CINXE.COM
Search results for: deep belief net
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: deep belief net</title> <meta name="description" content="Search results for: deep belief net"> <meta name="keywords" content="deep belief net"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="deep belief net" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="deep belief net"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2545</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: deep belief net</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2545</span> Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khitem%20Amiri">Khitem Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Farah"> Mohamed Farah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20images" title="hyperspectral images">hyperspectral images</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20belief%20network" title=" deep belief network"> deep belief network</a>, <a href="https://publications.waset.org/abstracts/search?q=radiometric%20indices" title=" radiometric indices"> radiometric indices</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a> </p> <a href="https://publications.waset.org/abstracts/93458/enhanced-image-representation-for-deep-belief-network-classification-of-hyperspectral-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2544</span> Gender Recognition with Deep Belief Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoqi%20Jia">Xiaoqi Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Zhu"> Qing Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Zhang"> Hao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Yang"> Su Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gender%20recognition" title="gender recognition">gender recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=beep%20belief%20net-works" title=" beep belief net-works"> beep belief net-works</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-supervised%20learning" title=" semi-supervised learning"> semi-supervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy-layer%20wise%20RBMs" title=" greedy-layer wise RBMs"> greedy-layer wise RBMs</a> </p> <a href="https://publications.waset.org/abstracts/56147/gender-recognition-with-deep-belief-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2543</span> Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Qingjian">Li Qingjian</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Ke"> Li Ke</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Chun"> He Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Huang%20Yong"> Huang Yong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DBN" title="DBN">DBN</a>, <a href="https://publications.waset.org/abstracts/search?q=SOM" title=" SOM"> SOM</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20classification" title=" pattern classification"> pattern classification</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral" title=" hyperspectral"> hyperspectral</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20compression" title=" data compression"> data compression</a> </p> <a href="https://publications.waset.org/abstracts/89759/hyperspectral-data-classification-algorithm-based-on-the-deep-belief-and-self-organizing-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2542</span> Health Trajectory Clustering Using Deep Belief Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farshid%20Hajati">Farshid Hajati</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Girosi"> Federico Girosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shima%20Ghassempour"> Shima Ghassempour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20trajectory" title="health trajectory">health trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=DBN" title=" DBN"> DBN</a> </p> <a href="https://publications.waset.org/abstracts/37834/health-trajectory-clustering-using-deep-belief-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2541</span> Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hruschka">H. Hruschka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20factor%20analysis" title="binary factor analysis">binary factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net" title=" deep belief net"> deep belief net</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20basket%20analysis" title=" market basket analysis"> market basket analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=restricted%20Boltzmann%20machine" title=" restricted Boltzmann machine"> restricted Boltzmann machine</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20models" title=" topic models"> topic models</a> </p> <a href="https://publications.waset.org/abstracts/84200/restricted-boltzmann-machines-and-deep-belief-nets-for-market-basket-analysis-statistical-performance-and-managerial-implications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2540</span> Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Praveenkumar">T. Praveenkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulpreet%20Singh"> Kulpreet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Divy%20Bhanpuriya"> Divy Bhanpuriya</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saimurugan"> M. Saimurugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20belief%20networks" title="deep belief networks">deep belief networks</a>, <a href="https://publications.waset.org/abstracts/search?q=DBN" title=" DBN"> DBN</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20feed%20forward%20neural%20network" title=" deep feed forward neural network"> deep feed forward neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=DFFNN" title=" DFFNN"> DFFNN</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion%20of%20algorithm" title=" fusion of algorithm"> fusion of algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20signal" title=" vibration signal"> vibration signal</a> </p> <a href="https://publications.waset.org/abstracts/126562/performance-enrichment-of-deep-feed-forward-neural-network-and-deep-belief-neural-networks-for-fault-detection-of-automobile-gearbox-using-vibration-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2539</span> A Survey of Sentiment Analysis Based on Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pingping%20Lin">Pingping Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Luo"> Xudong Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yifan%20Fan"> Yifan Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=document%20analysis" title="document analysis">document analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20sentiment%20analysis" title=" multimodal sentiment analysis"> multimodal sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a> </p> <a href="https://publications.waset.org/abstracts/130107/a-survey-of-sentiment-analysis-based-on-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2538</span> Explaining the Relationship between Religiosity and Resilience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Phillips">Rita Phillips</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Burgess"> Mark Burgess</a>, <a href="https://publications.waset.org/abstracts/search?q=Maga%20Berlinski"> Maga Berlinski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although the positive impact of religiosity on well-being, health, and life-coping abilities is well known, up to date research has failed to provide scientific evidence for the relationship reasons. Therefore the present study took a qualitative approach by examining how religiosity interacts in coping with emotionally distressful situations, for which wedding preparations are an example. Wedding preparations, related to the experience of ambiguous emotions, can be the reason for phases of high distress. Although being per-se religious ceremonies, they are also socially-scripted and characterized by people’s striving for personally meaningful celebrations. The negotiation of these many influences can evoke conflicts. To reveal components of religiosity which contribute to stress-resolution, eight biographic-narrative interviews with recently married spouses were conducted. Participants were from different nationalities and Catholic deep-belief communities in order to determine factors independent from national-culture and social-subgroup. The audio-tape recorded, transcribed and translated interviews were analyzed by Interpretative Phenomenological Analysis. Opposing previous research on wedding-related conflicts but in-line with the quantitative account on the relation between stress-resilience and religiosity, the present study found participants reporting very low levels of distress and ambiguity. Although similar areas of potential conflicts were revealed, deep-belief Christians seemed to handle them in a different way. Participants freed themselves from own and others’ rigor mundane expectations by their spiritual preparation and the focus on a divine instance. This evoked a feeling of perceived closeness to God and of unconditional love, resulting in acceptance of oneself and others. Through relativizing mundane goods, participants perceived absolute freedom. Thus belief did not supplement coping strategies, previously defined in the literature, but substituted them. The paper implies that in explaining the connection between stress-resilience and religiosity, one’s perception and experience of unconditional love might outweigh other social or personal factors. However, further qualitative investigations are needed to fully explain the phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep-belief" title="deep-belief">deep-belief</a>, <a href="https://publications.waset.org/abstracts/search?q=religiosity" title=" religiosity"> religiosity</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=wedding" title=" wedding"> wedding</a> </p> <a href="https://publications.waset.org/abstracts/53586/explaining-the-relationship-between-religiosity-and-resilience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2537</span> A Critical Analysis of Cognitive Explanations of Afterlife Belief</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Biabanaki">Mahdi Biabanaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Religion is present in all human societies and has been for tens of thousands of years. What is noteworthy is that although religious traditions vary in different societies, there are considerable similarities in their religious beliefs. In all human cultures, for example, there is a widespread belief in the afterlife. Cognitive science of Religion (CSR), an emerging branch of cognitive science, searches for the root of these widespread similarities and the widespread prevalence of beliefs such as beliefs in the afterlife in common mental structures among humans. Accordingly, the cognitive architecture of the human mind has evolved to produce such beliefs automatically and non-reflectively. For CSR researchers, belief in the afterlife is an intuitive belief resulting from the functioning of mental tools. Our purpose in this article is to extract and evaluate the cognitive explanations presented in the CSR field for explaining beliefs in the afterlife. Our research shows that there are two basic theories in this area of CSR, namely "intuitive dualism" and "simulation constraint" theory. We show that these two theories face four major challenges and limitations in explaining belief in the afterlife: inability to provide a causal explanation, inability to explain cultural/religious differences in afterlife belief, the lack of distinction between the natural and the rational foundations of belief in the afterlife and disregarding the supernatural foundations of the afterlife belief. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=afterlife" title="afterlife">afterlife</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20science%20of%20religion" title=" cognitive science of religion"> cognitive science of religion</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitive%20dualism" title=" intuitive dualism"> intuitive dualism</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20constraint" title=" simulation constraint"> simulation constraint</a> </p> <a href="https://publications.waset.org/abstracts/129437/a-critical-analysis-of-cognitive-explanations-of-afterlife-belief" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2536</span> Changes in Religious Belief after Flood Disasters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sapora%20Sipon">Sapora Sipon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Fo%E2%80%99ad%20Sakdan"> Mohd Fo’ad Sakdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Che%20Su%20Mustaffa"> Che Su Mustaffa</a>, <a href="https://publications.waset.org/abstracts/search?q=Najib%20Ahmad%20Marzuki"> Najib Ahmad Marzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Sukeri%20Khalid"> Mohamad Sukeri Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Taib%20Ariffin"> Mohd Taib Ariffin</a>, <a href="https://publications.waset.org/abstracts/search?q=Husni%20Mohd%20Radzi"> Husni Mohd Radzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salhah%20Abdullah"> Salhah Abdullah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flood disasters occur throughout the world including Malaysia. The major flood disaster that hit Malaysia in the 2014-2015 episodes proved the psychosocial and mental health consequences such as vivid images of destruction, upheaval, death and loss of lives. Flood, flood survivors reported that flood has changed one looks at their religious belief. The main objective of this paper is to investigate the changes in religious belief after the 2014-2015 Malaysia flood disaster. The total population of 1300 respondents who experienced the 2014-2015 Malaysia flood were surveyed a month after the disaster. The questionnaires were used to measure religiosity and stress. The results provide compelling evidence that religion played an important role in the lives of Malaysia flood disasters’ survivor where more than half of the respondents (>75%) experiencing the strengthening of their religious belief. It was also reported the victims’ strengthening of their religious belief proved to be a powerful factor in reducing stress in the aftermath of the flood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=religious%20belief" title="religious belief">religious belief</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20disaster" title=" flood disaster"> flood disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=humanity" title=" humanity"> humanity</a>, <a href="https://publications.waset.org/abstracts/search?q=society" title=" society"> society</a> </p> <a href="https://publications.waset.org/abstracts/30104/changes-in-religious-belief-after-flood-disasters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2535</span> A PROMETHEE-BELIEF Approach for Multi-Criteria Decision Making Problems with Incomplete Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Moalla">H. Moalla</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Frikha"> A. Frikha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-criteria decision aid methods consider decision problems where numerous alternatives are evaluated on several criteria. These methods are used to deal with perfect information. However, in practice, it is obvious that this information requirement is too much strict. In fact, the imperfect data provided by more or less reliable decision makers usually affect decision results since any decision is closely linked to the quality and availability of information. In this paper, a PROMETHEE-BELIEF approach is proposed to help multi-criteria decisions based on incomplete information. This approach solves problems with incomplete decision matrix and unknown weights within PROMETHEE method. On the base of belief function theory, our approach first determines the distributions of belief masses based on PROMETHEE’s net flows and then calculates weights. Subsequently, it aggregates the distribution masses associated to each criterion using Murphy’s modified combination rule in order to infer a global belief structure. The final action ranking is obtained via pignistic probability transformation. A case study of real-world application concerning the location of a waste treatment center from healthcare activities with infectious risk in the center of Tunisia is studied to illustrate the detailed process of the BELIEF-PROMETHEE approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=belief%20function%20theory" title="belief function theory">belief function theory</a>, <a href="https://publications.waset.org/abstracts/search?q=incomplete%20information" title=" incomplete information"> incomplete information</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20criteria%20analysis" title=" multiple criteria analysis"> multiple criteria analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=PROMETHEE%20method" title=" PROMETHEE method"> PROMETHEE method</a> </p> <a href="https://publications.waset.org/abstracts/96791/a-promethee-belief-approach-for-multi-criteria-decision-making-problems-with-incomplete-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2534</span> Investigation on Behavior of Fixed-Ended Reinforced Concrete Deep Beams </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Heyrani%20Birak">Y. Heyrani Birak</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hizaji"> R. Hizaji</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Shahkarami"> J. Shahkarami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced Concrete (RC) deep beams are special structural elements because of their geometry and behavior under loads. For example, assumption of strain- stress distribution is not linear in the cross section. These types of beams may have simple supports or fixed supports. A lot of research works have been conducted on simply supported deep beams, but little study has been done in the fixed-end RC deep beams behavior. Recently, using of fixed-ended deep beams has been widely increased in structures. In this study, the behavior of fixed-ended deep beams is investigated, and the important parameters in capacity of this type of beams are mentioned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20beam" title="deep beam">deep beam</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-ended" title=" fixed-ended"> fixed-ended</a> </p> <a href="https://publications.waset.org/abstracts/57558/investigation-on-behavior-of-fixed-ended-reinforced-concrete-deep-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2533</span> Failure Mechanism in Fixed-Ended Reinforced Concrete Deep Beams under Cyclic Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Aarabzadeh">A. Aarabzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Hizaji"> R. Hizaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced Concrete (RC) deep beams are a special type of beams due to their geometry, boundary conditions, and behavior compared to ordinary shallow beams. For example, assumption of a linear strain-stress distribution in the cross section is not valid. Little study has been dedicated to fixed-end RC deep beams. Also, most experimental studies are carried out on simply supported deep beams. Regarding recent tendency for application of deep beams, possibility of using fixed-ended deep beams has been widely increased in structures. Therefore, it seems necessary to investigate the aforementioned structural element in more details. In addition to experimental investigation of a concrete deep beam under cyclic load, different failure mechanisms of fixed-ended deep beams under this type of loading have been evaluated in the present study. The results show that failure mechanisms of deep beams under cyclic loads are quite different from monotonic loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20beam" title="deep beam">deep beam</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20load" title=" cyclic load"> cyclic load</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-ended" title=" fixed-ended"> fixed-ended</a> </p> <a href="https://publications.waset.org/abstracts/56504/failure-mechanism-in-fixed-ended-reinforced-concrete-deep-beams-under-cyclic-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2532</span> Belief-Based Games: An Appropriate Tool for Uncertain Strategic Situation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saied%20Farham-Nia">Saied Farham-Nia</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Ghaffari-Hadigheh"> Alireza Ghaffari-Hadigheh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Game theory is a mathematical tool to study the behaviors of a rational and strategic decision-makers, that analyze existing equilibrium in interest conflict situation and provides an appropriate mechanisms for cooperation between two or more player. Game theory is applicable for any strategic and interest conflict situation in politics, management and economics, sociology and etc. Real worlds’ decisions are usually made in the state of indeterminacy and the players often are lack of the information about the other players’ payoffs or even his own, which leads to the games in uncertain environments. When historical data for decision parameters distribution estimation is unavailable, we may have no choice but to use expertise belief degree, which represents the strength with that we believe the event will happen. To deal with belief degrees, we have use uncertainty theory which is introduced and developed by Liu based on normality, duality, subadditivity and product axioms to modeling personal belief degree. As we know, the personal belief degree heavily depends on the personal knowledge concerning the event and when personal knowledge changes, cause changes in the belief degree too. Uncertainty theory not only theoretically is self-consistent but also is the best among other theories for modeling belief degree on practical problem. In this attempt, we primarily reintroduced Expected Utility Function in uncertainty environment according to uncertainty theory axioms to extract payoffs. Then, we employed Nash Equilibrium to investigate the solutions. For more practical issues, Stackelberg leader-follower Game and Bertrand Game, as a benchmark models are discussed. Compared to existing articles in the similar topics, the game models and solution concepts introduced in this article can be a framework for problems in an uncertain competitive situation based on experienced expert’s belief degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title="game theory">game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20theory" title=" uncertainty theory"> uncertainty theory</a>, <a href="https://publications.waset.org/abstracts/search?q=belief%20degree" title=" belief degree"> belief degree</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20expected%20value" title=" uncertain expected value"> uncertain expected value</a>, <a href="https://publications.waset.org/abstracts/search?q=Nash%20equilibrium" title=" Nash equilibrium"> Nash equilibrium</a> </p> <a href="https://publications.waset.org/abstracts/42359/belief-based-games-an-appropriate-tool-for-uncertain-strategic-situation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2531</span> Evil Eye's Effects on Individual's Mental Health</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Souvlakis">Nikolaos Souvlakis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the prominent phenomena that have survived even in the 21st century, when science is gaining more and more space in the scientific world, is the evil eye within non-Westernized societies and more specifically in Greek culture. The presentation is based on the Christian Orthodox beliefs and folklore about the evil eye. Evil eye occupies an important role in individuals' everyday life and it is fuelled by Satanic powers. Satanic powers and the belief on them have an immense effect on individual's well-being and mental health causing spiritual suffering. The present paper examines the psychological manifestations of the belief of evil eye in individuals' mental health and the ways to protect from it according to the Greek Orthodox tradition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spirituality" title="spirituality">spirituality</a>, <a href="https://publications.waset.org/abstracts/search?q=belief" title=" belief"> belief</a>, <a href="https://publications.waset.org/abstracts/search?q=evil%20eye" title=" evil eye"> evil eye</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=well-being" title=" well-being"> well-being</a>, <a href="https://publications.waset.org/abstracts/search?q=healing" title=" healing"> healing</a> </p> <a href="https://publications.waset.org/abstracts/13774/evil-eyes-effects-on-individuals-mental-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2530</span> Assessing the Attitude and Belief towards Online Advertisement in Pakistan and China Mainland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prih%20Bukhari">Prih Bukhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the proposed paper is to determine if the perception of online advertisement formed due to attitude and belief vary among two different countries or not. Specifically, it seeks to find out how people from China and Pakistan perceive online advertisement. Public attitude and belief towards advertising have been a focus of attention to explore a path to a better strategy of advertising. The ‘belief’ factor was analyzed through 4 items, i.e., product information, entertainment, and increase in economy’ whereas, the ‘attitude’ factor was analyzed thorough questions based on 4 items, i.e. ‘overall, I consider online advertising a good thing’; 'overall, I like online advertising’; ‘'I consider online advertising very essential’; and 'I would describe my overall attitude toward online advertising very favorably’. As such, it provides theoretical basis to explain similarities and differences of beliefs and attitude towards advertising across the two countries. Given its mixed method approach, both quantitative and qualitative method is used to carry out research. A questionnaire-based survey and focus group interviews were conducted. The sample size was of 500 participants. For analysis survey copies were then collected from which 497 were received whereas focus group interviews were collected from both nations. The findings showed that the belief factor among both countries had no significant relation with the perception of online advertisement. However, the attitude had a significant relation with the perception about online advertisement. Also it was observed that despite of different backgrounds, perception about online advertisement based on beliefs and attitude were found largely to be similar. Implications and future studies are provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attitude" title="attitude">attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=belief" title=" belief"> belief</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20advertisement" title=" online advertisement"> online advertisement</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a> </p> <a href="https://publications.waset.org/abstracts/100938/assessing-the-attitude-and-belief-towards-online-advertisement-in-pakistan-and-china-mainland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2529</span> Classification Based on Deep Neural Cellular Automata Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20F.%20Hassan">Yasser F. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20automata" title="cellular automata">cellular automata</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20cellular%20automata" title=" neural cellular automata"> neural cellular automata</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/104722/classification-based-on-deep-neural-cellular-automata-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2528</span> Social Semiotics in the Selected Films of Chito S. Roño</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Jennica%20P.%20Ello">Hannah Jennica P. Ello</a>, <a href="https://publications.waset.org/abstracts/search?q=Regina%20Via%20G.%20Garcia"> Regina Via G. Garcia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Films are famous expressions of art in the country. As an expression of art, it serves as a medium in which a culture is reflected. This paper studied how films reflected the Filipino culture. In this study, social semiotics was used to analyze the semiotic resources identified in the film. The films studied were 'Feng Shui', 'Sukob', and 'The Healing', which were three of the highest grossing horror films of Chito S. Roño. The objectives of the paper were (1) to identify the semiotic resources in the film, (2) to extract their meanings, and (3) to determine how these resources were perceived in the Filipino culture. The semiotic resources identified in each film are organized into three categories: color, practices and supernatural occurrences. Each semiotic resource is analyzed through the four dimensions of social semiotics, genre, style, modality, and discourse. For color, some of the semiotic resources identified are red, white and blue; for practices, Hagiolatry, and Mariolatry, faith healing and the belief in superstitions; and for supernatural occurrences, haunting ghosts, doppelganger attacks and returning from the dead were identified. The practices that are prominent in the films are Hagiolatry and Mariolatry, belief in feng shui and belief in faith healers and albularyos. The belief of these practices shows that Filipinos have a dual faith; belief in religion and a belief in superstitions. In short, Filipinos highly practice folk Catholicism and because of this, a mixture of different cultures can be seen, as having molded the Filipino culture to what it is today. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=culture" title="culture">culture</a>, <a href="https://publications.waset.org/abstracts/search?q=film" title=" film"> film</a>, <a href="https://publications.waset.org/abstracts/search?q=semiotics" title=" semiotics"> semiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20semiotics" title=" social semiotics"> social semiotics</a> </p> <a href="https://publications.waset.org/abstracts/76923/social-semiotics-in-the-selected-films-of-chito-s-rono" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2527</span> Inferential Reasoning for Heterogeneous Multi-Agent Mission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sagir%20M.%20Yusuf">Sagir M. Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Baber"> Chris Baber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20constraint%20optimization%20problem" title="distributed constraint optimization problem">distributed constraint optimization problem</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-robot%20coordination" title=" multi-robot coordination"> multi-robot coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20system" title=" autonomous system"> autonomous system</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20intelligence" title=" swarm intelligence"> swarm intelligence</a> </p> <a href="https://publications.waset.org/abstracts/116896/inferential-reasoning-for-heterogeneous-multi-agent-mission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2526</span> A Comparative Study of Deep Learning Methods for COVID-19 Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishrith%20Rao">Aishrith Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=radiology" title=" radiology"> radiology</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=ResNet" title=" ResNet"> ResNet</a>, <a href="https://publications.waset.org/abstracts/search?q=VGG-19" title=" VGG-19"> VGG-19</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20networks" title=" deep neural networks"> deep neural networks</a> </p> <a href="https://publications.waset.org/abstracts/127887/a-comparative-study-of-deep-learning-methods-for-covid-19-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2525</span> Health Belief Model on Smoking Behaviors Causing Lung Cancer: A Cross-Sectional Study in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dujrudee%20Chinwong">Dujrudee Chinwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanida%20Prompantakorn"> Chanida Prompantakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Ubonphan%20Chaichana"> Ubonphan Chaichana</a>, <a href="https://publications.waset.org/abstracts/search?q=Surarong%20Chinwong"> Surarong Chinwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Understanding the university students’ perceptions on smoking caused lung cancer based on the Health Belief Model should help health care providers in assisting them to quit smoking. Thus, this study aimed to investigate the University students’ health belief in smoking behaviors caused lung cancer, which based on the Health Belief Model. Methods: Data were collected from voluntary participants using a self-administered questionnaire. Participants were students studying at a University in northern Thailand who were current smokers; they were selected using snowball sampling. Results: Of 361 students, 84% were males; 78% smoked not more than 10 cigarettes a day; 68% intended to quit smoking. Our findings, based on the health belief model, showed that 1) perceived susceptibility: participants strongly believed that if they did not stop smoking, they were at high risk of lung cancer (88%); 2) perceived severity: they strongly believed that they had a high chance of death from lung cancer if they continued smoking (84%); 3) perceived benefits: they strongly believed that quitting smoking could reduce the chance of developing lung cancer; 4) perceived barriers of quitting smoking: they strongly believed in the difficulty of quitting smoking because it needed a high effort and strong intention (69%); 5) perceived self-efficacy: however, they strongly believed that they can quit smoking right away if they had a strong intention to quit smoking (70%); 6) cues to action: they strongly believed in the support of parents (85%) and lovers (78%) in helping them to quit smoking. Further, they believed that limitation on smoking area in the University and smoking cessation services provided by the University can assist them to quit smoking. Conclusion: The Health Belief Model helps us to understand students’ smoking behaviors caused lung cancer. This could lead to designing a smoking cessation program to assist students to quit smoking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20belief%20model" title="health belief model">health belief model</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer"> lung cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=smoking" title=" smoking"> smoking</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/70354/health-belief-model-on-smoking-behaviors-causing-lung-cancer-a-cross-sectional-study-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2524</span> Factors Related with Self-Care Behaviors among Iranian Type 2 Diabetic Patients: An Application of Health Belief Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Soroush">Ali Soroush</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Mirzaei%20Alavijeh"> Mehdi Mirzaei Alavijeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Touraj%20Ahmadi%20Jouybari"> Touraj Ahmadi Jouybari</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazel%20Zinat-Motlagh"> Fazel Zinat-Motlagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Aghaei"> Abbas Aghaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mari%20Ataee"> Mari Ataee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes is a disease with long cardiovascular, renal, ophthalmic and neural complications. It is prevalent all around the world including Iran, and its prevalence is increasing. The aim of this study was to determine the factors related to self-care behavior based on health belief model among sample of Iranian diabetic patients. This cross-sectional study was conducted among 301 type 2 diabetic patients in Gachsaran, Iran. Data collection was based on an interview and the data were analyzed by SPSS version 20 using ANOVA, t-tests, Pearson correlation, and linear regression statistical tests at 95% significant level. Linear regression analyses showed the health belief model variables accounted for 29% of the variation in self-care behavior; and perceived severity and perceived self-efficacy are more influential predictors on self-care behavior among diabetic patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=patients" title=" patients"> patients</a>, <a href="https://publications.waset.org/abstracts/search?q=self-care%20behaviors" title=" self-care behaviors"> self-care behaviors</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20belief%20model" title=" health belief model"> health belief model</a> </p> <a href="https://publications.waset.org/abstracts/11263/factors-related-with-self-care-behaviors-among-iranian-type-2-diabetic-patients-an-application-of-health-belief-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2523</span> A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20George">Joseph George</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Kotteswara%20Roa"> Anne Kotteswara Roa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title="skin cancer">skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20measures" title=" performance measures"> performance measures</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=datasets" title=" datasets"> datasets</a> </p> <a href="https://publications.waset.org/abstracts/151256/a-survey-of-skin-cancer-detection-and-classification-from-skin-lesion-images-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2522</span> Wave State of Self: Findings of Synchronistic Patterns in the Collective Unconscious </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Dimitri%20Halley">R. Dimitri Halley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research within Jungian Psychology presented here is on the wave state of Self. What has been discovered via shared dreaming, independently correlating dreams across dreamers, is beyond the Self stage into the deepest layer or the wave state Self: the very quantum ocean, the Self archetype is embedded in. A quantum wave or rhyming of meaning constituting synergy across several dreamers was discovered in dreams and in extensively shared dream work with small groups at a post therapy stage. Within the format of shared dreaming, we find synergy patterns beyond what Jung called the Self archetype. Jung led us up to the phase of Individuation and delivered the baton to Von Franz to work out the next synchronistic stage, here proposed as the finding of the quantum patterns making up the wave state of Self. These enfolded synchronistic patterns have been found in group format of shared dreaming of individuals approximating individuation, and the unfolding of it is carried by belief and faith. The reason for this format and operating system is because beyond therapy and of living reality, we find no science – no thinking or even awareness in the therapeutic sense – but rather a state of mental processing resembling more like that of spiritual attitude. Thinking as such is linear and cannot contain the deepest layer of Self, the quantum core of the human being. It is self reflection which is the container for the process at the wave state of Self. Observation locks us in an outside-in reactive flow from a first-person perspective and hence toward the surface we see to believe, whereas here, the direction of focus shifts to inside out/intrinsic. The operating system or language at the wave level of Self is thus belief and synchronicity. Belief has up to now been almost the sole province of organized religions but was viewed by Jung as an inherent property in the process of Individuation. The shared dreaming stage of the synchronistic patterns forms a larger story constituting a deep connectivity unfolding around individual Selves. Dreams of independent dreamers form larger patterns that come together as puzzles forming a larger story, and in this sense, this group work level builds on Jung as a post individuation collective stage. Shared dream correlations will be presented, illustrating a larger story in terms of trails of shared synchronicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=belief" title="belief">belief</a>, <a href="https://publications.waset.org/abstracts/search?q=shared%20dreaming" title=" shared dreaming"> shared dreaming</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronistic%20patterns" title=" synchronistic patterns"> synchronistic patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20state%20of%20self" title=" wave state of self"> wave state of self</a> </p> <a href="https://publications.waset.org/abstracts/117637/wave-state-of-self-findings-of-synchronistic-patterns-in-the-collective-unconscious" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2521</span> Effect of Different Oils on Quality of Deep-fried Dough Stick</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuntaporn%20Aukkanit">Nuntaporn Aukkanit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the effect of oils on chemical, physical, and sensory properties of deep-fried dough stick. Five kinds of vegetable oil which were used for addition and frying consist of: palm oil, soybean oil, sunflower oil, rice bran oil, and canola oil. The results of this study showed that using different kinds of oil made significant difference in the quality of deep-fried dough stick. Deep-fried dough stick fried with the rice bran oil had the lowest moisture loss and oil absorption (p≤0.05), but it had some unsatisfactory physical properties (color, specific volume, density, and texture) and sensory characteristics. Nonetheless, deep-fried dough stick fried with the sunflower oil had moisture loss and oil absorption slightly more than the rice bran oil, but it had almost higher physical and sensory properties. Deep-fried dough sticks together with the sunflower oil did not have different sensory score from the palm oil, commonly used for production of deep-fried dough stick. These results indicated that addition and frying with the sunflower oil are appropriate for the production of deep-fried dough stick. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep-fried%20dough%20stick" title="deep-fried dough stick">deep-fried dough stick</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title=" palm oil"> palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower%20oil" title=" sunflower oil"> sunflower oil</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran%20oil" title=" rice bran oil"> rice bran oil</a> </p> <a href="https://publications.waset.org/abstracts/52732/effect-of-different-oils-on-quality-of-deep-fried-dough-stick" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2520</span> Facial Emotion Recognition Using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Mishra">Ashutosh Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Goyal"> Nikhil Goyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3D facial emotion recognition model based on deep learning is proposed in this paper. Two convolution layers and a pooling layer are employed in the deep learning architecture. After the convolution process, the pooling is finished. The probabilities for various classes of human faces are calculated using the sigmoid activation function. To verify the efficiency of deep learning-based systems, a set of faces. The Kaggle dataset is used to verify the accuracy of a deep learning-based face recognition model. The model's accuracy is about 65 percent, which is lower than that of other facial expression recognition techniques. Despite significant gains in representation precision due to the nonlinearity of profound image representations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facial%20recognition" title="facial recognition">facial recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20intelligence" title=" computational intelligence"> computational intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=depth%20map" title=" depth map"> depth map</a> </p> <a href="https://publications.waset.org/abstracts/139253/facial-emotion-recognition-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2519</span> A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arshia%20Aflaki">Arshia Aflaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadis%20Karimipour"> Hadis Karimipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Anik%20Islam"> Anik Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20attack" title="generative adversarial attack">generative adversarial attack</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=IIoT" title=" IIoT"> IIoT</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20adversarial%20networks" title=" generative adversarial networks"> generative adversarial networks</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system" title=" power system"> power system</a> </p> <a href="https://publications.waset.org/abstracts/188908/a-deep-reinforcement-learning-based-secure-framework-against-adversarial-attacks-in-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2518</span> Supernatural Beliefs Impact Pattern Perception</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Boschetti">Silvia Boschetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Binter"> Jakub Binter</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20Kopeck%C3%BD"> Robin Kopecký</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20P%C5%99%C3%ADPlatov%C3%A1"> Lenka PříPlatová</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Flegr"> Jaroslav Flegr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A strict dichotomy was present between religion and science, but recently, cognitive science focusses on the impact of supernatural beliefs on cognitive processes such as pattern recognition. It has been hypothesized that cognitive and perceptual processes have been under evolutionary pressures that ensured amplified perception of patterns, especially when in stressful and harsh conditions. The pattern detection in religious and non-religious individuals after induction of negative, anxious mood shall constitute a cornerstone of the general role of anxiety, cognitive bias, leading towards or against the by-product hypothesis, one of the main theories on the evolutionary studies of religion. The apophenia (tendencies to perceive connection and meaning on unrelated events) and perception of visual patterns (or pateidolia) are of utmost interest. To capture the impact of culture and upbringing, a comparative study of two European countries, the Czech Republic (low organized religion participation, high esoteric belief) and Italy (high organized religion participation, low esoteric belief), are currently in the data collection phase. Outcomes will be presented at the conference. A battery of standardized questionnaires followed by pattern recognition tasks (the patterns involve color, shape, and are of artificial and natural origin) using an experimental method involving the conditioning of (controlled, laboratory-induced) stress is taking place. We hypothesize to find a difference between organized religious belief and personal (esoteric) belief that will be alike in both of the cultural environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=culture" title="culture">culture</a>, <a href="https://publications.waset.org/abstracts/search?q=esoteric%20belief" title=" esoteric belief"> esoteric belief</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20perception" title=" pattern perception"> pattern perception</a>, <a href="https://publications.waset.org/abstracts/search?q=religiosity" title=" religiosity"> religiosity</a> </p> <a href="https://publications.waset.org/abstracts/139635/supernatural-beliefs-impact-pattern-perception" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2517</span> Forecasting the Temperature at a Weather Station Using Deep Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debneil%20Saha%20Roy">Debneil Saha Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short%20term%20memory" title=" long short term memory"> long short term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20perceptron" title=" multi-layer perceptron"> multi-layer perceptron</a> </p> <a href="https://publications.waset.org/abstracts/124787/forecasting-the-temperature-at-a-weather-station-using-deep-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2516</span> Deep Learning for Recommender System: Principles, Methods and Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basiliyos%20Tilahun%20Betru">Basiliyos Tilahun Betru</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Awono%20Onana"> Charles Awono Onana</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernabe%20Batchakui"> Bernabe Batchakui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recommender systems have become increasingly popular in recent years, and are utilized in numerous areas. Nowadays many web services provide several information for users and recommender systems have been developed as critical element of these web applications to predict choice of preference and provide significant recommendations. With the help of the advantage of deep learning in modeling different types of data and due to the dynamic change of user preference, building a deep model can better understand users demand and further improve quality of recommendation. In this paper, deep neural network models for recommender system are evaluated. Most of deep neural network models in recommender system focus on the classical collaborative filtering user-item setting. Deep learning models demonstrated high level features of complex data can be learned instead of using metadata which can significantly improve accuracy of recommendation. Even though deep learning poses a great impact in various areas, applying the model to a recommender system have not been fully exploited and still a lot of improvements can be done both in collaborative and content-based approach while considering different contextual factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=recommender%20system" title=" recommender system"> recommender system</a> </p> <a href="https://publications.waset.org/abstracts/74244/deep-learning-for-recommender-system-principles-methods-and-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net&page=84">84</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net&page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=deep%20belief%20net&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>