CINXE.COM
Search results for: sintering process
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sintering process</title> <meta name="description" content="Search results for: sintering process"> <meta name="keywords" content="sintering process"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sintering process" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sintering process"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5476</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sintering process</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5476</span> Expert System for Sintering Process Control based on the Information about solid-fuel Flow Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yendiyarov%20Sergei">Yendiyarov Sergei</a>, <a href="https://publications.waset.org/search?q=Zobnin%20Boris"> Zobnin Boris</a>, <a href="https://publications.waset.org/search?q=Petrushenko%20Sergei"> Petrushenko Sergei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Usually, the solid-fuel flow of an iron ore sinter plant consists of different types of the solid-fuels, which differ from each other. Information about the composition of the solid-fuel flow usually comes every 8-24 hours. It can be clearly seen that this information cannot be used to control the sintering process in real time. Due to this, we propose an expert system which uses indirect measurements from the process in order to obtain the composition of the solid-fuel flow by solving an optimization task. Then this information can be used to control the sintering process. The proposed technique can be successfully used to improve sinter quality and reduce the amount of solid-fuel used by the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=sintering%20process" title="sintering process">sintering process</a>, <a href="https://publications.waset.org/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/search?q=expert%20system" title=" expert system"> expert system</a>, <a href="https://publications.waset.org/search?q=solid-fuel" title=" solid-fuel"> solid-fuel</a> </p> <a href="https://publications.waset.org/10290/expert-system-for-sintering-process-control-based-on-the-information-about-solid-fuel-flow-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10290/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10290/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10290/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10290/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10290/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10290/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10290/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10290/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10290/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10290/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1947</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5475</span> Dependence of Dielectric Properties on Sintering Conditions of Lead Free KNN Ceramics Modified with Li-Sb</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Roopam%20Gaur">Roopam Gaur</a>, <a href="https://publications.waset.org/search?q=K.%20Chandramani%20Singh"> K. Chandramani Singh</a>, <a href="https://publications.waset.org/search?q=Radhapiyari%20Laishram"> Radhapiyari Laishram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to produce lead free piezoceramics with optimum piezoelectric and dielectric properties, KNN modified with Li+ (as an A site dopant) and Sb5+ (as a B site dopant) (K0.49Na0.49Li0.02) (Nb0.96Sb0.04) O3 (referred as KNLNS in this paper) have been synthesized using solid state reaction method and conventional sintering technique. The ceramics were sintered in the narrow range of 1050°C-1090°C for 2-3 h to get precise information about sintering parameters. Detailed study of dependence of microstructural, dielectric and piezoelectric properties on sintering conditions was then carried out. The study suggests that the volatility of the highly hygroscopic KNN ceramics is not only sensitive to sintering temperatures but also to sintering durations. By merely reducing the sintering duration for a given sintering temperature we saw an increase in the density of the samples which was supported by the increase in dielectric constants of the ceramics. And since density directly or indirectly affects almost all the associated properties, other dielectric and piezoelectric properties were also enhanced as we approached towards the most suitable sintering temperature and duration combination. The detailed results are reported in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Piezoceramics" title="Piezoceramics">Piezoceramics</a>, <a href="https://publications.waset.org/search?q=Conventional%20Sintering" title=" Conventional Sintering"> Conventional Sintering</a>, <a href="https://publications.waset.org/search?q=KNN" title=" KNN"> KNN</a>, <a href="https://publications.waset.org/search?q=Lead%0D%0AFree." title=" Lead Free."> Lead Free.</a> </p> <a href="https://publications.waset.org/10001465/dependence-of-dielectric-properties-on-sintering-conditions-of-lead-free-knn-ceramics-modified-with-li-sb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001465/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001465/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001465/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001465/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001465/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001465/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001465/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001465/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001465/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001465/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2046</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5474</span> Microwave Sintering and Its Application on Cemented Carbides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rumman%20Md%20Raihanuzzaman">Rumman Md Raihanuzzaman</a>, <a href="https://publications.waset.org/search?q=Lee%20Chang%20Chuan"> Lee Chang Chuan</a>, <a href="https://publications.waset.org/search?q=Zonghan%20Xie"> Zonghan Xie</a>, <a href="https://publications.waset.org/search?q=Reza%20Ghomashchi"> Reza Ghomashchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used to prepare a wide range of materials including ceramics. A deep understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials requires further studies and attention. In addition, the effect of binder materials and their behavior during microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, highlighting some of the key issues and challenges faced in this research area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cemented%20carbides" title="Cemented carbides">Cemented carbides</a>, <a href="https://publications.waset.org/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/search?q=microwave%0D%0Asintering" title=" microwave sintering"> microwave sintering</a>, <a href="https://publications.waset.org/search?q=mechanical%20properties." title=" mechanical properties."> mechanical properties.</a> </p> <a href="https://publications.waset.org/10001959/microwave-sintering-and-its-application-on-cemented-carbides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001959/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001959/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001959/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001959/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001959/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001959/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001959/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001959/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001959/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001959/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2918</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5473</span> Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Z.%20Manuel">B. Z. Manuel</a>, <a href="https://publications.waset.org/search?q=H.%20D.%20Esmeralda"> H. D. Esmeralda</a>, <a href="https://publications.waset.org/search?q=H.%20S.%20Felipe"> H. S. Felipe</a>, <a href="https://publications.waset.org/search?q=D.%20R.%20H%C3%A9ctor"> D. R. Héctor</a>, <a href="https://publications.waset.org/search?q=D.%20de%20la%20Torre%20Sebasti%C3%A1n"> D. de la Torre Sebastián</a>, <a href="https://publications.waset.org/search?q=R.%20L.%20Diego"> R. L. Diego</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aluminum%20matrix%20composites" title="Aluminum matrix composites">Aluminum matrix composites</a>, <a href="https://publications.waset.org/search?q=Intermetallics%20Spark%0D%0Aplasma%20sintering." title=" Intermetallics Spark plasma sintering."> Intermetallics Spark plasma sintering.</a> </p> <a href="https://publications.waset.org/9998350/spark-plasma-sintering-of-aluminum-based-composites-reinforced-by-nanocrystalline-carbon-coated-intermetallic-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998350/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998350/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998350/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998350/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998350/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998350/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998350/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998350/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998350/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998350/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2344</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5472</span> The Multi-objective Optimization for the SLS Process Parameters Based on Analytic Hierarchy Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yang%20Laixia">Yang Laixia</a>, <a href="https://publications.waset.org/search?q=Deng%20Jun"> Deng Jun</a>, <a href="https://publications.waset.org/search?q=Li%20Dichen"> Li Dichen</a>, <a href="https://publications.waset.org/search?q=Bai%20Yang"> Bai Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The forming process parameters of Selective Laser Sintering(SLS) directly affect the forming efficiency and forming quality. Therefore, to determine reasonable process parameters is particularly important. In this paper, the weight of each target of the forming quality and efficiency is firstly calculated with the Analytic Hierarchy Process. And then the size of each target is measured by orthogonal experiment. Finally, the sum of the product of each target with the weight is compared to the process parameters in each group and obtained the optimal molding process parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Analytic%20Hierarchy%20Process" title="Analytic Hierarchy Process">Analytic Hierarchy Process</a>, <a href="https://publications.waset.org/search?q=Multi-objective%0Aoptimization" title=" Multi-objective optimization"> Multi-objective optimization</a>, <a href="https://publications.waset.org/search?q=Orthogonal%20test" title=" Orthogonal test"> Orthogonal test</a>, <a href="https://publications.waset.org/search?q=Selective%20Laser%20Sintering" title=" Selective Laser Sintering"> Selective Laser Sintering</a> </p> <a href="https://publications.waset.org/1632/the-multi-objective-optimization-for-the-sls-process-parameters-based-on-analytic-hierarchy-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1632/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1632/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1632/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1632/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1632/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1632/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1632/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1632/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1632/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1632/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2044</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5471</span> Sintering Atmosphere Effects on the Densification of Al-SiC Compacts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tadeusz%20Pieczonka">Tadeusz Pieczonka</a>, <a href="https://publications.waset.org/search?q=Jan%20Kazior"> Jan Kazior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The influence of SiC powder addition on densification of Al-SiC compacts during sintering in different atmospheres was investigated. It was performed in a dilatometer in flowing nitrogen, nitrogen/hydrogen (95/5 by volume) and argon. Fine, F500 grade of SiC powder was used. Mixtures containing 10 and 30 vol.% of SiC reinforcement were prepared in a Turbula mixer. Green compacts of about 82% of theoretical density were made of each mixture. For comparison, compacts made of pure aluminum powder were also investigated. It was shown that nitrogen is the best sintering atmosphere because only in this atmosphere did shrinkage take place. Its amount is lowered by ceramic powder addition, i.e. the more SiC the less densification occurs. Additionally, the formation of clusters, enhanced in compacts containing 30 vol.% SiC, is also responsible for limiting the shrinkage. Microstructural examinations of sintered composites revealed that sintering of compacts occurs in the presence of the liquid phase exclusively in nitrogen.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Al-SiC%20composites" title="Al-SiC composites">Al-SiC composites</a>, <a href="https://publications.waset.org/search?q=densification" title=" densification"> densification</a>, <a href="https://publications.waset.org/search?q=sintering%20atmosphere." title=" sintering atmosphere."> sintering atmosphere.</a> </p> <a href="https://publications.waset.org/9997964/sintering-atmosphere-effects-on-the-densification-of-al-sic-compacts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997964/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997964/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997964/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997964/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997964/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997964/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997964/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997964/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997964/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997964/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3533</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5470</span> Investigations on the Influence of Process Parameters on the Sliding Wear Behavior of Components Produced by Direct Metal Laser Sintering (DMLS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20D.%20Naiju">C. D. Naiju</a>, <a href="https://publications.waset.org/search?q=K.%20Annamalai"> K. Annamalai</a>, <a href="https://publications.waset.org/search?q=Siva%20Prasad%20Darla"> Siva Prasad Darla</a>, <a href="https://publications.waset.org/search?q=Y.%20Murali%20Krishna"> Y. Murali Krishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the results of a study carried out to determine the sliding wear behavior and its effect on the process parameters of components manufactured by direct metal laser sintering (DMLS). A standard procedure and specimen had been used in the present study to find the wear behavior. Using Taguchi-s experimental technique, an orthogonal array of modified L8 had been developed. Sliding wear testing using pin-on-disk machine was carried out and analysis of variance (ANOVA) technique was used to investigate the effect of process parameters and to identify the main process parameter that influences the properties of wear behavior on the DMLS components. It has been found that part orientation, one of the selected process parameter had more influence on wear as compared to other selected process parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ANOVA" title="ANOVA">ANOVA</a>, <a href="https://publications.waset.org/search?q=DMLS" title=" DMLS"> DMLS</a>, <a href="https://publications.waset.org/search?q=Taguchi" title=" Taguchi"> Taguchi</a>, <a href="https://publications.waset.org/search?q=Wear." title=" Wear."> Wear.</a> </p> <a href="https://publications.waset.org/1977/investigations-on-the-influence-of-process-parameters-on-the-sliding-wear-behavior-of-components-produced-by-direct-metal-laser-sintering-dmls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1977/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1977/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1977/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1977/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1977/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1977/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1977/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1977/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1977/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1977/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2083</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5469</span> Bioceramic Scaffolds Fabrication by Rapid Prototyping Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=F.H.%20Liu">F.H. Liu</a>, <a href="https://publications.waset.org/search?q=S.H.%20Chen"> S.H. Chen</a>, <a href="https://publications.waset.org/search?q=R.T.%20Lee"> R.T. Lee</a>, <a href="https://publications.waset.org/search?q=W.S.%20Lin"> W.S. Lin</a>, <a href="https://publications.waset.org/search?q=Y.S.%20Liao"> Y.S. Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a rapid prototyping (RP) technology for forming a hydroxyapatite (HA) bone scaffold model. The HA powder and a silica sol are mixed into bioceramic slurry form under a suitable viscosity. The HA particles are embedded in the solidified silica matrix to form green parts via a wide range of process parameters after processing by selective laser sintering (SLS). The results indicate that the proposed process was possible to fabricate multilayers and hollow shell structure with brittle property but sufficient integrity for handling prior to post-processing. The fabricated bone scaffold models had a surface finish of 25 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=bioceramic" title="bioceramic">bioceramic</a>, <a href="https://publications.waset.org/search?q=bone%20scaffold" title=" bone scaffold"> bone scaffold</a>, <a href="https://publications.waset.org/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a>, <a href="https://publications.waset.org/search?q=selective%20laser%20sintering" title="selective laser sintering">selective laser sintering</a> </p> <a href="https://publications.waset.org/15598/bioceramic-scaffolds-fabrication-by-rapid-prototyping-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15598/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15598/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15598/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15598/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15598/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15598/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15598/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15598/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15598/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15598/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1719</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5468</span> Sintering of Composite Ceramic based on Corundum with Additive in the Al2O3-TiO2-MnO System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Aung%20Kyaw%20Moe">Aung Kyaw Moe</a>, <a href="https://publications.waset.org/search?q=Lukin%20Evgeny%20Stepanovich"> Lukin Evgeny Stepanovich</a>, <a href="https://publications.waset.org/search?q=Popova%20Nelya%20Alexandrovna"> Popova Nelya Alexandrovna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of the additive content in the Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>-MnO system on the sintering of composite ceramics based on corundum was studied. The samples were pressed by uniaxial semi-dry pressing under 100 MPa and sintered at 1500 °С and 1550 °С. The properties of composite ceramics for porosity and flexural strength were studied. When the amount of additives increases, the properties of composite ceramic samples are better than samples without additives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ceramic" title="Ceramic">Ceramic</a>, <a href="https://publications.waset.org/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/search?q=corundum." title=" corundum."> corundum.</a> </p> <a href="https://publications.waset.org/10009136/sintering-of-composite-ceramic-based-on-corundum-with-additive-in-the-al2o3-tio2-mno-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009136/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009136/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009136/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009136/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009136/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009136/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009136/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009136/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009136/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009136/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">871</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5467</span> Incorporation Mechanism of Stabilizing Simulated Lead-Laden Sludge in Aluminum-Rich Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Xingwen%20Lu">Xingwen Lu</a>, <a href="https://publications.waset.org/search?q=Kaimin%20Shih"> Kaimin Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This study investigated a strategy of blending lead-laden sludge and Al-rich precursors to reduce the release of metals from the stabilized products. Using PbO as the simulated lead-laden sludge to sinter with γ-Al2O3 by Pb:Al molar ratios of 1:2 and 1:12, PbAl2O4 and PbAl12O19 were formed as final products during the sintering process, respectively. By firing the PbO + γ-Al2O3 mixtures with different Pb/Al molar ratios at 600 to 1000 °C, the lead transformation was determined through X-ray diffraction (XRD) data. In Pb/Al molar ratio of 1/2 system, the formation of PbAl2O4 is initiated at 700 °C, but an effective formation was observed above 750 °C. An intermediate phase, Pb9Al8O21, was detected in the temperature range of 800-900 °C. However, different incorporation behavior for sintering PbO with Al-rich precursors at a Pb/Al molar ratio of 1/12 was observed during the formation of PbAl12O19 in this system. In the sintering process, both temperature and time effect on the formation of PbAl2O4 and PbAl12O19 phases were estimated. Finally, a prolonged leaching test modified from the U.S. Environmental Protection Agency-s toxicity characteristic leaching procedure (TCLP) was used to evaluate the durability of PbO, Pb9Al8O21, PbAl2O4 and PbAl12O19 phases. Comparison for the leaching results of the four phases demonstrated the higher intrinsic resistance of PbAl12O19 against acid attack.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Sludge" title="Sludge">Sludge</a>, <a href="https://publications.waset.org/search?q=Lead" title=" Lead"> Lead</a>, <a href="https://publications.waset.org/search?q=Stabilization" title=" Stabilization"> Stabilization</a>, <a href="https://publications.waset.org/search?q=Leaching%20behavior" title=" Leaching behavior"> Leaching behavior</a> </p> <a href="https://publications.waset.org/8475/incorporation-mechanism-of-stabilizing-simulated-lead-laden-sludge-in-aluminum-rich-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8475/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8475/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8475/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8475/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8475/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8475/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8475/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8475/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8475/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8475/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1914</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5466</span> Investigation of Ceramic-Metal Composites Produced by Electroless Ni Plating of AlN- Astaloy Cr-M </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Y%C3%B6netken">A. Yönetken</a>, <a href="https://publications.waset.org/search?q=A.%20Erol"> A. Erol</a>, <a href="https://publications.waset.org/search?q=A.%20Yakar"> A. Yakar</a>, <a href="https://publications.waset.org/search?q=G.%20Pe%C5%9Fmen"> G. Peşmen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The microstructure, mechanical properties and metalgraphic characteristics of Ni plated AlN-Astaloy Cr-M powders were investigated using specimens produced by tube furnace sintering at 1000-1400 °C temperature. A uniform nickel layer on AlN powders was deposited prior to sintering using electroless plating technique. A composite consisting of ternary additions, metallic phase, Ni and ceramic phase AlN within a matrix of Astaloy Cr-M had been prepared under Ar shroud and then tube furnace sintered. The experimental results carried out by using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) for composition (10% AlN-Astaloy Cr-M) 10% Ni at 1400 °C suggest that the best properties as 132.45HB and permittivity were obtained at 1400 °C.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Composite" title="Composite">Composite</a>, <a href="https://publications.waset.org/search?q=Electroless" title=" Electroless"> Electroless</a>, <a href="https://publications.waset.org/search?q=Nickel%20plating" title=" Nickel plating"> Nickel plating</a>, <a href="https://publications.waset.org/search?q=Powder%20metallurgy" title=" Powder metallurgy"> Powder metallurgy</a>, <a href="https://publications.waset.org/search?q=Sintering." title=" Sintering."> Sintering.</a> </p> <a href="https://publications.waset.org/10003917/investigation-of-ceramic-metal-composites-produced-by-electroless-ni-plating-of-aln-astaloy-cr-m" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003917/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003917/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003917/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003917/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003917/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003917/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003917/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003917/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003917/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003917/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1594</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5465</span> Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Adewale%20O.%20Adegbenjo">Adewale O. Adegbenjo</a>, <a href="https://publications.waset.org/search?q=Elsie%20Nsiah-Baafi"> Elsie Nsiah-Baafi</a>, <a href="https://publications.waset.org/search?q=Mxolisi%20B.%20Shongwe"> Mxolisi B. Shongwe</a>, <a href="https://publications.waset.org/search?q=Mercy%20Ramakokovhu"> Mercy Ramakokovhu</a>, <a href="https://publications.waset.org/search?q=Peter%20A.%20Olubambi"> Peter A. Olubambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hardness" title="Hardness">Hardness</a>, <a href="https://publications.waset.org/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/search?q=Spark%20plasma%20sintering" title=" Spark plasma sintering"> Spark plasma sintering</a>, <a href="https://publications.waset.org/search?q=wear." title=" wear."> wear.</a> </p> <a href="https://publications.waset.org/10004593/dependence-of-densification-hardness-and-wear-behaviors-of-ti6al4v-powders-on-sintering-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004593/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004593/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004593/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004593/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004593/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004593/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004593/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004593/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004593/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004593/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1577</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5464</span> Structural and Electrical Properties of BNT-BT0.08 Ceramics Processed by Spark Plasma Sintering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ciceron%20Berbecaru">Ciceron Berbecaru</a>, <a href="https://publications.waset.org/search?q=Marin%20Cernea"> Marin Cernea</a>, <a href="https://publications.waset.org/search?q=Gheorghe%20Virgil%20Aldica"> Gheorghe Virgil Aldica</a>, <a href="https://publications.waset.org/search?q=Roxana%20Trusca"> Roxana Trusca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> (Bi0.5Na0.5)TiO3 doped with 8 mol % BaTiO3 powder (BNT-BT0.08), prepared by sol-gel method was compacted and sintered by Spark Plasma Sintering (SPS) process. The influence of SPS temperature on the densification of BNT-BT0.08 ceramic was investigated. Starting from sol-gel nanopowder of BNT-BT containing 8 mol % BaTiO3 with an average particles size of about 30 nm, were obtained ceramics with density around 98 % of the theoretical density value when the SPS temperature used was about 850 °C. The average grain size of the resulting ceramics was 80 nm. The BNT-BT0.08 ceramic sample obtained by SPS method has shown good electric properties at various frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=%28Bi0.5Na0.5%29TiO3%20doped%20with%20BaTiO3" title="(Bi0.5Na0.5)TiO3 doped with BaTiO3">(Bi0.5Na0.5)TiO3 doped with BaTiO3</a>, <a href="https://publications.waset.org/search?q=Spark%20PlasmaSintering%20%28SPS%29" title=" Spark PlasmaSintering (SPS)"> Spark PlasmaSintering (SPS)</a>, <a href="https://publications.waset.org/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a> </p> <a href="https://publications.waset.org/12356/structural-and-electrical-properties-of-bnt-bt008-ceramics-processed-by-spark-plasma-sintering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12356/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12356/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12356/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12356/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12356/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12356/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12356/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12356/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12356/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12356/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2544</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5463</span> Consolidation of Al-2024 Powder by Conventional P/M Route and ECAP – A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nishtha%20Gupta">Nishtha Gupta </a>, <a href="https://publications.waset.org/search?q=S.Ramesh%20Kumar"> S.Ramesh Kumar </a>, <a href="https://publications.waset.org/search?q=B.Ravisankar"> B.Ravisankar</a>, <a href="https://publications.waset.org/search?q=S.Kumaran"> S.Kumaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, mechanically alloyed Al 2024 powder is densified by conventional sintering and by equal channel angular pressing (ECAP) with and without back pressure. The powder was encapsulated in an aluminium can for consolidation through ECAP. The properties obtained in the compacts by conventional sintering route and by ECAP are compared. The effect of conventional sintering and ECAP on consolidation behaviour of powder, microstructure, density and hardness is discussed. Room temperature back pressure aided ECAP results in nearly full denser (97% of its theoretical density) compact at room temperature. NanoIndentation technique was used to determine the modulus of the consolidated compacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Al-2024" title="Al-2024">Al-2024</a>, <a href="https://publications.waset.org/search?q=Back%20Pressure" title=" Back Pressure"> Back Pressure</a>, <a href="https://publications.waset.org/search?q=ECAP" title=" ECAP"> ECAP</a>, <a href="https://publications.waset.org/search?q=Nanoindentation" title=" Nanoindentation"> Nanoindentation</a> </p> <a href="https://publications.waset.org/1377/consolidation-of-al-2024-powder-by-conventional-pm-route-and-ecap-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1377/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1377/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1377/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1377/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1377/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1377/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1377/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1377/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1377/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1377/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2517</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5462</span> Effect of Sintering Temperature Curve in Wick Manufactured for Loop Heat Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shen-Chun%20Wu">Shen-Chun Wu</a>, <a href="https://publications.waset.org/search?q=Chuo-Jeng%20Huang"> Chuo-Jeng Huang</a>, <a href="https://publications.waset.org/search?q=Wun-Hong%20Yang"> Wun-Hong Yang</a>, <a href="https://publications.waset.org/search?q=Jy-Cheng%20Chang"> Jy-Cheng Chang</a>, <a href="https://publications.waset.org/search?q=Chien-Chun%20Kung"> Chien-Chun Kung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation examines the effect of the sintering temperature curve in manufactured nickel powder capillary structure (wick) for a loop heat pipe (LHP). The sintering temperature curve is composed of a region of increasing temperature; a region of constant temperature and a region of declining temperature. The most important region is that in which the temperature increases, as an index in the stage in which the temperature increases. The wick of nickel powder is manufactured in the stage of fixed sintering temperature and the time between the stage of constant temperature and the stage of falling temperature. When the slope of the curve in the region of increasing temperature is unity (equivalent to 10 °C/min), the structure of the wick is complete and the heat transfer performance is optimal. The result of experiment test demonstrates that the heat transfer performance is optimal at 320W; the minimal total thermal resistance is approximately 0.18°C/W, and the heat flux is 17W/cm2; the internal parameters of the wick are an effective pore radius of 3.1 μm, a permeability of 3.25×10-13m2 and a porosity of 71%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Loop%20heat%20pipe%20%28LHP%29" title="Loop heat pipe (LHP)">Loop heat pipe (LHP)</a>, <a href="https://publications.waset.org/search?q=capillary%20structure%20%28wick%29" title=" capillary structure (wick)"> capillary structure (wick)</a>, <a href="https://publications.waset.org/search?q=sintered%20temperature%20curve." title=" sintered temperature curve."> sintered temperature curve.</a> </p> <a href="https://publications.waset.org/4824/effect-of-sintering-temperature-curve-in-wick-manufactured-for-loop-heat-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4824/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4824/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4824/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4824/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4824/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4824/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4824/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4824/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4824/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4824/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2094</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5461</span> Effects of the Sintering Process on Properties of Triaxial Electrical Porcelain from Ugandan Ceramic Minerals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Peter%20W.%20Olupot">Peter W. Olupot</a>, <a href="https://publications.waset.org/search?q=Stefan%20Jonsson"> Stefan Jonsson</a>, <a href="https://publications.waset.org/search?q=Joseph%20K.%20Byaruhanga"> Joseph K. Byaruhanga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porcelain specimens were fired at 6C/min to 1250C (dwell time 0.5-3h) and cooled at 6C/min to room temperature. Additionally, three different slower firing/cooling cycles were tried. Sintering profile and effects on MOR, crystalline phase content and morphology were investigated using dilatometry, 4-point bending strength, XRD and FEG-SEM respectively. Industrial-sized specimens prepared using the promising cycle were tested basing on the ANSI standards. Increasing dwell time from 1h to 3h at peak temperature of 1250C resulted in neither a significant effect on the quartz and mullite content nor MOR. Reducing the firing/cooling rate to below 6C/min, for peak temperature of 1250C (dwell time of 1h) does not result in improvement of strength of porcelain. The industrial sized specimen exhibited flashover voltages of 20.3kV (dry) and 9.3kV (wet) respectively, transverse strength of 12.5kN and bulk density of 2.27g/cm3, which are satisfactory. There was however dye penetration during porosity test. KeywordsDwell time, Microstructure, Porcelain, Strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dwell%20time" title="Dwell time">Dwell time</a>, <a href="https://publications.waset.org/search?q=Microstructure" title=" Microstructure"> Microstructure</a>, <a href="https://publications.waset.org/search?q=Porcelain" title=" Porcelain"> Porcelain</a>, <a href="https://publications.waset.org/search?q=Strength." title=" Strength. "> Strength. </a> </p> <a href="https://publications.waset.org/11565/effects-of-the-sintering-process-on-properties-of-triaxial-electrical-porcelain-from-ugandan-ceramic-minerals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11565/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11565/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11565/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11565/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11565/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11565/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11565/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11565/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11565/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11565/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2990</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5460</span> Wear and Friction Analysis of Sintered Metal Powder Self Lubricating Bush Bearing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20K.%20Khare">J. K. Khare</a>, <a href="https://publications.waset.org/search?q=Abhay%20Kumar%20Sharma"> Abhay Kumar Sharma</a>, <a href="https://publications.waset.org/search?q=Ajay%20Tiwari"> Ajay Tiwari</a>, <a href="https://publications.waset.org/search?q=Amol%20A.%20Talankar"> Amol A. Talankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Powder metallurgy (P/M) is the only economic way to produce porous parts/products. P/M can produce near net shape parts hence reduces wastage of raw material and energy, avoids various machining operations. The most vital use of P/M is in production of metallic filters and self lubricating bush bearings and siding surfaces. The porosity of the part can be controlled by varying compaction pressure, sintering temperature and composition of metal powder mix. The present work is aimed for experimental analysis of friction and wear properties of self lubricating copper and tin bush bearing. Experimental results confirm that wear rate of sintered component is lesser for components having 10% tin by weight percentage. Wear rate increases for high tin percentage (experimented for 20% tin and 30% tin) at same sintering temperature. Experimental results also confirms that wear rate of sintered component is also dependent on sintering temperature, soaking period, composition of the preform, compacting pressure, powder particle shape and size. Interfacial friction between die and punch, between inter powder particles, between die face and powder particle depends on compaction pressure, powder particle size and shape, size and shape of component which decides size & shape of die & punch, material of die & punch and material of powder particles.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Interfacial%20friction" title="Interfacial friction">Interfacial friction</a>, <a href="https://publications.waset.org/search?q=porous%20bronze%20bearing" title=" porous bronze bearing"> porous bronze bearing</a>, <a href="https://publications.waset.org/search?q=sintering%0D%0Atemperature" title=" sintering temperature"> sintering temperature</a>, <a href="https://publications.waset.org/search?q=wear%20rate." title=" wear rate."> wear rate.</a> </p> <a href="https://publications.waset.org/10000046/wear-and-friction-analysis-of-sintered-metal-powder-self-lubricating-bush-bearing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000046/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000046/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000046/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000046/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000046/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000046/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000046/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000046/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000046/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000046/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3974</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5459</span> Microstructural and In-Vitro Characterization of Glass-Reinforced Hydroxyapatite Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Uma%20Batra">Uma Batra</a>, <a href="https://publications.waset.org/search?q=Seema%20Kapoor"> Seema Kapoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commercial hydroxyapatite (HA) was reinforced by adding 2, 5, and 10 wt % of 28.5%CaO-28.5%P2O5-38%Na2 O- 5%CaF2 based glass and then sintered. Although HA shows good biocompatibility with the human body, its applications are limited to non load-bearing areas and coatings due to its poor mechanical properties. These mechanical properties can be improved substantially with addition of glass ceramics by sintering. In this study, the effects of sintering hydroxyapatite with above specified phosphate glass additions are quantified. Each composition was sintered over a range of temperatures. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phases of the composites. The density, microhardness, and compressive strength were measured using Archimedes Principle, Vickers Microhardness Tester (at 0.98 N), and Instron Universal Testing Machine (cross speed of 0.5 mm/min) respectively. These results were used to indicate which composition provided suitable material for use in hard tissue replacement. Composites containing 10 wt % glass additions formed dense HA/TCP (tricalcium phosphate) composite materials possessing good compressive strength and hardness than HA. In-vitro bioactivity was assessed by evaluating changes in pH and Ca2+ ion concentration of SBF-simulated body fluid on immersion of these composites in it for two weeks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bioglass" title="Bioglass">Bioglass</a>, <a href="https://publications.waset.org/search?q=Composite" title=" Composite"> Composite</a>, <a href="https://publications.waset.org/search?q=Hydroxyapatite" title=" Hydroxyapatite"> Hydroxyapatite</a>, <a href="https://publications.waset.org/search?q=Sintering." title=" Sintering."> Sintering.</a> </p> <a href="https://publications.waset.org/2747/microstructural-and-in-vitro-characterization-of-glass-reinforced-hydroxyapatite-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2747/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2747/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2747/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2747/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2747/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2747/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2747/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2747/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2747/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2747/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1831</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5458</span> Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hany%20R.%20Ammar">Hany R. Ammar</a>, <a href="https://publications.waset.org/search?q=Khalil%20A.%20Khalil"> Khalil A. Khalil</a>, <a href="https://publications.waset.org/search?q=El-Sayed%20M.%20Sherif"> El-Sayed M. Sherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The processed bulk nanocrystalline alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti. These phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanocrystalline%20Aluminum%20Alloys" title="Nanocrystalline Aluminum Alloys">Nanocrystalline Aluminum Alloys</a>, <a href="https://publications.waset.org/search?q=Mechanical%0D%0AAlloying" title=" Mechanical Alloying"> Mechanical Alloying</a>, <a href="https://publications.waset.org/search?q=Sintering" title=" Sintering"> Sintering</a>, <a href="https://publications.waset.org/search?q=Hardness" title=" Hardness"> Hardness</a>, <a href="https://publications.waset.org/search?q=Thermal%20Stability." title=" Thermal Stability."> Thermal Stability.</a> </p> <a href="https://publications.waset.org/10000509/thermally-stable-nanocrystalline-aluminum-alloys-processed-by-mechanical-alloying-and-high-frequency-induction-heat-sintering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000509/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000509/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000509/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000509/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000509/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000509/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000509/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000509/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000509/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000509/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2566</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5457</span> Structural, Optical and Ferroelectric Properties of BaTiO3 Sintered at Different Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Anurag%20Gaur">Anurag Gaur</a>, <a href="https://publications.waset.org/search?q=Neha%20Sharma"> Neha Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this work, we have synthesized BaTiO<sub>3</sub> via sol gel method by sintering at different temperatures (600, 700, 800, 900, 1000<sup>0</sup>C) and studied their structural, optical and ferroelectric properties through X-ray diffraction (XRD), UV-Vis spectrophotometer and PE Loop Tracer. X-ray diffraction patterns of barium titanate samples show that the peaks of the diffractogram are successfully indexed with the tetragonal and cubic structure of BaTiO<sub>3</sub>. The Optical band gap calculated through UV Visible spectrophotometer varies from 4.37 to 3.80 eV for the samples sintered at 600 to 1000<sup>0</sup>C, respectively. The particle size calculated through transmission electron microscopy varies from 20 to 40 nm for the samples sintered at 600 to 1000<sup>0</sup>C, respectively. Moreover, it has been observed that the ferroelectricity increases as we increase the sintering temperature.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanostructures" title="Nanostructures">Nanostructures</a>, <a href="https://publications.waset.org/search?q=Ferroelectricity" title=" Ferroelectricity"> Ferroelectricity</a>, <a href="https://publications.waset.org/search?q=Sol-gel%20method." title=" Sol-gel method."> Sol-gel method.</a> </p> <a href="https://publications.waset.org/9996881/structural-optical-and-ferroelectric-properties-of-batio3-sintered-at-different-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996881/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996881/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996881/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996881/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996881/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996881/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996881/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996881/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996881/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996881/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3750</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5456</span> Fiber-Reinforced Sandwich Structures Based on Selective Laser Sintering: A Technological View</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20H%C3%A4fele">T. Häfele</a>, <a href="https://publications.waset.org/search?q=J.%20Kaspar"> J. Kaspar</a>, <a href="https://publications.waset.org/search?q=M.%20Vielhaber"> M. Vielhaber</a>, <a href="https://publications.waset.org/search?q=W.%20Calles"> W. Calles</a>, <a href="https://publications.waset.org/search?q=J.%20Griebsch"> J. Griebsch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The demand for an increasing diversification of the product spectrum associated with the current huge customization desire and subsequently the decreasing unit quantities of each production lot is gaining more and more importance within a great variety of industrial branches, e.g. automotive industry. Nevertheless, traditional product development and production processes (molding, extrusion) are already reaching their limits or fail to address these trends of a flexible and digitized production in view of a product variability up to lot size one. Thus, upcoming innovative production concepts like the additive manufacturing technology basically create new opportunities with regard to extensive potentials in product development (constructive optimization) and manufacturing (economic individualization), but mostly suffer from insufficient strength regarding structural components. Therefore, this contribution presents an innovative technological and procedural conception of a hybrid additive manufacturing process (fiber-reinforced sandwich structures based on selective laser sintering technology) to overcome these current structural weaknesses, and consequently support the design of complex lightweight components.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Additive%20manufacturing" title="Additive manufacturing">Additive manufacturing</a>, <a href="https://publications.waset.org/search?q=fiber-reinforced%20plastics" title=" fiber-reinforced plastics"> fiber-reinforced plastics</a>, <a href="https://publications.waset.org/search?q=hybrid%20design" title=" hybrid design"> hybrid design</a>, <a href="https://publications.waset.org/search?q=lightweight%20design." title=" lightweight design. "> lightweight design. </a> </p> <a href="https://publications.waset.org/10007502/fiber-reinforced-sandwich-structures-based-on-selective-laser-sintering-a-technological-view" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007502/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007502/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007502/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007502/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007502/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007502/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007502/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007502/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007502/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007502/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1222</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5455</span> Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Y%C3%B6netken">A. Yönetken</a>, <a href="https://publications.waset.org/search?q=A.%20Erol"> A. Erol</a>, <a href="https://publications.waset.org/search?q=M.%20Cakmakkaya"> M. Cakmakkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni- %10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe, Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Composite" title="Composite">Composite</a>, <a href="https://publications.waset.org/search?q=Intermetallic" title=" Intermetallic"> Intermetallic</a>, <a href="https://publications.waset.org/search?q=High%20temperature" title=" High temperature"> High temperature</a>, <a href="https://publications.waset.org/search?q=Sintering." title=" Sintering."> Sintering.</a> </p> <a href="https://publications.waset.org/10001589/characterization-of-sintered-fe-cr-mn-powder-mixtures-containing-intermetallics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001589/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001589/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001589/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001589/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001589/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001589/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001589/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001589/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001589/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001589/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2474</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5454</span> Preparation and Characterization of Organic Silver Precursors for Conductive Ink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wendong%20Yang">Wendong Yang</a>, <a href="https://publications.waset.org/search?q=Changhai%20Wang"> Changhai Wang</a>, <a href="https://publications.waset.org/search?q=Valeria%20Arrighi"> Valeria Arrighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low ink sintering temperature is desired for flexible electronics, as it would widen the application of the ink on temperature-sensitive substrates where the selection of silver precursor is very critical. In this paper, four types of organic silver precursors, silver carbonate, silver oxalate, silver tartrate and silver itaconate, were synthesized using an ion exchange method, firstly. Various characterization methods were employed to investigate their physical phase, chemical composition, morphologies and thermal decomposition behavior. It was found that silver oxalate had the ideal thermal property and showed the lowest decomposition temperature. An ink was then formulated by complexing the as-prepared silver oxalate with ethylenediamine in organic solvents. Results show that a favorable conductive film with a uniform surface structure consisting of silver nanoparticles and few voids could be produced from the ink at a sintering temperature of 150 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conductive%20ink" title="Conductive ink">Conductive ink</a>, <a href="https://publications.waset.org/search?q=electrical%20property" title=" electrical property"> electrical property</a>, <a href="https://publications.waset.org/search?q=film" title=" film"> film</a>, <a href="https://publications.waset.org/search?q=organic%20silver." title=" organic silver."> organic silver.</a> </p> <a href="https://publications.waset.org/10009562/preparation-and-characterization-of-organic-silver-precursors-for-conductive-ink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009562/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009562/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009562/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009562/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009562/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009562/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009562/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009562/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009562/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009562/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1091</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5453</span> Sintering Properties of Mechanically Alloyed Ti-5Al-2.5Fe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ridvan%20Yamanoglu">Ridvan Yamanoglu</a>, <a href="https://publications.waset.org/search?q=Erdinc%20Efendi"> Erdinc Efendi</a>, <a href="https://publications.waset.org/search?q=Ismail%20Daoud"> Ismail Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 °C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired a-b structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ti5Al2.5Fe" title="Ti5Al2.5Fe">Ti5Al2.5Fe</a>, <a href="https://publications.waset.org/search?q=mechanical%20alloying" title=" mechanical alloying"> mechanical alloying</a>, <a href="https://publications.waset.org/search?q=hot%20pressing" title=" hot pressing"> hot pressing</a>, <a href="https://publications.waset.org/search?q=sintering." title=" sintering."> sintering.</a> </p> <a href="https://publications.waset.org/10006845/sintering-properties-of-mechanically-alloyed-ti-5al-25fe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006845/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006845/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006845/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006845/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006845/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006845/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006845/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006845/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006845/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006845/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1270</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5452</span> A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=L.%20Siva%20Rama%20Krishna">L. Siva Rama Krishna</a>, <a href="https://publications.waset.org/search?q=Sriram%20Venkatesh"> Sriram Venkatesh</a>, <a href="https://publications.waset.org/search?q=M.%20Sastish%20Kumar"> M. Sastish Kumar</a>, <a href="https://publications.waset.org/search?q=M.%20Uma%20Maheswara%20Chary"> M. Uma Maheswara Chary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyze the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Rapid%20Prototyping" title="Rapid Prototyping">Rapid Prototyping</a>, <a href="https://publications.waset.org/search?q=Selective%20Laser%20Sintering" title=" Selective Laser Sintering"> Selective Laser Sintering</a>, <a href="https://publications.waset.org/search?q=Cranial%20defect" title=" Cranial defect"> Cranial defect</a>, <a href="https://publications.waset.org/search?q=Dimensional%20Error." title=" Dimensional Error. "> Dimensional Error. </a> </p> <a href="https://publications.waset.org/9997651/a-comparative-study-on-the-dimensional-error-of-3d-cad-model-and-sls-rp-model-for-reconstruction-of-cranial-defect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997651/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997651/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997651/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997651/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997651/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997651/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997651/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997651/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997651/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997651/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3362</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5451</span> Preparation of Fe3Si/Ferrite Micro- and Nano-Powder Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Bures">R. Bures</a>, <a href="https://publications.waset.org/search?q=M.%20Streckova"> M. Streckova</a>, <a href="https://publications.waset.org/search?q=M.%20Faberova"> M. Faberova</a>, <a href="https://publications.waset.org/search?q=P.%20Kurek"> P. Kurek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Micro-%20and%20nano-composite" title="Micro- and nano-composite">Micro- and nano-composite</a>, <a href="https://publications.waset.org/search?q=soft%20magnetic%20materials" title=" soft magnetic materials"> soft magnetic materials</a>, <a href="https://publications.waset.org/search?q=microwave%20sintering" title=" microwave sintering"> microwave sintering</a>, <a href="https://publications.waset.org/search?q=mechanical%20and%20electric%20properties." title=" mechanical and electric properties."> mechanical and electric properties.</a> </p> <a href="https://publications.waset.org/10000711/preparation-of-fe3siferrite-micro-and-nano-powder-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000711/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000711/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000711/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000711/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000711/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000711/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000711/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000711/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000711/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000711/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3791</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5450</span> Rapid Processing Techniques Applied to Sintered Nickel Battery Technologies for Utility Scale Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20D.%20Marinaccio">J. D. Marinaccio</a>, <a href="https://publications.waset.org/search?q=I.%20Mabbett"> I. Mabbett</a>, <a href="https://publications.waset.org/search?q=C.%20Glover"> C. Glover</a>, <a href="https://publications.waset.org/search?q=D.%20Worsley"> D. Worsley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through use of novel modern/rapid processing techniques such as screen printing and Near-Infrared (NIR) radiative curing, process time for the sintering of sintered nickel plaques, applicable to alkaline nickel battery chemistries, has been drastically reduced from in excess of 200 minutes with conventional convection methods to below 2 minutes using NIR curing methods. Steps have also been taken to remove the need for forming gas as a reducing agent by implementing carbon as an in-situ reducing agent, within the ink formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Batteries" title="Batteries">Batteries</a>, <a href="https://publications.waset.org/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/search?q=storage." title=" storage."> storage.</a> </p> <a href="https://publications.waset.org/10001588/rapid-processing-techniques-applied-to-sintered-nickel-battery-technologies-for-utility-scale-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001588/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001588/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001588/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001588/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001588/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001588/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001588/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001588/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001588/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001588/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2341</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5449</span> Advanced Micromanufacturing for Ultra Precision Part by Soft Lithography and Nano Powder Injection Molding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Andy%20Tirta">Andy Tirta</a>, <a href="https://publications.waset.org/search?q=Yus%20Prasetyo"> Yus Prasetyo</a>, <a href="https://publications.waset.org/search?q=Eung-Ryul.%20Baek"> Eung-Ryul. Baek</a>, <a href="https://publications.waset.org/search?q=Chul-Jin.%20Choi"> Chul-Jin. Choi </a>, <a href="https://publications.waset.org/search?q=Hye-Moon.%20Lee"> Hye-Moon. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the advanced technologies that offer high precision product, relative easy, economical process and also rapid production are needed to realize the high demand of ultra precision micro part. In our research, micromanufacturing based on soft lithography and nanopowder injection molding was investigated. The silicone metal pattern with ultra thick and high aspect ratio succeeds to fabricate Polydimethylsiloxane (PDMS) micro mold. The process followed by nanopowder injection molding (PIM) by a simple vacuum hot press. The 17-4ph nanopowder with diameter of 100 nm, succeed to be injected and it forms green sample microbearing with thickness, microchannel and aspect ratio is 700μm, 60μm and 12, respectively. Sintering process was done in 1200 C for 2 hours and heating rate 0.83oC/min. Since low powder load (45% PL) was applied to achieve green sample fabrication, ~15% shrinkage happen in the 86% relative density. Several improvements should be done to produce high accuracy and full density sintered part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Micromanufacturing" title="Micromanufacturing">Micromanufacturing</a>, <a href="https://publications.waset.org/search?q=Nano%20PIM" title=" Nano PIM"> Nano PIM</a>, <a href="https://publications.waset.org/search?q=PDMS%20micro%0Amould." title=" PDMS micro mould."> PDMS micro mould.</a> </p> <a href="https://publications.waset.org/356/advanced-micromanufacturing-for-ultra-precision-part-by-soft-lithography-and-nano-powder-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/356/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/356/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/356/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/356/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/356/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/356/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/356/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/356/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/356/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/356/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2062</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5448</span> Effect of Chromium Behavior on Mechanical and Electrical Properties of P/M Copper-Chromium Alloy Dispersed with VGCF</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hisashi%20Imai">Hisashi Imai</a>, <a href="https://publications.waset.org/search?q=Kuan-Yu%20Chen"> Kuan-Yu Chen</a>, <a href="https://publications.waset.org/search?q=Katsuyoshi%20Kondoh"> Katsuyoshi Kondoh</a>, <a href="https://publications.waset.org/search?q=Hung-Yin%20Tsai"> Hung-Yin Tsai</a>, <a href="https://publications.waset.org/search?q=Junko%20Umeda"> Junko Umeda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural and electrical properties of Cu-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Powder%20metallurgy%20Cu-Cr%20alloy%20powder" title="Powder metallurgy Cu-Cr alloy powder">Powder metallurgy Cu-Cr alloy powder</a>, <a href="https://publications.waset.org/search?q=vapor-grown%0D%0Acarbon%20fiber" title=" vapor-grown carbon fiber"> vapor-grown carbon fiber</a>, <a href="https://publications.waset.org/search?q=electrical%20conductivity." title=" electrical conductivity."> electrical conductivity.</a> </p> <a href="https://publications.waset.org/10001581/effect-of-chromium-behavior-on-mechanical-and-electrical-properties-of-pm-copper-chromium-alloy-dispersed-with-vgcf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001581/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001581/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001581/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001581/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001581/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001581/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001581/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001581/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001581/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001581/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2210</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5447</span> Influence of Raw Materials Ratio and Sintering Temperature on the Properties of the Refractory Mullite-Corundum Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=L.%20Mahnicka">L. Mahnicka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The alumosilicate ceramics with mullite crystalline phase are used in various branches of science and technique. The mullite refractory ceramics with high porosity serve as a heat insulator and as a constructional materials [1], [2]. The purpose of the work was to sinter high porosity ceramic and to increase the quantity of mullite phase in this mullite, mullite-corundum ceramics. Two types of compositions were prepared at during the experiment. The first type is compositions with commercial alumina and silica oxides. The second type is from mixing these oxides with 10, 20 and 30 wt.%. of kaolin. In all samples the Al2O3 and SiO2 were in 2.57:1 ratio, because that was conformed to mullite stechiometric compositions (3Al2O3.2SiO2). The types of alumina oxides were α-Al2O3 (d50=4µm) and γ-Al2O3 (d50=80µm). Ratios of α-: γ-Al2O3 were (1:1) or (1:3). The porous materials were prepared by slip casting of suspension of raw materials. The aluminium paste (0.18 wt.%) was used as a pore former. Water content in the suspensions was 26-47 wt.%. Pore formation occurred as a result of hydrogen formation in chemical reaction between aluminium paste and water [2]. The samples were sintered at the temperature of 1650°C and 1750°C for one hour. The increasing amount of kaolin, α-: γ-Al2O3 at the ratio (1:3) and sintering at the highest temperature raised the quantity of mullite phase. The mullite phase began to dominate over the corundum phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Alumina" title="Alumina">Alumina</a>, <a href="https://publications.waset.org/search?q=Kaolin" title=" Kaolin"> Kaolin</a>, <a href="https://publications.waset.org/search?q=Mullite-corundum" title=" Mullite-corundum"> Mullite-corundum</a>, <a href="https://publications.waset.org/search?q=Porous%0D%0Arefractory%20ceramics" title=" Porous refractory ceramics"> Porous refractory ceramics</a> </p> <a href="https://publications.waset.org/12805/influence-of-raw-materials-ratio-and-sintering-temperature-on-the-properties-of-the-refractory-mullite-corundum-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12805/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12805/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12805/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12805/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12805/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12805/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12805/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12805/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12805/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12805/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2855</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=sintering%20process&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=sintering%20process&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=sintering%20process&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=sintering%20process&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=sintering%20process&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=sintering%20process&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=sintering%20process&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=sintering%20process&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=sintering%20process&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=sintering%20process&page=182">182</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=sintering%20process&page=183">183</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=sintering%20process&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>