CINXE.COM
Search results for: fresh state properties
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fresh state properties</title> <meta name="description" content="Search results for: fresh state properties"> <meta name="keywords" content="fresh state properties"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fresh state properties" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fresh state properties"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16320</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fresh state properties</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16200</span> Influence of Annealing on the Mechanical Properties of Polyester-Cotton Friction Spun Yarn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujit%20Kumar%20Sinha">Sujit Kumar Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Chattopadhyay"> R. Chattopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the course of processing phases and use, fibres, yarns, or fabrics are subjected to a variety of stresses and strains, which cause the development of internal stresses. Given an opportunity, these inherent stresses try to bring back the structure to the original state. As an example, a twisted yarn always shows a tendency to untwist whenever its one end is made free. If the yarn is not held under tension, it may form snarls due to the presence of excessive torque. The running performance of such yarn or thread may, therefore, get negatively affected by it, as a snarl may not pass through the knitting or sewing needle smoothly, leading to an end break. A fabric shows a tendency to form wrinkles whenever squeezed. It may also shrink when brought to a relaxed state. In order to improve performance (i.e., dimensional stability or appearance), stabilization of the structure is needed. The stabilization can be attained through the release of internal stresses, which can be brought about by the process of annealing and/or other finishing treatments. When a fabric is subjected to heat, a change in the properties of the fibers, yarns, and fabric is expected. The degree to which the properties are affected would depend upon the condition of heat treatment and on the properties & structure of fibres, yarns, and fabric. In the present study, an attempt has been made to investigate the effect of annealing treatment on the properties of polyester cotton yarns with varying sheath structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20spun%20yarn" title="friction spun yarn">friction spun yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=tenacity" title=" tenacity"> tenacity</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=decay" title=" decay"> decay</a> </p> <a href="https://publications.waset.org/abstracts/183509/influence-of-annealing-on-the-mechanical-properties-of-polyester-cotton-friction-spun-yarn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16199</span> Density functional (DFT), Study of the Structural and Phase Transition of ThC and ThN: LDA vs GGA Computational</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Rekab%20Djabri">Hamza Rekab Djabri</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Daoud"> Salah Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper deals with the computational of structural and electronic properties of ThC and ThN compounds using density functional theory within generalized-gradient (GGA) apraximation and local density approximation (LDA). We employ the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the Lmtart code. We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), NiAs (B8), PbO (B10), Wurtzite (B4) , HCP (A3) βSn (A5) structures . The equilibrium lattice parameter, bulk modulus, and its pressure derivative were presented for all calculated phases. The calculated ground state properties are in good agreement with available experimental and theoretical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=GGA" title=" GGA"> GGA</a>, <a href="https://publications.waset.org/abstracts/search?q=LDA" title=" LDA"> LDA</a>, <a href="https://publications.waset.org/abstracts/search?q=properties%20structurales" title=" properties structurales"> properties structurales</a>, <a href="https://publications.waset.org/abstracts/search?q=ThC" title=" ThC"> ThC</a>, <a href="https://publications.waset.org/abstracts/search?q=ThN" title=" ThN"> ThN</a> </p> <a href="https://publications.waset.org/abstracts/157226/density-functional-dft-study-of-the-structural-and-phase-transition-of-thc-and-thn-lda-vs-gga-computational" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16198</span> Effect of Red Cabbage Antioxidant Extracts on Lipid Oxidation of Fresh Tilapia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Demirbas">Ayse Demirbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20A.%20Welt"> Bruce A. Welt</a>, <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Yagiz"> Yavuz Yagiz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxidation of polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fish causes loss of product quality. Oxidative rancidity causes loss of nutritional value and undesirable color changes. Therefore, powerful antioxidant extracts may provide a relatively low cost and natural means to reduce oxidation, resulting in longer, higher quality and higher value shelf life of foods. In this study, we measured effects of red cabbage antioxidant on lipid oxidation in fresh tilapia filets using thiobarbituric acid reactive substances (TBARS) assay, peroxide value (PV) and color assesment analysis. Extraction of red cabbage was performed using an efficient microwave method. Fresh tilapia filets were dipped in or sprayed with solutions containing different concentrations of extract. Samples were stored for up to 9 days at 4°C and analyzed every other day for color and lipid oxidation. Results showed that treated samples had lower oxidation than controls. Lipid peroxide values on treated samples showed benefits through day-7. Only slight differences were observed between spraying and dipping methods. This work shows that red cabbage antioxidant extracts may represent an inexpensive and all natural method for reducing oxidative spoilage of fresh fish. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20cabbage" title=" red cabbage"> red cabbage</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20oxidation" title=" lipid oxidation"> lipid oxidation</a> </p> <a href="https://publications.waset.org/abstracts/43552/effect-of-red-cabbage-antioxidant-extracts-on-lipid-oxidation-of-fresh-tilapia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16197</span> Optimization Model for Support Decision for Maximizing Production of Mixed Fresh Fruit Farms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9s%20I.%20%C3%81vila">Andrés I. Ávila</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Aros"> Patricia Aros</a>, <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9sar%20San%20Mart%C3%ADn"> César San Martín</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Kehr"> Elizabeth Kehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Yovana%20Leal"> Yovana Leal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Planning models for fresh products is a very useful tool for improving the net profits. To get an efficient supply chain model, several functions should be considered to get a complete simulation of several operational units. We consider a linear programming model to help farmers to decide if it is convenient to choose what area should be planted for three kinds of export fruits considering their future investment. We consider area, investment, water, productivity minimal unit, and harvest restrictions to develop a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability, and initial investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market. Also, this tool help to support decisions for government and individual farmers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20problem" title="mixed integer problem">mixed integer problem</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20fruit%20production" title=" fresh fruit production"> fresh fruit production</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20decision%20model" title=" support decision model"> support decision model</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20and%20biosystems%20engineering" title=" agricultural and biosystems engineering"> agricultural and biosystems engineering</a> </p> <a href="https://publications.waset.org/abstracts/26591/optimization-model-for-support-decision-for-maximizing-production-of-mixed-fresh-fruit-farms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16196</span> First Principal Calculation of Structural, Elastic and Thermodynamic Properties of Yttrium-Copper Intermetallic Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Benamrani">Ammar Benamrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates the equation of state parameters, elastic constants, and several other physical properties of (B2-type) Yttrium-Copper (YCu) rare earth intermetallic compound using the projected augmented wave (PAW) pseudopotentials method as implemented in the Quantum Espresso code. Using both the local density approximation (LDA) and the generalized gradient approximation (GGA), the finding of this research on the lattice parameter of YCu intermetallic compound agree very well with the experimental ones. The obtained results of the elastic constants and the Debye temperature are also in general in good agreement compared to the theoretical ones reported previously in literature. Furthermore, several thermodynamic properties of YCu intermetallic compound have been studied using quasi-harmonic approximations (QHA). The calculated data on the thermodynamic properties shows that the free energy and both isothermal and adiabatic bulk moduli decrease gradually with increasing of the temperature, while all other thermodynamic quantities increase with the temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yttrium-Copper%20intermetallic%20compound" title="Yttrium-Copper intermetallic compound">Yttrium-Copper intermetallic compound</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo_pw%20package" title=" thermo_pw package"> thermo_pw package</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20properties" title=" thermodynamic properties"> thermodynamic properties</a> </p> <a href="https://publications.waset.org/abstracts/132557/first-principal-calculation-of-structural-elastic-and-thermodynamic-properties-of-yttrium-copper-intermetallic-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16195</span> Physical Properties of Crushed Aggregates in Some Selected Quarries in Kwara State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Agbalajobi">S. A. Agbalajobi</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Bello"> W. A. Bello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines rock properties of crushed aggregate in some selected quarries in Kwara state, Nigeria. Some physical properties (chemical composition, mineral composition, particle size distribution) of gneiss sample were determined using ISRM standards. The physicomechanical properties (specific gravity, dry density, porosity, water absorption, point load index, tensile, and compressive strength) of the gneiss rock were evaluated. The analysis on the gneiss samples revealed the mean dry density and the unit weight are 2.52 g/m3, 2.63 g/m3, 2.38 g/m3; and 24.1 kN/m3, 25.78 kN/m3, 23.33 kN/m3, respectively (for locations A,B,C). The water absorption level of the gneiss rock sample ranged from 0.38 % – 0.57 % for the three locations. The mean Schmidt hammer rebound value ranged from 51.0 – 52.4 for the three locations and mean point load index values ranged from 9.89 – 10.56 MPa classified as very high strength while the uniaxial compressive strength of the rock samples revealed that its strength ranged from 120 - 139 MPa (for location A, B, and C) classified as strong rock. The aggregate impact value test and aggregate crushing value test conducted on the gneiss aggregates from the three locations in accordance with British Standard. The gneiss sample from the three locations (A, B, and C) is a good material for the production of construction works such as concrete, bricks, pavement, embankment among others, the compressive strength of the material is within the accepted limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gneiss" title="gneiss">gneiss</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregate%20impact" title=" aggregate impact"> aggregate impact</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregate%20crushing" title=" aggregate crushing"> aggregate crushing</a>, <a href="https://publications.waset.org/abstracts/search?q=physic-mechanical%20properties" title=" physic-mechanical properties"> physic-mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20hardness" title=" rock hardness"> rock hardness</a> </p> <a href="https://publications.waset.org/abstracts/32845/physical-properties-of-crushed-aggregates-in-some-selected-quarries-in-kwara-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16194</span> Spiking Behavior in Memristors with Shared Top Electrode Configuration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Manoj%20Kumar">B. Manoj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Malavika"> C. Malavika</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Kannan"> E. S. Kannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the switching behavior of two vertically aligned memristors connected by a shared top electrode, a configuration that significantly deviates from the conventional single oxide layer sandwiched between two electrodes. The device is fabricated by bridging copper electrodes with mechanically exfoliated van der Waals metal (specifically tantalum disulfide and tantalum diselenide). The device demonstrates threshold-switching behavior in its I-V characteristics. When the input voltage signal is ramped with voltages below the threshold, the output current shows spiking behavior, resembling integrated and firing actions without extra circuitry. We also investigated the self-reset behavior of the device. Using a continuous constant voltage bias, we activated the device to the firing state. After removing the bias and reapplying it shortly afterward, the current returned to its initial state. This indicates that the device can spontaneously return to its resting state. The outcome of this investigation offers a fresh perspective on memristor-based device design and an efficient method to construct hardware for neuromorphic computing systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20and%20firing" title="integrated and firing">integrated and firing</a>, <a href="https://publications.waset.org/abstracts/search?q=memristor" title=" memristor"> memristor</a>, <a href="https://publications.waset.org/abstracts/search?q=spiking%20behavior" title=" spiking behavior"> spiking behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20switching" title=" threshold switching"> threshold switching</a> </p> <a href="https://publications.waset.org/abstracts/183438/spiking-behavior-in-memristors-with-shared-top-electrode-configuration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16193</span> Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Zergoug">T. Zergoug</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20H.%20Abaidia"> S. E. H. Abaidia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nedjar"> A. Nedjar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Mokeddem"> M. Y. Mokeddem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical properties of uranium di-nitride (UN2) were investigated in detail using first principles calculations based on density functional theory. To treat the strong correlation effects caused by 5f Uranium valence electrons, on-site Coulomb interaction correction via the Hubbard-like term, U (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard U is strong like Young modulus but for others it is weakly noticeable such as the density of state (DOS) or bulk modulus. We noticed also that up from U=7.5 eV, elastic results become not conform to the cubic cell elastic criteria since the C44 values turn out to be negative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uranium%20diNitride" title="uranium diNitride">uranium diNitride</a>, <a href="https://publications.waset.org/abstracts/search?q=UN2" title=" UN2"> UN2</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%2BU" title=" DFT+U"> DFT+U</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20properties" title=" elastic properties"> elastic properties</a> </p> <a href="https://publications.waset.org/abstracts/14079/physical-properties-of-uranium-dinitride-un2-by-using-density-functional-theory-dft-and-dftu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16192</span> Condition Assessment of State-Owned Immovable Assets in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Collen%20Maseloane">Collen Maseloane</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Cloete"> Chris Cloete</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated the status of building condition assessments of state-owned immovable assets in South Africa. A stratified random sample of 200 (out of 372) personnel was drawn from the eight rele-vant business units of the Department of Public Works (DPW). A questionnaire comprising open-ended questions was distributed to the sampled participants and a total of 139 completed questionnaires were received. A significant number of state asset properties were found to be in poor condition owing to the asset managers’ inability to access automated information on the conditions of assets. It is recommended that the immovable asset register of the Department requires constant enhancement to update information on the condition of each state-owned immovable asset under its custodianship. Implementation of the proposals should contribute to the maintenance of the value of state assets in South Africa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20condition%20assessment" title="building condition assessment">building condition assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=immovable%20asset%20register" title=" immovable asset register"> immovable asset register</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20asset%20management" title=" life cycle asset management"> life cycle asset management</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20works" title=" public works"> public works</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/151098/condition-assessment-of-state-owned-immovable-assets-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16191</span> Dielectric Properties of La2MoO6 Ceramics at Microwave Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yih-Chien%20Chen">Yih-Chien Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Cheng%20You"> Yu-Cheng You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microwave dielectric properties of La2MoO6 ceramics were investigated with a view to their application in mobile communication. La2MoO6 ceramics were prepared by the conventional solid-state method with various sintering conditions. The X-ray diffraction peaks of La2MoO6 ceramic did not vary significantly with sintering conditions. The average grain size of La2MoO6 ceramics increased as the temperature and time of sintering increased. A maximum density of 5.67 g/cm3, a dielectric constants (εr) of 14.1, a quality factor (Q×f) of 68,000 GHz, and a temperature coefficient of resonant frequency (τf) of -56 ppm/℃ were obtained when La2MoO6 ceramics that were sintered at 1300 ℃ for 4h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramics" title="ceramics">ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20dielectric%20properties" title=" microwave dielectric properties"> microwave dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=La2MoO6" title=" La2MoO6"> La2MoO6</a> </p> <a href="https://publications.waset.org/abstracts/69632/dielectric-properties-of-la2moo6-ceramics-at-microwave-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16190</span> Adsorption and Electrochemical Regeneration for Industrial Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Mohammad">H. M. Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Martin"> A. Martin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Brown"> N. Brown</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hodson"> N. Hodson</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Hill"> P. Hill</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Roberts"> E. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphite intercalation compound (GIC) has been demonstrated to be a useful, low capacity and rapid adsorbent for the removal of organic micropollutants from water. The high electrical conductivity and low capacity of the material lends itself to electrochemical regeneration. Following electrochemical regeneration, equilibrium loading under similar conditions is reported to exceed that achieved by the fresh adsorbent. This behavior is reported in terms of the regeneration efficiency being greater than 100%. In this work, surface analysis techniques are employed to investigate the material in three states: ‘Fresh’, ‘Loaded’ and ‘Regenerated’. ‘Fresh’ GIC is shown to exhibit a hydrogen and oxygen rich surface layer approximately 150 nm thick. ‘Loaded’ GIC shows a similar but slightly thicker surface layer (approximately 370 nm thick) and significant enhancement in the hydrogen and oxygen abundance extending beyond 600 nm from the surface. 'Regenerated’ GIC shows an oxygen rich layer, slightly thicker than the fresh case at approximately 220 nm while showing a very much lower hydrogen enrichment at the surface. Results demonstrate that while the electrochemical regeneration effectively removes the phenol model pollutant, it also oxidizes the exposed carbon surface. These results may have a significant impact on the estimation of adsorbent life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphite" title="graphite">graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a> </p> <a href="https://publications.waset.org/abstracts/111239/adsorption-and-electrochemical-regeneration-for-industrial-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16189</span> Physicochemical Characteristics and Evaluation of Main Volatile Compounds of Fresh and Dehydrated Mango</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Terezinha%20Santos%20Leite%20Neta">Maria Terezinha Santos Leite Neta</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%B4nica%20Silva%20de%20Jesus"> Mônica Silva de Jesus</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Caroline%20Santos%20Araujo"> Hannah Caroline Santos Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Donizete%20Dutra%20Sandes"> Rafael Donizete Dutra Sandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquel%20Anne%20Ribeiro%20Dos%20Santos"> Raquel Anne Ribeiro Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Narain"> Narendra Narain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mango is one of the most consumed and appreciated fruits in the world, mainly due to its peculiar and characteristic aroma. Since the fruit is perishable, it requires conservation methods to prolong its shelf life. Mango cubes were dehydrated at 40°C, 50°C and 60°C and by lyophilization, and the effect of these processes was investigated on the physicochemical characteristics (color and texture) of the products and monitoring of the main volatile compounds for the mango aroma. Volatile compounds were extracted by the SPME technique and analyzed in GC-MS system. Drying temperature at 60°C and lyophilization showed higher efficiency in retention of main volatile compounds, being 63.93% and 60.32% of the total concentration present in the fresh pulp, respectively. The freeze-drying process also presented features closer to the fresh mango in relation to color and texture, which contributes to greater acceptability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mango" title="mango">mango</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze%20drying" title=" freeze drying"> freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=convection%20drying" title=" convection drying"> convection drying</a>, <a href="https://publications.waset.org/abstracts/search?q=aroma" title=" aroma"> aroma</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/183064/physicochemical-characteristics-and-evaluation-of-main-volatile-compounds-of-fresh-and-dehydrated-mango" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16188</span> Magnetic, Magnetocaloric, and Electrical Properties of Pr0.7Ca0.3Mn0.9M0.1O3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Selmi">A. Selmi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bettaibi"> A. Bettaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Rahmouni"> H. Rahmouni</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M%E2%80%99nassri"> R. M’nassri</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Chniba%20Boudjada"> N. Chniba Boudjada</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chiekhrouhou"> A. Chiekhrouhou</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khirouni"> K. Khirouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation of magnetic and magnetocaloric properties of Pr₀.₇Ca₀.₃Mn₀.₉M₀.₁O₃ perovskite manganites (M=Cr and Ni) has been carried out. Our compounds were prepared by the conventional solid-state reaction method at high temperatures. Rietveld refinement of X-ray diffraction pattern using FULLPROF method shows that all compounds adopt the orthorhombic structure with Pnma space group. The partial substitution of Mn-site drives the system from charge order state to ferromagnetic one with a Curie temperature T𝒸=150K, 118k and 116K for M=Cr and Ni, respectively. Magnetization measurements versus temperature in a magnetic applied field of 0.05T show that all our samples exhibit a paramagnetic–ferromagnetic transition with decreasing temperature. From M(H) isotherms, we have deduced the magnetic entropy change, which present maximum values of 2.37 J/kg.K and 2.94 J/kg.K, in a magnetic field change of 5T for M=Cr and Ni, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manganites" title="manganites">manganites</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetocaloric" title=" magnetocaloric"> magnetocaloric</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigeration" title=" refrigeration"> refrigeration</a> </p> <a href="https://publications.waset.org/abstracts/165914/magnetic-magnetocaloric-and-electrical-properties-of-pr07ca03mn09m01o3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16187</span> Effects of Bed Type, Corm Weight and Lifting Time on Quantitative and Qualitative Criteria of Saffron (Crocus sativus L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mollafilabi">A. Mollafilabi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Koocheki"> A. Koocheki</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rezvani%20Moghaddam"> P. Rezvani Moghaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nassiri%20Mahalati"> M. Nassiri Mahalati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effects of corm weights and times of corm lifting saffron in different planting beds, an experiment was conducted as Factorial layout based on a Randomized Complete Block Design with three replications at the Fadak Research Center of Agricultural Research in Food Science during 2010. Treatments were two corm weights (8-10, 10 < g), two planting beds (stone wool and peat moss) and five levels of lifting time (mi-June, early July, mid-July, early August and mid-August). No. of corms were 457 corms.m-2 and for 40 days and were stored for 90 days in incubation, 85% relative humidity and 25°C temperature in the darkness. Then, saffron corms were transferred to growth chamber with 17 °C in 8 hours light and 16 hours darkness. Characteristics were number of flower, fresh weight of flower, dry weight of flower, fresh and dry weight of stigma, fresh and dry weight of style, fresh and dry weight of stigma+style and Picrocrocin, Safronal and Crocin contents of saffron were measured. Results showed that the corm weight, bed type and time of corm lifting had significant effects on economical yield of saffron such as picked flowers, dry weight of stigma and fresh weight of flowers. The highest saffron economical yield was obtained in interaction of corm weight, 10 g, peat moss and lifting time in mid-June as much as 5.2 g.m-2. This yield is 11 fold of average yield of Iranian farms. Picrocrocin, Safranal and Crocin contents was graded as excellent thread in peat moss under controlled conditions compared with ISO Standard of 203. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corm%20density" title="corm density">corm density</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20stigma" title=" dry stigma"> dry stigma</a>, <a href="https://publications.waset.org/abstracts/search?q=safranal-flowering" title=" safranal-flowering"> safranal-flowering</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20saffron" title=" yield saffron"> yield saffron</a> </p> <a href="https://publications.waset.org/abstracts/40007/effects-of-bed-type-corm-weight-and-lifting-time-on-quantitative-and-qualitative-criteria-of-saffron-crocus-sativus-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16186</span> Hierarchical Manganese and Nickel Selenide based Ultra-efficient Electrode Material for All-Solid-State Asymmetric Supercapacitors with Extended Energy Efficacy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddhant%20Srivastav">Siddhant Srivastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumyaranjan%20Mishra"> Soumyaranjan Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumanta%20Kumar%20Meher"> Sumanta Kumar Meher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers are attempting to develop extremely efficient electrochemical energy storage technologies as a result of the phenomenal advancement of portable electronic devices. Because of their improved electrical conductivity and narrower band gap, transition metal selenide-based nanostructures have piqued the interest of many researchers in this field. Based on this concept, we present a simple anion exchange hydrothermal synthesis method for synthesizing manganese and nickel based selenide (Mn/NiSe2) nanostructure for use in all-solid-state asymmetric supercapacitors. According to the comprehensive physicochemical characterizations, the material has lowly crystalline properties, a distinct porous microstructure, and a significant bonding contact between the metal and the selenium. The electrochemical investigations of the Mn/NiSe2 electrode material revealed supercapacitive charge discharge properties, excellent electro-kinetic reversibility, and minimal charge transfer resistance (Rct). Furthermore, the all-solid-state asymmetric supercapacitor device assembled using Mn/NiSe2 as positive electrode, nitrogen doped reduced graphene oxide (N-rGO) as negative electrode, and PVA-KOH gel as electrolyte/separator exhibit good redox behaviour, excellent charge-discharge properties with negligible voltage (IR) drop, and lower impedance characteristics. The solid state asymmetric supercapacitor device (Mn/NiSe2||N-rGO) demonstrated the power density of ultra-capacitors and the energy density of rechargeable batteries. Conclusively, the Mn/NiSe2 has been proposed as a potential outstanding electrode material for the next generation of all-solid-state asymmetric supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anion%20exchange" title="anion exchange">anion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20supercapacitor" title=" asymmetric supercapacitor"> asymmetric supercapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitive%20charge-discharge" title=" supercapacitive charge-discharge"> supercapacitive charge-discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20drop" title=" voltage drop"> voltage drop</a> </p> <a href="https://publications.waset.org/abstracts/168493/hierarchical-manganese-and-nickel-selenide-based-ultra-efficient-electrode-material-for-all-solid-state-asymmetric-supercapacitors-with-extended-energy-efficacy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16185</span> Structural, Vibrational, Magnetic, and Electronic Properties of La₂MMnO₆ Double Perovskites with M = Ni, Co, and Zn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Ouachtouk">Hamza Ouachtouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Amine%20Harbi"> Amine Harbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Azerblou"> Said Azerblou</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Naimi"> Youssef Naimi</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Mostafa%20Tace"> El Mostafa Tace</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study delves into the structural, vibrational, magnetic, and electronic properties of La₂MMnO₆ double perovskites, where M denotes Ni, Co, and Zn. Recognized for their versatile ionic configurations within the A and B sub-lattices, double perovskite oxides have attracted considerable interest due to their extensive array of physical properties, which include multiferroic behavior, colossal magnetoresistance, and ferroelectric/piezoelectric functionalities. These materials are pivotal for energy-related technologies like solid oxide fuel cells and water-splitting catalysis, attributed to their superior oxygen ion transport and storage capabilities. This research places particular emphasis on La₂NiMnO₆ and La₂CoMnO₆, known for their distinct magnetic, electric, and multiferroic properties, and extends the investigation to La₂ZnMnO₆, synthesized via high-temperature solid-state chemistry. This addition aims to ascertain the impact of zinc substitution on these properties. Structural analysis through X-ray diffraction has confirmed a monoclinic structure within the P2₁/n space group. Comprehensive vibrational studies utilizing infrared and Raman spectroscopy, alongside additional XRD assessments, provide a detailed examination of the dynamic and electronic behaviors of these compounds. The results underscore the significant role of chemical composition in modulating their functional properties. Comparatively, this study highlights that zinc substitution notably alters the electronic and magnetic responses, which could enhance the applicability of these materials in advanced energy technologies. This expanded analysis not only reinforces our understanding of La₂MMnO₆'s physical characteristics but also highlights its potential applications in the next generation of energy solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20perovskites" title="double perovskites">double perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational%20spectroscopy" title=" vibrational spectroscopy"> vibrational spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20solid-state%20chemistry" title=" high-temperature solid-state chemistry"> high-temperature solid-state chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=La%E2%82%82MMnO%E2%82%86" title=" La₂MMnO₆"> La₂MMnO₆</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclinic%20structure" title=" monoclinic structure"> monoclinic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20diffraction" title=" x-ray diffraction"> x-ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/186358/structural-vibrational-magnetic-and-electronic-properties-of-la2mmno6-double-perovskites-with-m-ni-co-and-zn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16184</span> Determination of Selected Engineering Properties of Giant Palm Seeds (Borassus Aethiopum) in Relation to Its Oil Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasheed%20Amao%20Busari">Rasheed Amao Busari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ibrahim"> Ahmed Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The engineering properties of giant palms are crucial for the reasonable design of the processing and handling systems. The research was conducted to investigate some engineering properties of giant palm seeds in relation to their oil potential. The ripe giant palm fruit was sourced from some parts of Zaria in Kaduna State and Ado Ekiti in Ekiti State, Nigeria. The mesocarps of the fruits collected were removed to obtain the nuts, while the collected nuts were dried under ambient conditions for several days. The actual moisture content of the nuts at the time of the experiment was determined using KT100S Moisture Meter, with moisture content ranged 17.9% to 19.15%. The physical properties determined are axial dimension, geometric mean diameter, arithmetic mean diameter, sphericity, true and bulk densities, porosity, angles of repose, and coefficients of friction. The nuts were measured using a vernier caliper for physical assessment of their sizes. The axial dimensions of 100 nuts were taken and the result shows that the size ranges from 7.30 to 9.32cm for major diameter, 7.2 to 8.9 cm for intermediate diameter, and 4.2 to 6.33 for minor diameter. The mechanical properties determined were compressive force, compressive stress, and deformation both at peak and break using Instron hydraulic universal tensile testing machine. The work also revealed that giant palm seed can be classified as an oil-bearing seed. The seed gave 18% using the solvent extraction method. The results obtained from the study will help in solving the problem of equipment design, handling, and further processing of the seeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=giant%20palm%20seeds" title="giant palm seeds">giant palm seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20properties" title=" engineering properties"> engineering properties</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20potential" title=" oil potential"> oil potential</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20giant%20palm%20fruit" title=" and giant palm fruit"> and giant palm fruit</a> </p> <a href="https://publications.waset.org/abstracts/171478/determination-of-selected-engineering-properties-of-giant-palm-seeds-borassus-aethiopum-in-relation-to-its-oil-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16183</span> Optimization in the Compressive Strength of Iron Slag Self-Compacting Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luis%20E.%20Zapata">Luis E. Zapata</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Ruiz"> Sergio Ruiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20F.%20Mantilla"> María F. Mantilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhon%20A.%20Villamizar"> Jhon A. Villamizar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sand as fine aggregate for concrete production needs a feasible substitute due to several environmental issues. In this work, a study of the behavior of self-compacting concrete mixtures under replacement of sand by iron slag from 0.0% to 50.0% of weight and variations of water/cementitious material ratio between 0.3 and 0.5 is presented. Control fresh state tests of Slump flow, T500, J-ring and L-box were determined. In the hardened state, compressive strength was determined and optimization from response surface analysis was performed. The study of the variables in the hardened state was developed based on inferential statistical analyses using central composite design methodology and posterior analyses of variance (ANOVA). An increase in the compressive strength up to 50% higher than control mixtures at 7, 14, and 28 days of maturity was the most relevant result regarding the presence of iron slag as replacement of natural sand. Considering the obtained result, it is possible to infer that iron slag is an acceptable alternative replacement material of the natural fine aggregate to be used in structural concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title="ANOVA">ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20slag" title=" iron slag"> iron slag</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20analysis" title=" response surface analysis"> response surface analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title=" self-compacting concrete"> self-compacting concrete</a> </p> <a href="https://publications.waset.org/abstracts/107251/optimization-in-the-compressive-strength-of-iron-slag-self-compacting-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16182</span> Efficacy of Nemafric-BL Phytonematicide on Suppression of Root-Knot Nematodes and Growth of Tomato Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pontsho%20E.%20Tseke">Pontsho E. Tseke</a>, <a href="https://publications.waset.org/abstracts/search?q=Phatu%20W.%20Mashela"> Phatu W. Mashela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cucurbitacin-containing phytonematicides had been consistent in suppressing root-knot (Meloidogyne species) when used in dried crude form, with limited evidence whether the efficacy could be affected when fresh fruits were used during fermentation. The objective of this study was to determine the influence of Nemafric-BL phytonematicide prepared using fermented crude extracts of fresh fruit from wild watermelon (Cucumis africanus) on the growth of tomato (Solanum lycopersicum) plants and suppression of Meloidogyne species. Seedlings of tomato cultivar ‘Floradade’ were inoculated with 3 000 eggs and second-stage juveniles (J2) of M. incognita race 2 in pot trials, with treatments comprising 0, 2, 4, 8, 16, 32 and 64 % Nemafric-BL phytonematicide. At 56 days after inoculation, the phytonematicide reduced eggs and J2 in roots by 84-97%, J2 in soil by 49-96% and total nematodes by 70-97%. Plant variables and concentrations of Nemafric-BL phytonematicide exhibited positive quadratic relations, with 74-98% associations. In conclusion, fresh fruit of C. africanus could be used for the preparation of Nemafric-BL phytonematicide, particularly in cases where the dry infrastructure is not available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cucurbitacin%20B" title="Cucurbitacin B">Cucurbitacin B</a>, <a href="https://publications.waset.org/abstracts/search?q=density-dependent%20growth" title=" density-dependent growth"> density-dependent growth</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20microorganisms" title=" effective microorganisms"> effective microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=quadratic%20relations" title=" quadratic relations"> quadratic relations</a> </p> <a href="https://publications.waset.org/abstracts/72583/efficacy-of-nemafric-bl-phytonematicide-on-suppression-of-root-knot-nematodes-and-growth-of-tomato-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16181</span> Interaction between River and City Morphology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Abshirini">Ehsan Abshirini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rivers as one of the most important topographic factors have played a strategic role not only on the appearance of cities but they also affect the structure and morphology of cities. In this paper author intends to find out how a city in its physical network interacts with a river flowing inside. The pilot study is Angers, a city in western France, in which it is influenced by the Maine River. To this purpose space syntax method integrating with GIS is used to extract the properties of physical form of cities in terms of global and local integration value, accessibility and choice value. Simulating the state of absence of river in this city and comparing the result to the current state of city according to the effect of river on the morphology of areas located in different banks of river is also part of interest in this paper. The results show that although a river is not comparable to the city based on size and the area occupied by, it has a significant effect on the form of the city in both global and local properties. In addition, this study endorses that tracking the effect of river-cities and their interaction to rivers in a hybrid of space syntax and GIS may lead researchers to improve their interpretation of physical form of these types of cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river-cities" title="river-cities">river-cities</a>, <a href="https://publications.waset.org/abstracts/search?q=Physical%20form" title=" Physical form"> Physical form</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20syntax%20properties" title=" space syntax properties"> space syntax properties</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=topographic%20factor" title=" topographic factor"> topographic factor</a> </p> <a href="https://publications.waset.org/abstracts/37096/interaction-between-river-and-city-morphology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16180</span> Competing Interactions, and Magnetization Dynamics in Doped Rare-Earth Manganites Nanostructural System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wiqar%20Hussain%20Shah">Wiqar Hussain Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Structural, magnetic and transport behavior of La1-xCaxMnO3+ (x=0.48, 0.50, 0.52 and 0.55 and =0.015) compositions close to charge ordering, was studied through XRD, resistivity, DC magnetization and AC susceptibility measurements. With time and thermal cycling (T<300 K) there is an irreversible transformation of the low-temperature phase from a partially ferromagnetic and metallic to one that is less ferromagnetic and highly resistive. For instance, an increase of resistivity can be observed by thermal cycling, where no effect is obtained for lower Ca concentration. The time changes in the magnetization are logarithmic in general and activation energies are consistent with those expected for electron transfer between Mn ions. The data suggest that oxygen non-stoichiometry results in mechanical strains in this two-phase system, leading to the development of irreversible metastable states, which relax towards the more stable charge-ordered and antiferromagnetic microdomains at the nano-meter size. This behavior is interpreted in terms of strains induced charge localization at the interface between FM/AFM domains in the antiferromagnetic matrix. Charge, orbital ordering and phase separation play a prominent role in the appearance of such properties, since they can be modified in a spectacular manner by external factor, making the different physical properties metastable. Here we describe two factors that deeply modify those properties, viz. the doping concentration and the thermal cycling. The metastable state is recovered by the high temperature annealing. We also measure the magnetic relaxation in the metastable state and also the revival of the metastable state (in a relaxed sample) due to high temperature (800 ) thermal treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rare-earth%20maganites" title="Rare-earth maganites">Rare-earth maganites</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-structural%20materials" title=" nano-structural materials"> nano-structural materials</a>, <a href="https://publications.waset.org/abstracts/search?q=doping%20effects%20on%20electrical" title=" doping effects on electrical"> doping effects on electrical</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=competing%20interactions" title=" competing interactions"> competing interactions</a> </p> <a href="https://publications.waset.org/abstracts/124247/competing-interactions-and-magnetization-dynamics-in-doped-rare-earth-manganites-nanostructural-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16179</span> Changes in Some Morphological Characters of Dill Under Cadmium Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Daneshian%20Moghaddam">A. M. Daneshian Moghaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Hosseinzadeh"> A. H. Hosseinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bandehagh"> A. Bandehagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate the effect of cadmium heavy metal stress on five ecotype of dill, this experiment was conducted in the greenhouse of Tabriz University and Shabestar Islamic Azad University’s laboratories with tree replications. After growing the plants, cadmium treatments (concentration 0,300, 600 µmol) were applied. The essential oil of the samples was measured by hydro distillation and using a Clevenger apparatus. Variables used in this study include: wet and dry roots and aerial part of plant, plant height, stem diameter, and root length. The results showed that different concentrations of heavy metal has statistical difference (p < 0.01) on the fresh weight, dry weight, plant height and root length but hadn’t significant difference on essential oil percentage and root length. Dill ecotypes have statistical significant difference on essential oil percent, fresh plant weight, plant height, root length, except plant dry weight. The interactions between Cd concentration and dill ecotypes have not significant effect on all traits, except root length. Maximum fresh weight (4.98 gr) and minimum amount (3.13 gr) were obtained in control trait and 600 ppm of cd concentration, respectively. Highest amount of fresh weight (4.78 gr) was obtained in Birjand ecotype. Maximum plant dry weight (1.2 gr) was obtained at control. The highest plant height (32.54 cm) was obtained in control and with applies cadmium concentrations from zero to 300 and 600 ppm was found significantly reduced in plant height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollution" title="pollution">pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=ecotype" title=" ecotype"> ecotype</a>, <a href="https://publications.waset.org/abstracts/search?q=dill" title=" dill"> dill</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a> </p> <a href="https://publications.waset.org/abstracts/28862/changes-in-some-morphological-characters-of-dill-under-cadmium-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16178</span> Structural and Thermodynamic Properties of MnNi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Benkhettoua">N. Benkhettoua</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Barkata"> Y. Barkata </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present first-principles studies of structural and thermodynamic properties of MnNi According to the calculated total energies, by using an all-electron full-potential linear muffin–tin orbital method (FP-LMTO) within LDA and the quasi-harmonic Debye model implemented in the Gibbs program is used for the temperature effect on structural and calorific properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title="magnetic materials">magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20properties" title=" structural properties"> structural properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20properties" title=" thermodynamic properties"> thermodynamic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20and%20materials%20engineering" title=" metallurgical and materials engineering"> metallurgical and materials engineering</a> </p> <a href="https://publications.waset.org/abstracts/14206/structural-and-thermodynamic-properties-of-mnni" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16177</span> Achieving Sustainable Agriculture with Treated Municipal Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reshu%20Yadav">Reshu Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Joshi"> Himanshu Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Tripathi"> S. K. Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fresh water is a scarce resource which is essential for humans and ecosystems, but its distribution is uneven. Agricultural production accounts for 70% of all surface water supplies. It is projected that against the expansion in the area equipped for irrigation by 0.6% per year, the global potential irrigation water demand would rise by 9.5% during 2021-25. This would, on one hand, have to compete against the sharply rising urban water demand. On the other, it would also have to face the fear of climate change, as temperatures rise and crop yields could drop from 10-30% in many large areas. The huge demand for irrigation combined with fresh water scarcity encourages to explore the reuse of wastewater as a resource. However, the use of such wastewater is often linked to the safety issues when used non judiciously or with poor safeguards while irrigating food crops. Paddy is one of the major crops globally and amongst the most important in South Asia and Africa. In many parts of the world, use of municipal wastewater has been promoted as a viable option in this regard. In developing and fast growing countries like India, regularly increasing wastewater generation rates may allow this option to be considered quite seriously. In view of this, a pilot field study was conducted at the Jagjeetpur Municipal Sewage treatment plant situated in the Haridwar town of Uttarakhand state, India. The objectives of the present study were to study the effect of treated wastewater on the production of various paddy varieties (Sharbati, PR-114, PB-1, Menaka, PB1121 and PB 1509) and emission of GHG gases (CO2, CH4 and N2O) as compared to the same varieties grown in the control plots irrigated with fresh water. Of late, the concept of water footprint assessment has emerged, which explains enumeration of various types of water footprints of an agricultural entity from its production to processing stages. Paddy, the most water demanding staple crop of Uttarakhand state, displayed a high green water footprint value of 2966.538 m3/ton. Most of the wastewater irrigated varieties displayed upto 6% increase in production, except Menaka and PB-1121, which showed a reduction in production (6% and 3% respectively), due to pest and insect infestation. The treated wastewater was observed to be rich in Nitrogen (55.94 mg/ml Nitrate), Phosphorus (54.24 mg/ml) and Potassium (9.78 mg/ml), thus rejuvenating the soil quality and not requiring any external nutritional supplements. Percentage increase of GHG gases on irrigation with treated municipal waste water as compared to control plots was observed as 0.4% - 8.6% (CH4), 1.1% - 9.2% (CO2), and 0.07% - 5.8% (N2O). The variety, Sharbati, displayed maximum production (5.5 ton/ha) and emerged as the most resistant variety against pests and insects. The emission values of CH4 ,CO2 and N2O were 729.31 mg/m2/d, 322.10 mg/m2/d and 400.21 mg/m2/d in water stagnant condition. This study highlighted a successful possibility of reuse of wastewater for non-potable purposes offering the potential for exploiting this resource that can replace or reduce existing use of fresh water sources in agricultural sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title="greenhouse gases">greenhouse gases</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20footprint" title=" water footprint"> water footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20irrigation" title=" wastewater irrigation "> wastewater irrigation </a> </p> <a href="https://publications.waset.org/abstracts/29421/achieving-sustainable-agriculture-with-treated-municipal-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16176</span> Extraction, Characterization and Application of Natural Dyes from the Fresh Rind of Index Colour 5 Mangosteen (Garcinia mangostana L.) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basitah%20Taif">Basitah Taif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was to explore and utilize the fresh rind of mangosteen Index Colour 5 as an upcoming raw material for the production of natural dyes. Rind from the fresh mangosteen Index Colour 5 was utilized to extract the dyes. The established extracts were experimented on silk fabrics via three types of mordanting and dyeing procedures; pre-mordanting, simultaneous mordanting and post-mordanting. As a result, the applications of the freeze-drying methodology and mechanizable equipment have helped to produce excellent range of natural colours. Silk fabric treated simultaneously with mordanting and dyeing with extract dye Index Colour 5 produced a brilliant shade of the red colour and the colour from this index is also discovered sensitive to light and washing during the fastness tests. The preliminary evaluation and instrumentation analysis allowed us to examine whether the application of different mordanting and dyeing procedures with the same extract samples and concentrations affected the colours and shades of the fabric samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20dye" title="natural dye">natural dye</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-drying" title=" freeze-drying"> freeze-drying</a>, <a href="https://publications.waset.org/abstracts/search?q=Garcinia%20mangostana%20Linn" title=" Garcinia mangostana Linn"> Garcinia mangostana Linn</a>, <a href="https://publications.waset.org/abstracts/search?q=mordanting" title=" mordanting "> mordanting </a> </p> <a href="https://publications.waset.org/abstracts/25204/extraction-characterization-and-application-of-natural-dyes-from-the-fresh-rind-of-index-colour-5-mangosteen-garcinia-mangostana-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16175</span> Stoner Impurity Model in Nickel Hydride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Leon">Andrea Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Florez"> J. M. Florez</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Vargas"> P. Vargas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of hydrogen adsorption on the magnetic properties of fcc Ni has been calculated using the linear-muffin-tin-orbital formalism and using the local-density approximation for the exchange y correlation. The calculations for the ground state show that the sequential addition of hydrogen atoms is found to monotonically reduce the total magnetic moment of the Ni fcc structure, as a result of changes in the exchange-splitting parameter and in the Fermi energy. In order to physically explain the effect of magnetization reduction as the Hydrogen concentration increases, we propose a Stoner impurity model to describe the influence of H impurity on the magnetic properties of Nickel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20structure" title="electronic structure">electronic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickel%20hydride" title=" Nickel hydride"> Nickel hydride</a>, <a href="https://publications.waset.org/abstracts/search?q=stoner%20model" title=" stoner model"> stoner model</a> </p> <a href="https://publications.waset.org/abstracts/31130/stoner-impurity-model-in-nickel-hydride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16174</span> Ground State Properties of Neutron Magic Isotones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Saxena">G. Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kaushik"> M. Kaushik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, we have employed RMF+BCS (relativistic mean-field plus BCS) approach to carry out a systematic study for the ground state properties of the entire chains of even-even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126. The main body of the results of our calculations includes the binding energy, deformation, two proton separation energies, rms radii of the proton and neutron distributions as well as the proton and neutron density profiles etc. Several of these results have been given in the form of a series of graphs for a ready reference. In addition, the possible locations of the proton and neutron drip-lines as well as the (Z,N) values for the shell closures as suggested by the detailed analyzes of the single particle spectra, and the two proton and two-neutron separation energies for the different isotonic chains are also discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relativistic%20mean%20field%20theory" title="relativistic mean field theory">relativistic mean field theory</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20magic%20nuclei" title=" neutron magic nuclei"> neutron magic nuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20closure" title=" shell closure"> shell closure</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20energy" title=" separation energy"> separation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a> </p> <a href="https://publications.waset.org/abstracts/13497/ground-state-properties-of-neutron-magic-isotones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16173</span> Iron Doped Biomaterial Calcium Borate: Synthesis and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20%C3%87elik%20G%C3%BCl">G. Çelik Gül</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Kurtulu%C5%9F"> F. Kurtuluş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colemanite is the most common borate mineral, and the main source of the boron required by plants, human, and earth. Transition metals exhibit optical and physical properties such as; non-linear optical character, structural diversity, thermal stability, long cycle life and luminescent radiation. The doping of colemanite with a transition metal, bring it very interesting and attractive properties which make them applicable in industry. Iron doped calcium borate was synthesized by conventional solid state method at 1200 °C for 12 h with a systematic pathway. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS) were used to characterize structural and morphological properties. Also, thermal properties were recorded by thermogravimetric-differential thermal analysis (TG/DTA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colemanite" title="colemanite">colemanite</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20synthesis" title=" conventional synthesis"> conventional synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20x-ray%20diffraction" title=" powder x-ray diffraction"> powder x-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=borates" title=" borates"> borates</a> </p> <a href="https://publications.waset.org/abstracts/60835/iron-doped-biomaterial-calcium-borate-synthesis-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16172</span> A Study of Mortars with Granulated Blast Furnace Slag as Fine Aggregate and Its Influence on Properties of Burnt Clay Brick Masonry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vibha%20Venkataramu">Vibha Venkataramu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Venkatarama%20Reddy"> B. V. Venkatarama Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural river sand is the most preferred choice as fine aggregate in masonry mortars. Uncontrolled mining of sand from riverbeds for several decades has had detrimental effects on the environment. Several countries across the world have put strict restrictions on sand mining from riverbeds. However, in countries like India, the huge infrastructural boom has made the local construction industry to look for alternative materials to sand. This study aims at understanding the suitability of granulated blast furnace slag (GBS) as fine aggregates in masonry mortars. Apart from characterising the material properties of GBS, such as particle size distribution, pH, chemical composition, etc., of GBS, tests were performed on the mortars with GBS as fine aggregate. Additionally, the properties of five brick tall, stack bonded masonry prisms with various types of GBS mortars were studied. The mortars with mix proportions 1: 0: 6 (cement: lime: fine aggregate), 1: 1: 6, and 1: 0: 3 were considered for the study. Fresh and hardened properties of mortar, such as flow and compressive strength, were studied. To understand the behaviour of GBS mortars on masonry, tests such as compressive strength and flexure bond strength were performed on masonry prisms made with a different type of GBS mortars. Furthermore, the elastic properties of masonry with GBS mortars were also studied under compression. For comparison purposes, the properties of corresponding control mortars with natural sand as fine aggregate and masonry prisms with sand mortars were also studied under similar testing conditions. From the study, it was observed the addition of GBS negatively influenced the flow of mortars and positively influenced the compressive strength. The GBS mortars showed 20 to 25 % higher compressive strength at 28 days of age, compared to corresponding control mortars. Furthermore, masonry made with GBS mortars showed nearly 10 % higher compressive strengths compared to control specimens. But, the impact of GBS on the flexural strength of masonry was marginal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20aggregate" title=" fine aggregate"> fine aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=granulated%20blast%20furnace%20slag%20in%20mortars" title=" granulated blast furnace slag in mortars"> granulated blast furnace slag in mortars</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20properties" title=" masonry properties"> masonry properties</a> </p> <a href="https://publications.waset.org/abstracts/116432/a-study-of-mortars-with-granulated-blast-furnace-slag-as-fine-aggregate-and-its-influence-on-properties-of-burnt-clay-brick-masonry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16171</span> Dependence of Dielectric Properties on Sintering Conditions of Lead Free KNN Ceramics Modified With Li-Sb</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roopam%20Gaur">Roopam Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Chandramani%20Singh"> K. Chandramani Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhapiyari%20Laishram"> Radhapiyari Laishram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to produce lead free piezoceramics with optimum piezoelectric and dielectric properties, KNN modified with Li+ (as an A site dopant) and Sb5+ (as a B site dopant) (K0.49Na0.49Li0.02) (Nb0.96Sb0.04) O3 (referred as KNLNS in this paper) have been synthesized using solid state reaction method and conventional sintering technique. The ceramics were sintered in the narrow range of 10500C-10900C for 2-3 hours to get precise information about sintering parameters. Detailed study of dependence of microstructural, dielectric and piezoelectric properties on sintering conditions was then carried out. The study suggests that the volatility of the highly hygroscopic KNN ceramics is not only sensitive to sintering temperatures but also to sintering durations. By merely reducing the sintering duration for a given sintering temperature we saw an increase in the density of the samples which was supported by the increase in dielectric constants of the ceramics. And since density directly or indirectly affects almost all the associated properties, other dielectric and piezoelectric properties were also enhanced as we approached towards the most suitable sintering temperature and duration combination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title="piezoelectric">piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric" title=" dielectric"> dielectric</a>, <a href="https://publications.waset.org/abstracts/search?q=Li" title=" Li"> Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Sb" title=" Sb"> Sb</a>, <a href="https://publications.waset.org/abstracts/search?q=KNN" title=" KNN"> KNN</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20sintering" title=" conventional sintering"> conventional sintering</a> </p> <a href="https://publications.waset.org/abstracts/28869/dependence-of-dielectric-properties-on-sintering-conditions-of-lead-free-knn-ceramics-modified-with-li-sb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=4" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=543">543</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=544">544</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fresh%20state%20properties&page=6" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>