008f84da0ad54561d3cef4bd5eb3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.067ex; height:3.009ex;" alt="{\displaystyle f_{n}=p_{1}(n)\rho _{1}^{n}+\cdots +p_{\ell }(n)\rho _{\ell }^{n},}"></span> </p><p>where the reciprocal roots, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{i}\in \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C1;<!-- ρ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho _{i}\in \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb19b21a719205aa55c43020a9c2c68c396c1997" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.52ex; height:2.676ex;" alt="{\displaystyle \rho _{i}\in \mathbb {C} }"></span>, are fixed scalars and where <span class="texhtml"><i>p</i><sub><i>i</i></sub>(<i>n</i>)</span> is a polynomial in <span class="texhtml mvar" style="font-style:italic;">n</span> for all <span class="texhtml">1 ≤ <i>i</i> ≤ <i>ℓ</i></span>. </p><p>In general, <a href="/wiki/Generating_function_transformation#Hadamard_products_and_diagonal_generating_functions" title="Generating function transformation">Hadamard products</a> of rational functions produce rational generating functions. Similarly, if <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s,t):=\sum _{m,n\geq 0}f(m,n)w^{m}z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </munder> <mi>f</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s,t):=\sum _{m,n\geq 0}f(m,n)w^{m}z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31111d18f8063c39294ac92b51903d33fd33a08c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:28.838ex; height:5.843ex;" alt="{\displaystyle F(s,t):=\sum _{m,n\geq 0}f(m,n)w^{m}z^{n}}"></span> </p><p>is a bivariate rational generating function, then its corresponding <i>diagonal generating function</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {diag} (F):=\sum _{n=0}^{\infty }f(n,n)z^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>diag</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {diag} (F):=\sum _{n=0}^{\infty }f(n,n)z^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7ecc6213ace8df853de50d8d3778c365db860e5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:25.169ex; height:6.843ex;" alt="{\displaystyle \operatorname {diag} (F):=\sum _{n=0}^{\infty }f(n,n)z^{n},}"></span> </p><p>is <i>algebraic</i>. For example, if we let<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(s,t):=\sum _{i,j\geq 0}{\binom {i+j}{i}}s^{i}t^{j}={\frac {1}{1-s-t}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>i</mi> <mo>+</mo> <mi>j</mi> </mrow> <mi>i</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(s,t):=\sum _{i,j\geq 0}{\binom {i+j}{i}}s^{i}t^{j}={\frac {1}{1-s-t}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6487c363345ffae360afb6a3169c6cb91344b6d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:39.466ex; height:7.009ex;" alt="{\displaystyle F(s,t):=\sum _{i,j\geq 0}{\binom {i+j}{i}}s^{i}t^{j}={\frac {1}{1-s-t}},}"></span> </p><p>then this generating function's diagonal coefficient generating function is given by the well-known OGF formula <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {diag} (F)=\sum _{n=0}^{\infty }{\binom {2n}{n}}z^{n}={\frac {1}{\sqrt {1-4z}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>diag</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>2</mn> <mi>n</mi> </mrow> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mi>z</mi> </msqrt> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {diag} (F)=\sum _{n=0}^{\infty }{\binom {2n}{n}}z^{n}={\frac {1}{\sqrt {1-4z}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ce21c49b1b4627213da5e89e4a012884d00c777" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.713ex; height:6.843ex;" alt="{\displaystyle \operatorname {diag} (F)=\sum _{n=0}^{\infty }{\binom {2n}{n}}z^{n}={\frac {1}{\sqrt {1-4z}}}.}"></span> </p><p>This result is computed in many ways, including <a href="/wiki/Cauchy%27s_integral_formula" title="Cauchy&#39;s integral formula">Cauchy's integral formula</a> or <a href="/wiki/Contour_integration" title="Contour integration">contour integration</a>, taking complex <a href="/wiki/Residue_(complex_analysis)" title="Residue (complex analysis)">residues</a>, or by direct manipulations of <a href="/wiki/Formal_power_series" title="Formal power series">formal power series</a> in two variables. </p> <div class="mw-heading mw-heading3"><h3 id="Operations_on_generating_functions">Operations on generating functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=18" title="Edit section: Operations on generating functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Multiplication_yields_convolution">Multiplication yields convolution</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=19" title="Edit section: Multiplication yields convolution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Cauchy_product" title="Cauchy product">Cauchy product</a></div> <p>Multiplication of ordinary generating functions yields a discrete <a href="/wiki/Convolution" title="Convolution">convolution</a> (the <a href="/wiki/Cauchy_product" title="Cauchy product">Cauchy product</a>) of the sequences. For example, the sequence of cumulative sums (compare to the slightly more general <a href="/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula">Euler–Maclaurin formula</a>) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{0},a_{0}+a_{1},a_{0}+a_{1}+a_{2},\ldots )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{0},a_{0}+a_{1},a_{0}+a_{1}+a_{2},\ldots )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afa4fc34c24d6d16750b0f4ac69171d50759922d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.86ex; height:2.843ex;" alt="{\displaystyle (a_{0},a_{0}+a_{1},a_{0}+a_{1}+a_{2},\ldots )}"></span> of a sequence with ordinary generating function <span class="texhtml"><i>G</i>(<i>a<sub>n</sub></i>; <i>x</i>)</span> has the generating function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(a_{n};x)\cdot {\frac {1}{1-x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(a_{n};x)\cdot {\frac {1}{1-x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17160c67440e1160873f0fdc8bc86385640c18b6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.296ex; height:5.343ex;" alt="{\displaystyle G(a_{n};x)\cdot {\frac {1}{1-x}}}"></span> because <span class="texhtml"><style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">1 − <i>x</i></span></span>&#8288;</span></span> is the ordinary generating function for the sequence <span class="nowrap">(1, 1, ...)</span>. See also the <a href="#Convolution_(Cauchy_products)">section on convolutions</a> in the applications section of this article below for further examples of problem solving with convolutions of generating functions and interpretations. </p> <div class="mw-heading mw-heading4"><h4 id="Shifting_sequence_indices">Shifting sequence indices</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=20" title="Edit section: Shifting sequence indices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For integers <span class="texhtml"><i>m</i> ≥ 1</span>, we have the following two analogous identities for the modified generating functions enumerating the shifted sequence variants of <span class="texhtml">⟨ <i>g</i><sub><i>n</i> − <i>m</i></sub> ⟩</span> and <span class="texhtml">⟨ <i>g</i><sub><i>n</i> + <i>m</i></sub> ⟩</span>, respectively: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;z^{m}G(z)=\sum _{n=m}^{\infty }g_{n-m}z^{n}\\[4px]&amp;{\frac {G(z)-g_{0}-g_{1}z-\cdots -g_{m-1}z^{m-1}}{z^{m}}}=\sum _{n=0}^{\infty }g_{n+m}z^{n}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>m</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;z^{m}G(z)=\sum _{n=m}^{\infty }g_{n-m}z^{n}\\[4px]&amp;{\frac {G(z)-g_{0}-g_{1}z-\cdots -g_{m-1}z^{m-1}}{z^{m}}}=\sum _{n=0}^{\infty }g_{n+m}z^{n}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3052ce87c17f67792fcf7588a5cc631e826b027c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:50.407ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}&amp;z^{m}G(z)=\sum _{n=m}^{\infty }g_{n-m}z^{n}\\[4px]&amp;{\frac {G(z)-g_{0}-g_{1}z-\cdots -g_{m-1}z^{m-1}}{z^{m}}}=\sum _{n=0}^{\infty }g_{n+m}z^{n}.\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Differentiation_and_integration_of_generating_functions">Differentiation and integration of generating functions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=21" title="Edit section: Differentiation and integration of generating functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We have the following respective power series expansions for the first derivative of a generating function and its integral: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}G'(z)&amp;=\sum _{n=0}^{\infty }(n+1)g_{n+1}z^{n}\\[4px]z\cdot G'(z)&amp;=\sum _{n=0}^{\infty }ng_{n}z^{n}\\[4px]\int _{0}^{z}G(t)\,dt&amp;=\sum _{n=1}^{\infty }{\frac {g_{n-1}}{n}}z^{n}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>G</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>G</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>n</mi> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msubsup> <mi>G</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>n</mi> </mfrac> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}G'(z)&amp;=\sum _{n=0}^{\infty }(n+1)g_{n+1}z^{n}\\[4px]z\cdot G'(z)&amp;=\sum _{n=0}^{\infty }ng_{n}z^{n}\\[4px]\int _{0}^{z}G(t)\,dt&amp;=\sum _{n=1}^{\infty }{\frac {g_{n-1}}{n}}z^{n}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a86d9f7073663fa6d47194c8c55e90f81418204a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.005ex; width:31.92ex; height:23.176ex;" alt="{\displaystyle {\begin{aligned}G&#039;(z)&amp;=\sum _{n=0}^{\infty }(n+1)g_{n+1}z^{n}\\[4px]z\cdot G&#039;(z)&amp;=\sum _{n=0}^{\infty }ng_{n}z^{n}\\[4px]\int _{0}^{z}G(t)\,dt&amp;=\sum _{n=1}^{\infty }{\frac {g_{n-1}}{n}}z^{n}.\end{aligned}}}"></span> </p><p>The differentiation–multiplication operation of the second identity can be repeated <span class="texhtml mvar" style="font-style:italic;">k</span> times to multiply the sequence by <span class="texhtml"><i>n</i><sup><i>k</i></sup></span>, but that requires alternating between differentiation and multiplication. If instead doing <span class="texhtml mvar" style="font-style:italic;">k</span> differentiations in sequence, the effect is to multiply by the <span class="texhtml mvar" style="font-style:italic;">k</span>th <a href="/wiki/Falling_factorial" class="mw-redirect" title="Falling factorial">falling factorial</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{k}G^{(k)}(z)=\sum _{n=0}^{\infty }n^{\underline {k}}g_{n}z^{n}=\sum _{n=0}^{\infty }n(n-1)\dotsb (n-k+1)g_{n}z^{n}\quad {\text{for all }}k\in \mathbb {N} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>k</mi> <mo>&#x005F;<!-- _ --></mo> </munder> </mrow> </msup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for all&#xA0;</mtext> </mrow> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{k}G^{(k)}(z)=\sum _{n=0}^{\infty }n^{\underline {k}}g_{n}z^{n}=\sum _{n=0}^{\infty }n(n-1)\dotsb (n-k+1)g_{n}z^{n}\quad {\text{for all }}k\in \mathbb {N} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8e12fbe1df3f9a1d03fbf34afe7cd9ca5ce2135" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:73.17ex; height:6.843ex;" alt="{\displaystyle z^{k}G^{(k)}(z)=\sum _{n=0}^{\infty }n^{\underline {k}}g_{n}z^{n}=\sum _{n=0}^{\infty }n(n-1)\dotsb (n-k+1)g_{n}z^{n}\quad {\text{for all }}k\in \mathbb {N} .}"></span> </p><p>Using the <a href="/wiki/Stirling_numbers_of_the_second_kind" title="Stirling numbers of the second kind">Stirling numbers of the second kind</a>, that can be turned into another formula for multiplying by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53af70c07e0932d85d2fdb70c56360544c3a0b5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.483ex; height:2.676ex;" alt="{\displaystyle n^{k}}"></span> as follows (see the main article on <a href="/wiki/Generating_function_transformation#Derivative_transformations" title="Generating function transformation">generating function transformations</a>): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{j=0}^{k}{\begin{Bmatrix}k\\j\end{Bmatrix}}z^{j}F^{(j)}(z)=\sum _{n=0}^{\infty }n^{k}f_{n}z^{n}\quad {\text{for all }}k\in \mathbb {N} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>k</mi> </mtd> </mtr> <mtr> <mtd> <mi>j</mi> </mtd> </mtr> </mtable> <mo>}</mo> </mrow> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for all&#xA0;</mtext> </mrow> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{j=0}^{k}{\begin{Bmatrix}k\\j\end{Bmatrix}}z^{j}F^{(j)}(z)=\sum _{n=0}^{\infty }n^{k}f_{n}z^{n}\quad {\text{for all }}k\in \mathbb {N} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe488b92d166efc74cd993f27d62b4ba69e461db" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:47.186ex; height:7.676ex;" alt="{\displaystyle \sum _{j=0}^{k}{\begin{Bmatrix}k\\j\end{Bmatrix}}z^{j}F^{(j)}(z)=\sum _{n=0}^{\infty }n^{k}f_{n}z^{n}\quad {\text{for all }}k\in \mathbb {N} .}"></span> </p><p>A negative-order reversal of this sequence powers formula corresponding to the operation of repeated integration is defined by the <a href="/wiki/Generating_function_transformation#Derivative_transformations" title="Generating function transformation">zeta series transformation</a> and its generalizations defined as a derivative-based <a href="/wiki/Generating_function_transformation" title="Generating function transformation">transformation of generating functions</a>, or alternately termwise by and performing an <a href="/wiki/Generating_function_transformation#Polylogarithm_series_transformations" title="Generating function transformation">integral transformation</a> on the sequence generating function. Related operations of performing <a href="/wiki/Fractional_calculus" title="Fractional calculus">fractional integration</a> on a sequence generating function are discussed <a href="/wiki/Generating_function_transformation#Fractional_integrals_and_derivatives" title="Generating function transformation">here</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Enumerating_arithmetic_progressions_of_sequences">Enumerating arithmetic progressions of sequences</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=22" title="Edit section: Enumerating arithmetic progressions of sequences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In this section we give formulas for generating functions enumerating the sequence <span class="texhtml">{<i>f</i><sub><i>an</i> + <i>b</i></sub>}</span> given an ordinary generating function <span class="texhtml"><i>F</i>(<i>z</i>)</span>, where <span class="texhtml"><i>a</i> ≥ 2</span>, <span class="texhtml">0 ≤ <i>b</i> &lt; <i>a</i></span>, and <span class="texhtml"><i>a</i></span> and <span class="texhtml"><i>b</i></span> are integers (see the <a href="/wiki/Generating_function_transformation" title="Generating function transformation">main article on transformations</a>). For <span class="texhtml"><i>a</i> = 2</span>, this is simply the familiar decomposition of a function into <a href="/wiki/Even_and_odd_functions" title="Even and odd functions">even and odd parts</a> (i.e., even and odd powers): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{n=0}^{\infty }f_{2n}z^{2n}&amp;={\frac {F(z)+F(-z)}{2}}\\[4px]\sum _{n=0}^{\infty }f_{2n+1}z^{2n+1}&amp;={\frac {F(z)-F(-z)}{2}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{n=0}^{\infty }f_{2n}z^{2n}&amp;={\frac {F(z)+F(-z)}{2}}\\[4px]\sum _{n=0}^{\infty }f_{2n+1}z^{2n+1}&amp;={\frac {F(z)-F(-z)}{2}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed064327749ed440e9262e3744d84a84403a977" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:33.511ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}\sum _{n=0}^{\infty }f_{2n}z^{2n}&amp;={\frac {F(z)+F(-z)}{2}}\\[4px]\sum _{n=0}^{\infty }f_{2n+1}z^{2n+1}&amp;={\frac {F(z)-F(-z)}{2}}.\end{aligned}}}"></span> </p><p>More generally, suppose that <span class="texhtml"><i>a</i> ≥ 3</span> and that <span class="texhtml"><i>ω<sub>a</sub></i> = exp <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">2<i>πi</i></span><span class="sr-only">/</span><span class="den"><i>a</i></span></span>&#8288;</span></span> denotes the <span class="texhtml mvar" style="font-style:italic;">a</span>th <a href="/wiki/Root_of_unity" title="Root of unity">primitive root of unity</a>. Then, as an application of the <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">discrete Fourier transform</a>, we have the formula<sup id="cite_ref-TAOCPV1_15-0" class="reference"><a href="#cite_note-TAOCPV1-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }f_{an+b}z^{an+b}={\frac {1}{a}}\sum _{m=0}^{a-1}\omega _{a}^{-mb}F\left(\omega _{a}^{m}z\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>n</mi> <mo>+</mo> <mi>b</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>n</mi> <mo>+</mo> <mi>b</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>a</mi> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mi>b</mi> </mrow> </msubsup> <mi>F</mi> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msubsup> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }f_{an+b}z^{an+b}={\frac {1}{a}}\sum _{m=0}^{a-1}\omega _{a}^{-mb}F\left(\omega _{a}^{m}z\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40fc59cef8f37522b539383585a132e989cf6ff6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:37.882ex; height:7.343ex;" alt="{\displaystyle \sum _{n=0}^{\infty }f_{an+b}z^{an+b}={\frac {1}{a}}\sum _{m=0}^{a-1}\omega _{a}^{-mb}F\left(\omega _{a}^{m}z\right).}"></span> </p><p>For integers <span class="texhtml"><i>m</i> ≥ 1</span>, another useful formula providing somewhat <i>reversed</i> floored arithmetic progressions — effectively repeating each coefficient <span class="texhtml mvar" style="font-style:italic;">m</span> times — are generated by the identity<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }f_{\left\lfloor {\frac {n}{m}}\right\rfloor }z^{n}={\frac {1-z^{m}}{1-z}}F(z^{m})=\left(1+z+\cdots +z^{m-2}+z^{m-1}\right)F(z^{m}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>m</mi> </mfrac> </mrow> <mo>&#x230B;</mo> </mrow> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> <mi>F</mi> <mo stretchy="false">(</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>F</mi> <mo stretchy="false">(</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }f_{\left\lfloor {\frac {n}{m}}\right\rfloor }z^{n}={\frac {1-z^{m}}{1-z}}F(z^{m})=\left(1+z+\cdots +z^{m-2}+z^{m-1}\right)F(z^{m}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/483d7963f8d49682384da1ec44e4f99adc22159a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:66.645ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }f_{\left\lfloor {\frac {n}{m}}\right\rfloor }z^{n}={\frac {1-z^{m}}{1-z}}F(z^{m})=\left(1+z+\cdots +z^{m-2}+z^{m-1}\right)F(z^{m}).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="P-recursive_sequences_and_holonomic_generating_functions"><span class="texhtml"><i>P</i></span>-recursive sequences and holonomic generating functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=23" title="Edit section: P-recursive sequences and holonomic generating functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Definitions">Definitions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=24" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A formal power series (or function) <span class="texhtml"><i>F</i>(<i>z</i>)</span> is said to be <b>holonomic</b> if it satisfies a linear differential equation of the form<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{0}(z)F^{(r)}(z)+c_{1}(z)F^{(r-1)}(z)+\cdots +c_{r}(z)F(z)=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{0}(z)F^{(r)}(z)+c_{1}(z)F^{(r-1)}(z)+\cdots +c_{r}(z)F(z)=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/155cb0976d0fe6bdbc32969be546ea7294b26cb9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.617ex; height:3.343ex;" alt="{\displaystyle c_{0}(z)F^{(r)}(z)+c_{1}(z)F^{(r-1)}(z)+\cdots +c_{r}(z)F(z)=0,}"></span> </p><p>where the coefficients <span class="texhtml"><i>c<sub>i</sub></i>(<i>z</i>)</span> are in the field of rational functions, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} (z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} (z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5917f17c3d7c66273521f830ef30a8950703188c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.576ex; height:2.843ex;" alt="{\displaystyle \mathbb {C} (z)}"></span>. Equivalently, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cf298d777120df944559c5e985b88a824debb80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.638ex; height:2.843ex;" alt="{\displaystyle F(z)}"></span> is holonomic if the vector space over <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} (z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} (z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5917f17c3d7c66273521f830ef30a8950703188c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.576ex; height:2.843ex;" alt="{\displaystyle \mathbb {C} (z)}"></span> spanned by the set of all of its derivatives is finite dimensional. </p><p>Since we can clear denominators if need be in the previous equation, we may assume that the functions, <span class="texhtml"><i>c<sub>i</sub></i>(<i>z</i>)</span> are polynomials in <span class="texhtml mvar" style="font-style:italic;">z</span>. Thus we can see an equivalent condition that a generating function is holonomic if its coefficients satisfy a <b><span class="texhtml mvar" style="font-style:italic;">P</span>-recurrence</b> of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {c}}_{s}(n)f_{n+s}+{\widehat {c}}_{s-1}(n)f_{n+s-1}+\cdots +{\widehat {c}}_{0}(n)f_{n}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>s</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {c}}_{s}(n)f_{n+s}+{\widehat {c}}_{s-1}(n)f_{n+s-1}+\cdots +{\widehat {c}}_{0}(n)f_{n}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e26d9066f79d39db7fa1775d17db3ba4bcf2329a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.073ex; height:2.843ex;" alt="{\displaystyle {\widehat {c}}_{s}(n)f_{n+s}+{\widehat {c}}_{s-1}(n)f_{n+s-1}+\cdots +{\widehat {c}}_{0}(n)f_{n}=0,}"></span> </p><p>for all large enough <span class="texhtml"><i>n</i> ≥ <i>n</i><sub>0</sub></span> and where the <span class="texhtml"><i>ĉ<sub>i</sub></i>(<i>n</i>)</span> are fixed finite-degree polynomials in <span class="texhtml mvar" style="font-style:italic;">n</span>. In other words, the properties that a sequence be <i><span class="texhtml mvar" style="font-style:italic;">P</span>-recursive</i> and have a holonomic generating function are equivalent. Holonomic functions are closed under the <a href="/wiki/Generating_function_transformation#Hadamard_products_and_diagonal_generating_functions" title="Generating function transformation">Hadamard product</a> operation <span class="texhtml">⊙</span> on generating functions. </p> <div class="mw-heading mw-heading4"><h4 id="Examples">Examples</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=25" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The functions <span class="texhtml"><i>e</i><sup><i>z</i></sup></span>, <span class="texhtml">log <i>z</i></span>, <span class="texhtml">cos <i>z</i></span>, <span class="texhtml">arcsin <i>z</i></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {1+z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <mi>z</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {1+z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15eb2cb08e00208010c8524c7d374483b1f534dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.027ex; height:3.009ex;" alt="{\displaystyle {\sqrt {1+z}}}"></span>, the <a href="/wiki/Dilogarithm" title="Dilogarithm">dilogarithm</a> function <span class="texhtml">Li<sub>2</sub>(<i>z</i>)</span>, the <a href="/wiki/Generalized_hypergeometric_function" title="Generalized hypergeometric function">generalized hypergeometric functions</a> <span class="texhtml"><i><sub>p</sub>F<sub>q</sub></i>(...; ...; <i>z</i>)</span> and the functions defined by the power series <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }{\frac {z^{n}}{(n!)^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>!</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }{\frac {z^{n}}{(n!)^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a09bc0aa51e32d0c43eb5c82e9d7002f6a4237a8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:9.483ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }{\frac {z^{n}}{(n!)^{2}}}}"></span> </p><p>and the non-convergent <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }n!\cdot z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>n</mi> <mo>!</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }n!\cdot z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/764ccb6dc6468600949bc37f3270d22a733201b8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:9.772ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }n!\cdot z^{n}}"></span> </p><p>are all holonomic. </p><p>Examples of <span class="texhtml mvar" style="font-style:italic;">P</span>-recursive sequences with holonomic generating functions include <span class="texhtml"><i>f</i><sub><i>n</i></sub> ≔ <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>n</i> + 1</span></span>&#8288;</span> <span style="font-size:150%;">(</span><span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:center"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2<i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sub></span></span></span><span style="font-size:150%;">)</span></span> and <span class="texhtml"><i>f</i><sub><i>n</i></sub> ≔ <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">2<sup><i>n</i></sup></span><span class="sr-only">/</span><span class="den"><i>n</i><sup>2</sup> + 1</span></span>&#8288;</span></span>, where sequences such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a2994734eae382ce30100fb17b9447fd8e99f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.331ex; height:3.009ex;" alt="{\displaystyle {\sqrt {n}}}"></span> and <span class="texhtml">log <i>n</i></span> are <i>not</i> <span class="texhtml mvar" style="font-style:italic;">P</span>-recursive due to the nature of singularities in their corresponding generating functions. Similarly, functions with infinitely many singularities such as <span class="texhtml">tan <i>z</i></span>, <span class="texhtml">sec <i>z</i></span>, and <a href="/wiki/Gamma_function" title="Gamma function"><span class="texhtml">Γ(<i>z</i>)</span></a> are <i>not</i> holonomic functions. </p> <div class="mw-heading mw-heading4"><h4 id="Software_for_working_with_P-recursive_sequences_and_holonomic_generating_functions">Software for working with <i><span class="texhtml mvar" style="font-style:italic;">P</span></i>-recursive sequences and holonomic generating functions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=26" title="Edit section: Software for working with P-recursive sequences and holonomic generating functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Tools for processing and working with <span class="texhtml mvar" style="font-style:italic;">P</span>-recursive sequences in <i><a href="/wiki/Mathematica" class="mw-redirect" title="Mathematica">Mathematica</a></i> include the software packages provided for non-commercial use on the <a rel="nofollow" class="external text" href="https://www.risc.jku.at/research/combinat/software/">RISC Combinatorics Group algorithmic combinatorics software</a> site. Despite being mostly closed-source, particularly powerful tools in this software suite are provided by the <code><b>Guess</b></code> package for guessing <i><span class="texhtml mvar" style="font-style:italic;">P</span>-recurrences</i> for arbitrary input sequences (useful for <a href="/wiki/Experimental_mathematics" title="Experimental mathematics">experimental mathematics</a> and exploration) and the <code><b>Sigma</b></code> package which is able to find P-recurrences for many sums and solve for closed-form solutions to <span class="texhtml mvar" style="font-style:italic;">P</span>-recurrences involving generalized <a href="/wiki/Harmonic_number" title="Harmonic number">harmonic numbers</a>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> Other packages listed on this particular RISC site are targeted at working with holonomic <i>generating functions</i> specifically. </p> <div class="mw-heading mw-heading3"><h3 id="Relation_to_discrete-time_Fourier_transform">Relation to discrete-time Fourier transform</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=27" title="Edit section: Relation to discrete-time Fourier transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Discrete-time_Fourier_transform" title="Discrete-time Fourier transform">Discrete-time Fourier transform</a></div> <p>When the series <a href="/wiki/Absolute_convergence" title="Absolute convergence">converges absolutely</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\left(a_{n};e^{-i\omega }\right)=\sum _{n=0}^{\infty }a_{n}e^{-i\omega n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\left(a_{n};e^{-i\omega }\right)=\sum _{n=0}^{\infty }a_{n}e^{-i\omega n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da35b9e349447bf4c47c322a87be0a66e5911227" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.469ex; height:6.843ex;" alt="{\displaystyle G\left(a_{n};e^{-i\omega }\right)=\sum _{n=0}^{\infty }a_{n}e^{-i\omega n}}"></span> is the discrete-time Fourier transform of the sequence <span class="texhtml"><i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, ...</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Asymptotic_growth_of_a_sequence">Asymptotic growth of a sequence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=28" title="Edit section: Asymptotic growth of a sequence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In calculus, often the growth rate of the coefficients of a power series can be used to deduce a <a href="/wiki/Radius_of_convergence" title="Radius of convergence">radius of convergence</a> for the power series. The reverse can also hold; often the radius of convergence for a generating function can be used to deduce the <a href="/wiki/Asymptotic_analysis" title="Asymptotic analysis">asymptotic growth</a> of the underlying sequence. </p><p>For instance, if an ordinary generating function <span class="texhtml"><i>G</i>(<i>a</i><sub><i>n</i></sub>; <i>x</i>)</span> that has a finite radius of convergence of <span class="texhtml mvar" style="font-style:italic;">r</span> can be written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(a_{n};x)={\frac {A(x)+B(x)\left(1-{\frac {x}{r}}\right)^{-\beta }}{x^{\alpha }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>r</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(a_{n};x)={\frac {A(x)+B(x)\left(1-{\frac {x}{r}}\right)^{-\beta }}{x^{\alpha }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a30eb91ec0d4814313a36bb19af6c35ef63b6ef" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:35.37ex; height:6.676ex;" alt="{\displaystyle G(a_{n};x)={\frac {A(x)+B(x)\left(1-{\frac {x}{r}}\right)^{-\beta }}{x^{\alpha }}}}"></span> </p><p>where each of <span class="texhtml"><i>A</i>(<i>x</i>)</span> and <span class="texhtml"><i>B</i>(<i>x</i>)</span> is a function that is <a href="/wiki/Analytic_function" title="Analytic function">analytic</a> to a radius of convergence greater than <span class="texhtml mvar" style="font-style:italic;">r</span> (or is <a href="/wiki/Entire_function" title="Entire function">entire</a>), and where <span class="texhtml"><i>B</i>(<i>r</i>) ≠ 0</span> then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}\sim {\frac {B(r)}{r^{\alpha }\Gamma (\beta )}}\,n^{\beta -1}\left({\frac {1}{r}}\right)^{n}\sim {\frac {B(r)}{r^{\alpha }}}{\binom {n+\beta -1}{n}}\left({\frac {1}{r}}\right)^{n}={\frac {B(r)}{r^{\alpha }}}\left(\!\!{\binom {\beta }{n}}\!\!\right)\left({\frac {1}{r}}\right)^{n}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>B</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>B</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>B</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>&#x03B2;<!-- β --></mi> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}\sim {\frac {B(r)}{r^{\alpha }\Gamma (\beta )}}\,n^{\beta -1}\left({\frac {1}{r}}\right)^{n}\sim {\frac {B(r)}{r^{\alpha }}}{\binom {n+\beta -1}{n}}\left({\frac {1}{r}}\right)^{n}={\frac {B(r)}{r^{\alpha }}}\left(\!\!{\binom {\beta }{n}}\!\!\right)\left({\frac {1}{r}}\right)^{n}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c816bb453097307a923b6d02e9d7b5af75d26278" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:76.882ex; height:6.509ex;" alt="{\displaystyle a_{n}\sim {\frac {B(r)}{r^{\alpha }\Gamma (\beta )}}\,n^{\beta -1}\left({\frac {1}{r}}\right)^{n}\sim {\frac {B(r)}{r^{\alpha }}}{\binom {n+\beta -1}{n}}\left({\frac {1}{r}}\right)^{n}={\frac {B(r)}{r^{\alpha }}}\left(\!\!{\binom {\beta }{n}}\!\!\right)\left({\frac {1}{r}}\right)^{n}\,,}"></span> using the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a>, a <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficient</a>, or a <a href="/wiki/Multiset_coefficient" class="mw-redirect" title="Multiset coefficient">multiset coefficient</a>. Note that limit as <span class="texhtml mvar" style="font-style:italic;">n</span> goes to infinity of the ratio of <span class="texhtml"><i>a</i><sub><i>n</i></sub></span> to any of these expressions is guaranteed to be 1; not merely that <span class="texhtml"><i>a</i><sub><i>n</i></sub></span> is proportional to them. </p><p>Often this approach can be iterated to generate several terms in an asymptotic series for <span class="texhtml"><i>a</i><sub><i>n</i></sub></span>. In particular, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\left(a_{n}-{\frac {B(r)}{r^{\alpha }}}{\binom {n+\beta -1}{n}}\left({\frac {1}{r}}\right)^{n};x\right)=G(a_{n};x)-{\frac {B(r)}{r^{\alpha }}}\left(1-{\frac {x}{r}}\right)^{-\beta }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>B</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>;</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>G</mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>B</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>r</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\left(a_{n}-{\frac {B(r)}{r^{\alpha }}}{\binom {n+\beta -1}{n}}\left({\frac {1}{r}}\right)^{n};x\right)=G(a_{n};x)-{\frac {B(r)}{r^{\alpha }}}\left(1-{\frac {x}{r}}\right)^{-\beta }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e1ad0233f1c19a7f22837bc7e0b2b3d9c294d19" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:70.65ex; height:6.343ex;" alt="{\displaystyle G\left(a_{n}-{\frac {B(r)}{r^{\alpha }}}{\binom {n+\beta -1}{n}}\left({\frac {1}{r}}\right)^{n};x\right)=G(a_{n};x)-{\frac {B(r)}{r^{\alpha }}}\left(1-{\frac {x}{r}}\right)^{-\beta }\,.}"></span> </p><p>The asymptotic growth of the coefficients of this generating function can then be sought via the finding of <span class="texhtml mvar" style="font-style:italic;">A</span>, <span class="texhtml mvar" style="font-style:italic;">B</span>, <span class="texhtml mvar" style="font-style:italic;">α</span>, <span class="texhtml mvar" style="font-style:italic;">β</span>, and <span class="texhtml mvar" style="font-style:italic;">r</span> to describe the generating function, as above. </p><p>Similar asymptotic analysis is possible for exponential generating functions; with an exponential generating function, it is <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>a</i><sub><i>n</i></sub></span><span class="sr-only">/</span><span class="den"><i>n</i>!</span></span>&#8288;</span></span> that grows according to these asymptotic formulae. Generally, if the generating function of one sequence minus the generating function of a second sequence has a radius of convergence that is larger than the radius of convergence of the individual generating functions then the two sequences have the same asymptotic growth. </p> <div class="mw-heading mw-heading4"><h4 id="Asymptotic_growth_of_the_sequence_of_squares">Asymptotic growth of the sequence of squares</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=29" title="Edit section: Asymptotic growth of the sequence of squares"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As derived above, the ordinary generating function for the sequence of squares is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(n^{2};x)={\frac {x(x+1)}{(1-x)^{3}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(n^{2};x)={\frac {x(x+1)}{(1-x)^{3}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf96abc7a2a94389f4b3c26b9049d5da2935a24b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.502ex; height:6.509ex;" alt="{\displaystyle G(n^{2};x)={\frac {x(x+1)}{(1-x)^{3}}}.}"></span> </p><p>With <span class="texhtml"><i>r</i> = 1</span>, <span class="texhtml"><i>α</i> = −1</span>, <span class="texhtml"><i>β</i> = 3</span>, <span class="texhtml"><i>A</i>(<i>x</i>) = 0</span>, and <span class="texhtml"><i>B</i>(<i>x</i>) = <i>x</i> + 1</span>, we can verify that the squares grow as expected, like the squares: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}\sim {\frac {B(r)}{r^{\alpha }\Gamma (\beta )}}\,n^{\beta -1}\left({\frac {1}{r}}\right)^{n}={\frac {1+1}{1^{-1}\,\Gamma (3)}}\,n^{3-1}\left({\frac {1}{1}}\right)^{n}=n^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>B</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>1</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}\sim {\frac {B(r)}{r^{\alpha }\Gamma (\beta )}}\,n^{\beta -1}\left({\frac {1}{r}}\right)^{n}={\frac {1+1}{1^{-1}\,\Gamma (3)}}\,n^{3-1}\left({\frac {1}{1}}\right)^{n}=n^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1022d3eb36909770648d1a32f7034ff2b6c70589" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:55.015ex; height:6.676ex;" alt="{\displaystyle a_{n}\sim {\frac {B(r)}{r^{\alpha }\Gamma (\beta )}}\,n^{\beta -1}\left({\frac {1}{r}}\right)^{n}={\frac {1+1}{1^{-1}\,\Gamma (3)}}\,n^{3-1}\left({\frac {1}{1}}\right)^{n}=n^{2}.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Asymptotic_growth_of_the_Catalan_numbers">Asymptotic growth of the Catalan numbers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=30" title="Edit section: Asymptotic growth of the Catalan numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Catalan_number" title="Catalan number">Catalan number</a></div> <p>The ordinary generating function for the <a href="/wiki/Catalan_number" title="Catalan number">Catalan numbers</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(C_{n};x)={\frac {1-{\sqrt {1-4x}}}{2x}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mi>x</mi> </msqrt> </mrow> </mrow> <mrow> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(C_{n};x)={\frac {1-{\sqrt {1-4x}}}{2x}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd0b91599ffac9641cd1488d4799ca7e3d42c548" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.895ex; height:5.843ex;" alt="{\displaystyle G(C_{n};x)={\frac {1-{\sqrt {1-4x}}}{2x}}.}"></span> </p><p>With <span class="texhtml"><i>r</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>&#8288;</span></span>, <span class="texhtml"><i>α</i> = 1</span>, <span class="texhtml"><i>β</i> = −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>, <span class="texhtml"><i>A</i>(<i>x</i>) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>, and <span class="texhtml"><i>B</i>(<i>x</i>) = −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>, we can conclude that, for the Catalan numbers: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{n}\sim {\frac {B(r)}{r^{\alpha }\Gamma (\beta )}}\,n^{\beta -1}\left({\frac {1}{r}}\right)^{n}={\frac {-{\frac {1}{2}}}{\left({\frac {1}{4}}\right)^{1}\Gamma \left(-{\frac {1}{2}}\right)}}\,n^{-{\frac {1}{2}}-1}\left({\frac {1}{\,{\frac {1}{4}}\,}}\right)^{n}={\frac {4^{n}}{n^{\frac {3}{2}}{\sqrt {\pi }}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>B</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mo stretchy="false">(</mo> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mspace width="thinmathspace" /> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{n}\sim {\frac {B(r)}{r^{\alpha }\Gamma (\beta )}}\,n^{\beta -1}\left({\frac {1}{r}}\right)^{n}={\frac {-{\frac {1}{2}}}{\left({\frac {1}{4}}\right)^{1}\Gamma \left(-{\frac {1}{2}}\right)}}\,n^{-{\frac {1}{2}}-1}\left({\frac {1}{\,{\frac {1}{4}}\,}}\right)^{n}={\frac {4^{n}}{n^{\frac {3}{2}}{\sqrt {\pi }}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6b3fa5c4131baedbf626ae81842721b9508a43a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:68.339ex; height:9.509ex;" alt="{\displaystyle C_{n}\sim {\frac {B(r)}{r^{\alpha }\Gamma (\beta )}}\,n^{\beta -1}\left({\frac {1}{r}}\right)^{n}={\frac {-{\frac {1}{2}}}{\left({\frac {1}{4}}\right)^{1}\Gamma \left(-{\frac {1}{2}}\right)}}\,n^{-{\frac {1}{2}}-1}\left({\frac {1}{\,{\frac {1}{4}}\,}}\right)^{n}={\frac {4^{n}}{n^{\frac {3}{2}}{\sqrt {\pi }}}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Bivariate_and_multivariate_generating_functions">Bivariate and multivariate generating functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=31" title="Edit section: Bivariate and multivariate generating functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The generating function in several variables can be generalized to arrays with multiple indices. These non-polynomial double sum examples are called <b>multivariate generating functions</b>, or <b>super generating functions</b>. For two variables, these are often called <b>bivariate generating functions</b>. </p> <div class="mw-heading mw-heading4"><h4 id="Bivariate_case">Bivariate case</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=32" title="Edit section: Bivariate case"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The ordinary generating function of a two-dimensional array <span class="texhtml"><i>a</i><sub><i>m</i>,<i>n</i></sub></span> (where <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml mvar" style="font-style:italic;">m</span> are natural numbers) is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(a_{m,n};x,y)=\sum _{m,n=0}^{\infty }a_{m,n}x^{m}y^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <mo>;</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(a_{m,n};x,y)=\sum _{m,n=0}^{\infty }a_{m,n}x^{m}y^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/638d06a7509760b056b52e61ec94d8dd3419a626" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:31.389ex; height:7.176ex;" alt="{\displaystyle G(a_{m,n};x,y)=\sum _{m,n=0}^{\infty }a_{m,n}x^{m}y^{n}.}"></span>For instance, since <span class="texhtml">(1 + <i>x</i>)<sup><i>n</i></sup></span> is the ordinary generating function for <a href="/wiki/Binomial_coefficients" class="mw-redirect" title="Binomial coefficients">binomial coefficients</a> for a fixed <span class="texhtml mvar" style="font-style:italic;">n</span>, one may ask for a bivariate generating function that generates the binomial coefficients <span class="texhtml"><span style="font-size:150%;">(</span><span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:center"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>k</i></sub></span></span></span><span style="font-size:150%;">)</span></span> for all <span class="texhtml mvar" style="font-style:italic;">k</span> and <span class="texhtml mvar" style="font-style:italic;">n</span>. To do this, consider <span class="texhtml">(1 + <i>x</i>)<sup><i>n</i></sup></span> itself as a sequence in <span class="texhtml mvar" style="font-style:italic;">n</span>, and find the generating function in <span class="texhtml mvar" style="font-style:italic;">y</span> that has these sequence values as coefficients. Since the generating function for <span class="texhtml"><i>a</i><sup><i>n</i></sup></span> is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{1-ay}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{1-ay}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c516e61c0df8af7d46d7cd944de8fa96b7eab0a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:7.871ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{1-ay}},}"></span>the generating function for the binomial coefficients is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n,k}{\binom {n}{k}}x^{k}y^{n}={\frac {1}{1-(1+x)y}}={\frac {1}{1-y-xy}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>k</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n,k}{\binom {n}{k}}x^{k}y^{n}={\frac {1}{1-(1+x)y}}={\frac {1}{1-y-xy}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5095a9c833f4210d7df8250efb1eaa2eff8e907e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:44.655ex; height:7.009ex;" alt="{\displaystyle \sum _{n,k}{\binom {n}{k}}x^{k}y^{n}={\frac {1}{1-(1+x)y}}={\frac {1}{1-y-xy}}.}"></span>Other examples of such include the following two-variable generating functions for the <a href="/wiki/Binomial_coefficients" class="mw-redirect" title="Binomial coefficients">binomial coefficients</a>, the <a href="/wiki/Stirling_numbers" class="mw-redirect" title="Stirling numbers">Stirling numbers</a>, and the <a href="/wiki/Eulerian_numbers" class="mw-redirect" title="Eulerian numbers">Eulerian numbers</a>, where <span class="texhtml"><i>&#969;</i></span> and <span class="texhtml"><i>z</i></span> denote the two variables:<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}e^{z+wz}&amp;=\sum _{m,n\geq 0}{\binom {n}{m}}w^{m}{\frac {z^{n}}{n!}}\\[4px]e^{w(e^{z}-1)}&amp;=\sum _{m,n\geq 0}{\begin{Bmatrix}n\\m\end{Bmatrix}}w^{m}{\frac {z^{n}}{n!}}\\[4px]{\frac {1}{(1-z)^{w}}}&amp;=\sum _{m,n\geq 0}{\begin{bmatrix}n\\m\end{bmatrix}}w^{m}{\frac {z^{n}}{n!}}\\[4px]{\frac {1-w}{e^{(w-1)z}-w}}&amp;=\sum _{m,n\geq 0}\left\langle {\begin{matrix}n\\m\end{matrix}}\right\rangle w^{m}{\frac {z^{n}}{n!}}\\[4px]{\frac {e^{w}-e^{z}}{we^{z}-ze^{w}}}&amp;=\sum _{m,n\geq 0}\left\langle {\begin{matrix}m+n+1\\m\end{matrix}}\right\rangle {\frac {w^{m}z^{n}}{(m+n+1)!}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mo>+</mo> <mi>w</mi> <mi>z</mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> </mtd> </mtr> </mtable> <mo>}</mo> </mrow> </mrow> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>w</mi> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>w</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>z</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>w</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </munder> <mrow> <mo>&#x27E8;</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> </mtd> </mtr> </mtable> </mrow> <mo>&#x27E9;</mo> </mrow> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> </mrow> <mrow> <mi>w</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </munder> <mrow> <mo>&#x27E8;</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> </mtd> </mtr> </mtable> </mrow> <mo>&#x27E9;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}e^{z+wz}&amp;=\sum _{m,n\geq 0}{\binom {n}{m}}w^{m}{\frac {z^{n}}{n!}}\\[4px]e^{w(e^{z}-1)}&amp;=\sum _{m,n\geq 0}{\begin{Bmatrix}n\\m\end{Bmatrix}}w^{m}{\frac {z^{n}}{n!}}\\[4px]{\frac {1}{(1-z)^{w}}}&amp;=\sum _{m,n\geq 0}{\begin{bmatrix}n\\m\end{bmatrix}}w^{m}{\frac {z^{n}}{n!}}\\[4px]{\frac {1-w}{e^{(w-1)z}-w}}&amp;=\sum _{m,n\geq 0}\left\langle {\begin{matrix}n\\m\end{matrix}}\right\rangle w^{m}{\frac {z^{n}}{n!}}\\[4px]{\frac {e^{w}-e^{z}}{we^{z}-ze^{w}}}&amp;=\sum _{m,n\geq 0}\left\langle {\begin{matrix}m+n+1\\m\end{matrix}}\right\rangle {\frac {w^{m}z^{n}}{(m+n+1)!}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4e60055d1b40ff6690b0555231f439c736fc54a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -18.805ex; margin-bottom: -0.2ex; width:50.327ex; height:39.176ex;" alt="{\displaystyle {\begin{aligned}e^{z+wz}&amp;=\sum _{m,n\geq 0}{\binom {n}{m}}w^{m}{\frac {z^{n}}{n!}}\\[4px]e^{w(e^{z}-1)}&amp;=\sum _{m,n\geq 0}{\begin{Bmatrix}n\\m\end{Bmatrix}}w^{m}{\frac {z^{n}}{n!}}\\[4px]{\frac {1}{(1-z)^{w}}}&amp;=\sum _{m,n\geq 0}{\begin{bmatrix}n\\m\end{bmatrix}}w^{m}{\frac {z^{n}}{n!}}\\[4px]{\frac {1-w}{e^{(w-1)z}-w}}&amp;=\sum _{m,n\geq 0}\left\langle {\begin{matrix}n\\m\end{matrix}}\right\rangle w^{m}{\frac {z^{n}}{n!}}\\[4px]{\frac {e^{w}-e^{z}}{we^{z}-ze^{w}}}&amp;=\sum _{m,n\geq 0}\left\langle {\begin{matrix}m+n+1\\m\end{matrix}}\right\rangle {\frac {w^{m}z^{n}}{(m+n+1)!}}.\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Multivariate_case">Multivariate case</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=33" title="Edit section: Multivariate case"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Multivariate generating functions arise in practice when calculating the number of <a href="/wiki/Contingency_tables" class="mw-redirect" title="Contingency tables">contingency tables</a> of non-negative integers with specified row and column totals. Suppose the table has <span class="texhtml mvar" style="font-style:italic;">r</span> rows and <span class="texhtml mvar" style="font-style:italic;">c</span> columns; the row sums are <span class="texhtml"><i>t</i><sub>1</sub>, <i>t</i><sub>2</sub> ... <i>t<sub>r</sub></i></span> and the column sums are <span class="texhtml"><i>s</i><sub>1</sub>, <i>s</i><sub>2</sub> ... <i>s<sub>c</sub></i></span>. Then, according to <a href="/wiki/I._J._Good" title="I. J. Good">I. J. Good</a>,<sup id="cite_ref-Good_1986_20-0" class="reference"><a href="#cite_note-Good_1986-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> the number of such tables is the coefficient of: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}^{t_{1}}\cdots x_{r}^{t_{r}}y_{1}^{s_{1}}\cdots y_{c}^{s_{c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mo>&#x22EF;<!-- ⋯ --></mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msubsup> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mo>&#x22EF;<!-- ⋯ --></mo> <msubsup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}^{t_{1}}\cdots x_{r}^{t_{r}}y_{1}^{s_{1}}\cdots y_{c}^{s_{c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcb7b8a4da4dd1cf673ed4b278667382712f13a5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.805ex; height:3.343ex;" alt="{\displaystyle x_{1}^{t_{1}}\cdots x_{r}^{t_{r}}y_{1}^{s_{1}}\cdots y_{c}^{s_{c}}}"></span>in:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod _{i=1}^{r}\prod _{j=1}^{c}{\frac {1}{1-x_{i}y_{j}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </munderover> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prod _{i=1}^{r}\prod _{j=1}^{c}{\frac {1}{1-x_{i}y_{j}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cb418a2a75c63ffda303d0bbc2648b1758bf3a8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:16.377ex; height:7.176ex;" alt="{\displaystyle \prod _{i=1}^{r}\prod _{j=1}^{c}{\frac {1}{1-x_{i}y_{j}}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Representation_by_continued_fractions_(Jacobi-type_J-fractions)"><span id="Representation_by_continued_fractions_.28Jacobi-type_J-fractions.29"></span>Representation by continued fractions (Jacobi-type <i><span class="texhtml mvar" style="font-style:italic;">J</span></i>-fractions)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=34" title="Edit section: Representation by continued fractions (Jacobi-type J-fractions)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Definitions_2">Definitions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=35" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Expansions of (formal) <i>Jacobi-type</i> and <i>Stieltjes-type</i> <a href="/wiki/Generalized_continued_fraction" class="mw-redirect" title="Generalized continued fraction">continued fractions</a> (<i><span class="texhtml mvar" style="font-style:italic;">J</span>-fractions</i> and <i><span class="texhtml mvar" style="font-style:italic;">S</span>-fractions</i>, respectively) whose <span class="texhtml mvar" style="font-style:italic;">h</span>th rational convergents represent <a href="/wiki/Order_of_accuracy" title="Order of accuracy"><span class="texhtml">2<i>h</i></span>-order accurate</a> power series are another way to express the typically divergent ordinary generating functions for many special one and two-variate sequences. The particular form of the <a href="/w/index.php?title=Jacobi-type_continued_fraction&amp;action=edit&amp;redlink=1" class="new" title="Jacobi-type continued fraction (page does not exist)">Jacobi-type continued fractions</a> (<span class="texhtml mvar" style="font-style:italic;">J</span>-fractions) are expanded as in the following equation and have the next corresponding power series expansions with respect to <span class="texhtml mvar" style="font-style:italic;">z</span> for some specific, application-dependent component sequences, <span class="texhtml">{ab<sub><i>i</i></sub>}</span> and <span class="texhtml">{<i>c</i><sub><i>i</i></sub>}</span>, where <span class="texhtml"><i>z</i> ≠ 0</span> denotes the formal variable in the second power series expansion given below:<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}J^{[\infty ]}(z)&amp;={\cfrac {1}{1-c_{1}z-{\cfrac {{\text{ab}}_{2}z^{2}}{1-c_{2}z-{\cfrac {{\text{ab}}_{3}z^{2}}{\ddots }}}}}}\\[4px]&amp;=1+c_{1}z+\left({\text{ab}}_{2}+c_{1}^{2}\right)z^{2}+\left(2{\text{ab}}_{2}c_{1}+c_{1}^{3}+{\text{ab}}_{2}c_{2}\right)z^{3}+\cdots \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>J</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">]</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>ab</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>ab</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22F1;<!-- ⋱ --></mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>z</mi> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>ab</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>ab</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>ab</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}J^{[\infty ]}(z)&amp;={\cfrac {1}{1-c_{1}z-{\cfrac {{\text{ab}}_{2}z^{2}}{1-c_{2}z-{\cfrac {{\text{ab}}_{3}z^{2}}{\ddots }}}}}}\\[4px]&amp;=1+c_{1}z+\left({\text{ab}}_{2}+c_{1}^{2}\right)z^{2}+\left(2{\text{ab}}_{2}c_{1}+c_{1}^{3}+{\text{ab}}_{2}c_{2}\right)z^{3}+\cdots \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f869868261347bd95267a6102ca604e32b15749" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.671ex; width:67.238ex; height:20.509ex;" alt="{\displaystyle {\begin{aligned}J^{[\infty ]}(z)&amp;={\cfrac {1}{1-c_{1}z-{\cfrac {{\text{ab}}_{2}z^{2}}{1-c_{2}z-{\cfrac {{\text{ab}}_{3}z^{2}}{\ddots }}}}}}\\[4px]&amp;=1+c_{1}z+\left({\text{ab}}_{2}+c_{1}^{2}\right)z^{2}+\left(2{\text{ab}}_{2}c_{1}+c_{1}^{3}+{\text{ab}}_{2}c_{2}\right)z^{3}+\cdots \end{aligned}}}"></span> </p><p>The coefficients of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b1a8cdd7ee39054e510deeb38ee551cc7616ae1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.309ex; height:2.343ex;" alt="{\displaystyle z^{n}}"></span>, denoted in shorthand by <span class="texhtml"><i>j<sub>n</sub></i> ≔ [<i>z<sup>n</sup></i>] <i>J</i><sup>[∞]</sup>(<i>z</i>)</span>, in the previous equations correspond to matrix solutions of the equations: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}k_{0,1}&amp;k_{1,1}&amp;0&amp;0&amp;\cdots \\k_{0,2}&amp;k_{1,2}&amp;k_{2,2}&amp;0&amp;\cdots \\k_{0,3}&amp;k_{1,3}&amp;k_{2,3}&amp;k_{3,3}&amp;\cdots \\\vdots &amp;\vdots &amp;\vdots &amp;\vdots \end{bmatrix}}={\begin{bmatrix}k_{0,0}&amp;0&amp;0&amp;0&amp;\cdots \\k_{0,1}&amp;k_{1,1}&amp;0&amp;0&amp;\cdots \\k_{0,2}&amp;k_{1,2}&amp;k_{2,2}&amp;0&amp;\cdots \\\vdots &amp;\vdots &amp;\vdots &amp;\vdots \end{bmatrix}}\cdot {\begin{bmatrix}c_{1}&amp;1&amp;0&amp;0&amp;\cdots \\{\text{ab}}_{2}&amp;c_{2}&amp;1&amp;0&amp;\cdots \\0&amp;{\text{ab}}_{3}&amp;c_{3}&amp;1&amp;\cdots \\\vdots &amp;\vdots &amp;\vdots &amp;\vdots \end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>ab</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>ab</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}k_{0,1}&amp;k_{1,1}&amp;0&amp;0&amp;\cdots \\k_{0,2}&amp;k_{1,2}&amp;k_{2,2}&amp;0&amp;\cdots \\k_{0,3}&amp;k_{1,3}&amp;k_{2,3}&amp;k_{3,3}&amp;\cdots \\\vdots &amp;\vdots &amp;\vdots &amp;\vdots \end{bmatrix}}={\begin{bmatrix}k_{0,0}&amp;0&amp;0&amp;0&amp;\cdots \\k_{0,1}&amp;k_{1,1}&amp;0&amp;0&amp;\cdots \\k_{0,2}&amp;k_{1,2}&amp;k_{2,2}&amp;0&amp;\cdots \\\vdots &amp;\vdots &amp;\vdots &amp;\vdots \end{bmatrix}}\cdot {\begin{bmatrix}c_{1}&amp;1&amp;0&amp;0&amp;\cdots \\{\text{ab}}_{2}&amp;c_{2}&amp;1&amp;0&amp;\cdots \\0&amp;{\text{ab}}_{3}&amp;c_{3}&amp;1&amp;\cdots \\\vdots &amp;\vdots &amp;\vdots &amp;\vdots \end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ec568544855697bd3ec9c34a068cb81edd3ce0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:89.24ex; height:14.509ex;" alt="{\displaystyle {\begin{bmatrix}k_{0,1}&amp;k_{1,1}&amp;0&amp;0&amp;\cdots \\k_{0,2}&amp;k_{1,2}&amp;k_{2,2}&amp;0&amp;\cdots \\k_{0,3}&amp;k_{1,3}&amp;k_{2,3}&amp;k_{3,3}&amp;\cdots \\\vdots &amp;\vdots &amp;\vdots &amp;\vdots \end{bmatrix}}={\begin{bmatrix}k_{0,0}&amp;0&amp;0&amp;0&amp;\cdots \\k_{0,1}&amp;k_{1,1}&amp;0&amp;0&amp;\cdots \\k_{0,2}&amp;k_{1,2}&amp;k_{2,2}&amp;0&amp;\cdots \\\vdots &amp;\vdots &amp;\vdots &amp;\vdots \end{bmatrix}}\cdot {\begin{bmatrix}c_{1}&amp;1&amp;0&amp;0&amp;\cdots \\{\text{ab}}_{2}&amp;c_{2}&amp;1&amp;0&amp;\cdots \\0&amp;{\text{ab}}_{3}&amp;c_{3}&amp;1&amp;\cdots \\\vdots &amp;\vdots &amp;\vdots &amp;\vdots \end{bmatrix}},}"></span> </p><p>where <span class="texhtml"><i>j</i><sub>0</sub> ≡ <i>k</i><sub>0,0</sub> = 1</span>, <span class="texhtml"><i>j<sub>n</sub></i> = <i>k</i><sub>0,<i>n</i></sub></span> for <span class="texhtml"><i>n</i> ≥ 1</span>, <span class="texhtml"><i>k</i><sub><i>r</i>,<i>s</i></sub> = 0</span> if <span class="texhtml"><i>r</i> &gt; <i>s</i></span>, and where for all integers <span class="texhtml"><i>p</i>, <i>q</i> ≥ 0</span>, we have an <i>addition formula</i> relation given by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j_{p+q}=k_{0,p}\cdot k_{0,q}+\sum _{i=1}^{\min(p,q)}{\text{ab}}_{2}\cdots {\text{ab}}_{i+1}\times k_{i,p}\cdot k_{i,q}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mi>q</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>ab</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>ab</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j_{p+q}=k_{0,p}\cdot k_{0,q}+\sum _{i=1}^{\min(p,q)}{\text{ab}}_{2}\cdots {\text{ab}}_{i+1}\times k_{i,p}\cdot k_{i,q}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c78edb316c29c9bd533cba5edf52653b75360584" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; margin-left: -0.027ex; width:49.221ex; height:7.676ex;" alt="{\displaystyle j_{p+q}=k_{0,p}\cdot k_{0,q}+\sum _{i=1}^{\min(p,q)}{\text{ab}}_{2}\cdots {\text{ab}}_{i+1}\times k_{i,p}\cdot k_{i,q}.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Properties_of_the_hth_convergent_functions">Properties of the <i><span class="texhtml mvar" style="font-style:italic;">h</span></i>th convergent functions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=36" title="Edit section: Properties of the hth convergent functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For <span class="texhtml"><i>h</i> ≥ 0</span> (though in practice when <span class="texhtml"><i>h</i> ≥ 2</span>), we can define the rational <span class="texhtml mvar" style="font-style:italic;">h</span>th convergents to the infinite <span class="texhtml mvar" style="font-style:italic;">J</span>-fraction, <span class="texhtml"><i>J</i><sup>[∞]</sup>(<i>z</i>)</span>, expanded by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Conv} _{h}(z):={\frac {P_{h}(z)}{Q_{h}(z)}}=j_{0}+j_{1}z+\cdots +j_{2h-1}z^{2h-1}+\sum _{n=2h}^{\infty }{\widetilde {j}}_{h,n}z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Conv</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>z</mi> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>j</mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Conv} _{h}(z):={\frac {P_{h}(z)}{Q_{h}(z)}}=j_{0}+j_{1}z+\cdots +j_{2h-1}z^{2h-1}+\sum _{n=2h}^{\infty }{\widetilde {j}}_{h,n}z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5828712300158edd4137f0c3c26d470da107763d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:62.995ex; height:6.843ex;" alt="{\displaystyle \operatorname {Conv} _{h}(z):={\frac {P_{h}(z)}{Q_{h}(z)}}=j_{0}+j_{1}z+\cdots +j_{2h-1}z^{2h-1}+\sum _{n=2h}^{\infty }{\widetilde {j}}_{h,n}z^{n}}"></span> </p><p>component-wise through the sequences, <span class="texhtml"><i>P<sub>h</sub></i>(<i>z</i>)</span> and <span class="texhtml"><i>Q<sub>h</sub></i>(<i>z</i>)</span>, defined recursively by: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}P_{h}(z)&amp;=(1-c_{h}z)P_{h-1}(z)-{\text{ab}}_{h}z^{2}P_{h-2}(z)+\delta _{h,1}\\Q_{h}(z)&amp;=(1-c_{h}z)Q_{h-1}(z)-{\text{ab}}_{h}z^{2}Q_{h-2}(z)+(1-c_{1}z)\delta _{h,1}+\delta _{0,1}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mi>z</mi> <mo stretchy="false">)</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>ab</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mi>z</mi> <mo stretchy="false">)</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mtext>ab</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>z</mi> <mo stretchy="false">)</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}P_{h}(z)&amp;=(1-c_{h}z)P_{h-1}(z)-{\text{ab}}_{h}z^{2}P_{h-2}(z)+\delta _{h,1}\\Q_{h}(z)&amp;=(1-c_{h}z)Q_{h-1}(z)-{\text{ab}}_{h}z^{2}Q_{h-2}(z)+(1-c_{1}z)\delta _{h,1}+\delta _{0,1}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6075afe592c8226ac56aff08723a9c9c71176212" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:65.646ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}P_{h}(z)&amp;=(1-c_{h}z)P_{h-1}(z)-{\text{ab}}_{h}z^{2}P_{h-2}(z)+\delta _{h,1}\\Q_{h}(z)&amp;=(1-c_{h}z)Q_{h-1}(z)-{\text{ab}}_{h}z^{2}Q_{h-2}(z)+(1-c_{1}z)\delta _{h,1}+\delta _{0,1}.\end{aligned}}}"></span> </p><p>Moreover, the rationality of the convergent function <span class="texhtml">Conv<sub><i>h</i></sub>(<i>z</i>)</span> for all <span class="texhtml"><i>h</i> ≥ 2</span> implies additional finite difference equations and congruence properties satisfied by the sequence of <span class="texhtml"><i>j<sub>n</sub></i></span>, <i>and</i> for <span class="texhtml"><i>M<sub>h</sub></i> ≔ ab<sub>2</sub> ⋯ ab<sub><i>h</i> + 1</sub></span> if <span class="texhtml"><i>h</i> ‖ <i>M</i><sub><i>h</i></sub></span> then we have the congruence <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j_{n}\equiv [z^{n}]\operatorname {Conv} _{h}(z){\pmod {h}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <msub> <mi>Conv</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mi>h</mi> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j_{n}\equiv [z^{n}]\operatorname {Conv} _{h}(z){\pmod {h}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b86ab45619fafcc3d417f21200fb680a2a79f08" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.027ex; width:30.398ex; height:2.843ex;" alt="{\displaystyle j_{n}\equiv [z^{n}]\operatorname {Conv} _{h}(z){\pmod {h}},}"></span> </p><p>for non-symbolic, determinate choices of the parameter sequences <span class="texhtml">{ab<sub><i>i</i></sub>}</span> and <span class="texhtml">{<i>c</i><sub><i>i</i></sub>}</span> when <span class="texhtml"><i>h</i> ≥ 2</span>, that is, when these sequences do not implicitly depend on an auxiliary parameter such as <span class="texhtml mvar" style="font-style:italic;">q</span>, <span class="texhtml mvar" style="font-style:italic;">x</span>, or <span class="texhtml mvar" style="font-style:italic;">R</span> as in the examples contained in the table below. </p> <div class="mw-heading mw-heading4"><h4 id="Examples_2">Examples</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=37" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The next table provides examples of closed-form formulas for the component sequences found computationally (and subsequently proved correct in the cited references<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup>) in several special cases of the prescribed sequences, <span class="texhtml"><i>j<sub>n</sub></i></span>, generated by the general expansions of the <span class="texhtml mvar" style="font-style:italic;">J</span>-fractions defined in the first subsection. Here we define <span class="texhtml">0 &lt; &#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>a</i></span>&#124;, &#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>b</i></span>&#124;, &#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>q</i></span>&#124; &lt; 1</span> and the parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R,\alpha \in \mathbb {Z} ^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>,</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R,\alpha \in \mathbb {Z} ^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dcd7d07bc0704a132024cbb675ce79aa7d292f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.187ex; height:2.843ex;" alt="{\displaystyle R,\alpha \in \mathbb {Z} ^{+}}"></span> and <span class="texhtml mvar" style="font-style:italic;">x</span> to be indeterminates with respect to these expansions, where the prescribed sequences enumerated by the expansions of these <span class="texhtml mvar" style="font-style:italic;">J</span>-fractions are defined in terms of the <a href="/wiki/Q-Pochhammer_symbol" title="Q-Pochhammer symbol"><span class="texhtml mvar" style="font-style:italic;">q</span>-Pochhammer symbol</a>, <a href="/wiki/Pochhammer_symbol" class="mw-redirect" title="Pochhammer symbol">Pochhammer symbol</a>, and the <a href="/wiki/Binomial_coefficients" class="mw-redirect" title="Binomial coefficients">binomial coefficients</a>. </p> <dl><dd><table class="wikitable"> <tbody><tr> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59cafe09467c3b2a6aa18cbf0218f2c8f2af233e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:2.203ex; height:2.509ex;" alt="{\displaystyle j_{n}}"></span></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77b7dc6d279091d354e0b90889b463bfa7eb7247" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.061ex; height:2.009ex;" alt="{\displaystyle c_{1}}"></span></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{i}(i\geq 2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>i</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{i}(i\geq 2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce515bcdb92513a1fb01a473ac42f56bf866fa9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.679ex; height:2.843ex;" alt="{\displaystyle c_{i}(i\geq 2)}"></span></th> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {ab} _{i}(i\geq 2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>i</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {ab} _{i}(i\geq 2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b00de46c913d194d0bd49e51b6cc8d218b76d79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.127ex; height:2.843ex;" alt="{\displaystyle \mathrm {ab} _{i}(i\geq 2)}"></span> </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q^{n^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q^{n^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a94913eda8b7f2758179098c83a5e58055b8deaa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.129ex; height:3.343ex;" alt="{\displaystyle q^{n^{2}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q^{2h-3}\left(q^{2h}+q^{2h-2}-1\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>h</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q^{2h-3}\left(q^{2h}+q^{2h-2}-1\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b61e79b425446d3ea1b6e1e9db4b3a738c22d371" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.803ex; height:3.343ex;" alt="{\displaystyle q^{2h-3}\left(q^{2h}+q^{2h-2}-1\right)}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q^{6h-10}\left(q^{2h-2}-1\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>10</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q^{6h-10}\left(q^{2h-2}-1\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86e9ba3a296b05a3bfff95437d92a1fceee3e32a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.704ex; height:3.343ex;" alt="{\displaystyle q^{6h-10}\left(q^{2h-2}-1\right)}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a;q)_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>;</mo> <mi>q</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a;q)_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a132fadd647f6ffcf79efb2ec0534e64aaca3e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.361ex; height:2.843ex;" alt="{\displaystyle (a;q)_{n}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c342073d5dde33970fc5ae7c6f06a908a991a6ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.233ex; height:2.343ex;" alt="{\displaystyle 1-a}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q^{h-1}-aq^{h-2}\left(q^{h}+q^{h-1}-1\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q^{h-1}-aq^{h-2}\left(q^{h}+q^{h-1}-1\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5edd5e057fc6b6c0593448004a47e9525cd2cb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.766ex; height:3.343ex;" alt="{\displaystyle q^{h-1}-aq^{h-2}\left(q^{h}+q^{h-1}-1\right)}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle aq^{2h-4}\left(aq^{h-2}-1\right)\left(q^{h-1}-1\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle aq^{2h-4}\left(aq^{h-2}-1\right)\left(q^{h-1}-1\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da03e96f9500bfd3a1fe6110c79ad732a70bb002" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:29.398ex; height:3.343ex;" alt="{\displaystyle aq^{2h-4}\left(aq^{h-2}-1\right)\left(q^{h-1}-1\right)}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(zq^{-n};q\right)_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <mrow> <mi>z</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>;</mo> <mi>q</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(zq^{-n};q\right)_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96e9ec90acce2a176a1bb82a2129d9837f97ca5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.116ex; height:3.343ex;" alt="{\displaystyle \left(zq^{-n};q\right)_{n}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {q-z}{q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>q</mi> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> <mi>q</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {q-z}{q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7501bc38e1cde9ad383527365778e000555a5fde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:5.834ex; height:5.676ex;" alt="{\displaystyle {\frac {q-z}{q}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {q^{h}-z-qz+q^{h}z}{q^{2h-1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mi>z</mi> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msup> <mi>z</mi> </mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {q^{h}-z-qz+q^{h}z}{q^{2h-1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abcc2f7b950c8cbdb75a2719d9b6e67654422a76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.208ex; height:6.343ex;" alt="{\displaystyle {\frac {q^{h}-z-qz+q^{h}z}{q^{2h-1}}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\left(q^{h-1}-1\right)\left(q^{h-1}-z\right)\cdot z}{q^{4h-5}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>z</mi> </mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mi>h</mi> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\left(q^{h-1}-1\right)\left(q^{h-1}-z\right)\cdot z}{q^{4h-5}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46f54919399b8b61b180deba5b1825ffd50ac510" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.899ex; height:6.843ex;" alt="{\displaystyle {\frac {\left(q^{h-1}-1\right)\left(q^{h-1}-z\right)\cdot z}{q^{4h-5}}}}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(a;q)_{n}}{(b;q)_{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>;</mo> <mi>q</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>;</mo> <mi>q</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {(a;q)_{n}}{(b;q)_{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c338d85ad257558c20d84dbee31928d186a9841" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:7.197ex; height:6.509ex;" alt="{\displaystyle {\frac {(a;q)_{n}}{(b;q)_{n}}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1-a}{1-b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1-a}{1-b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e015a034fc9f267b2968986b4449894fa27c2b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:6.069ex; height:5.509ex;" alt="{\displaystyle {\frac {1-a}{1-b}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {q^{i-2}\left(q+abq^{2i-3}+a(1-q^{i-1}-q^{i})+b(q^{i}-q-1)\right)}{\left(1-bq^{2i-4}\right)\left(1-bq^{2i-2}\right)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>q</mi> <mo>+</mo> <mi>a</mi> <mi>b</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mi>a</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mo stretchy="false">(</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {q^{i-2}\left(q+abq^{2i-3}+a(1-q^{i-1}-q^{i})+b(q^{i}-q-1)\right)}{\left(1-bq^{2i-4}\right)\left(1-bq^{2i-2}\right)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98184553eaf23e32a03eb6093fbac6c798e77404" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:52.292ex; height:6.843ex;" alt="{\displaystyle {\frac {q^{i-2}\left(q+abq^{2i-3}+a(1-q^{i-1}-q^{i})+b(q^{i}-q-1)\right)}{\left(1-bq^{2i-4}\right)\left(1-bq^{2i-2}\right)}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {q^{2i-4}\left(1-bq^{i-3}\right)\left(1-aq^{i-2}\right)\left(a-bq^{i-2}\right)\left(1-q^{i-1}\right)}{\left(1-bq^{2i-5}\right)\left(1-bq^{2i-4}\right)^{2}\left(1-bq^{2i-3}\right)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {q^{2i-4}\left(1-bq^{i-3}\right)\left(1-aq^{i-2}\right)\left(a-bq^{i-2}\right)\left(1-q^{i-1}\right)}{\left(1-bq^{2i-5}\right)\left(1-bq^{2i-4}\right)^{2}\left(1-bq^{2i-3}\right)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/409ba47f4c63bba7d277766676139e1de3c3f73d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:50.928ex; height:7.343ex;" alt="{\displaystyle {\frac {q^{2i-4}\left(1-bq^{i-3}\right)\left(1-aq^{i-2}\right)\left(a-bq^{i-2}\right)\left(1-q^{i-1}\right)}{\left(1-bq^{2i-5}\right)\left(1-bq^{2i-4}\right)^{2}\left(1-bq^{2i-3}\right)}}}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ^{n}\cdot \left({\frac {R}{\alpha }}\right)_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>R</mi> <mi>&#x03B1;<!-- α --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha ^{n}\cdot \left({\frac {R}{\alpha }}\right)_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bf56d57113459e78d34f68bfaf96abdd51f2176" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:11.625ex; height:6.176ex;" alt="{\displaystyle \alpha ^{n}\cdot \left({\frac {R}{\alpha }}\right)_{n}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R+2\alpha (i-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>+</mo> <mn>2</mn> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R+2\alpha (i-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f639e71f1277799a5d310a322e4a317f7c1f2220" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.869ex; height:2.843ex;" alt="{\displaystyle R+2\alpha (i-1)}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (i-1)\alpha {\bigl (}R+(i-2)\alpha {\bigr )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>R</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (i-1)\alpha {\bigl (}R+(i-2)\alpha {\bigr )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfa3d1e134ae5c3b9cd832e5f641d764cf118d1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.939ex; height:3.176ex;" alt="{\displaystyle (i-1)\alpha {\bigl (}R+(i-2)\alpha {\bigr )}}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)^{n}{\binom {x}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>x</mi> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)^{n}{\binom {x}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/329ef6d4ad4cfe4989264a7fc6cb446a2a46c901" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:10.814ex; height:6.176ex;" alt="{\displaystyle (-1)^{n}{\binom {x}{n}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae55e66aeffc525917eed885b4b753ba5a7f8b3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.138ex; height:2.176ex;" alt="{\displaystyle -x}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {(x+2(i-1)^{2})}{(2i-1)(2i-3)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">(</mo> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {(x+2(i-1)^{2})}{(2i-1)(2i-3)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de0c192b09031df6047478c06054dd82ead898bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.198ex; height:6.676ex;" alt="{\displaystyle -{\frac {(x+2(i-1)^{2})}{(2i-1)(2i-3)}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}-{\dfrac {(x-i+2)(x+i-1)}{4\cdot (2i-3)^{2}}}&amp;{\text{for }}i\geq 3;\\[4px]-{\frac {1}{2}}x(x+1)&amp;{\text{for }}i=2.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.6em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <mi>i</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>3</mn> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <mi>i</mi> <mo>=</mo> <mn>2.</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}-{\dfrac {(x-i+2)(x+i-1)}{4\cdot (2i-3)^{2}}}&amp;{\text{for }}i\geq 3;\\[4px]-{\frac {1}{2}}x(x+1)&amp;{\text{for }}i=2.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2863efa002e10d228d6012c3c7dcf9d9e5c03f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:38.43ex; height:10.843ex;" alt="{\displaystyle {\begin{cases}-{\dfrac {(x-i+2)(x+i-1)}{4\cdot (2i-3)^{2}}}&amp;{\text{for }}i\geq 3;\\[4px]-{\frac {1}{2}}x(x+1)&amp;{\text{for }}i=2.\end{cases}}}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)^{n}{\binom {x+n}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>x</mi> <mo>+</mo> <mi>n</mi> </mrow> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)^{n}{\binom {x+n}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a415011f9f1b166e83e8673a4314e21836bf89b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.984ex; height:6.176ex;" alt="{\displaystyle (-1)^{n}{\binom {x+n}{n}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -(x+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -(x+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1e2106075c786e8568003a498bad678028bdead" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.95ex; height:2.843ex;" alt="{\displaystyle -(x+1)}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\bigl (}x-2i(i-2)-1{\bigr )}}{(2i-1)(2i-3)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>i</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\bigl (}x-2i(i-2)-1{\bigr )}}{(2i-1)(2i-3)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2afd6cf2f612d4fb739355e314fedf1780344c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.718ex; height:6.843ex;" alt="{\displaystyle {\frac {{\bigl (}x-2i(i-2)-1{\bigr )}}{(2i-1)(2i-3)}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}-{\dfrac {(x-i+2)(x+i-1)}{4\cdot (2i-3)^{2}}}&amp;{\text{for }}i\geq 3;\\[4px]-{\frac {1}{2}}x(x+1)&amp;{\text{for }}i=2.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.6em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>4</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <mi>i</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>3</mn> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <mi>i</mi> <mo>=</mo> <mn>2.</mn> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}-{\dfrac {(x-i+2)(x+i-1)}{4\cdot (2i-3)^{2}}}&amp;{\text{for }}i\geq 3;\\[4px]-{\frac {1}{2}}x(x+1)&amp;{\text{for }}i=2.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2863efa002e10d228d6012c3c7dcf9d9e5c03f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:38.43ex; height:10.843ex;" alt="{\displaystyle {\begin{cases}-{\dfrac {(x-i+2)(x+i-1)}{4\cdot (2i-3)^{2}}}&amp;{\text{for }}i\geq 3;\\[4px]-{\frac {1}{2}}x(x+1)&amp;{\text{for }}i=2.\end{cases}}}"></span> </td></tr></tbody></table></dd></dl> <p>The radii of convergence of these series corresponding to the definition of the Jacobi-type <span class="texhtml mvar" style="font-style:italic;">J</span>-fractions given above are in general different from that of the corresponding power series expansions defining the ordinary generating functions of these sequences. </p> <div class="mw-heading mw-heading2"><h2 id="Examples_3">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=38" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Square_numbers">Square numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=39" title="Edit section: Square numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Generating functions for the sequence of <a href="/wiki/Square_number" title="Square number">square numbers</a> <span class="texhtml"><i>a</i><sub><i>n</i></sub> = <i>n</i><sup>2</sup></span> are: </p> <table class="wikitable"> <tbody><tr> <th>Generating function type</th> <th>Equation </th></tr> <tr> <td>Ordinary generating function</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(n^{2};x)=\sum _{n=0}^{\infty }n^{2}x^{n}={\frac {x(x+1)}{(1-x)^{3}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(n^{2};x)=\sum _{n=0}^{\infty }n^{2}x^{n}={\frac {x(x+1)}{(1-x)^{3}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c69b1bcee224e3c6009e9192f09c47b431f8bf61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.692ex; height:6.843ex;" alt="{\displaystyle G(n^{2};x)=\sum _{n=0}^{\infty }n^{2}x^{n}={\frac {x(x+1)}{(1-x)^{3}}}}"></span> </td></tr> <tr> <td>Exponential generating function</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {EG} (n^{2};x)=\sum _{n=0}^{\infty }{\frac {n^{2}x^{n}}{n!}}=x(x+1)e^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>EG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>;</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {EG} (n^{2};x)=\sum _{n=0}^{\infty }{\frac {n^{2}x^{n}}{n!}}=x(x+1)e^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35cc6f6056f7ee3631e0edb68f3fcc3dd4237fc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:36.529ex; height:6.843ex;" alt="{\displaystyle \operatorname {EG} (n^{2};x)=\sum _{n=0}^{\infty }{\frac {n^{2}x^{n}}{n!}}=x(x+1)e^{x}}"></span> </td></tr> <tr> <td>Bell series</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {BG} _{p}\left(n^{2};x\right)=\sum _{n=0}^{\infty }\left(p^{n}\right)^{2}x^{n}={\frac {1}{1-p^{2}x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>BG</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>;</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {BG} _{p}\left(n^{2};x\right)=\sum _{n=0}^{\infty }\left(p^{n}\right)^{2}x^{n}={\frac {1}{1-p^{2}x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b47657d57c3595f32e31cedf231b9c9e364fbbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:37.602ex; height:6.843ex;" alt="{\displaystyle \operatorname {BG} _{p}\left(n^{2};x\right)=\sum _{n=0}^{\infty }\left(p^{n}\right)^{2}x^{n}={\frac {1}{1-p^{2}x}}}"></span> </td></tr> <tr> <td>Dirichlet series</td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {DG} \left(n^{2};s\right)=\sum _{n=1}^{\infty }{\frac {n^{2}}{n^{s}}}=\zeta (s-2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>DG</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>;</mo> <mi>s</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {DG} \left(n^{2};s\right)=\sum _{n=1}^{\infty }{\frac {n^{2}}{n^{s}}}=\zeta (s-2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34277b6b18a85810a8f3c87cb6f56954ae9a9fed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:31.525ex; height:6.843ex;" alt="{\displaystyle \operatorname {DG} \left(n^{2};s\right)=\sum _{n=1}^{\infty }{\frac {n^{2}}{n^{s}}}=\zeta (s-2)}"></span> </td></tr></tbody></table> <p>where <span class="texhtml"><i>ζ</i>(<i>s)</i></span> is the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=40" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Generating functions are used to: </p> <ul><li>Find a <a href="/wiki/Closed_formula" class="mw-redirect" title="Closed formula">closed formula</a> for a sequence given in a recurrence relation, for example, <a href="/wiki/Fibonacci_number#Generating_function" class="mw-redirect" title="Fibonacci number">Fibonacci numbers</a>.</li> <li>Find <a href="/wiki/Recurrence_relation" title="Recurrence relation">recurrence relations</a> for sequences—the form of a generating function may suggest a recurrence formula.</li> <li>Find relationships between sequences—if the generating functions of two sequences have a similar form, then the sequences themselves may be related.</li> <li>Explore the asymptotic behaviour of sequences.</li> <li>Prove identities involving sequences.</li> <li>Solve <a href="/wiki/Enumeration" title="Enumeration">enumeration</a> problems in <a href="/wiki/Combinatorics" title="Combinatorics">combinatorics</a> and encoding their solutions. <a href="/wiki/Rook_polynomial" title="Rook polynomial">Rook polynomials</a> are an example of an application in combinatorics.</li> <li>Evaluate infinite sums.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Various_techniques:_Evaluating_sums_and_tackling_other_problems_with_generating_functions">Various techniques: Evaluating sums and tackling other problems with generating functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=41" title="Edit section: Various techniques: Evaluating sums and tackling other problems with generating functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Example_1:_Formula_for_sums_of_harmonic_numbers">Example 1: Formula for sums of harmonic numbers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=42" title="Edit section: Example 1: Formula for sums of harmonic numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Generating functions give us several methods to manipulate sums and to establish identities between sums. </p><p>The simplest case occurs when <span class="texhtml"><i>s<sub>n</sub></i> = Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>k</i> = 0</sub></span></span> <i>a<sub>k</sub></i></span>. We then know that <span class="texhtml"><i>S</i>(<i>z</i>) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>A</i>(<i>z</i>)</span><span class="sr-only">/</span><span class="den">1 − <i>z</i></span></span>&#8288;</span></span> for the corresponding ordinary generating functions. </p><p>For example, we can manipulate <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{n}=\sum _{k=1}^{n}H_{k}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{n}=\sum _{k=1}^{n}H_{k}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a856687382493ffc9d9c0fd3ec6066ce369e49d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.203ex; height:6.843ex;" alt="{\displaystyle s_{n}=\sum _{k=1}^{n}H_{k}\,,}"></span> where <span class="texhtml"><i>H<sub>k</sub></i> = 1 + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> + ⋯ + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>k</i></span></span>&#8288;</span></span> are the <a href="/wiki/Harmonic_number" title="Harmonic number">harmonic numbers</a>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(z)=\sum _{n=1}^{\infty }{H_{n}z^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(z)=\sum _{n=1}^{\infty }{H_{n}z^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5ff198701e3824ed9527814486349f16a486db2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.26ex; height:6.843ex;" alt="{\displaystyle H(z)=\sum _{n=1}^{\infty }{H_{n}z^{n}}}"></span> be the ordinary generating function of the harmonic numbers. Then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(z)={\frac {1}{1-z}}\sum _{n=1}^{\infty }{\frac {z^{n}}{n}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(z)={\frac {1}{1-z}}\sum _{n=1}^{\infty }{\frac {z^{n}}{n}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19423bb1b021ca2085be8e2ddfc705f172d807f4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.295ex; height:6.843ex;" alt="{\displaystyle H(z)={\frac {1}{1-z}}\sum _{n=1}^{\infty }{\frac {z^{n}}{n}}\,,}"></span> and thus <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(z)=\sum _{n=1}^{\infty }{s_{n}z^{n}}={\frac {1}{(1-z)^{2}}}\sum _{n=1}^{\infty }{\frac {z^{n}}{n}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(z)=\sum _{n=1}^{\infty }{s_{n}z^{n}}={\frac {1}{(1-z)^{2}}}\sum _{n=1}^{\infty }{\frac {z^{n}}{n}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce7e408273c6ec143b9aab97afe11eed31a7b6b6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:36.052ex; height:6.843ex;" alt="{\displaystyle S(z)=\sum _{n=1}^{\infty }{s_{n}z^{n}}={\frac {1}{(1-z)^{2}}}\sum _{n=1}^{\infty }{\frac {z^{n}}{n}}\,.}"></span> </p><p>Using <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{(1-z)^{2}}}=\sum _{n=0}^{\infty }(n+1)z^{n}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{(1-z)^{2}}}=\sum _{n=0}^{\infty }(n+1)z^{n}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cee32b6e85facd8b78ee0f0917b718d5a057241a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:25.794ex; height:6.843ex;" alt="{\displaystyle {\frac {1}{(1-z)^{2}}}=\sum _{n=0}^{\infty }(n+1)z^{n}\,,}"></span> <a href="#Convolution_(Cauchy_products)">convolution</a> with the numerator yields <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{n}=\sum _{k=1}^{n}{\frac {n+1-k}{k}}=(n+1)H_{n}-n\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> <mi>k</mi> </mfrac> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{n}=\sum _{k=1}^{n}{\frac {n+1-k}{k}}=(n+1)H_{n}-n\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0497cb91c08cd76ff96ef09706ca63a71daf4b0b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.159ex; height:6.843ex;" alt="{\displaystyle s_{n}=\sum _{k=1}^{n}{\frac {n+1-k}{k}}=(n+1)H_{n}-n\,,}"></span> which can also be written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}{H_{k}}=(n+1)(H_{n+1}-1)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}{H_{k}}=(n+1)(H_{n+1}-1)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0a85c350400680d1d420f41ac4cfd39ef186577" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:29.164ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{n}{H_{k}}=(n+1)(H_{n+1}-1)\,.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Example_2:_Modified_binomial_coefficient_sums_and_the_binomial_transform">Example 2: Modified binomial coefficient sums and the binomial transform</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=43" title="Edit section: Example 2: Modified binomial coefficient sums and the binomial transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As another example of using generating functions to relate sequences and manipulate sums, for an arbitrary sequence <span class="texhtml">⟨ <i>f<sub>n</sub></i> ⟩</span> we define the two sequences of sums <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}s_{n}&amp;:=\sum _{m=0}^{n}{\binom {n}{m}}f_{m}3^{n-m}\\[4px]{\tilde {s}}_{n}&amp;:=\sum _{m=0}^{n}{\binom {n}{m}}(m+1)(m+2)(m+3)f_{m}3^{n-m}\,,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>:=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>s</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>:=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}s_{n}&amp;:=\sum _{m=0}^{n}{\binom {n}{m}}f_{m}3^{n-m}\\[4px]{\tilde {s}}_{n}&amp;:=\sum _{m=0}^{n}{\binom {n}{m}}(m+1)(m+2)(m+3)f_{m}3^{n-m}\,,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7852de896b296a657bbef93c0fe2cbc26f8a849f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.005ex; width:48.907ex; height:15.009ex;" alt="{\displaystyle {\begin{aligned}s_{n}&amp;:=\sum _{m=0}^{n}{\binom {n}{m}}f_{m}3^{n-m}\\[4px]{\tilde {s}}_{n}&amp;:=\sum _{m=0}^{n}{\binom {n}{m}}(m+1)(m+2)(m+3)f_{m}3^{n-m}\,,\end{aligned}}}"></span> for all <span class="texhtml"><i>n</i> ≥ 0</span>, and seek to express the second sums in terms of the first. We suggest an approach by generating functions. </p><p>First, we use the <a href="/wiki/Binomial_transform" title="Binomial transform">binomial transform</a> to write the generating function for the first sum as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(z)={\frac {1}{1-3z}}F\left({\frac {z}{1-3z}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> </mrow> </mfrac> </mrow> <mi>F</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(z)={\frac {1}{1-3z}}F\left({\frac {z}{1-3z}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d9e7f563db1b915e656e8be0c4cf25f6ebf43ff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.257ex; height:6.176ex;" alt="{\displaystyle S(z)={\frac {1}{1-3z}}F\left({\frac {z}{1-3z}}\right).}"></span> </p><p>Since the generating function for the sequence <span class="texhtml">⟨ (<i>n</i> + 1)(<i>n</i> + 2)(<i>n</i> + 3) <i>f<sub>n</sub></i> ⟩</span> is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6F(z)+18zF'(z)+9z^{2}F''(z)+z^{3}F'''(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>18</mn> <mi>z</mi> <msup> <mi>F</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>9</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>F</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>F</mi> <mo>&#x2034;</mo> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6F(z)+18zF'(z)+9z^{2}F''(z)+z^{3}F'''(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89ee9a99b91d1f59c7b14abd0b529ea992c445f8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.735ex; height:3.176ex;" alt="{\displaystyle 6F(z)+18zF&#039;(z)+9z^{2}F&#039;&#039;(z)+z^{3}F&#039;&#039;&#039;(z)}"></span> we may write the generating function for the second sum defined above in the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {S}}(z)={\frac {6}{(1-3z)}}F\left({\frac {z}{1-3z}}\right)+{\frac {18z}{(1-3z)^{2}}}F'\left({\frac {z}{1-3z}}\right)+{\frac {9z^{2}}{(1-3z)^{3}}}F''\left({\frac {z}{1-3z}}\right)+{\frac {z^{3}}{(1-3z)^{4}}}F'''\left({\frac {z}{1-3z}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>6</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mi>F</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>18</mn> <mi>z</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mi>F</mi> <mo>&#x2032;</mo> </msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>9</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mi>F</mi> <mo>&#x2033;</mo> </msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mi>F</mi> <mo>&#x2034;</mo> </msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {S}}(z)={\frac {6}{(1-3z)}}F\left({\frac {z}{1-3z}}\right)+{\frac {18z}{(1-3z)^{2}}}F'\left({\frac {z}{1-3z}}\right)+{\frac {9z^{2}}{(1-3z)^{3}}}F''\left({\frac {z}{1-3z}}\right)+{\frac {z^{3}}{(1-3z)^{4}}}F'''\left({\frac {z}{1-3z}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba39ff111fda623a34f7297a18fe65d851f83d44" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:110.07ex; height:6.509ex;" alt="{\displaystyle {\tilde {S}}(z)={\frac {6}{(1-3z)}}F\left({\frac {z}{1-3z}}\right)+{\frac {18z}{(1-3z)^{2}}}F&#039;\left({\frac {z}{1-3z}}\right)+{\frac {9z^{2}}{(1-3z)^{3}}}F&#039;&#039;\left({\frac {z}{1-3z}}\right)+{\frac {z^{3}}{(1-3z)^{4}}}F&#039;&#039;&#039;\left({\frac {z}{1-3z}}\right).}"></span> </p><p>In particular, we may write this modified sum generating function in the form of <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(z)\cdot S(z)+b(z)\cdot zS'(z)+c(z)\cdot z^{2}S''(z)+d(z)\cdot z^{3}S'''(z),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>z</mi> <msup> <mi>S</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>S</mi> <mo>&#x2033;</mo> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mi>S</mi> <mo>&#x2034;</mo> </msup> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(z)\cdot S(z)+b(z)\cdot zS'(z)+c(z)\cdot z^{2}S''(z)+d(z)\cdot z^{3}S'''(z),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bde2cdc5b4e8354c1a002e14c14379f35504bfb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:58.367ex; height:3.176ex;" alt="{\displaystyle a(z)\cdot S(z)+b(z)\cdot zS&#039;(z)+c(z)\cdot z^{2}S&#039;&#039;(z)+d(z)\cdot z^{3}S&#039;&#039;&#039;(z),}"></span> for <span class="texhtml"><i>a</i>(<i>z</i>) = 6(1 − 3<i>z</i>)<sup>3</sup></span>, <span class="texhtml"><i>b</i>(<i>z</i>) = 18(1 − 3<i>z</i>)<sup>3</sup></span>, <span class="texhtml"><i>c</i>(<i>z</i>) = 9(1 − 3<i>z</i>)<sup>3</sup></span>, and <span class="texhtml"><i>d</i>(<i>z</i>) = (1 − 3<i>z</i>)<sup>3</sup></span>, where <span class="texhtml">(1 − 3<i>z</i>)<sup>3</sup> = 1 − 9<i>z</i> + 27<i>z</i><sup>2</sup> − 27<i>z</i><sup>3</sup></span>. </p><p>Finally, it follows that we may express the second sums through the first sums in the following form: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\tilde {s}}_{n}&amp;=[z^{n}]\left(6(1-3z)^{3}\sum _{n=0}^{\infty }s_{n}z^{n}+18(1-3z)^{3}\sum _{n=0}^{\infty }ns_{n}z^{n}+9(1-3z)^{3}\sum _{n=0}^{\infty }n(n-1)s_{n}z^{n}+(1-3z)^{3}\sum _{n=0}^{\infty }n(n-1)(n-2)s_{n}z^{n}\right)\\[4px]&amp;=(n+1)(n+2)(n+3)s_{n}-9n(n+1)(n+2)s_{n-1}+27(n-1)n(n+1)s_{n-2}-(n-2)(n-1)ns_{n-3}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>s</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mrow> <mo>(</mo> <mrow> <mn>6</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mn>18</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>n</mi> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mn>9</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>9</mn> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>27</mn> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>n</mi> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\tilde {s}}_{n}&amp;=[z^{n}]\left(6(1-3z)^{3}\sum _{n=0}^{\infty }s_{n}z^{n}+18(1-3z)^{3}\sum _{n=0}^{\infty }ns_{n}z^{n}+9(1-3z)^{3}\sum _{n=0}^{\infty }n(n-1)s_{n}z^{n}+(1-3z)^{3}\sum _{n=0}^{\infty }n(n-1)(n-2)s_{n}z^{n}\right)\\[4px]&amp;=(n+1)(n+2)(n+3)s_{n}-9n(n+1)(n+2)s_{n-1}+27(n-1)n(n+1)s_{n-2}-(n-2)(n-1)ns_{n-3}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebcbe4cfe982ab74c3c90a066d323b24ba9ae0c2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:124.462ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}{\tilde {s}}_{n}&amp;=[z^{n}]\left(6(1-3z)^{3}\sum _{n=0}^{\infty }s_{n}z^{n}+18(1-3z)^{3}\sum _{n=0}^{\infty }ns_{n}z^{n}+9(1-3z)^{3}\sum _{n=0}^{\infty }n(n-1)s_{n}z^{n}+(1-3z)^{3}\sum _{n=0}^{\infty }n(n-1)(n-2)s_{n}z^{n}\right)\\[4px]&amp;=(n+1)(n+2)(n+3)s_{n}-9n(n+1)(n+2)s_{n-1}+27(n-1)n(n+1)s_{n-2}-(n-2)(n-1)ns_{n-3}.\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Example_3:_Generating_functions_for_mutually_recursive_sequences">Example 3: Generating functions for mutually recursive sequences</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=44" title="Edit section: Example 3: Generating functions for mutually recursive sequences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In this example, we reformulate a generating function example given in Section 7.3 of <i>Concrete Mathematics</i> (see also Section 7.1 of the same reference for pretty pictures of generating function series). In particular, suppose that we seek the total number of ways (denoted <span class="texhtml"><i>U<sub>n</sub></i></span>) to tile a 3-by-<span class="texhtml mvar" style="font-style:italic;">n</span> rectangle with unmarked 2-by-1 domino pieces. Let the auxiliary sequence, <span class="texhtml"><i>V<sub>n</sub></i></span>, be defined as the number of ways to cover a 3-by-<span class="texhtml mvar" style="font-style:italic;">n</span> rectangle-minus-corner section of the full rectangle. We seek to use these definitions to give a <a href="/wiki/Closed-form_expression" title="Closed-form expression">closed form</a> formula for <span class="texhtml"><i>U<sub>n</sub></i></span> without breaking down this definition further to handle the cases of vertical versus horizontal dominoes. Notice that the ordinary generating functions for our two sequences correspond to the series: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}U(z)=1+3z^{2}+11z^{4}+41z^{6}+\cdots ,\\V(z)=z+4z^{3}+15z^{5}+56z^{7}+\cdots .\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>U</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>3</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>11</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mn>41</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>V</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <mo>+</mo> <mn>4</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>15</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <mn>56</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}U(z)=1+3z^{2}+11z^{4}+41z^{6}+\cdots ,\\V(z)=z+4z^{3}+15z^{5}+56z^{7}+\cdots .\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91367c12b6ec5e29d14961fff70c7a7ff77b112f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:37.057ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}U(z)=1+3z^{2}+11z^{4}+41z^{6}+\cdots ,\\V(z)=z+4z^{3}+15z^{5}+56z^{7}+\cdots .\end{aligned}}}"></span> </p><p>If we consider the possible configurations that can be given starting from the left edge of the 3-by-<span class="texhtml mvar" style="font-style:italic;">n</span> rectangle, we are able to express the following mutually dependent, or <i>mutually recursive</i>, recurrence relations for our two sequences when <span class="texhtml"><i>n</i> ≥ 2</span> defined as above where <span class="texhtml"><i>U</i><sub>0</sub> = 1</span>, <span class="texhtml"><i>U</i><sub>1</sub> = 0</span>, <span class="texhtml"><i>V</i><sub>0</sub> = 0</span>, and <span class="texhtml"><i>V</i><sub>1</sub> = 1</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}U_{n}&amp;=2V_{n-1}+U_{n-2}\\V_{n}&amp;=U_{n-1}+V_{n-2}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}U_{n}&amp;=2V_{n-1}+U_{n-2}\\V_{n}&amp;=U_{n-1}+V_{n-2}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c118dc085b44a84173337c5fd0924f31209a8173" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.111ex; margin-bottom: -0.227ex; width:20.239ex; height:5.843ex;" alt="{\displaystyle {\begin{aligned}U_{n}&amp;=2V_{n-1}+U_{n-2}\\V_{n}&amp;=U_{n-1}+V_{n-2}.\end{aligned}}}"></span> </p><p>Since we have that for all integers <span class="texhtml"><i>m</i> ≥ 0</span>, the index-shifted generating functions satisfy<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>note 1<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{m}G(z)=\sum _{n=m}^{\infty }g_{n-m}z^{n}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{m}G(z)=\sum _{n=m}^{\infty }g_{n-m}z^{n}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78a4d56b72744922ea23b72f9eeab8dcf703ae8a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.074ex; height:6.843ex;" alt="{\displaystyle z^{m}G(z)=\sum _{n=m}^{\infty }g_{n-m}z^{n}\,,}"></span> we can use the initial conditions specified above and the previous two recurrence relations to see that we have the next two equations relating the generating functions for these sequences given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}U(z)&amp;=2zV(z)+z^{2}U(z)+1\\V(z)&amp;=zU(z)+z^{2}V(z)={\frac {z}{1-z^{2}}}U(z),\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>U</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mi>z</mi> <mi>V</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>U</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>V</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> <mi>U</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>V</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>U</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}U(z)&amp;=2zV(z)+z^{2}U(z)+1\\V(z)&amp;=zU(z)+z^{2}V(z)={\frac {z}{1-z^{2}}}U(z),\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56b37ffc2dcfe30c7363725fc6a5bc7119a78c9a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:39.381ex; height:8.509ex;" alt="{\displaystyle {\begin{aligned}U(z)&amp;=2zV(z)+z^{2}U(z)+1\\V(z)&amp;=zU(z)+z^{2}V(z)={\frac {z}{1-z^{2}}}U(z),\end{aligned}}}"></span> which then implies by solving the system of equations (and this is the particular trick to our method here) that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U(z)={\frac {1-z^{2}}{1-4z^{2}+z^{4}}}={\frac {1}{3-{\sqrt {3}}}}\cdot {\frac {1}{1-\left(2+{\sqrt {3}}\right)z^{2}}}+{\frac {1}{3+{\sqrt {3}}}}\cdot {\frac {1}{1-\left(2-{\sqrt {3}}\right)z^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U(z)={\frac {1-z^{2}}{1-4z^{2}+z^{4}}}={\frac {1}{3-{\sqrt {3}}}}\cdot {\frac {1}{1-\left(2+{\sqrt {3}}\right)z^{2}}}+{\frac {1}{3+{\sqrt {3}}}}\cdot {\frac {1}{1-\left(2-{\sqrt {3}}\right)z^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/491e443619a0651765f3ba1fe3b148666e44ede7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:79.931ex; height:7.009ex;" alt="{\displaystyle U(z)={\frac {1-z^{2}}{1-4z^{2}+z^{4}}}={\frac {1}{3-{\sqrt {3}}}}\cdot {\frac {1}{1-\left(2+{\sqrt {3}}\right)z^{2}}}+{\frac {1}{3+{\sqrt {3}}}}\cdot {\frac {1}{1-\left(2-{\sqrt {3}}\right)z^{2}}}.}"></span> </p><p>Thus by performing algebraic simplifications to the sequence resulting from the second partial fractions expansions of the generating function in the previous equation, we find that <span class="texhtml"><i>U</i><sub>2<i>n</i> + 1</sub> ≡ 0</span> and that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{2n}=\left\lceil {\frac {\left(2+{\sqrt {3}}\right)^{n}}{3-{\sqrt {3}}}}\right\rceil \,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>&#x2308;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mn>3</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>&#x2309;</mo> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U_{2n}=\left\lceil {\frac {\left(2+{\sqrt {3}}\right)^{n}}{3-{\sqrt {3}}}}\right\rceil \,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c25556f3d411ec09e3538938ff5ee5d25e9273ff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:22.404ex; height:7.676ex;" alt="{\displaystyle U_{2n}=\left\lceil {\frac {\left(2+{\sqrt {3}}\right)^{n}}{3-{\sqrt {3}}}}\right\rceil \,,}"></span> for all integers <span class="texhtml"><i>n</i> ≥ 0</span>. We also note that the same shifted generating function technique applied to the second-order <a href="/wiki/Recurrence_relation" title="Recurrence relation">recurrence</a> for the <a href="/wiki/Fibonacci_numbers" class="mw-redirect" title="Fibonacci numbers">Fibonacci numbers</a> is the prototypical example of using generating functions to solve recurrence relations in one variable already covered, or at least hinted at, in the subsection on <a href="/wiki/Rational_functions" class="mw-redirect" title="Rational functions">rational functions</a> given above. </p> <div class="mw-heading mw-heading3"><h3 id="Convolution_(Cauchy_products)"><span id="Convolution_.28Cauchy_products.29"></span>Convolution (Cauchy products)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=45" title="Edit section: Convolution (Cauchy products)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A discrete <i>convolution</i> of the terms in two formal power series turns a product of generating functions into a generating function enumerating a convolved sum of the original sequence terms (see <a href="/wiki/Cauchy_product" title="Cauchy product">Cauchy product</a>). </p> <ol><li>Consider <span class="texhtml"><i>A</i>(<i>z</i>)</span> and <span class="texhtml"><i>B</i>(<i>z</i>)</span> are ordinary generating functions. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(z)=A(z)B(z)\Leftrightarrow [z^{n}]C(z)=\sum _{k=0}^{n}{a_{k}b_{n-k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mo stretchy="false">[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(z)=A(z)B(z)\Leftrightarrow [z^{n}]C(z)=\sum _{k=0}^{n}{a_{k}b_{n-k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7d329b095b1b3242dd36187b63aa17c64ff3fd4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.455ex; height:7.009ex;" alt="{\displaystyle C(z)=A(z)B(z)\Leftrightarrow [z^{n}]C(z)=\sum _{k=0}^{n}{a_{k}b_{n-k}}}"></span></li> <li>Consider <span class="texhtml"><i>A</i>(<i>z</i>)</span> and <span class="texhtml"><i>B</i>(<i>z</i>)</span> are exponential generating functions. <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(z)=A(z)B(z)\Leftrightarrow \left[{\frac {z^{n}}{n!}}\right]C(z)=\sum _{k=0}^{n}{\binom {n}{k}}a_{k}b_{n-k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(z)=A(z)B(z)\Leftrightarrow \left[{\frac {z^{n}}{n!}}\right]C(z)=\sum _{k=0}^{n}{\binom {n}{k}}a_{k}b_{n-k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/195a38f6bf38db98bf4d6debefb39b3861962dca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:49.655ex; height:7.009ex;" alt="{\displaystyle C(z)=A(z)B(z)\Leftrightarrow \left[{\frac {z^{n}}{n!}}\right]C(z)=\sum _{k=0}^{n}{\binom {n}{k}}a_{k}b_{n-k}}"></span></li> <li>Consider the triply convolved sequence resulting from the product of three ordinary generating functions <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(z)=F(z)G(z)H(z)\Leftrightarrow [z^{n}]C(z)=\sum _{j+k+l=n}f_{j}g_{k}h_{l}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>H</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mo stretchy="false">[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>+</mo> <mi>k</mi> <mo>+</mo> <mi>l</mi> <mo>=</mo> <mi>n</mi> </mrow> </munder> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(z)=F(z)G(z)H(z)\Leftrightarrow [z^{n}]C(z)=\sum _{j+k+l=n}f_{j}g_{k}h_{l}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2337ff3c9bf72dfccae661534dabeadbf2e44288" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:50.606ex; height:5.843ex;" alt="{\displaystyle C(z)=F(z)G(z)H(z)\Leftrightarrow [z^{n}]C(z)=\sum _{j+k+l=n}f_{j}g_{k}h_{l}}"></span></li> <li>Consider the <span class="texhtml mvar" style="font-style:italic;">m</span>-fold convolution of a sequence with itself for some positive integer <span class="texhtml"><i>m</i> ≥ 1</span> (see the example below for an application) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(z)=G(z)^{m}\Leftrightarrow [z^{n}]C(z)=\sum _{k_{1}+k_{2}+\cdots +k_{m}=n}g_{k_{1}}g_{k_{2}}\cdots g_{k_{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mo stretchy="false">[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mi>n</mi> </mrow> </munder> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(z)=G(z)^{m}\Leftrightarrow [z^{n}]C(z)=\sum _{k_{1}+k_{2}+\cdots +k_{m}=n}g_{k_{1}}g_{k_{2}}\cdots g_{k_{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec6e5d381123d79161a2e3e189543de7278a1cb9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:56.211ex; height:5.843ex;" alt="{\displaystyle C(z)=G(z)^{m}\Leftrightarrow [z^{n}]C(z)=\sum _{k_{1}+k_{2}+\cdots +k_{m}=n}g_{k_{1}}g_{k_{2}}\cdots g_{k_{m}}}"></span></li></ol> <p>Multiplication of generating functions, or convolution of their underlying sequences, can correspond to a notion of independent events in certain counting and probability scenarios. For example, if we adopt the notational convention that the <a href="/wiki/Probability_generating_function" class="mw-redirect" title="Probability generating function">probability generating function</a>, or <i>pgf</i>, of a random variable <span class="texhtml mvar" style="font-style:italic;">Z</span> is denoted by <span class="texhtml"><i>G<sub>Z</sub></i>(<i>z</i>)</span>, then we can show that for any two random variables <sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{X+Y}(z)=G_{X}(z)G_{Y}(z)\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>+</mo> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{X+Y}(z)=G_{X}(z)G_{Y}(z)\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb0b91af38c3ff8fac96d8ca01b94e248c683134" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.588ex; height:2.843ex;" alt="{\displaystyle G_{X+Y}(z)=G_{X}(z)G_{Y}(z)\,,}"></span> if <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">Y</span> are independent. Similarly, the number of ways to pay <span class="texhtml"><i>n</i> ≥ 0</span> cents in coin denominations of values in the set {1,&#160;5,&#160;10,&#160;25,&#160;50} (i.e., in pennies, nickels, dimes, quarters, and half dollars, respectively) is generated by the product <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(z)={\frac {1}{1-z}}{\frac {1}{1-z^{5}}}{\frac {1}{1-z^{10}}}{\frac {1}{1-z^{25}}}{\frac {1}{1-z^{50}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>25</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>50</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(z)={\frac {1}{1-z}}{\frac {1}{1-z^{5}}}{\frac {1}{1-z^{10}}}{\frac {1}{1-z^{25}}}{\frac {1}{1-z^{50}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60b9641007a7924a7dd31be40789d7522448ba60" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:44.736ex; height:5.676ex;" alt="{\displaystyle C(z)={\frac {1}{1-z}}{\frac {1}{1-z^{5}}}{\frac {1}{1-z^{10}}}{\frac {1}{1-z^{25}}}{\frac {1}{1-z^{50}}},}"></span> and moreover, if we allow the <span class="texhtml mvar" style="font-style:italic;">n</span> cents to be paid in coins of any positive integer denomination, we arrive at the generating for the number of such combinations of change being generated by the <a href="/wiki/Partition_function_(mathematics)" title="Partition function (mathematics)">partition function</a> generating function expanded by the infinite <a href="/wiki/Q-Pochhammer_symbol" title="Q-Pochhammer symbol"><span class="texhtml mvar" style="font-style:italic;">q</span>-Pochhammer symbol</a> product of <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod _{n=1}^{\infty }\left(1-z^{n}\right)^{-1}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prod _{n=1}^{\infty }\left(1-z^{n}\right)^{-1}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d37b3fcdbccab3a7cbab6f2589ea9245d817ac44" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.962ex; height:6.843ex;" alt="{\displaystyle \prod _{n=1}^{\infty }\left(1-z^{n}\right)^{-1}\,.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Example:_Generating_function_for_the_Catalan_numbers">Example: Generating function for the Catalan numbers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=46" title="Edit section: Example: Generating function for the Catalan numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An example where convolutions of generating functions are useful allows us to solve for a specific closed-form function representing the ordinary generating function for the <a href="/wiki/Catalan_numbers" class="mw-redirect" title="Catalan numbers">Catalan numbers</a>, <span class="texhtml"><i>C<sub>n</sub></i></span>. In particular, this sequence has the combinatorial interpretation as being the number of ways to insert parentheses into the product <span class="texhtml"><i>x</i><sub>0</sub> · <i>x</i><sub>1</sub> ·⋯· <i>x<sub>n</sub></i></span> so that the order of multiplication is completely specified. For example, <span class="texhtml"><i>C</i><sub>2</sub> = 2</span> which corresponds to the two expressions <span class="texhtml"><i>x</i><sub>0</sub> · (<i>x</i><sub>1</sub> · <i>x</i><sub>2</sub>)</span> and <span class="texhtml">(<i>x</i><sub>0</sub> · <i>x</i><sub>1</sub>) · <i>x</i><sub>2</sub></span>. It follows that the sequence satisfies a recurrence relation given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{n}=\sum _{k=0}^{n-1}C_{k}C_{n-1-k}+\delta _{n,0}=C_{0}C_{n-1}+C_{1}C_{n-2}+\cdots +C_{n-1}C_{0}+\delta _{n,0}\,,\quad n\geq 0\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="1em" /> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{n}=\sum _{k=0}^{n-1}C_{k}C_{n-1-k}+\delta _{n,0}=C_{0}C_{n-1}+C_{1}C_{n-2}+\cdots +C_{n-1}C_{0}+\delta _{n,0}\,,\quad n\geq 0\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07ebd1917fc503cde4a8353b6546c571bcb87592" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:80.195ex; height:7.509ex;" alt="{\displaystyle C_{n}=\sum _{k=0}^{n-1}C_{k}C_{n-1-k}+\delta _{n,0}=C_{0}C_{n-1}+C_{1}C_{n-2}+\cdots +C_{n-1}C_{0}+\delta _{n,0}\,,\quad n\geq 0\,,}"></span> and so has a corresponding convolved generating function, <span class="texhtml"><i>C</i>(<i>z</i>)</span>, satisfying <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(z)=z\cdot C(z)^{2}+1\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(z)=z\cdot C(z)^{2}+1\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11f5500143b9b0bde992929153db301d34734858" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.284ex; height:3.176ex;" alt="{\displaystyle C(z)=z\cdot C(z)^{2}+1\,.}"></span> </p><p>Since <span class="texhtml"><i>C</i>(0) = 1 ≠ ∞</span>, we then arrive at a formula for this generating function given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(z)={\frac {1-{\sqrt {1-4z}}}{2z}}=\sum _{n=0}^{\infty }{\frac {1}{n+1}}{\binom {2n}{n}}z^{n}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mi>z</mi> </msqrt> </mrow> </mrow> <mrow> <mn>2</mn> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>2</mn> <mi>n</mi> </mrow> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(z)={\frac {1-{\sqrt {1-4z}}}{2z}}=\sum _{n=0}^{\infty }{\frac {1}{n+1}}{\binom {2n}{n}}z^{n}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1ffe3100b7e45e542375517bf7a25eea6df917a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:43.186ex; height:7.009ex;" alt="{\displaystyle C(z)={\frac {1-{\sqrt {1-4z}}}{2z}}=\sum _{n=0}^{\infty }{\frac {1}{n+1}}{\binom {2n}{n}}z^{n}\,.}"></span> </p><p>Note that the first equation implicitly defining <span class="texhtml"><i>C</i>(<i>z</i>)</span> above implies that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C(z)={\frac {1}{1-z\cdot C(z)}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>C</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C(z)={\frac {1}{1-z\cdot C(z)}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d7b4bcd26b23d204340ab3232f0e4f5d002b221" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.066ex; height:6.009ex;" alt="{\displaystyle C(z)={\frac {1}{1-z\cdot C(z)}}\,,}"></span> which then leads to another "simple" (of form) continued fraction expansion of this generating function. </p> <div class="mw-heading mw-heading4"><h4 id="Example:_Spanning_trees_of_fans_and_convolutions_of_convolutions">Example: Spanning trees of fans and convolutions of convolutions</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=47" title="Edit section: Example: Spanning trees of fans and convolutions of convolutions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <i>fan of order <span class="texhtml mvar" style="font-style:italic;">n</span></i> is defined to be a graph on the vertices <span class="texhtml">{0, 1, ..., <i>n</i>}</span> with <span class="texhtml">2<i>n</i> − 1</span> edges connected according to the following rules: Vertex 0 is connected by a single edge to each of the other <span class="texhtml mvar" style="font-style:italic;">n</span> vertices, and vertex <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> is connected by a single edge to the next vertex <span class="texhtml"><i>k</i> + 1</span> for all <span class="texhtml">1 ≤ <i>k</i> &lt; <i>n</i></span>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> There is one fan of order one, three fans of order two, eight fans of order three, and so on. A <a href="/wiki/Spanning_tree" title="Spanning tree">spanning tree</a> is a subgraph of a graph which contains all of the original vertices and which contains enough edges to make this subgraph connected, but not so many edges that there is a cycle in the subgraph. We ask how many spanning trees <span class="texhtml"><i>f<sub>n</sub></i></span> of a fan of order <span class="texhtml mvar" style="font-style:italic;">n</span> are possible for each <span class="texhtml"><i>n</i> ≥ 1</span>. </p><p>As an observation, we may approach the question by counting the number of ways to join adjacent sets of vertices. For example, when <span class="texhtml"><i>n</i> = 4</span>, we have that <span class="texhtml"><i>f</i><sub>4</sub> = 4 + 3 · 1 + 2 · 2 + 1 · 3 + 2 · 1 · 1 + 1 · 2 · 1 + 1 · 1 · 2 + 1 · 1 · 1 · 1 = 21</span>, which is a sum over the <span class="texhtml mvar" style="font-style:italic;">m</span>-fold convolutions of the sequence <span class="texhtml"><i>g<sub>n</sub></i> = <i>n</i> = [<i>z<sup>n</sup></i>] <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>z</i></span><span class="sr-only">/</span><span class="den">(1 − <i>z</i>)<sup>2</sup></span></span>&#8288;</span></span> for <span class="texhtml"><i>m</i> ≔ 1, 2, 3, 4</span>. More generally, we may write a formula for this sequence as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{n}=\sum _{m&gt;0}\sum _{\scriptstyle k_{1}+k_{2}+\cdots +k_{m}=n \atop \scriptstyle k_{1},k_{2},\ldots ,k_{m}&gt;0}g_{k_{1}}g_{k_{2}}\cdots g_{k_{m}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&gt;</mo> <mn>0</mn> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mstyle displaystyle="false" scriptlevel="1"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mi>n</mi> </mstyle> <mstyle displaystyle="false" scriptlevel="1"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mfrac> </mrow> </munder> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{n}=\sum _{m&gt;0}\sum _{\scriptstyle k_{1}+k_{2}+\cdots +k_{m}=n \atop \scriptstyle k_{1},k_{2},\ldots ,k_{m}&gt;0}g_{k_{1}}g_{k_{2}}\cdots g_{k_{m}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de20fae658d8e3fc868770290d81ce4a726fb01f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:38.049ex; height:7.843ex;" alt="{\displaystyle f_{n}=\sum _{m&gt;0}\sum _{\scriptstyle k_{1}+k_{2}+\cdots +k_{m}=n \atop \scriptstyle k_{1},k_{2},\ldots ,k_{m}&gt;0}g_{k_{1}}g_{k_{2}}\cdots g_{k_{m}}\,,}"></span> from which we see that the ordinary generating function for this sequence is given by the next sum of convolutions as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(z)=G(z)+G(z)^{2}+G(z)^{3}+\cdots ={\frac {G(z)}{1-G(z)}}={\frac {z}{(1-z)^{2}-z}}={\frac {z}{1-3z+z^{2}}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>z</mi> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(z)=G(z)+G(z)^{2}+G(z)^{3}+\cdots ={\frac {G(z)}{1-G(z)}}={\frac {z}{(1-z)^{2}-z}}={\frac {z}{1-3z+z^{2}}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc2dac0dc0e7513c24beed2dfe58457edb502764" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:79.948ex; height:6.509ex;" alt="{\displaystyle F(z)=G(z)+G(z)^{2}+G(z)^{3}+\cdots ={\frac {G(z)}{1-G(z)}}={\frac {z}{(1-z)^{2}-z}}={\frac {z}{1-3z+z^{2}}}\,,}"></span> from which we are able to extract an exact formula for the sequence by taking the <a href="/wiki/Partial_fraction_expansion" class="mw-redirect" title="Partial fraction expansion">partial fraction expansion</a> of the last generating function. </p> <div class="mw-heading mw-heading3"><h3 id="Implicit_generating_functions_and_the_Lagrange_inversion_formula">Implicit generating functions and the Lagrange inversion formula</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=48" title="Edit section: Implicit generating functions and the Lagrange inversion formula"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Expand_section plainlinks metadata ambox mbox-small-left ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><span typeof="mw:File"><a href="/wiki/File:Wiki_letter_w_cropped.svg" class="mw-file-description"><img alt="[icon]" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/20px-Wiki_letter_w_cropped.svg.png" decoding="async" width="20" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/30px-Wiki_letter_w_cropped.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/40px-Wiki_letter_w_cropped.svg.png 2x" data-file-width="44" data-file-height="31" /></a></span></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs expansion</b>&#32;with: This section needs to be added to the list of techniques with generating functions. You can help by <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Generating_function&amp;action=edit&amp;section=">adding to it</a>. <span class="date-container"><i>(<span class="date">April 2017</span>)</i></span></div></td></tr></tbody></table> <p>One often encounters generating functions specified by a functional equation, instead of an explicit specification. For example, the generating function <span class="texhtml"><i>T(z)</i></span> for the number of binary trees on <span class="texhtml"><i>n</i></span> nodes (leaves included) satisfies </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(z)=z\left(1+T(z)^{2}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(z)=z\left(1+T(z)^{2}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/674bd100e61359afedcb806c42a6d4b2f3746ad1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.828ex; height:3.343ex;" alt="{\displaystyle T(z)=z\left(1+T(z)^{2}\right)}"></span> </p><p>The <a href="/wiki/Lagrange_inversion_theorem" title="Lagrange inversion theorem">Lagrange inversion theorem</a> is a tool used to explicitly evaluate solutions to such equations. </p> <style data-mw-deduplicate="TemplateStyles:r1110004140">.mw-parser-output .math_theorem{margin:1em 2em;padding:0.5em 1em 0.4em;border:1px solid #aaa;overflow:hidden}@media(max-width:500px){.mw-parser-output .math_theorem{margin:1em 0em;padding:0.5em 0.5em 0.4em}}</style><div class="math_theorem" style=""> <p><strong class="theorem-name">Lagrange inversion formula</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \phi (z)\in C[[z]]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo stretchy="false">[</mo> <mo stretchy="false">[</mo> <mi>z</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \phi (z)\in C[[z]]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d15200790093e49d313e8d2b17f3c53f848e6939" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.565ex; height:2.843ex;" alt="{\textstyle \phi (z)\in C[[z]]}"></span> be a formal power series with a non-zero constant term. Then the functional equation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T(z)=z\phi (T(z))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>z</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T(z)=z\phi (T(z))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9aede79fda056ae25979c2aec9d207760a379fd2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.449ex; height:2.843ex;" alt="{\displaystyle T(z)=z\phi (T(z))}"></span> admits a unique solution in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle T(z)\in C[[z]]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>C</mi> <mo stretchy="false">[</mo> <mo stretchy="false">[</mo> <mi>z</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle T(z)\in C[[z]]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3dba50d4cc7281989b476fcb32d0a0c51552d8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.816ex; height:2.843ex;" alt="{\textstyle T(z)\in C[[z]]}"></span>, which satisfies </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [z^{n}]T(z)=[z^{n-1}]{\frac {1}{n}}(\phi (z))^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [z^{n}]T(z)=[z^{n-1}]{\frac {1}{n}}(\phi (z))^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b79307844cb70ecaa92230ee6b4510ab2887fbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.479ex; height:5.176ex;" alt="{\displaystyle [z^{n}]T(z)=[z^{n-1}]{\frac {1}{n}}(\phi (z))^{n}}"></span> </p><p>where the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [z^{n}]F(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [z^{n}]F(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53406a968e38369b3deeb6092418b5e0c83d942" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.241ex; height:2.843ex;" alt="{\displaystyle [z^{n}]F(z)}"></span> returns the coefficient of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b1a8cdd7ee39054e510deeb38ee551cc7616ae1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.309ex; height:2.343ex;" alt="{\displaystyle z^{n}}"></span> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cf298d777120df944559c5e985b88a824debb80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.638ex; height:2.843ex;" alt="{\displaystyle F(z)}"></span>. </p> </div> <p>Applying the above theorem to our functional equation yields (with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \phi (z)=1+z^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \phi (z)=1+z^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01b92c2d6da6f1064598a44b3cb7203b1aaaaecc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.529ex; height:3.009ex;" alt="{\textstyle \phi (z)=1+z^{2}}"></span>): </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [z^{n}]T(z)=[z^{n-1}]{\frac {1}{n}}(1+z^{2})^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [z^{n}]T(z)=[z^{n-1}]{\frac {1}{n}}(1+z^{2})^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb02695add39b5cad4f9edbf5c904605c27d21e0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.344ex; height:5.176ex;" alt="{\displaystyle [z^{n}]T(z)=[z^{n-1}]{\frac {1}{n}}(1+z^{2})^{n}}"></span> </p><p>Via the binomial theorem expansion, for even <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, the formula returns <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>. This is expected as one can prove that the number of leaves of a binary tree are one more than the number of its internal nodes, so the total sum should always be an odd number. For odd <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, however, we get </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [z^{n-1}]{\frac {1}{n}}(1+z^{2})^{n}={\frac {1}{n}}{\dbinom {n}{\frac {n+1}{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [z^{n-1}]{\frac {1}{n}}(1+z^{2})^{n}={\frac {1}{n}}{\dbinom {n}{\frac {n+1}{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7692ed9c2cad1cc3fa9cecacf4c68f4207cc72a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:29.782ex; height:6.509ex;" alt="{\displaystyle [z^{n-1}]{\frac {1}{n}}(1+z^{2})^{n}={\frac {1}{n}}{\dbinom {n}{\frac {n+1}{2}}}}"></span> </p><p>The expression becomes much neater if we let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> be the number of internal nodes: Now the expression just becomes the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span><sup>th</sup> Catalan number. </p> <div class="mw-heading mw-heading3"><h3 id="Introducing_a_free_parameter_(snake_oil_method)"><span id="Introducing_a_free_parameter_.28snake_oil_method.29"></span>Introducing a free parameter (snake oil method)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=49" title="Edit section: Introducing a free parameter (snake oil method)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sometimes the sum <span class="texhtml"><i>s<sub>n</sub></i></span> is complicated, and it is not always easy to evaluate. The "Free Parameter" method is another method (called "snake oil" by H. Wilf) to evaluate these sums. </p><p>Both methods discussed so far have <span class="texhtml mvar" style="font-style:italic;">n</span> as limit in the summation. When n does not appear explicitly in the summation, we may consider <span class="texhtml mvar" style="font-style:italic;">n</span> as a "free" parameter and treat <span class="texhtml"><i>s<sub>n</sub></i></span> as a coefficient of <span class="texhtml"><i>F</i>(<i>z</i>) = Σ <i>s<sub>n</sub></i> <i>z<sup>n</sup></i></span>, change the order of the summations on <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml mvar" style="font-style:italic;">k</span>, and try to compute the inner sum. </p><p>For example, if we want to compute <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{n}=\sum _{k=0}^{\infty }{{\binom {n+k}{m+2k}}{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}}\,,\quad m,n\in \mathbb {N} _{0}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="1em" /> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{n}=\sum _{k=0}^{\infty }{{\binom {n+k}{m+2k}}{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}}\,,\quad m,n\in \mathbb {N} _{0}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a785034ec46d3dd6276ea4191fd96ff6fb6451d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:47.144ex; height:7.176ex;" alt="{\displaystyle s_{n}=\sum _{k=0}^{\infty }{{\binom {n+k}{m+2k}}{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}}\,,\quad m,n\in \mathbb {N} _{0}\,,}"></span> we can treat <span class="texhtml mvar" style="font-style:italic;">n</span> as a "free" parameter, and set <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(z)=\sum _{n=0}^{\infty }{\left(\sum _{k=0}^{\infty }{{\binom {n+k}{m+2k}}{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}}\right)}z^{n}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(z)=\sum _{n=0}^{\infty }{\left(\sum _{k=0}^{\infty }{{\binom {n+k}{m+2k}}{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}}\right)}z^{n}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb24c941958d51db6c89903c32602e20a7a5aac5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:45.42ex; height:7.509ex;" alt="{\displaystyle F(z)=\sum _{n=0}^{\infty }{\left(\sum _{k=0}^{\infty }{{\binom {n+k}{m+2k}}{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}}\right)}z^{n}\,.}"></span> </p><p>Interchanging summation ("snake oil") gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(z)=\sum _{k=0}^{\infty }{{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}z^{-k}}\sum _{n=0}^{\infty }{{\binom {n+k}{m+2k}}z^{n+k}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </msup> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </msup> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(z)=\sum _{k=0}^{\infty }{{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}z^{-k}}\sum _{n=0}^{\infty }{{\binom {n+k}{m+2k}}z^{n+k}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43675a178e899b85c23f21fadc1ec2621b868353" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:47.719ex; height:7.176ex;" alt="{\displaystyle F(z)=\sum _{k=0}^{\infty }{{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}z^{-k}}\sum _{n=0}^{\infty }{{\binom {n+k}{m+2k}}z^{n+k}}\,.}"></span> </p><p>Now the inner sum is <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>z</i><sup><i>m</i> + 2<i>k</i></sup></span><span class="sr-only">/</span><span class="den">(1 − <i>z</i>)<sup><i>m</i> + 2<i>k</i> + 1</sup></span></span>&#8288;</span></span>. Thus <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}F(z)&amp;={\frac {z^{m}}{(1-z)^{m+1}}}\sum _{k=0}^{\infty }{{\frac {1}{k+1}}{\binom {2k}{k}}\left({\frac {-z}{(1-z)^{2}}}\right)^{k}}\\[4px]&amp;={\frac {z^{m}}{(1-z)^{m+1}}}\sum _{k=0}^{\infty }{C_{k}\left({\frac {-z}{(1-z)^{2}}}\right)^{k}}&amp;{\text{where }}C_{k}=k{\text{th Catalan number}}\\[4px]&amp;={\frac {z^{m}}{(1-z)^{m+1}}}{\frac {1-{\sqrt {1+{\frac {4z}{(1-z)^{2}}}}}}{\frac {-2z}{(1-z)^{2}}}}\\[4px]&amp;={\frac {-z^{m-1}}{2(1-z)^{m-1}}}\left(1-{\frac {1+z}{1-z}}\right)\\[4px]&amp;={\frac {z^{m}}{(1-z)^{m}}}=z{\frac {z^{m-1}}{(1-z)^{m}}}\,.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>where&#xA0;</mtext> </mrow> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>th Catalan number</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mi>z</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>z</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>z</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}F(z)&amp;={\frac {z^{m}}{(1-z)^{m+1}}}\sum _{k=0}^{\infty }{{\frac {1}{k+1}}{\binom {2k}{k}}\left({\frac {-z}{(1-z)^{2}}}\right)^{k}}\\[4px]&amp;={\frac {z^{m}}{(1-z)^{m+1}}}\sum _{k=0}^{\infty }{C_{k}\left({\frac {-z}{(1-z)^{2}}}\right)^{k}}&amp;{\text{where }}C_{k}=k{\text{th Catalan number}}\\[4px]&amp;={\frac {z^{m}}{(1-z)^{m+1}}}{\frac {1-{\sqrt {1+{\frac {4z}{(1-z)^{2}}}}}}{\frac {-2z}{(1-z)^{2}}}}\\[4px]&amp;={\frac {-z^{m-1}}{2(1-z)^{m-1}}}\left(1-{\frac {1+z}{1-z}}\right)\\[4px]&amp;={\frac {z^{m}}{(1-z)^{m}}}=z{\frac {z^{m-1}}{(1-z)^{m}}}\,.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5255fe5b779e3031fbb9d87bccdeef7c7b2205f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -20.849ex; margin-bottom: -0.323ex; width:86.633ex; height:43.509ex;" alt="{\displaystyle {\begin{aligned}F(z)&amp;={\frac {z^{m}}{(1-z)^{m+1}}}\sum _{k=0}^{\infty }{{\frac {1}{k+1}}{\binom {2k}{k}}\left({\frac {-z}{(1-z)^{2}}}\right)^{k}}\\[4px]&amp;={\frac {z^{m}}{(1-z)^{m+1}}}\sum _{k=0}^{\infty }{C_{k}\left({\frac {-z}{(1-z)^{2}}}\right)^{k}}&amp;{\text{where }}C_{k}=k{\text{th Catalan number}}\\[4px]&amp;={\frac {z^{m}}{(1-z)^{m+1}}}{\frac {1-{\sqrt {1+{\frac {4z}{(1-z)^{2}}}}}}{\frac {-2z}{(1-z)^{2}}}}\\[4px]&amp;={\frac {-z^{m-1}}{2(1-z)^{m-1}}}\left(1-{\frac {1+z}{1-z}}\right)\\[4px]&amp;={\frac {z^{m}}{(1-z)^{m}}}=z{\frac {z^{m-1}}{(1-z)^{m}}}\,.\end{aligned}}}"></span> </p><p>Then we obtain <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{n}={\begin{cases}\displaystyle {\binom {n-1}{m-1}}&amp;{\text{for }}m\geq 1\,,\\{}[n=0]&amp;{\text{for }}m=0\,.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <mi>m</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> <mspace width="thinmathspace" /> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo stretchy="false">[</mo> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">]</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{n}={\begin{cases}\displaystyle {\binom {n-1}{m-1}}&amp;{\text{for }}m\geq 1\,,\\{}[n=0]&amp;{\text{for }}m=0\,.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4243c4a2ad451f0ca9dfa0af5c0b525e602cd979" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:30.714ex; height:8.843ex;" alt="{\displaystyle s_{n}={\begin{cases}\displaystyle {\binom {n-1}{m-1}}&amp;{\text{for }}m\geq 1\,,\\{}[n=0]&amp;{\text{for }}m=0\,.\end{cases}}}"></span> </p><p>It is instructive to use the same method again for the sum, but this time take <span class="texhtml mvar" style="font-style:italic;">m</span> as the free parameter instead of <span class="texhtml mvar" style="font-style:italic;">n</span>. We thus set <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(z)=\sum _{m=0}^{\infty }\left(\sum _{k=0}^{\infty }{\binom {n+k}{m+2k}}{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}\right)z^{m}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(z)=\sum _{m=0}^{\infty }\left(\sum _{k=0}^{\infty }{\binom {n+k}{m+2k}}{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}\right)z^{m}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6b245a51c698a280fcb5580d023e938028fca69" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:46.538ex; height:7.509ex;" alt="{\displaystyle G(z)=\sum _{m=0}^{\infty }\left(\sum _{k=0}^{\infty }{\binom {n+k}{m+2k}}{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}\right)z^{m}\,.}"></span> </p><p>Interchanging summation ("snake oil") gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(z)=\sum _{k=0}^{\infty }{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}z^{-2k}\sum _{m=0}^{\infty }{\binom {n+k}{m+2k}}z^{m+2k}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>k</mi> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(z)=\sum _{k=0}^{\infty }{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}z^{-2k}\sum _{m=0}^{\infty }{\binom {n+k}{m+2k}}z^{m+2k}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32c5f29d302332b35c5440ee897e3bcf3a082dcb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:50.093ex; height:7.176ex;" alt="{\displaystyle G(z)=\sum _{k=0}^{\infty }{\binom {2k}{k}}{\frac {(-1)^{k}}{k+1}}z^{-2k}\sum _{m=0}^{\infty }{\binom {n+k}{m+2k}}z^{m+2k}\,.}"></span> </p><p>Now the inner sum is <span class="texhtml">(1 + <i>z</i>)<sup><i>n</i> + <i>k</i></sup></span>. Thus <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}G(z)&amp;=(1+z)^{n}\sum _{k=0}^{\infty }{\frac {1}{k+1}}{\binom {2k}{k}}\left({\frac {-(1+z)}{z^{2}}}\right)^{k}\\[4px]&amp;=(1+z)^{n}\sum _{k=0}^{\infty }C_{k}\,\left({\frac {-(1+z)}{z^{2}}}\right)^{k}&amp;{\text{where }}C_{k}=k{\text{th Catalan number}}\\[4px]&amp;=(1+z)^{n}\,{\frac {1-{\sqrt {1+{\frac {4(1+z)}{z^{2}}}}}}{\frac {-2(1+z)}{z^{2}}}}\\[4px]&amp;=(1+z)^{n}\,{\frac {z^{2}-z{\sqrt {z^{2}+4+4z}}}{-2(1+z)}}\\[4px]&amp;=(1+z)^{n}\,{\frac {z^{2}-z(z+2)}{-2(1+z)}}\\[4px]&amp;=(1+z)^{n}\,{\frac {-2z}{-2(1+z)}}=z(1+z)^{n-1}\,.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>2</mn> <mi>k</mi> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>where&#xA0;</mtext> </mrow> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>th Catalan number</mtext> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>4</mn> <mo>+</mo> <mn>4</mn> <mi>z</mi> </msqrt> </mrow> </mrow> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>z</mi> </mrow> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>z</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}G(z)&amp;=(1+z)^{n}\sum _{k=0}^{\infty }{\frac {1}{k+1}}{\binom {2k}{k}}\left({\frac {-(1+z)}{z^{2}}}\right)^{k}\\[4px]&amp;=(1+z)^{n}\sum _{k=0}^{\infty }C_{k}\,\left({\frac {-(1+z)}{z^{2}}}\right)^{k}&amp;{\text{where }}C_{k}=k{\text{th Catalan number}}\\[4px]&amp;=(1+z)^{n}\,{\frac {1-{\sqrt {1+{\frac {4(1+z)}{z^{2}}}}}}{\frac {-2(1+z)}{z^{2}}}}\\[4px]&amp;=(1+z)^{n}\,{\frac {z^{2}-z{\sqrt {z^{2}+4+4z}}}{-2(1+z)}}\\[4px]&amp;=(1+z)^{n}\,{\frac {z^{2}-z(z+2)}{-2(1+z)}}\\[4px]&amp;=(1+z)^{n}\,{\frac {-2z}{-2(1+z)}}=z(1+z)^{n-1}\,.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffcefeaec5028b5aa43a21eb6ea7efe06a1d0793" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -25.171ex; width:84.08ex; height:51.509ex;" alt="{\displaystyle {\begin{aligned}G(z)&amp;=(1+z)^{n}\sum _{k=0}^{\infty }{\frac {1}{k+1}}{\binom {2k}{k}}\left({\frac {-(1+z)}{z^{2}}}\right)^{k}\\[4px]&amp;=(1+z)^{n}\sum _{k=0}^{\infty }C_{k}\,\left({\frac {-(1+z)}{z^{2}}}\right)^{k}&amp;{\text{where }}C_{k}=k{\text{th Catalan number}}\\[4px]&amp;=(1+z)^{n}\,{\frac {1-{\sqrt {1+{\frac {4(1+z)}{z^{2}}}}}}{\frac {-2(1+z)}{z^{2}}}}\\[4px]&amp;=(1+z)^{n}\,{\frac {z^{2}-z{\sqrt {z^{2}+4+4z}}}{-2(1+z)}}\\[4px]&amp;=(1+z)^{n}\,{\frac {z^{2}-z(z+2)}{-2(1+z)}}\\[4px]&amp;=(1+z)^{n}\,{\frac {-2z}{-2(1+z)}}=z(1+z)^{n-1}\,.\end{aligned}}}"></span> </p><p>Thus we obtain <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{n}=\left[z^{m}\right]z(1+z)^{n-1}=\left[z^{m-1}\right](1+z)^{n-1}={\binom {n-1}{m-1}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>]</mo> </mrow> <mi>z</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow> <mo>[</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{n}=\left[z^{m}\right]z(1+z)^{n-1}=\left[z^{m-1}\right](1+z)^{n-1}={\binom {n-1}{m-1}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9929620932cfa7c37627fc88e25a9335fc615384" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:55.268ex; height:6.176ex;" alt="{\displaystyle s_{n}=\left[z^{m}\right]z(1+z)^{n-1}=\left[z^{m-1}\right](1+z)^{n-1}={\binom {n-1}{m-1}}\,,}"></span> for <span class="texhtml"><i>m</i> ≥ 1</span> as before. </p> <div class="mw-heading mw-heading3"><h3 id="Generating_functions_prove_congruences">Generating functions prove congruences</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=50" title="Edit section: Generating functions prove congruences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We say that two generating functions (power series) are congruent modulo <span class="texhtml mvar" style="font-style:italic;">m</span>, written <span class="texhtml"><i>A</i>(<i>z</i>) ≡ <i>B</i>(<i>z</i>) (mod <i>m</i>)</span> if their coefficients are congruent modulo <span class="texhtml mvar" style="font-style:italic;">m</span> for all <span class="texhtml"><i>n</i> ≥ 0</span>, i.e., <span class="texhtml"><i>a<sub>n</sub></i> ≡ <i>b<sub>n</sub></i> (mod <i>m</i>)</span> for all relevant cases of the integers <span class="texhtml mvar" style="font-style:italic;">n</span> (note that we need not assume that <span class="texhtml mvar" style="font-style:italic;">m</span> is an integer here—it may very well be polynomial-valued in some indeterminate <span class="texhtml mvar" style="font-style:italic;">x</span>, for example). If the "simpler" right-hand-side generating function, <span class="texhtml"><i>B</i>(<i>z</i>)</span>, is a rational function of <span class="texhtml mvar" style="font-style:italic;">z</span>, then the form of this sequence suggests that the sequence is <a href="/wiki/Periodic_function" title="Periodic function">eventually periodic</a> modulo fixed particular cases of integer-valued <span class="texhtml"><i>m</i> ≥ 2</span>. For example, we can prove that the <a href="/wiki/Euler_numbers" title="Euler numbers">Euler numbers</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle E_{n}\rangle =\langle 1,1,5,61,1385,\ldots \rangle \longmapsto \langle 1,1,2,1,2,1,2,\ldots \rangle {\pmod {3}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>61</mn> <mo>,</mo> <mn>1385</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x27FC;<!-- ⟼ --></mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle E_{n}\rangle =\langle 1,1,5,61,1385,\ldots \rangle \longmapsto \langle 1,1,2,1,2,1,2,\ldots \rangle {\pmod {3}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47ac0a4ec94c44449104b175e5c6ab5f189b9eb9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:64.889ex; height:2.843ex;" alt="{\displaystyle \langle E_{n}\rangle =\langle 1,1,5,61,1385,\ldots \rangle \longmapsto \langle 1,1,2,1,2,1,2,\ldots \rangle {\pmod {3}}\,,}"></span> satisfy the following congruence modulo 3:<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }E_{n}z^{n}={\frac {1-z^{2}}{1+z^{2}}}{\pmod {3}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }E_{n}z^{n}={\frac {1-z^{2}}{1+z^{2}}}{\pmod {3}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c535a69fd4a3b15165ce910149b92e1e1f616918" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.947ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }E_{n}z^{n}={\frac {1-z^{2}}{1+z^{2}}}{\pmod {3}}\,.}"></span> </p><p>One useful method of obtaining congruences for sequences enumerated by special generating functions modulo any integers (i.e., not only prime powers <span class="texhtml"><i>p<sup>k</sup></i></span>) is given in the section on continued fraction representations of (even non-convergent) ordinary generating functions by <span class="texhtml mvar" style="font-style:italic;">J</span>-fractions above. We cite one particular result related to generating series expanded through a representation by continued fraction from Lando's <i>Lectures on Generating Functions</i> as follows: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Theorem: congruences for series generated by expansions of continued fractions</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Suppose that the generating function <span class="texhtml"><i>A</i>(<i>z</i>)</span> is represented by an infinite <a href="/wiki/Continued_fraction" title="Continued fraction">continued fraction</a> of the form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(z)={\cfrac {1}{1-c_{1}z-{\cfrac {p_{1}z^{2}}{1-c_{2}z-{\cfrac {p_{2}z^{2}}{1-c_{3}z-{\ddots }}}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22F1;<!-- ⋱ --></mo> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(z)={\cfrac {1}{1-c_{1}z-{\cfrac {p_{1}z^{2}}{1-c_{2}z-{\cfrac {p_{2}z^{2}}{1-c_{3}z-{\ddots }}}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6d94698de3ddf0b800d48caa487d29bb49789fb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.671ex; width:43.204ex; height:15.843ex;" alt="{\displaystyle A(z)={\cfrac {1}{1-c_{1}z-{\cfrac {p_{1}z^{2}}{1-c_{2}z-{\cfrac {p_{2}z^{2}}{1-c_{3}z-{\ddots }}}}}}}}"></span> and that <span class="texhtml"><i>A<sub>p</sub></i>(<i>z</i>)</span> denotes the <span class="texhtml mvar" style="font-style:italic;">p</span>th convergent to this continued fraction expansion defined such that <span class="texhtml"><i>a<sub>n</sub></i> = [<i>z<sup>n</sup></i>] <i>A<sub>p</sub></i>(<i>z</i>)</span> for all <span class="texhtml">0 ≤ <i>n</i> &lt; 2<i>p</i></span>. Then: </p> <ol><li>the function <span class="texhtml"><i>A<sub>p</sub></i>(<i>z</i>)</span> is rational for all <span class="texhtml"><i>p</i> ≥ 2</span> where we assume that one of divisibility criteria of <span class="texhtml"><i>p</i> | <i>p</i><sub>1</sub>, <i>p</i><sub>1</sub><i>p</i><sub>2</sub>, <i>p</i><sub>1</sub><i>p</i><sub>2</sub><i>p</i><sub>3</sub></span> is met, that is, <span class="texhtml"><i>p</i> | <i>p</i><sub>1</sub><i>p</i><sub>2</sub>⋯<i>p</i><sub><i>k</i></sub></span> for some <span class="texhtml"><i>k</i> ≥ 1</span>; and</li> <li>if the integer <span class="texhtml mvar" style="font-style:italic;">p</span> divides the product <span class="texhtml"><i>p</i><sub>1</sub><i>p</i><sub>2</sub>⋯<i>p</i><sub><i>k</i></sub></span>, then we have <span class="texhtml"><i>A</i>(<i>z</i>) ≡ <i>A<sub>k</sub></i>(<i>z</i>) (mod <i>p</i>)</span>.</li></ol> </div> <p>Generating functions also have other uses in proving congruences for their coefficients. We cite the next two specific examples deriving special case congruences for the <a href="/wiki/Stirling_numbers_of_the_first_kind" title="Stirling numbers of the first kind">Stirling numbers of the first kind</a> and for the <a href="/wiki/Partition_function_(number_theory)" title="Partition function (number theory)">partition function <span class="texhtml"><i>p</i>(<i>n</i>)</span></a> which show the versatility of generating functions in tackling problems involving <a href="/wiki/Integer_sequences" class="mw-redirect" title="Integer sequences">integer sequences</a>. </p> <div class="mw-heading mw-heading4"><h4 id="The_Stirling_numbers_modulo_small_integers">The Stirling numbers modulo small integers</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=51" title="Edit section: The Stirling numbers modulo small integers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Stirling_numbers_of_the_first_kind#Congruences" title="Stirling numbers of the first kind">main article</a> on the Stirling numbers generated by the finite products <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{n}(x):=\sum _{k=0}^{n}{\begin{bmatrix}n\\k\end{bmatrix}}x^{k}=x(x+1)(x+2)\cdots (x+n-1)\,,\quad n\geq 1\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="1em" /> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{n}(x):=\sum _{k=0}^{n}{\begin{bmatrix}n\\k\end{bmatrix}}x^{k}=x(x+1)(x+2)\cdots (x+n-1)\,,\quad n\geq 1\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d804f4f935ba11b67687566586927a8aa54e237e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:64.309ex; height:7.009ex;" alt="{\displaystyle S_{n}(x):=\sum _{k=0}^{n}{\begin{bmatrix}n\\k\end{bmatrix}}x^{k}=x(x+1)(x+2)\cdots (x+n-1)\,,\quad n\geq 1\,,}"></span> </p><p>provides an overview of the congruences for these numbers derived strictly from properties of their generating function as in Section 4.6 of Wilf's stock reference <i>Generatingfunctionology</i>. We repeat the basic argument and notice that when reduces modulo 2, these finite product generating functions each satisfy </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{n}(x)=[x(x+1)]\cdot [x(x+1)]\cdots =x^{\left\lceil {\frac {n}{2}}\right\rceil }(x+1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">[</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>&#x2308;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2309;</mo> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x230B;</mo> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{n}(x)=[x(x+1)]\cdot [x(x+1)]\cdots =x^{\left\lceil {\frac {n}{2}}\right\rceil }(x+1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e10bf6c4b4fe41e59977b00509e965a6c77688de" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:53.015ex; height:4.343ex;" alt="{\displaystyle S_{n}(x)=[x(x+1)]\cdot [x(x+1)]\cdots =x^{\left\lceil {\frac {n}{2}}\right\rceil }(x+1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }\,,}"></span> </p><p>which implies that the parity of these <a href="/wiki/Stirling_numbers" class="mw-redirect" title="Stirling numbers">Stirling numbers</a> matches that of the binomial coefficient </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}n\\k\end{bmatrix}}\equiv {\binom {\left\lfloor {\frac {n}{2}}\right\rfloor }{k-\left\lceil {\frac {n}{2}}\right\rceil }}{\pmod {2}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x230B;</mo> </mrow> <mrow> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>&#x2308;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2309;</mo> </mrow> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}n\\k\end{bmatrix}}\equiv {\binom {\left\lfloor {\frac {n}{2}}\right\rfloor }{k-\left\lceil {\frac {n}{2}}\right\rceil }}{\pmod {2}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/713807ebb71d50bc27f1143de1bd52f18bf19509" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:31.07ex; height:7.343ex;" alt="{\displaystyle {\begin{bmatrix}n\\k\end{bmatrix}}\equiv {\binom {\left\lfloor {\frac {n}{2}}\right\rfloor }{k-\left\lceil {\frac {n}{2}}\right\rceil }}{\pmod {2}}\,,}"></span> </p><p>and consequently shows that <span class="texhtml"><span style="font-size:150%;">[</span><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:center"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>k</i></sub></span></span><span style="font-size:150%;">]</span></span> is even whenever <span class="texhtml"><i>k</i> &lt; ⌊ <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>n</i></span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> ⌋</span>. </p><p>Similarly, we can reduce the right-hand-side products defining the Stirling number generating functions modulo 3 to obtain slightly more complicated expressions providing that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\begin{bmatrix}n\\m\end{bmatrix}}&amp;\equiv [x^{m}]\left(x^{\left\lceil {\frac {n}{3}}\right\rceil }(x+1)^{\left\lceil {\frac {n-1}{3}}\right\rceil }(x+2)^{\left\lfloor {\frac {n}{3}}\right\rfloor }\right)&amp;&amp;{\pmod {3}}\\&amp;\equiv \sum _{k=0}^{m}{\begin{pmatrix}\left\lceil {\frac {n-1}{3}}\right\rceil \\k\end{pmatrix}}{\begin{pmatrix}\left\lfloor {\frac {n}{3}}\right\rfloor \\m-k-\left\lceil {\frac {n}{3}}\right\rceil \end{pmatrix}}\times 2^{\left\lceil {\frac {n}{3}}\right\rceil +\left\lfloor {\frac {n}{3}}\right\rfloor -(m-k)}&amp;&amp;{\pmod {3}}\,.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>&#x2261;<!-- ≡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>&#x2308;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>3</mn> </mfrac> </mrow> <mo>&#x2309;</mo> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>&#x2308;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>&#x2309;</mo> </mrow> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>3</mn> </mfrac> </mrow> <mo>&#x230B;</mo> </mrow> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2261;<!-- ≡ --></mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow> <mo>&#x2308;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>&#x2309;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>3</mn> </mfrac> </mrow> <mo>&#x230B;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>&#x2308;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>3</mn> </mfrac> </mrow> <mo>&#x2309;</mo> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>&#x2308;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>3</mn> </mfrac> </mrow> <mo>&#x2309;</mo> </mrow> <mo>+</mo> <mrow> <mo>&#x230A;</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>3</mn> </mfrac> </mrow> <mo>&#x230B;</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mtd> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\begin{bmatrix}n\\m\end{bmatrix}}&amp;\equiv [x^{m}]\left(x^{\left\lceil {\frac {n}{3}}\right\rceil }(x+1)^{\left\lceil {\frac {n-1}{3}}\right\rceil }(x+2)^{\left\lfloor {\frac {n}{3}}\right\rfloor }\right)&amp;&amp;{\pmod {3}}\\&amp;\equiv \sum _{k=0}^{m}{\begin{pmatrix}\left\lceil {\frac {n-1}{3}}\right\rceil \\k\end{pmatrix}}{\begin{pmatrix}\left\lfloor {\frac {n}{3}}\right\rfloor \\m-k-\left\lceil {\frac {n}{3}}\right\rceil \end{pmatrix}}\times 2^{\left\lceil {\frac {n}{3}}\right\rceil +\left\lfloor {\frac {n}{3}}\right\rfloor -(m-k)}&amp;&amp;{\pmod {3}}\,.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/239af2feb0396383f4f62e5f616f97adfa2e53b3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:76.598ex; height:16.176ex;" alt="{\displaystyle {\begin{aligned}{\begin{bmatrix}n\\m\end{bmatrix}}&amp;\equiv [x^{m}]\left(x^{\left\lceil {\frac {n}{3}}\right\rceil }(x+1)^{\left\lceil {\frac {n-1}{3}}\right\rceil }(x+2)^{\left\lfloor {\frac {n}{3}}\right\rfloor }\right)&amp;&amp;{\pmod {3}}\\&amp;\equiv \sum _{k=0}^{m}{\begin{pmatrix}\left\lceil {\frac {n-1}{3}}\right\rceil \\k\end{pmatrix}}{\begin{pmatrix}\left\lfloor {\frac {n}{3}}\right\rfloor \\m-k-\left\lceil {\frac {n}{3}}\right\rceil \end{pmatrix}}\times 2^{\left\lceil {\frac {n}{3}}\right\rceil +\left\lfloor {\frac {n}{3}}\right\rfloor -(m-k)}&amp;&amp;{\pmod {3}}\,.\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Congruences_for_the_partition_function">Congruences for the partition function</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=52" title="Edit section: Congruences for the partition function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In this example, we pull in some of the machinery of infinite products whose power series expansions generate the expansions of many special functions and enumerate partition functions. In particular, we recall that <i>the</i> <a href="/wiki/Partition_function_(number_theory)" title="Partition function (number theory)">partition function</a> <span class="texhtml"><i>p</i>(<i>n</i>)</span> is generated by the reciprocal infinite <a href="/wiki/Q-Pochhammer_symbol" title="Q-Pochhammer symbol"><span class="texhtml mvar" style="font-style:italic;">q</span>-Pochhammer symbol</a> product (or <span class="texhtml mvar" style="font-style:italic;">z</span>-Pochhammer product as the case may be) given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{n=0}^{\infty }p(n)z^{n}&amp;={\frac {1}{\left(1-z\right)\left(1-z^{2}\right)\left(1-z^{3}\right)\cdots }}\\[4pt]&amp;=1+z+2z^{2}+3z^{3}+5z^{4}+7z^{5}+11z^{6}+\cdots .\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>p</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <mo>+</mo> <mn>2</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>5</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mn>7</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <mn>11</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{n=0}^{\infty }p(n)z^{n}&amp;={\frac {1}{\left(1-z\right)\left(1-z^{2}\right)\left(1-z^{3}\right)\cdots }}\\[4pt]&amp;=1+z+2z^{2}+3z^{3}+5z^{4}+7z^{5}+11z^{6}+\cdots .\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee67b6e05ea0ee85c1d1d8a8577a265ffaec6fb5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:57.862ex; height:11.176ex;" alt="{\displaystyle {\begin{aligned}\sum _{n=0}^{\infty }p(n)z^{n}&amp;={\frac {1}{\left(1-z\right)\left(1-z^{2}\right)\left(1-z^{3}\right)\cdots }}\\[4pt]&amp;=1+z+2z^{2}+3z^{3}+5z^{4}+7z^{5}+11z^{6}+\cdots .\end{aligned}}}"></span> </p><p>This partition function satisfies many known <a href="/wiki/Ramanujan%27s_congruences" title="Ramanujan&#39;s congruences">congruence properties</a>, which notably include the following results though there are still many open questions about the forms of related integer congruences for the function:<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}p(5m+4)&amp;\equiv 0{\pmod {5}}\\p(7m+5)&amp;\equiv 0{\pmod {7}}\\p(11m+6)&amp;\equiv 0{\pmod {11}}\\p(25m+24)&amp;\equiv 0{\pmod {5^{2}}}\,.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>p</mi> <mo stretchy="false">(</mo> <mn>5</mn> <mi>m</mi> <mo>+</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>5</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> <mo stretchy="false">(</mo> <mn>7</mn> <mi>m</mi> <mo>+</mo> <mn>5</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>7</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> <mo stretchy="false">(</mo> <mn>11</mn> <mi>m</mi> <mo>+</mo> <mn>6</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>11</mn> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> <mo stretchy="false">(</mo> <mn>25</mn> <mi>m</mi> <mo>+</mo> <mn>24</mn> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>&#x2261;<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}p(5m+4)&amp;\equiv 0{\pmod {5}}\\p(7m+5)&amp;\equiv 0{\pmod {7}}\\p(11m+6)&amp;\equiv 0{\pmod {11}}\\p(25m+24)&amp;\equiv 0{\pmod {5^{2}}}\,.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d57d984971757d8e59c4bf99b02783a9b6dbdd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:30.456ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}p(5m+4)&amp;\equiv 0{\pmod {5}}\\p(7m+5)&amp;\equiv 0{\pmod {7}}\\p(11m+6)&amp;\equiv 0{\pmod {11}}\\p(25m+24)&amp;\equiv 0{\pmod {5^{2}}}\,.\end{aligned}}}"></span> </p><p>We show how to use generating functions and manipulations of congruences for formal power series to give a highly elementary proof of the first of these congruences listed above. </p><p>First, we observe that in the binomial coefficient generating function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{(1-z)^{5}}}=\sum _{i=0}^{\infty }{\binom {4+i}{4}}z^{i}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mn>4</mn> <mo>+</mo> <mi>i</mi> </mrow> <mn>4</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{(1-z)^{5}}}=\sum _{i=0}^{\infty }{\binom {4+i}{4}}z^{i}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e767082b43dcca7351b7ed93911467cb3c7c1c54" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.782ex; height:6.843ex;" alt="{\displaystyle {\frac {1}{(1-z)^{5}}}=\sum _{i=0}^{\infty }{\binom {4+i}{4}}z^{i}\,,}"></span> all of the coefficients are divisible by 5 except for those which correspond to the powers <span class="texhtml">1, <i>z</i><sup>5</sup>, <i>z</i><sup>10</sup>, ...</span> and moreover in those cases the remainder of the coefficient is 1 modulo 5. Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{(1-z)^{5}}}\equiv {\frac {1}{1-z^{5}}}{\pmod {5}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>5</mn> <mo stretchy="false">)</mo> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{(1-z)^{5}}}\equiv {\frac {1}{1-z^{5}}}{\pmod {5}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd2228e23dffa8a6ccf3193f4b01e5a0005d972d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:30.753ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{(1-z)^{5}}}\equiv {\frac {1}{1-z^{5}}}{\pmod {5}}\,,}"></span> or equivalently <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1-z^{5}}{(1-z)^{5}}}\equiv 1{\pmod {5}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>&#x2261;<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>5</mn> <mo stretchy="false">)</mo> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1-z^{5}}{(1-z)^{5}}}\equiv 1{\pmod {5}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cdc0d955647354cedc9879fd410aefd91acd59c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:24.932ex; height:6.509ex;" alt="{\displaystyle {\frac {1-z^{5}}{(1-z)^{5}}}\equiv 1{\pmod {5}}\,.}"></span> It follows that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\left(1-z^{5}\right)\left(1-z^{10}\right)\left(1-z^{15}\right)\cdots }{\left((1-z)\left(1-z^{2}\right)\left(1-z^{3}\right)\cdots \right)^{5}}}\equiv 1{\pmod {5}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>15</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mfrac> </mrow> <mo>&#x2261;<!-- ≡ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>5</mn> <mo stretchy="false">)</mo> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\left(1-z^{5}\right)\left(1-z^{10}\right)\left(1-z^{15}\right)\cdots }{\left((1-z)\left(1-z^{2}\right)\left(1-z^{3}\right)\cdots \right)^{5}}}\equiv 1{\pmod {5}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6941dfbab037755ccc6a9b42a43202281b42100" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:47.338ex; height:7.343ex;" alt="{\displaystyle {\frac {\left(1-z^{5}\right)\left(1-z^{10}\right)\left(1-z^{15}\right)\cdots }{\left((1-z)\left(1-z^{2}\right)\left(1-z^{3}\right)\cdots \right)^{5}}}\equiv 1{\pmod {5}}\,.}"></span> </p><p>Using the infinite product expansions of <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z\cdot {\frac {\left(1-z^{5}\right)\left(1-z^{10}\right)\cdots }{\left(1-z\right)\left(1-z^{2}\right)\cdots }}=z\cdot \left((1-z)\left(1-z^{2}\right)\cdots \right)^{4}\times {\frac {\left(1-z^{5}\right)\left(1-z^{10}\right)\cdots }{\left(\left(1-z\right)\left(1-z^{2}\right)\cdots \right)^{5}}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>z</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z\cdot {\frac {\left(1-z^{5}\right)\left(1-z^{10}\right)\cdots }{\left(1-z\right)\left(1-z^{2}\right)\cdots }}=z\cdot \left((1-z)\left(1-z^{2}\right)\cdots \right)^{4}\times {\frac {\left(1-z^{5}\right)\left(1-z^{10}\right)\cdots }{\left(\left(1-z\right)\left(1-z^{2}\right)\cdots \right)^{5}}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09679c234aaaf38b231afddae31289e747802d1f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:78.13ex; height:7.343ex;" alt="{\displaystyle z\cdot {\frac {\left(1-z^{5}\right)\left(1-z^{10}\right)\cdots }{\left(1-z\right)\left(1-z^{2}\right)\cdots }}=z\cdot \left((1-z)\left(1-z^{2}\right)\cdots \right)^{4}\times {\frac {\left(1-z^{5}\right)\left(1-z^{10}\right)\cdots }{\left(\left(1-z\right)\left(1-z^{2}\right)\cdots \right)^{5}}}\,,}"></span> it can be shown that the coefficient of <span class="texhtml"><i>z</i><sup>5<i>m</i> + 5</sup></span> in <span class="texhtml"><i>z</i> · ((1 − <i>z</i>)(1 − <i>z</i><sup>2</sup>)⋯)<sup>4</sup></span> is divisible by 5 for all <span class="texhtml mvar" style="font-style:italic;">m</span>.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> Finally, since <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }p(n-1)z^{n}&amp;={\frac {z}{(1-z)\left(1-z^{2}\right)\cdots }}\\[6px]&amp;=z\cdot {\frac {\left(1-z^{5}\right)\left(1-z^{10}\right)\cdots }{(1-z)\left(1-z^{2}\right)\cdots }}\times \left(1+z^{5}+z^{10}+\cdots \right)\left(1+z^{10}+z^{20}+\cdots \right)\cdots \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>p</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </mfrac> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }p(n-1)z^{n}&amp;={\frac {z}{(1-z)\left(1-z^{2}\right)\cdots }}\\[6px]&amp;=z\cdot {\frac {\left(1-z^{5}\right)\left(1-z^{10}\right)\cdots }{(1-z)\left(1-z^{2}\right)\cdots }}\times \left(1+z^{5}+z^{10}+\cdots \right)\left(1+z^{10}+z^{20}+\cdots \right)\cdots \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bb9132341ba8ba6de85071af9020fafdf221292" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.171ex; width:89.21ex; height:15.509ex;" alt="{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }p(n-1)z^{n}&amp;={\frac {z}{(1-z)\left(1-z^{2}\right)\cdots }}\\[6px]&amp;=z\cdot {\frac {\left(1-z^{5}\right)\left(1-z^{10}\right)\cdots }{(1-z)\left(1-z^{2}\right)\cdots }}\times \left(1+z^{5}+z^{10}+\cdots \right)\left(1+z^{10}+z^{20}+\cdots \right)\cdots \end{aligned}}}"></span> we may equate the coefficients of <span class="texhtml"><i>z</i><sup>5<i>m</i> + 5</sup></span> in the previous equations to prove our desired congruence result, namely that <span class="texhtml"><i>p</i>(5<i>m</i> + 4) ≡ 0 (mod 5)</span> for all <span class="texhtml"><i>m</i> ≥ 0</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Transformations_of_generating_functions">Transformations of generating functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=53" title="Edit section: Transformations of generating functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are a number of transformations of generating functions that provide other applications (see the <a href="/wiki/Generating_function_transformation" title="Generating function transformation">main article</a>). A transformation of a sequence's <i>ordinary generating function</i> (OGF) provides a method of converting the generating function for one sequence into a generating function enumerating another. These transformations typically involve integral formulas involving a sequence OGF (see <a href="/wiki/Generating_function_transformation#Integral_Transformations" title="Generating function transformation">integral transformations</a>) or weighted sums over the higher-order derivatives of these functions (see <a href="/wiki/Generating_function_transformation#Derivative_Transformations" title="Generating function transformation">derivative transformations</a>). </p><p>Generating function transformations can come into play when we seek to express a generating function for the sums <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{n}:=\sum _{m=0}^{n}{\binom {n}{m}}C_{n,m}a_{m},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>:=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{n}:=\sum _{m=0}^{n}{\binom {n}{m}}C_{n,m}a_{m},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca4019e36c19ef8004758be1534c5dcf5597e3e9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:23.778ex; height:6.843ex;" alt="{\displaystyle s_{n}:=\sum _{m=0}^{n}{\binom {n}{m}}C_{n,m}a_{m},}"></span> </p><p>in the form of <span class="texhtml"><i>S</i>(<i>z</i>) = <i>g</i>(<i>z</i>) <i>A</i>(<i>f</i>(<i>z</i>))</span> involving the original sequence generating function. For example, if the sums are <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s_{n}:=\sum _{k=0}^{\infty }{\binom {n+k}{m+2k}}a_{k}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>:=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>2</mn> <mi>k</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s_{n}:=\sum _{k=0}^{\infty }{\binom {n+k}{m+2k}}a_{k}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc65030fce606501cc90f679e0cd8783c47a3b66" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.178ex; height:7.009ex;" alt="{\displaystyle s_{n}:=\sum _{k=0}^{\infty }{\binom {n+k}{m+2k}}a_{k}\,}"></span> then the generating function for the modified sum expressions is given by<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(z)={\frac {z^{m}}{(1-z)^{m+1}}}A\left({\frac {z}{(1-z)^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>A</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(z)={\frac {z^{m}}{(1-z)^{m+1}}}A\left({\frac {z}{(1-z)^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9997d81222c5b420ae22422569a4f161c700c0eb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:33.349ex; height:6.343ex;" alt="{\displaystyle S(z)={\frac {z^{m}}{(1-z)^{m+1}}}A\left({\frac {z}{(1-z)^{2}}}\right)}"></span> (see also the <a href="/wiki/Binomial_transform" title="Binomial transform">binomial transform</a> and the <a href="/wiki/Stirling_transform" title="Stirling transform">Stirling transform</a>). </p><p>There are also integral formulas for converting between a sequence's OGF, <span class="texhtml"><i>F</i>(<i>z</i>)</span>, and its exponential generating function, or EGF, <span class="texhtml"><i>F̂</i>(<i>z</i>)</span>, and vice versa given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}F(z)&amp;=\int _{0}^{\infty }{\hat {F}}(tz)e^{-t}\,dt\,,\\[4px]{\hat {F}}(z)&amp;={\frac {1}{2\pi }}\int _{-\pi }^{\pi }F\left(ze^{-i\vartheta }\right)e^{e^{i\vartheta }}\,d\vartheta \,,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>F</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mi>z</mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mspace width="thinmathspace" /> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <mi>F</mi> <mrow> <mo>(</mo> <mrow> <mi>z</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03D1;<!-- ϑ --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03D1;<!-- ϑ --></mi> </mrow> </msup> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03D1;<!-- ϑ --></mi> <mspace width="thinmathspace" /> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}F(z)&amp;=\int _{0}^{\infty }{\hat {F}}(tz)e^{-t}\,dt\,,\\[4px]{\hat {F}}(z)&amp;={\frac {1}{2\pi }}\int _{-\pi }^{\pi }F\left(ze^{-i\vartheta }\right)e^{e^{i\vartheta }}\,d\vartheta \,,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a3d2c5436a62f3426646ba7b8d45430a1f6ff3f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.654ex; margin-bottom: -0.184ex; width:33.775ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}F(z)&amp;=\int _{0}^{\infty }{\hat {F}}(tz)e^{-t}\,dt\,,\\[4px]{\hat {F}}(z)&amp;={\frac {1}{2\pi }}\int _{-\pi }^{\pi }F\left(ze^{-i\vartheta }\right)e^{e^{i\vartheta }}\,d\vartheta \,,\end{aligned}}}"></span> </p><p>provided that these integrals converge for appropriate values of <span class="texhtml mvar" style="font-style:italic;">z</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Tables_of_special_generating_functions">Tables of special generating functions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=54" title="Edit section: Tables of special generating functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An initial listing of special mathematical series is found <a href="/wiki/List_of_mathematical_series" title="List of mathematical series">here</a>. A number of useful and special sequence generating functions are found in Section 5.4 and 7.4 of <i>Concrete Mathematics</i> and in Section 2.5 of Wilf's <i>Generatingfunctionology</i>. Other special generating functions of note include the entries in the next table, which is by no means complete.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Expand_section plainlinks metadata ambox mbox-small-left ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><span typeof="mw:File"><a href="/wiki/File:Wiki_letter_w_cropped.svg" class="mw-file-description"><img alt="[icon]" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/20px-Wiki_letter_w_cropped.svg.png" decoding="async" width="20" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/30px-Wiki_letter_w_cropped.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Wiki_letter_w_cropped.svg/40px-Wiki_letter_w_cropped.svg.png 2x" data-file-width="44" data-file-height="31" /></a></span></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs expansion</b>&#32;with: Lists of special and special sequence generating functions. The next table is a start. You can help by <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Generating_function&amp;action=edit&amp;section=">adding to it</a>. <span class="date-container"><i>(<span class="date">April 2017</span>)</i></span></div></td></tr></tbody></table> <dl><dd><table class="wikitable"> <tbody><tr> <th>Formal power series</th> <th>Generating-function formula</th> <th>Notes </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }{\binom {m+n}{n}}\left(H_{n+m}-H_{m}\right)z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mi>n</mi> </mrow> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>m</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }{\binom {m+n}{n}}\left(H_{n+m}-H_{m}\right)z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/460249a49b0156d4ba04a65570fa6864fad439ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.649ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }{\binom {m+n}{n}}\left(H_{n+m}-H_{m}\right)z^{n}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{(1-z)^{m+1}}}\ln {\frac {1}{1-z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{(1-z)^{m+1}}}\ln {\frac {1}{1-z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/056701e71b4d4b68249106d4443855e91b26f1e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.153ex; height:6.009ex;" alt="{\displaystyle {\frac {1}{(1-z)^{m+1}}}\ln {\frac {1}{1-z}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e63458b04288bbe116a9a8037dfae0b36b2c639a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.15ex; height:2.509ex;" alt="{\displaystyle H_{n}}"></span> is a first-order <a href="/wiki/Harmonic_number" title="Harmonic number">harmonic number</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }B_{n}{\frac {z^{n}}{n!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }B_{n}{\frac {z^{n}}{n!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9902991620add9589e215cdef0b4556c97505c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:9.869ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }B_{n}{\frac {z^{n}}{n!}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {z}{e^{z}-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>z</mi> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {z}{e^{z}-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/555af2b62daebe76a76ee4bed8838038eab62de4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:6.924ex; height:4.843ex;" alt="{\displaystyle {\frac {z}{e^{z}-1}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f568bf6d34e97b9fdda0dc7e276d6c4501d2045" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.982ex; height:2.509ex;" alt="{\displaystyle B_{n}}"></span> is a <a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli number</a> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }F_{mn}z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }F_{mn}z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1bc39d92a5ebcabfc16a6605293b928f5375e0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:10.207ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }F_{mn}z^{n}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {F_{m}z}{1-(F_{m-1}+F_{m+1})z+(-1)^{m}z^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mi>z</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>z</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {F_{m}z}{1-(F_{m-1}+F_{m+1})z+(-1)^{m}z^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c42f991771fe4d3d4e02db77eee6453da014ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:32.557ex; height:6.009ex;" alt="{\displaystyle {\frac {F_{m}z}{1-(F_{m-1}+F_{m+1})z+(-1)^{m}z^{2}}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76cdf519c21deec43f984815e57e15d2dd3575d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.713ex; height:2.509ex;" alt="{\displaystyle F_{n}}"></span> is a <a href="/wiki/Fibonacci_number" class="mw-redirect" title="Fibonacci number">Fibonacci number</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\in \mathbb {Z} ^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\in \mathbb {Z} ^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3aa93f7da8db0f7cbbaaa8ce8ef18cb50d41e129" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.942ex; height:2.509ex;" alt="{\displaystyle m\in \mathbb {Z} ^{+}}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }\left\{{\begin{matrix}n\\m\end{matrix}}\right\}z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }\left\{{\begin{matrix}n\\m\end{matrix}}\right\}z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/499e8286cebad1e9c9d71e3c1fceb1e2e2509b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.716ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }\left\{{\begin{matrix}n\\m\end{matrix}}\right\}z^{n}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (z^{-1})^{\overline {-m}}={\frac {z^{m}}{(1-z)(1-2z)\cdots (1-mz)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (z^{-1})^{\overline {-m}}={\frac {z^{m}}{(1-z)(1-2z)\cdots (1-mz)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be5fa6e128cd1b24490e71d63cc69e6b5719695b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:39.615ex; height:6.009ex;" alt="{\displaystyle (z^{-1})^{\overline {-m}}={\frac {z^{m}}{(1-z)(1-2z)\cdots (1-mz)}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{\overline {n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{\overline {n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c19902c6e1e5dca4e5265746c4b5e5d65a3c676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.641ex; height:2.843ex;" alt="{\displaystyle x^{\overline {n}}}"></span> denotes the <a href="/wiki/Rising_factorial" class="mw-redirect" title="Rising factorial">rising factorial</a>, or <a href="/wiki/Pochhammer_symbol" class="mw-redirect" title="Pochhammer symbol">Pochhammer symbol</a> and some integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0d2d765e4cfd7adfbca9ae0e37e75a2811c0333" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.301ex; height:2.343ex;" alt="{\displaystyle m\geq 0}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }\left[{\begin{matrix}n\\m\end{matrix}}\right]z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> </mtd> </mtr> </mtable> </mrow> <mo>]</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }\left[{\begin{matrix}n\\m\end{matrix}}\right]z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ae0024b86ced7034b6a4501cee55be3bd269b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.685ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }\left[{\begin{matrix}n\\m\end{matrix}}\right]z^{n}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{\overline {m}}=z(z+1)\cdots (z+m-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>m</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </msup> <mo>=</mo> <mi>z</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo>+</mo> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{\overline {m}}=z(z+1)\cdots (z+m-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ffac8c46e8c9300ca686fba37f3020864d9398c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.224ex; height:3.343ex;" alt="{\displaystyle z^{\overline {m}}=z(z+1)\cdots (z+m-1)}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n-1}4^{n}(4^{n}-2)B_{2n}z^{2n}}{(2n)\cdot (2n)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n-1}4^{n}(4^{n}-2)B_{2n}z^{2n}}{(2n)\cdot (2n)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b94bcd4bb7e733f896ffbe28968e6f681e2e801" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.186ex; height:7.009ex;" alt="{\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n-1}4^{n}(4^{n}-2)B_{2n}z^{2n}}{(2n)\cdot (2n)!}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln {\frac {\tan(z)}{z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mi>z</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln {\frac {\tan(z)}{z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/339b994d488077aa152a572185fe0d46aacc0c59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:9.42ex; height:5.676ex;" alt="{\displaystyle \ln {\frac {\tan(z)}{z}}}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }{\frac {(1/2)^{\overline {n}}z^{2n}}{(2n+1)\cdot n!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </msup> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }{\frac {(1/2)^{\overline {n}}z^{2n}}{(2n+1)\cdot n!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62d503c6b4c5e2f1ae98983426c3d5668396010e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.668ex; height:7.176ex;" alt="{\displaystyle \sum _{n=0}^{\infty }{\frac {(1/2)^{\overline {n}}z^{2n}}{(2n+1)\cdot n!}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{-1}\arcsin(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>arcsin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{-1}\arcsin(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84a7fff022e479d3020969ada3a1a650f86cdf50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.67ex; height:3.176ex;" alt="{\displaystyle z^{-1}\arcsin(z)}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }H_{n}^{(s)}z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }H_{n}^{(s)}z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a1f682985d26ce5ea119946a42c5c931162aad1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:10.437ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }H_{n}^{(s)}z^{n}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\operatorname {Li} _{s}(z)}{1-z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>Li</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\operatorname {Li} _{s}(z)}{1-z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f8205efc6fe99de91f2e2027ebca6a11ce0e2b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:6.837ex; height:5.843ex;" alt="{\displaystyle {\frac {\operatorname {Li} _{s}(z)}{1-z}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Li} _{s}(z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Li</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Li} _{s}(z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e650380250d97d59f35d1572402f4c952f05462" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6ex; height:2.843ex;" alt="{\displaystyle \operatorname {Li} _{s}(z)}"></span> is the <a href="/wiki/Polylogarithm" title="Polylogarithm">polylogarithm</a> function and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n}^{(s)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n}^{(s)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9596b382ca909028c4c666377e7ae95bfdc5692b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.386ex; height:3.343ex;" alt="{\displaystyle H_{n}^{(s)}}"></span> is a generalized <a href="/wiki/Harmonic_number" title="Harmonic number">harmonic number</a> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Re (s)&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x211C;<!-- ℜ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Re (s)&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ea5968732ea35f67b36093364400e0fd8ca23bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.085ex; height:2.843ex;" alt="{\displaystyle \Re (s)&gt;1}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }n^{m}z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }n^{m}z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/608a8220eeb2e5daa17d10fcb79cb048e7c2e4a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:9.121ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }n^{m}z^{n}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{0\leq j\leq m}\left\{{\begin{matrix}m\\j\end{matrix}}\right\}{\frac {j!\cdot z^{j}}{(1-z)^{j+1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>j</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>m</mi> </mrow> </munder> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>m</mi> </mtd> </mtr> <mtr> <mtd> <mi>j</mi> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>j</mi> <mo>!</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{0\leq j\leq m}\left\{{\begin{matrix}m\\j\end{matrix}}\right\}{\frac {j!\cdot z^{j}}{(1-z)^{j+1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d54594b0404e150e3b06359eebc6d4065b16180" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:23.298ex; height:7.176ex;" alt="{\displaystyle \sum _{0\leq j\leq m}\left\{{\begin{matrix}m\\j\end{matrix}}\right\}{\frac {j!\cdot z^{j}}{(1-z)^{j+1}}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{{\begin{matrix}n\\m\end{matrix}}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{{\begin{matrix}n\\m\end{matrix}}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ec8d5672e9a708baec85f4012902a9c0eaa396b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:6.278ex; height:6.176ex;" alt="{\displaystyle \left\{{\begin{matrix}n\\m\end{matrix}}\right\}}"></span> is a <a href="/wiki/Stirling_number_of_the_second_kind" class="mw-redirect" title="Stirling number of the second kind">Stirling number of the second kind</a> and where the individual terms in the expansion satisfy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {z^{i}}{(1-z)^{i+1}}}=\sum _{k=0}^{i}{\binom {i}{k}}{\frac {(-1)^{k-i}}{(1-z)^{k+1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>i</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {z^{i}}{(1-z)^{i+1}}}=\sum _{k=0}^{i}{\binom {i}{k}}{\frac {(-1)^{k-i}}{(1-z)^{k+1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a23c8a511fc71588941383c5d4aecab530db81c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:33.035ex; height:7.343ex;" alt="{\displaystyle {\frac {z^{i}}{(1-z)^{i+1}}}=\sum _{k=0}^{i}{\binom {i}{k}}{\frac {(-1)^{k-i}}{(1-z)^{k+1}}}}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k&lt;n}{\binom {n-k}{k}}{\frac {n}{n-k}}z^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&lt;</mo> <mi>n</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> </mrow> </mfrac> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k&lt;n}{\binom {n-k}{k}}{\frac {n}{n-k}}z^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8bf104229429a4479b7d0e37a096391946d3d5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.071ex; height:6.843ex;" alt="{\displaystyle \sum _{k&lt;n}{\binom {n-k}{k}}{\frac {n}{n-k}}z^{k}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {1+{\sqrt {1+4z}}}{2}}\right)^{n}+\left({\frac {1-{\sqrt {1+4z}}}{2}}\right)^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <mn>4</mn> <mi>z</mi> </msqrt> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <mn>4</mn> <mi>z</mi> </msqrt> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {1+{\sqrt {1+4z}}}{2}}\right)^{n}+\left({\frac {1-{\sqrt {1+4z}}}{2}}\right)^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b2cd6a80be8e516d1298ac4cd6d8dce75085ae4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.176ex; height:6.509ex;" alt="{\displaystyle \left({\frac {1+{\sqrt {1+4z}}}{2}}\right)^{n}+\left({\frac {1-{\sqrt {1+4z}}}{2}}\right)^{n}}"></span></td> <td> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n_{1},\ldots ,n_{m}\geq 0}\min(n_{1},\ldots ,n_{m})z_{1}^{n_{1}}\cdots z_{m}^{n_{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </munder> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mo>&#x22EF;<!-- ⋯ --></mo> <msubsup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n_{1},\ldots ,n_{m}\geq 0}\min(n_{1},\ldots ,n_{m})z_{1}^{n_{1}}\cdots z_{m}^{n_{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f22807cefac95870e2cd2a376fd8eef6b05f387" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:36.131ex; height:5.843ex;" alt="{\displaystyle \sum _{n_{1},\ldots ,n_{m}\geq 0}\min(n_{1},\ldots ,n_{m})z_{1}^{n_{1}}\cdots z_{m}^{n_{m}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {z_{1}\cdots z_{m}}{(1-z_{1})\cdots (1-z_{m})(1-z_{1}\cdots z_{m})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {z_{1}\cdots z_{m}}{(1-z_{1})\cdots (1-z_{m})(1-z_{1}\cdots z_{m})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e96e44a974e19d9615283d458a93ad128425b14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.051ex; height:5.509ex;" alt="{\displaystyle {\frac {z_{1}\cdots z_{m}}{(1-z_{1})\cdots (1-z_{m})(1-z_{1}\cdots z_{m})}}}"></span></td> <td>The two-variable case is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M(w,z):=\sum _{m,n\geq 0}\min(m,n)w^{m}z^{n}={\frac {wz}{(1-w)(1-z)(1-wz)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo stretchy="false">(</mo> <mi>w</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mrow> </munder> <mo movablelimits="true" form="prefix">min</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>w</mi> <mi>z</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>w</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>w</mi> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M(w,z):=\sum _{m,n\geq 0}\min(m,n)w^{m}z^{n}={\frac {wz}{(1-w)(1-z)(1-wz)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b961c9aa7d3930988f1a74d115cac4cbc3f8d86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:59.834ex; height:6.176ex;" alt="{\displaystyle M(w,z):=\sum _{m,n\geq 0}\min(m,n)w^{m}z^{n}={\frac {wz}{(1-w)(1-z)(1-wz)}}}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }{\binom {s}{n}}z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>s</mi> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }{\binom {s}{n}}z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39b94893b1e51a1051708b62dba9eb531a75b72c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:10.867ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }{\binom {s}{n}}z^{n}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1+z)^{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1+z)^{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1cf46051ebfea509a48b43fe2899437830cd2dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.904ex; height:2.843ex;" alt="{\displaystyle (1+z)^{s}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\in \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s\in \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f13da7c2bac9dd6324ac83093fb42f3a9e86fbd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.609ex; height:2.176ex;" alt="{\displaystyle s\in \mathbb {C} }"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }{\binom {n}{k}}z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }{\binom {n}{k}}z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c1ae8325fa132fc63f45ba302208bc8a5d1776e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:10.867ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }{\binom {n}{k}}z^{n}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {z^{k}}{(1-z)^{k+1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {z^{k}}{(1-z)^{k+1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e76587709171c622d8c4f22a34566cac1c8930ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:10.926ex; height:6.509ex;" alt="{\displaystyle {\frac {z^{k}}{(1-z)^{k+1}}}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a5bc4b7383031ba693b7433198ead7170954c1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.73ex; height:2.176ex;" alt="{\displaystyle k\in \mathbb {N} }"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=1}^{\infty }\log {(n)}z^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=1}^{\infty }\log {(n)}z^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26bd8cdaf9a0c810a87a9ca2b63b9f480e4f39a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.614ex; height:6.843ex;" alt="{\displaystyle \sum _{n=1}^{\infty }\log {(n)}z^{n}}"></span></td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left.-{\frac {\partial }{\partial s}}\operatorname {{Li}_{s}(z)} \right|_{s=0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi mathvariant="normal">z</mi> <mo stretchy="false">)</mo> </mrow> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left.-{\frac {\partial }{\partial s}}\operatorname {{Li}_{s}(z)} \right|_{s=0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c12f2bd1651494d6861b867c0316335a02b032a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.012ex; height:6.009ex;" alt="{\displaystyle \left.-{\frac {\partial }{\partial s}}\operatorname {{Li}_{s}(z)} \right|_{s=0}}"></span> </td></tr></tbody></table></dd></dl> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=55" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Moment-generating_function" title="Moment-generating function">Moment-generating function</a></li> <li><a href="/wiki/Probability-generating_function" title="Probability-generating function">Probability-generating function</a></li> <li><a href="/wiki/Generating_function_transformation" title="Generating function transformation">Generating function transformation</a></li> <li><a href="/wiki/Stanley%27s_reciprocity_theorem" title="Stanley&#39;s reciprocity theorem">Stanley's reciprocity theorem</a></li> <li><a href="/wiki/Integer_partition" title="Integer partition">Integer partition</a></li> <li><a href="/wiki/Combinatorial_principles" title="Combinatorial principles">Combinatorial principles</a></li> <li><a href="/wiki/Cyclic_sieving" title="Cyclic sieving">Cyclic sieving</a></li> <li><a href="/wiki/Z-transform" title="Z-transform">Z-transform</a></li> <li><a href="/wiki/Umbral_calculus" title="Umbral calculus">Umbral calculus</a></li> <li><a href="/wiki/Coins_in_a_fountain" title="Coins in a fountain">Coins in a fountain</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=56" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">Incidentally, we also have a corresponding formula when <span class="texhtml"><i>m</i> &lt; 0</span> given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }g_{n+m}z^{n}={\frac {G(z)-g_{0}-g_{1}z-\cdots -g_{m-1}z^{m-1}}{z^{m}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>m</mi> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>G</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }g_{n+m}z^{n}={\frac {G(z)-g_{0}-g_{1}z-\cdots -g_{m-1}z^{m-1}}{z^{m}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/676d3eec4ddb66ab619c332362f2d8648f501cc3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:50.042ex; height:7.009ex;" alt="{\displaystyle \sum _{n=0}^{\infty }g_{n+m}z^{n}={\frac {G(z)-g_{0}-g_{1}z-\cdots -g_{m-1}z^{m-1}}{z^{m}}}\,.}"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=57" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">This alternative term can already be found in E.N. Gilbert (1956), "Enumeration of Labeled graphs", <i><a href="/wiki/Canadian_Journal_of_Mathematics" title="Canadian Journal of Mathematics">Canadian Journal of Mathematics</a></i> 3, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=x34z99fCRbsC&amp;dq=%22generating+series%22&amp;pg=PA407">p.&#160;405–411</a>, but its use is rare before the year 2000; since then it appears to be increasing.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFKnuth1997" class="citation book cs1"><a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald E.</a> (1997). "§1.2.9 Generating Functions". <i>Fundamental Algorithms</i>. <a href="/wiki/The_Art_of_Computer_Programming" title="The Art of Computer Programming">The Art of Computer Programming</a>. Vol.&#160;1 (3rd&#160;ed.). Addison-Wesley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-201-89683-4" title="Special:BookSources/0-201-89683-4"><bdi>0-201-89683-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=%C2%A71.2.9+Generating+Functions&amp;rft.btitle=Fundamental+Algorithms&amp;rft.series=The+Art+of+Computer+Programming&amp;rft.edition=3rd&amp;rft.pub=Addison-Wesley&amp;rft.date=1997&amp;rft.isbn=0-201-89683-4&amp;rft.aulast=Knuth&amp;rft.aufirst=Donald+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="#CITEREFFlajoletSedgewick2009">Flajolet &amp; Sedgewick 2009</a>, p.&#160;95</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathoverflow.net/q/140418">"Lambert series identity"</a>. <i>Math Overflow</i>. 2017.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Math+Overflow&amp;rft.atitle=Lambert+series+identity&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fmathoverflow.net%2Fq%2F140418&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol1976" class="citation cs2"><a href="/wiki/Tom_M._Apostol" title="Tom M. Apostol">Apostol, Tom M.</a> (1976), <i>Introduction to analytic number theory</i>, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-90163-3" title="Special:BookSources/978-0-387-90163-3"><bdi>978-0-387-90163-3</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0434929">0434929</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0335.10001">0335.10001</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+analytic+number+theory&amp;rft.place=New+York-Heidelberg&amp;rft.series=Undergraduate+Texts+in+Mathematics&amp;rft.pub=Springer-Verlag&amp;rft.date=1976&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0335.10001%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0434929%23id-name%3DMR&amp;rft.isbn=978-0-387-90163-3&amp;rft.aulast=Apostol&amp;rft.aufirst=Tom+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span> pp.42–43</span> </li> <li id="cite_note-W56-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-W56_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWilf1994">Wilf 1994</a>, p.&#160;56</span> </li> <li id="cite_note-W59-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-W59_7-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWilf1994">Wilf 1994</a>, p.&#160;59</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardyWrightHeath-BrownSilverman2008" class="citation book cs1">Hardy, G.H.; Wright, E.M.; Heath-Brown, D.R; Silverman, J.H. (2008). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoth00ghha_922"><i>An Introduction to the Theory of Numbers</i></a></span> (6th&#160;ed.). Oxford University Press. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/introductiontoth00ghha_922/page/n357">339</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780199219858" title="Special:BookSources/9780199219858"><bdi>9780199219858</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Theory+of+Numbers&amp;rft.pages=339&amp;rft.edition=6th&amp;rft.pub=Oxford+University+Press&amp;rft.date=2008&amp;rft.isbn=9780199219858&amp;rft.aulast=Hardy&amp;rft.aufirst=G.H.&amp;rft.au=Wright%2C+E.M.&amp;rft.au=Heath-Brown%2C+D.R&amp;rft.au=Silverman%2C+J.H.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontoth00ghha_922&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1992" class="citation journal cs1">Knuth, D. E. (1992). "Convolution Polynomials". <i>Mathematica J</i>. <b>2</b>: 67–78. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/9207221">math/9207221</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992math......7221K">1992math......7221K</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematica+J.&amp;rft.atitle=Convolution+Polynomials&amp;rft.volume=2&amp;rft.pages=67-78&amp;rft.date=1992&amp;rft_id=info%3Aarxiv%2Fmath%2F9207221&amp;rft_id=info%3Abibcode%2F1992math......7221K&amp;rft.aulast=Knuth&amp;rft.aufirst=D.+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpivey2007" class="citation journal cs1">Spivey, Michael Z. (2007). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.disc.2007.03.052">"Combinatorial Sums and Finite Differences"</a>. <i>Discrete Math</i>. <b>307</b> (24): 3130–3146. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.disc.2007.03.052">10.1016/j.disc.2007.03.052</a></span>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2370116">2370116</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Discrete+Math.&amp;rft.atitle=Combinatorial+Sums+and+Finite+Differences&amp;rft.volume=307&amp;rft.issue=24&amp;rft.pages=3130-3146&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1016%2Fj.disc.2007.03.052&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2370116%23id-name%3DMR&amp;rft.aulast=Spivey&amp;rft.aufirst=Michael+Z.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.disc.2007.03.052&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMathar2012" class="citation arxiv cs1">Mathar, R. J. (2012). "Yet another table of integrals". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1207.5845">1207.5845</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.CA">math.CA</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Yet+another+table+of+integrals&amp;rft.date=2012&amp;rft_id=info%3Aarxiv%2F1207.5845&amp;rft.aulast=Mathar&amp;rft.aufirst=R.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span> v4 eq. (0.4)</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrahamKnuthPatashnik1994">Graham, Knuth &amp; Patashnik 1994</a>, Table 265 in §6.1 for finite sum identities involving the Stirling number triangles.</span> </li> <li id="cite_note-GFLECT-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-GFLECT_13-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFLando2003">Lando 2003</a>, §2.4</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Example from <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStanleyFomin1997" class="citation book cs1">Stanley, Richard P.; Fomin, Sergey (1997). "§6.3". <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zg5wDqT6T-UC"><i>Enumerative Combinatorics: Volume 2</i></a>. Cambridge Studies in Advanced Mathematics. Vol.&#160;62. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-78987-5" title="Special:BookSources/978-0-521-78987-5"><bdi>978-0-521-78987-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=%C2%A76.3&amp;rft.btitle=Enumerative+Combinatorics%3A+Volume+2&amp;rft.series=Cambridge+Studies+in+Advanced+Mathematics&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1997&amp;rft.isbn=978-0-521-78987-5&amp;rft.aulast=Stanley&amp;rft.aufirst=Richard+P.&amp;rft.au=Fomin%2C+Sergey&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dzg5wDqT6T-UC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></span> </li> <li id="cite_note-TAOCPV1-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-TAOCPV1_15-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKnuth1997">Knuth 1997</a>, §1.2.9</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">Solution to <a href="#CITEREFGrahamKnuthPatashnik1994">Graham, Knuth &amp; Patashnik 1994</a>, p.&#160;569, exercise 7.36</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><a href="#CITEREFFlajoletSedgewick2009">Flajolet &amp; Sedgewick 2009</a>, §B.4</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchneider2007" class="citation journal cs1">Schneider, C. (2007). <a rel="nofollow" class="external text" href="http://www.emis.de/journals/SLC/wpapers/s56schneider.html">"Symbolic Summation Assists Combinatorics"</a>. <i>Sém. Lothar. Combin</i>. <b>56</b>: 1–36.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=S%C3%A9m.+Lothar.+Combin.&amp;rft.atitle=Symbolic+Summation+Assists+Combinatorics&amp;rft.volume=56&amp;rft.pages=1-36&amp;rft.date=2007&amp;rft.aulast=Schneider&amp;rft.aufirst=C.&amp;rft_id=http%3A%2F%2Fwww.emis.de%2Fjournals%2FSLC%2Fwpapers%2Fs56schneider.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">See the usage of these terms in <a href="#CITEREFGrahamKnuthPatashnik1994">Graham, Knuth &amp; Patashnik 1994</a>, §7.4 on special sequence generating functions.</span> </li> <li id="cite_note-Good_1986-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Good_1986_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGood1986" class="citation journal cs1">Good, I. J. (1986). <a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faos%2F1176343649">"On applications of symmetric Dirichlet distributions and their mixtures to contingency tables"</a>. <i><a href="/wiki/Annals_of_Statistics" title="Annals of Statistics">Annals of Statistics</a></i>. <b>4</b> (6): 1159–1189. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faos%2F1176343649">10.1214/aos/1176343649</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Statistics&amp;rft.atitle=On+applications+of+symmetric+Dirichlet+distributions+and+their+mixtures+to+contingency+tables&amp;rft.volume=4&amp;rft.issue=6&amp;rft.pages=1159-1189&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.1214%2Faos%2F1176343649&amp;rft.aulast=Good&amp;rft.aufirst=I.+J.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1214%252Faos%252F1176343649&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">For more complete information on the properties of <span class="texhtml mvar" style="font-style:italic;">J</span>-fractions see: <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlajolet1980" class="citation journal cs1">Flajolet, P. (1980). <a rel="nofollow" class="external text" href="http://algo.inria.fr/flajolet/Publications/Flajolet80b.pdf">"Combinatorial aspects of continued fractions"</a> <span class="cs1-format">(PDF)</span>. <i>Discrete Mathematics</i>. <b>32</b> (2): 125–161. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0012-365X%2880%2990050-3">10.1016/0012-365X(80)90050-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Discrete+Mathematics&amp;rft.atitle=Combinatorial+aspects+of+continued+fractions&amp;rft.volume=32&amp;rft.issue=2&amp;rft.pages=125-161&amp;rft.date=1980&amp;rft_id=info%3Adoi%2F10.1016%2F0012-365X%2880%2990050-3&amp;rft.aulast=Flajolet&amp;rft.aufirst=P.&amp;rft_id=http%3A%2F%2Falgo.inria.fr%2Fflajolet%2FPublications%2FFlajolet80b.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWall2018" class="citation book cs1">Wall, H.S. (2018) [1948]. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=86ReDwAAQBAJ&amp;pg=PR7"><i>Analytic Theory of Continued Fractions</i></a>. Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-83044-5" title="Special:BookSources/978-0-486-83044-5"><bdi>978-0-486-83044-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analytic+Theory+of+Continued+Fractions&amp;rft.pub=Dover&amp;rft.date=2018&amp;rft.isbn=978-0-486-83044-5&amp;rft.aulast=Wall&amp;rft.aufirst=H.S.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D86ReDwAAQBAJ%26pg%3DPR7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li></ul> </span></li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">See the following articles: <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmidt2016" class="citation arxiv cs1">Schmidt, Maxie D. (2016). "Continued Fractions for Square Series Generating Functions". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1612.02778">1612.02778</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.NT">math.NT</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Continued+Fractions+for+Square+Series+Generating+Functions&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1612.02778&amp;rft.aulast=Schmidt&amp;rft.aufirst=Maxie+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmidt2017" class="citation journal cs1">&#8212; (2017). <a rel="nofollow" class="external text" href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Schmidt/schmidt14.html">"Jacobi-Type Continued Fractions for the Ordinary Generating Functions of Generalized Factorial Functions"</a>. <i>Journal of Integer Sequences</i>. <b>20</b>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1610.09691">1610.09691</a></span>. 17.3.4.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Integer+Sequences&amp;rft.atitle=Jacobi-Type+Continued+Fractions+for+the+Ordinary+Generating+Functions+of+Generalized+Factorial+Functions&amp;rft.volume=20&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1610.09691&amp;rft.aulast=Schmidt&amp;rft.aufirst=Maxie+D.&amp;rft_id=https%3A%2F%2Fcs.uwaterloo.ca%2Fjournals%2FJIS%2FVOL20%2FSchmidt%2Fschmidt14.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmidt2017" class="citation arxiv cs1">&#8212; (2017). "Jacobi-Type Continued Fractions and Congruences for Binomial Coefficients Modulo Integers <i>h</i> ≥ 2". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1702.01374">1702.01374</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.CO">math.CO</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Jacobi-Type+Continued+Fractions+and+Congruences+for+Binomial+Coefficients+Modulo+Integers+h+%E2%89%A5+2&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1702.01374&amp;rft.aulast=Schmidt&amp;rft.aufirst=Maxie+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li></ul> </span></li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrahamKnuthPatashnik1994">Graham, Knuth &amp; Patashnik 1994</a>, §8.3</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrahamKnuthPatashnik1994">Graham, Knuth &amp; Patashnik 1994</a>, Example 6 in §7.3 for another method and the complete setup of this problem using generating functions. This more "convoluted" approach is given in Section 7.5 of the same reference.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><a href="#CITEREFLando2003">Lando 2003</a>, §5</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><a href="#CITEREFHardyWrightHeath-BrownSilverman2008">Hardy et al. 2008</a>, §19.12</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardyWright" class="citation book cs1">Hardy, G.H.; Wright, E.M. <i>An Introduction to the Theory of Numbers</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+Theory+of+Numbers&amp;rft.aulast=Hardy&amp;rft.aufirst=G.H.&amp;rft.au=Wright%2C+E.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span> p.288, Th.361</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrahamKnuthPatashnik1994">Graham, Knuth &amp; Patashnik 1994</a>, p.&#160;535, exercise 5.71</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">See also the <i>1031 Generating Functions</i> found in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlouffe1992" class="citation thesis cs1 cs1-prop-foreign-lang-source">Plouffe, Simon (1992). <i>Approximations de séries génératrices et quelques conjectures</i> &#91;<i>Approximations of generating functions and a few conjectures</i>&#93; (Masters) (in French). Université du Québec à Montréal. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0911.4975">0911.4975</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&amp;rft.title=Approximations+de+s%C3%A9ries+g%C3%A9n%C3%A9ratrices+et+quelques+conjectures&amp;rft.inst=Universit%C3%A9+du+Qu%C3%A9bec+%C3%A0+Montr%C3%A9al&amp;rft.date=1992&amp;rft_id=info%3Aarxiv%2F0911.4975&amp;rft.aulast=Plouffe&amp;rft.aufirst=Simon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading3"><h3 id="Citations">Citations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=58" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAigner2007" class="citation book cs1">Aigner, Martin (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pPEJcu93dzAC"><i>A Course in Enumeration</i></a>. Graduate Texts in Mathematics. Vol.&#160;238. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-39035-0" title="Special:BookSources/978-3-540-39035-0"><bdi>978-3-540-39035-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Course+in+Enumeration&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer&amp;rft.date=2007&amp;rft.isbn=978-3-540-39035-0&amp;rft.aulast=Aigner&amp;rft.aufirst=Martin&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpPEJcu93dzAC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoubiletRotaStanley1972" class="citation journal cs1">Doubilet, Peter; <a href="/wiki/Gian-Carlo_Rota" title="Gian-Carlo Rota">Rota, Gian-Carlo</a>; <a href="/wiki/Richard_P._Stanley" title="Richard P. Stanley">Stanley, Richard</a> (1972). <a rel="nofollow" class="external text" href="http://projecteuclid.org/euclid.bsmsp/1200514223">"On the foundations of combinatorial theory. VI. The idea of generating function"</a>. <i>Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability</i>. <b>2</b>: 267–318. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0267.05002">0267.05002</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Sixth+Berkeley+Symposium+on+Mathematical+Statistics+and+Probability&amp;rft.atitle=On+the+foundations+of+combinatorial+theory.+VI.+The+idea+of+generating+function&amp;rft.volume=2&amp;rft.pages=267-318&amp;rft.date=1972&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0267.05002%23id-name%3DZbl&amp;rft.aulast=Doubilet&amp;rft.aufirst=Peter&amp;rft.au=Rota%2C+Gian-Carlo&amp;rft.au=Stanley%2C+Richard&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2Feuclid.bsmsp%2F1200514223&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span> Reprinted in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRota1975" class="citation book cs1"><a href="/wiki/Gian-Carlo_Rota" title="Gian-Carlo Rota">Rota, Gian-Carlo</a> (1975). "3. The idea of generating function". <i>Finite Operator Calculus</i>. With the collaboration of P. Doubilet, C. Greene, D. Kahaner, <a href="/wiki/Andrew_Odlyzko" title="Andrew Odlyzko">A. Odlyzko</a> and <a href="/wiki/Richard_P._Stanley" title="Richard P. Stanley">R. Stanley</a>. Academic Press. pp.&#160;83–134. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-12-596650-4" title="Special:BookSources/0-12-596650-4"><bdi>0-12-596650-4</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0328.05007">0328.05007</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=3.+The+idea+of+generating+function&amp;rft.btitle=Finite+Operator+Calculus&amp;rft.pages=83-134&amp;rft.pub=Academic+Press&amp;rft.date=1975&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0328.05007%23id-name%3DZbl&amp;rft.isbn=0-12-596650-4&amp;rft.aulast=Rota&amp;rft.aufirst=Gian-Carlo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlajoletSedgewick2009" class="citation book cs1"><a href="/wiki/Philippe_Flajolet" title="Philippe Flajolet">Flajolet, Philippe</a>; <a href="/wiki/Robert_Sedgewick_(computer_scientist)" title="Robert Sedgewick (computer scientist)">Sedgewick, Robert</a> (2009). <a href="/wiki/Analytic_Combinatorics" class="mw-redirect" title="Analytic Combinatorics"><i>Analytic Combinatorics</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-89806-5" title="Special:BookSources/978-0-521-89806-5"><bdi>978-0-521-89806-5</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:1165.05001">1165.05001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analytic+Combinatorics&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1165.05001%23id-name%3DZbl&amp;rft.isbn=978-0-521-89806-5&amp;rft.aulast=Flajolet&amp;rft.aufirst=Philippe&amp;rft.au=Sedgewick%2C+Robert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGouldenJackson2004" class="citation book cs1">Goulden, Ian P.; <a href="/wiki/David_M._Jackson" title="David M. Jackson">Jackson, David M.</a> (2004). <i>Combinatorial Enumeration</i>. <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0486435978" title="Special:BookSources/978-0486435978"><bdi>978-0486435978</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Combinatorial+Enumeration&amp;rft.pub=Dover+Publications&amp;rft.date=2004&amp;rft.isbn=978-0486435978&amp;rft.aulast=Goulden&amp;rft.aufirst=Ian+P.&amp;rft.au=Jackson%2C+David+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrahamKnuthPatashnik1994" class="citation book cs1"><a href="/wiki/Ronald_Graham" title="Ronald Graham">Graham, Ronald L.</a>; <a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, Donald E.</a>; <a href="/wiki/Oren_Patashnik" title="Oren Patashnik">Patashnik, Oren</a> (1994). "Chapter 7: Generating Functions". <i><a href="/wiki/Concrete_Mathematics" title="Concrete Mathematics">Concrete Mathematics. A foundation for computer science</a></i> (2nd&#160;ed.). Addison-Wesley. pp.&#160;320–380. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-201-55802-5" title="Special:BookSources/0-201-55802-5"><bdi>0-201-55802-5</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0836.00001">0836.00001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+7%3A+Generating+Functions&amp;rft.btitle=Concrete+Mathematics.+A+foundation+for+computer+science&amp;rft.pages=320-380&amp;rft.edition=2nd&amp;rft.pub=Addison-Wesley&amp;rft.date=1994&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0836.00001%23id-name%3DZbl&amp;rft.isbn=0-201-55802-5&amp;rft.aulast=Graham&amp;rft.aufirst=Ronald+L.&amp;rft.au=Knuth%2C+Donald+E.&amp;rft.au=Patashnik%2C+Oren&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLando2003" class="citation book cs1">Lando, Sergei K. (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=A6_4AwAAQBAJ"><i>Lectures on Generating Functions</i></a>. American Mathematical Society. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8218-3481-7" title="Special:BookSources/978-0-8218-3481-7"><bdi>978-0-8218-3481-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lectures+on+Generating+Functions&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2003&amp;rft.isbn=978-0-8218-3481-7&amp;rft.aulast=Lando&amp;rft.aufirst=Sergei+K.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DA6_4AwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilf1994" class="citation book cs1"><a href="/wiki/Herbert_Wilf" title="Herbert Wilf">Wilf, Herbert S.</a> (1994). <a rel="nofollow" class="external text" href="http://www.math.upenn.edu/%7Ewilf/DownldGF.html"><i>Generatingfunctionology</i></a> (2nd&#160;ed.). Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-12-751956-4" title="Special:BookSources/0-12-751956-4"><bdi>0-12-751956-4</bdi></a>. <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0831.05001">0831.05001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Generatingfunctionology&amp;rft.edition=2nd&amp;rft.pub=Academic+Press&amp;rft.date=1994&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0831.05001%23id-name%3DZbl&amp;rft.isbn=0-12-751956-4&amp;rft.aulast=Wilf&amp;rft.aufirst=Herbert+S.&amp;rft_id=http%3A%2F%2Fwww.math.upenn.edu%2F%257Ewilf%2FDownldGF.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Generating_function&amp;action=edit&amp;section=59" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://garsia.math.yorku.ca/~zabrocki/MMM1/MMM1Intro2OGFs.pdf">"Introduction To Ordinary Generating Functions"</a> by Mike Zabrocki, York University, Mathematics and Statistics</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Generating_function">"Generating function"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Generating+function&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DGenerating_function&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AGenerating+function" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://www.cut-the-knot.org/ctk/GeneratingFunctions.shtml">Generating Functions, Power Indices and Coin Change</a> at <a href="/wiki/Cut-the-knot" class="mw-redirect" title="Cut-the-knot">cut-the-knot</a></li> <li><a rel="nofollow" class="external text" href="http://demonstrations.wolfram.com/GeneratingFunctions/">"Generating Functions"</a> by <a href="/wiki/Ed_Pegg_Jr." title="Ed Pegg Jr.">Ed Pegg Jr.</a>, <a href="/wiki/Wolfram_Demonstrations_Project" title="Wolfram Demonstrations Project">Wolfram Demonstrations Project</a>, 2007.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q860609#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Erzeugende Funktion"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4152979-0">Germany</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85053815">United States</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Fonctions génératrices"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb12259609r">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Fonctions génératrices"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb12259609r">BnF data</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.nli.org.il/en/authorities/987007562699905171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐7f79446bf6‐8sd9g Cached time: 20241217232839 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.342 seconds Real time usage: 1.635 seconds Preprocessor visited node count: 16548/1000000 Post‐expand include size: 149809/2097152 bytes Template argument size: 36013/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 11/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 119075/5000000 bytes Lua time usage: 0.653/10.000 seconds Lua memory usage: 7633666/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1147.941 1 -total 24.83% 285.051 224 Template:Math 24.17% 277.513 2 Template:Reflist 13.01% 149.326 12 Template:Cite_book 12.67% 145.436 1 Template:Short_description 12.25% 140.595 1 Template:Authority_control 9.78% 112.277 2 Template:Pagetype 5.44% 62.453 1 Template:About 5.01% 57.475 14 Template:Harvnb 4.74% 54.364 235 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:160993:|#|:idhash:canonical and timestamp 20241217232839 and revision id 1255348851. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Generating_function&amp;oldid=1255348851">https://en.wikipedia.org/w/index.php?title=Generating_function&amp;oldid=1255348851</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:1730_introductions" title="Category:1730 introductions">1730 introductions</a></li><li><a href="/wiki/Category:Generating_functions" title="Category:Generating functions">Generating functions</a></li><li><a href="/wiki/Category:Abraham_de_Moivre" title="Category:Abraham de Moivre">Abraham de Moivre</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_that_may_be_too_long_from_July_2022" title="Category:Articles that may be too long from July 2022">Articles that may be too long from July 2022</a></li><li><a href="/wiki/Category:Articles_to_be_expanded_from_April_2017" title="Category:Articles to be expanded from April 2017">Articles to be expanded from April 2017</a></li><li><a href="/wiki/Category:All_articles_to_be_expanded" title="Category:All articles to be expanded">All articles to be expanded</a></li><li><a href="/wiki/Category:Pages_that_use_a_deprecated_format_of_the_math_tags" title="Category:Pages that use a deprecated format of the math tags">Pages that use a deprecated format of the math tags</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 4 November 2024, at 13:47<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Generating_function&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-55db797859-2nvwj","wgBackendResponseTime":138,"wgPageParseReport":{"limitreport":{"cputime":"1.342","walltime":"1.635","ppvisitednodes":{"value":16548,"limit":1000000},"postexpandincludesize":{"value":149809,"limit":2097152},"templateargumentsize":{"value":36013,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":119075,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1147.941 1 -total"," 24.83% 285.051 224 Template:Math"," 24.17% 277.513 2 Template:Reflist"," 13.01% 149.326 12 Template:Cite_book"," 12.67% 145.436 1 Template:Short_description"," 12.25% 140.595 1 Template:Authority_control"," 9.78% 112.277 2 Template:Pagetype"," 5.44% 62.453 1 Template:About"," 5.01% 57.475 14 Template:Harvnb"," 4.74% 54.364 235 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.653","limit":"10.000"},"limitreport-memusage":{"value":7633666,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAigner2007\"] = 1,\n [\"CITEREFDoubiletRotaStanley1972\"] = 1,\n [\"CITEREFFlajolet1980\"] = 1,\n [\"CITEREFFlajoletSedgewick2009\"] = 1,\n [\"CITEREFGood1986\"] = 1,\n [\"CITEREFGouldenJackson2004\"] = 1,\n [\"CITEREFGrahamKnuthPatashnik1994\"] = 1,\n [\"CITEREFHardyWright\"] = 1,\n [\"CITEREFHardyWrightHeath-BrownSilverman2008\"] = 1,\n [\"CITEREFKnuth1992\"] = 1,\n [\"CITEREFKnuth1997\"] = 1,\n [\"CITEREFLando2003\"] = 1,\n [\"CITEREFMathar2012\"] = 1,\n [\"CITEREFPlouffe1992\"] = 1,\n [\"CITEREFRota1975\"] = 1,\n [\"CITEREFSchmidt2016\"] = 1,\n [\"CITEREFSchmidt2017\"] = 2,\n [\"CITEREFSchneider2007\"] = 1,\n [\"CITEREFSpivey2007\"] = 1,\n [\"CITEREFStanleyFomin1997\"] = 1,\n [\"CITEREFWall2018\"] = 1,\n [\"CITEREFWilf1994\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 2,\n [\"=\"] = 36,\n [\"About\"] = 1,\n [\"Abs\"] = 5,\n [\"Apostol IANT\"] = 1,\n [\"Authority control\"] = 1,\n [\"Block quote\"] = 2,\n [\"Cite arXiv\"] = 3,\n [\"Cite book\"] = 12,\n [\"Cite journal\"] = 7,\n [\"Cite thesis\"] = 1,\n [\"Cite web\"] = 1,\n [\"DEFAULTSORT:Generating Function\"] = 1,\n [\"Expand section\"] = 2,\n [\"Harvnb\"] = 14,\n [\"Li\"] = 1,\n [\"Main\"] = 4,\n [\"Main article\"] = 1,\n [\"Math\"] = 224,\n [\"Math theorem\"] = 2,\n [\"Mvar\"] = 109,\n [\"NoteFoot\"] = 1,\n [\"NoteTag\"] = 1,\n [\"Nowrap\"] = 6,\n [\"Pars\"] = 3,\n [\"Pprime\"] = 1,\n [\"Prime\"] = 1,\n [\"Reflist\"] = 1,\n [\"Resize\"] = 4,\n [\"Sfrac\"] = 15,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"Su\"] = 6,\n [\"Sub\"] = 2,\n [\"Very long\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-7f79446bf6-8sd9g","timestamp":"20241217232839","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Generating function","url":"https:\/\/en.wikipedia.org\/wiki\/Generating_function","sameAs":"http:\/\/www.wikidata.org\/entity\/Q860609","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q860609","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-12-23T13:31:35Z","dateModified":"2024-11-04T13:47:03Z","headline":"formal power series with coefficients that encode information about a sequence"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10