CINXE.COM
JCI - Welcome
<!DOCTYPE html> <!--[if lt IE 7]> <html lang='en' class='no-js lt-ie10 lt-ie9 lt-ie8 lt-ie7'> <![endif]--> <!--[if IE 7]> <html lang='en' class='no-js lt-ie10 lt-ie9 lt-ie8'> <![endif]--> <!--[if IE 8]> <html lang='en' class='no-js lt-ie10 lt-ie9'> <![endif]--> <!--[if IE 9]> <html lang='en' class='no-js lt-ie10'> <![endif]--> <!--[if (gt IE 9)|!(IE)]><!--> <html lang='en' class='no-js'> <!--<![endif]--> <head> <meta charset='utf-8'> <meta content='text/html; charset=UTF-8' http-equiv='Content-Type'> <meta content='The Journal of Clinical Investigation' name='AUTHOR'> <!-- Set the viewport width to device width for mobile --> <meta content='width=device-width, initial-scale=1.0' name='viewport'> <link href='/rss' rel='alternate' title='JCI New Article RSS' type='application/rss+xml'> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="uAPFHoePw8lnfd59EhQoktMy8kSNiKlHDLx3tmjdGMWybR0Kh2DDAcacLTWGYs7O4IHdOsdrzaK20nKxaLjHOA==" /> <link rel="shortcut icon" type="image/x-icon" href="/assets/jci-favicon-378ea4dd43f03bc78136c6a261d9b28f6811fe59d12db426eae78cf0691b0008.ico" /> <title> JCI - Welcome </title> <!--[if gt IE 8]><!--><link rel="stylesheet" media="all" href="/assets/application-4e3473ed7442aa1dc35d11f58ed4edfbd690fa57a3eb3a1daca0cd68dc7fb1e0.css" /><!--<![endif]--> <!--[if (lt IE 9)]> <link rel="stylesheet" media="all" href="/assets/ie8/application-c9c1df9dc6f969fb6db3e6e1316b9ac163cdd7a9a2bd67746820c5d31a80258f.css" /> <script src="/assets/ie8/ie8-head-e4cc6664a4e806f330a789c9756cfe50f1bb936ea97fe6e2dde7db04b3daa038.js"></script> <![endif]--> <style> @font-face { font-family: "klavika-bold"; src: url("///var/www/jci/jci/releases/20250404161853/vendor/common/fonts/klavika/eot/KlavikaWebBasicBold.eot") format('eot'), src: url("///var/www/jci/jci/releases/20250404161853/vendor/common/fonts/klavika/eot/KlavikaWebBasicBold.eot?#iefix") format("embedded-opentype"), url("///var/www/jci/jci/releases/20250404161853/vendor/common/fonts/klavika/woff/KlavikaWebBasicBold.woff") format("woff") } </style> <script> //Google Tag Manager Data Layer //Values must be set before GTM tags are triggered window.dataLayer = window.dataLayer || []; window.dataLayer.push({ 'siteName': 'content-jci', 'ipAddress': '8.222.208.146', 'environment': 'production', }); </script> <script src="/assets/vendor/modernizr-2f68aa04c7424c280c5bc9db8b68f7f6ff70bcd38254c5b89383eac8e89b1781.js"></script> <script type='text/javascript'> var googletag = googletag || {}; googletag.cmd = googletag.cmd || []; (function () { var gads = document.createElement('script'); gads.async = true; gads.type = 'text/javascript'; var useSSL = 'https:' == document.location.protocol; gads.src = (useSSL ? 'https:' : 'http:') + '//www.googletagservices.com/tag/js/gpt.js'; var node = document.getElementsByTagName('script')[0]; node.parentNode.insertBefore(gads, node); })(); googletag.cmd.push(function () { // NOTE: This script manages google ads, more info at doc/GoogleAds.md var mapping = googletag.sizeMapping().addSize([800, 600], [300, 250]).addSize([640, 480], [260, 217]).build(); var mapping2 = googletag.sizeMapping() .addSize([1920, 1080], [728, 90])//All desktop like resolutions are set to 728x90 .addSize([800, 600], [728, 90]) .addSize([640, 480], [728, 90]) .addSize([0, 0], [320, 50]) //Smaller than 640x480 screens .build(); googletag.defineSlot('/82117132/jci-homepage-med-rectangle-left-col-top', [[300, 250],[260, 217]], 'jci-homepage-med-rectangle-left-col-top').defineSizeMapping(mapping).addService(googletag.pubads()); googletag.defineSlot('/82117132/jci-article-interior-leaderboard-top', [[728, 90],[320, 50]], 'jci-article-interior-leaderboard-top').defineSizeMapping(mapping2).addService(googletag.pubads()); googletag.defineSlot('/82117132/jci-article-interior-leaderboard-bottom', [728, 90], 'jci-article-interior-leaderboard-bottom').addService(googletag.pubads()); googletag.defineSlot('/82117132/jci-article-interior-skyscraper-right-col', [160, 600], 'jci-article-interior-skyscraper-right-col').addService(googletag.pubads()); googletag.defineSlot('/82117132/jci-interior-skyscraper-right-col', [160, 600], 'jci-interior-skyscraper-right-col').addService(googletag.pubads()); // collapseEmptyDivs requires all slots be defined above. googletag.pubads().collapseEmptyDivs(true); googletag.enableServices(); }); </script> </head> <body class='' id='tags_controller'> <div class='off-canvas-wrap' data-offcanvas=''> <div class='inner-wrap'> <div class='fixed show-for-large-up'> <div class='row menu-align' id='logo-bar'> <div class='small-12 columns'> <div class='cross-journal-container'> Go to <a href='http://insight.jci.org'>JCI Insight</a> </div> <a href="/"><img src="/assets/common/jci-spelled-out-white-on-transparent.20160208-958617d51a205b239bcef41eae5703962aee0ae2fcc9fbda0237e635a09ac7f3.png" /></a> </div> </div> <div class='row menu-align' id='journal-bar'> <div class='small-12 columns'> <ul class='inline-list'> <li><a href="/kiosks/about">About</a></li> <li><a href="/kiosks/editorial-board">Editors</a></li> <li><a href="/kiosks/about/consulting-editors">Consulting Editors</a></li> <li><a href="/kiosks/authors">For authors</a></li> <li><a href="/kiosks/ethics">Publication ethics</a></li> <li><a href="/kiosks/connect">Publication alerts by email</a></li> <li><a href="/kiosks/advertise">Advertising</a></li> <li><a href="https://the-asci.org/controllers/asci/JobBoard.php">Job board</a></li> <li><a href="/kiosks/contact">Contact</a></li> </ul> </div> </div> <div id='content-bar'> <nav class='top-bar' data-topbar=''> <section class='top-bar-section'> <ul class='left'> <li class='not-click'> <a href="/tags/141">Clinical Research and Public Health</a> </li> <li class='not-click'> <a id="topmenu_current_issue" href="/current">Current issue</a> </li> <li class='not-click'> <a href="/archive">Past issues</a> </li> <li class='has-dropdown not-click'> <a>By specialty</a> <ul class='dropdown'> <li><a href="/tags/118">COVID-19</a></li> <li><a href="/tags/15">Cardiology</a></li> <li><a href="/tags/21">Gastroenterology</a></li> <li><a href="/tags/25">Immunology</a></li> <li><a href="/tags/28">Metabolism</a></li> <li><a href="/tags/31">Nephrology</a></li> <li><a href="/tags/32">Neuroscience</a></li> <li><a href="/tags/33">Oncology</a></li> <li><a href="/tags/36">Pulmonology</a></li> <li><a href="/tags/42">Vascular biology</a></li> <li><a href="/specialties">All ...</a></li> </ul> </li> <li class='has-dropdown not-click'> <a href="/videos">Videos</a> <ul class='dropdown'> <li><a href="/videos/cgms">Conversations with Giants in Medicine</a></li> <li><a href="/videos/video_abstracts">Video Abstracts</a></li> </ul> </li> <li class='has-dropdown not-click'> <a href="/tags/reviews">Reviews</a> <ul class='dropdown'> <li> <label>Reviews</label> </li> <li><a href="/tags/reviews">View all reviews ...</a></li> <li class='divider'></li> <li> <label>Review Series</label> </li> <li><a href="/review_series/131">Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)</a></li> <li><a href="/review_series/130">Microbiome in Health and Disease (Feb 2025)</a></li> <li><a href="/review_series/127">Substance Use Disorders (Oct 2024)</a></li> <li><a href="/review_series/128">Clonal Hematopoiesis (Oct 2024)</a></li> <li><a href="/review_series/129">Sex Differences in Medicine (Sep 2024)</a></li> <li><a href="/review_series/126">Vascular Malformations (Apr 2024)</a></li> <li><a href="/review_series/125">Lung inflammatory injury and tissue repair (Jul 2023)</a></li> <li> <a href="/review_series">View all review series ...</a> </li> </ul> </li> <li class='not-click'> <a href="/tags/111">Viewpoint</a> </li> <li class='has-dropdown not-click'> <a>Collections</a> <ul class='dropdown'> <li><a href="/in-press-preview">In-Press Preview</a></li> <li><a href="/tags/141">Clinical Research and Public Health</a></li> <li><a href="/tags/127">Research Letters</a></li> <li><a href="/tags/75">Letters to the Editor</a></li> <li><a href="/tags/56">Editorials</a></li> <li><a href="/tags/44">Commentaries</a></li> <li><a href="/tags/123">Editor's notes</a></li> <li><a href="/tags/2">Reviews</a></li> <li><a href="/tags/111">Viewpoints</a></li> <li><a href="/collections/topic/jci-100th-anniversary">100th anniversary</a></li> <li><a href="/top_articles">Top read articles</a></li> </ul> </li> </ul> <ul class='right'> <li class='has-form'> <div id='search-area'> <form action="/search/results" accept-charset="UTF-8" method="get"> <input type="text" name="q" id="q" value="" placeholder="Search the JCI" /> <input type="image" src="/assets/search-black-ba9b554d6f74b1c93d6e6ab71d1c9830c18a20fc6b7e72393f136f5d875141ac.png" value="" /> </form> </div> </li> </ul> </section> </nav> </div> </div> <!--[if gt IE 8]><!--><nav class='tab-bar hide-for-large-up fixed' id='small-navbar'> <section class='left-small'> <a class='left-off-canvas-toggle menu-icon'> <span></span> </a> </section> <section class='middle tab-bar-section'> <h1 class='title'><a href="/"><img width="40" src="/assets/common/jci-only-white-6c989e8f9744a714482158b82319d50aa8437aa4c8524c4f3dcf8450299cd4b7.png" /></a></h1> </section> </nav> <aside class='left-off-canvas-menu'> <ul class='off-canvas-list'> <li> <label>The Journal of Clinical Investigation</label> </li> <li><form action="/search/results" accept-charset="UTF-8" method="get"> <div class='row collapse' id='search-div-offcanvas'> <div class='small-8 columns'> <input name='q' placeholder='Search the JCI' type='text'> </div> <div class='small-4 columns'> <input type="image" src="/assets/common/search-white-530f3f95b9080d73eba51eaeffdf1a3922af42ccc277a2d1d987b8aa24423c96.png" id="search-icon-offcanvas" /> </div> </div> </form> </li> <li><a id="offcanvas_current_issue" href="/current">Current issue</a></li> <li><a href="/archive">Past issues</a></li> <li><a href="/specialties">Specialties</a></li> <li><a href="/tags/reviews">Reviews</a></li> <li><a href="/review_series">Review series</a></li> <li> <label>Videos</label> </li> <li><a href="/videos/cgms">Conversations with Giants in Medicine</a></li> <li><a href="/videos/video_abstracts">Video Abstracts</a></li> <li> <label>Collections</label> </li> <li><a href="/in-press-preview">In-Press Preview</a></li> <li><a href="/tags/141">Clinical Research and Public Health</a></li> <li><a href="/tags/127">Research Letters</a></li> <li><a href="/tags/75">Letters to the Editor</a></li> <li><a href="/tags/56">Editorials</a></li> <li><a href="/tags/44">Commentaries</a></li> <li><a href="/tags/123">Editor's notes</a></li> <li><a href="/tags/2">Reviews</a></li> <li><a href="/tags/111">Viewpoints</a></li> <li><a href="/collections/topic/jci-100th-anniversary">100th anniversary</a></li> <li><a href="/top_articles">Top read articles</a></li> <li> <label>Journal Details</label> </li> <li><a href="/kiosks/about">About</a></li> <li><a href="/kiosks/editorial-board">Editors</a></li> <li><a href="/kiosks/about/consulting-editors">Consulting Editors</a></li> <li><a href="/kiosks/authors">For authors</a></li> <li><a href="/kiosks/ethics">Publication ethics</a></li> <li><a href="/kiosks/connect">Publication alerts by email</a></li> <li><a href="/kiosks/advertise">Advertising</a></li> <li><a href="https://the-asci.org/controllers/asci/JobBoard.php">Job board</a></li> <li><a href="/kiosks/contact">Contact</a></li> </ul> </aside> <a class='exit-off-canvas'></a><!--<![endif]--> <!--[if (lt IE 9)]> <div class='alert-box info' data-alert=''> Please note that the JCI no longer supports your version of Internet Explorer. We recommend upgrading to the latest version of <a href="http://windows.microsoft.com/en-us/internet-explorer/download-ie">Internet Explorer</a>, <a href="https://www.google.com/chrome/browser/desktop/index.html">Google Chrome</a>, or <a href="https://www.mozilla.org/en-US/firefox/new/">Firefox</a> <a class='close' href='#'>×</a> </div> <![endif]--> <div class='row content-wrapper'> <div class='small-12 columns'> <div class='menu-align'> <div class='row'> <div class='large-10 medium-9 small-12 columns'> <h3>Metabolism</h3> <div class='row'> <div class='small-10 medium-7 large-5 small-centered columns'> <ul class='tabs row' data-tab> <li class='tab-title small-6 centered active'> <a href='#articles'>605 Articles</a> </li> <li class='tab-title small-6 centered '> <a href='#posts'>2 Posts</a> </li> </ul> </div> </div> <div class='tabs-content'> <div class='content active' id='articles'> <div class='row'> <div class='small-12 columns'> <div role="navigation" aria-label="Pagination" class="pagination-centered" previous_label="<--" next_label="-->"><ul class="pagination"><li class="arrow unavailable"><a class="arrow unavailable">← Previous</a></li> <li class="current"><a class="current">1</a></li> <li><a rel="next" href="/tags/28?content=articles&page=2">2</a></li> <li><a href="/tags/28?content=articles&page=3">3</a></li> <li class="unavailable"><a>…</a></li> <li><a href="/tags/28?content=articles&page=60">60</a></li> <li><a href="/tags/28?content=articles&page=61">61</a></li> <li class="arrow"><a class="arrow" rel="next" href="/tags/28?content=articles&page=2">Next →</a></li></ul></div> </div> </div> <div class='row'> <div class='small-12 columns'> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/183559">Spermidine restricts neonatal inflammation via metabolic shaping of polymorphonuclear myeloid-derived suppressor cells</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/183559">Jiale Chen, … , Qiang Liu, Jie Zhou</a> <a class='hide-for-small show-more' data-reveal-id='article45893-more' href='#'> <div class='article-authors'> Jiale Chen, … , Qiang Liu, Jie Zhou </div> </a> <span class='article-published-at'> Published April 1, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025;<a id="article_metadata" href="http://www.jci.org/135/7">135(7)</a>:e183559. <a href="https://doi.org/10.1172/JCI183559">https://doi.org/10.1172/JCI183559</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/183559">Text</a> | <a href="/articles/view/183559/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI183559' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> <div class='medium-3 hide-for-small columns'> <a href='https://www.jci.org/articles/view/183559/ga' ref='group' title='Graphical abstract'> <img src='//dm5migu4zj3pb.cloudfront.net/manuscripts/183000/183559/small/JCI183559.ga.gif'> </a> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45893-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/183559">Spermidine restricts neonatal inflammation via metabolic shaping of polymorphonuclear myeloid-derived suppressor cells</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/183559">Text</a></li> <li><a class="button tiny" href="/articles/view/183559/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Newborns exhibit a heightened vulnerability to inflammatory disorders due to their underdeveloped immune system, yet the underlying mechanisms remain poorly understood. Here we report that plasma spermidine is correlated with the maturity of human newborns and reduced risk of inflammation. Administration of spermidine led to the remission of neonatal inflammation in mice. Mechanistic studies revealed that spermidine enhanced the generation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) via downstream eIF5A hypusination. Genetic deficiency or pharmacological inhibition of deoxyhypusine synthase (DHPS), a key enzyme of hypusinated eIF5A (eIF5AHyp), diminished the immunosuppressive activity of PMN-MDSCs, leading to aggravated neonatal inflammation. The eIF5AHyp pathway was found to enhance the immunosuppressive function via histone acetylation–mediated epigenetic transcription of immunosuppressive signatures in PMN-MDSCs. These findings demonstrate the spermidine-eIF5AHyp metabolic axis as a master switch to restrict neonatal inflammation.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Jiale Chen, Lin Zhu, Zhaohai Cui, Yuxin Zhang, Ran Jia, Dongmei Zhou, Bo Hu, Wei Zhong, Jin Xu, Lijuan Zhang, Pan Zhou, Wenyi Mi, Haitao Wang, Zhi Yao, Ying Yu, Qiang Liu, Jie Zhou</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/189202">Meal-feeding promotes skeletal growth by ghrelin-dependent enhancement of growth hormone rhythmicity</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/189202">Amanda K.E. Hornsby, … , James A. Betts, Timothy Wells</a> <a class='hide-for-small show-more' data-reveal-id='article45918-more' href='#'> <div class='article-authors'> Amanda K.E. Hornsby, … , James A. Betts, Timothy Wells </div> </a> <span class='article-published-at'> Published April 1, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI189202">https://doi.org/10.1172/JCI189202</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/189202">Text</a> | <a href="/articles/view/189202/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI189202' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45918-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/189202">Meal-feeding promotes skeletal growth by ghrelin-dependent enhancement of growth hormone rhythmicity</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/189202">Text</a></li> <li><a class="button tiny" href="/articles/view/189202/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>The physiological impact of ultradian temporal feeding patterns remains a major unanswered question in nutritional science. We have employed automated and nasogastric feeding to address this question in male rodents and human volunteers. While grazing and meal-feeding reduced food intake in parallel (compared to ad libitum-fed rodents), body length and tibial epiphysial plate width were maintained in meal-fed rodents via the action of ghrelin and its receptor, GHS-R. Grazing and meal-feeding initially suppressed elevated pre-prandial ghrelin levels in rats, followed by either a sustained elevation in ghrelin in grazing rats or pre-prandial ghrelin surges in meal-fed rats. Episodic growth hormone (GH) secretion was largely unaffected in grazing rats, but meal-feeding tripled GH secretion, with burst height augmented and two additional bursts of GH per day. Continuous nasogastric infusion of enteral feed in humans failed to suppress circulating ghrelin, producing continuously elevated circulating GH with minimal rhythmicity. In contrast, bolus enteral infusion elicited post-prandial ghrelin troughs accompanied by reduced circulating GH, with enhanced ultradian rhythmicity. Taken together, our data imply that the contemporary shift from regular meals to snacking behaviour may be detrimental to optimal skeletal growth outcomes by sustaining circulating GH at levels associated with undernourishment and diminishing GH pulsatility.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Amanda K.E. Hornsby, Richard C. Brown, Thomas W. Tilston, Harry A. Smith, Alfonso Moreno-Cabañas, Bradley Arms-Williams, Anna L. Hopkins, Katie D. Taylor, Simran K.R. Rogaly, Lois H.M. Wells, Jamie J. Walker, Jeffrey S. Davies, Yuxiang Sun, Jeffrey M. Zigman, James A. Betts, Timothy Wells</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/186478">Disrupted Minor Intron Splicing Activates Reductive Carboxylation-mediated Lipogenesis to Drive Metabolic Dysfunction-associated Steatotic Liver Disease Progression</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/186478">Yinkun Fu, … , Yimin Mao, Xu-Yun Zhao</a> <a class='hide-for-small show-more' data-reveal-id='article45884-more' href='#'> <div class='article-authors'> Yinkun Fu, … , Yimin Mao, Xu-Yun Zhao </div> </a> <span class='article-published-at'> Published March 18, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI186478">https://doi.org/10.1172/JCI186478</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/186478">Text</a> | <a href="/articles/view/186478/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI186478' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45884-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/186478">Disrupted Minor Intron Splicing Activates Reductive Carboxylation-mediated Lipogenesis to Drive Metabolic Dysfunction-associated Steatotic Liver Disease Progression</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/186478">Text</a></li> <li><a class="button tiny" href="/articles/view/186478/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Aberrant RNA splicing is tightly linked to diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we revealed that minor intron splicing, a unique and conserved RNA processing event, is largely disrupted upon the progression of metabolic dysfunction-associated steatohepatitis (MASH) in mice and humans. We demonstrated deficiency of minor intron splicing in the liver induces MASH transition upon obesity-induced insulin resistance and LXR activation. Mechanistically, inactivation of minor intron splicing leads to minor intron retention of Insig1 and Insig2, resulting in premature termination of translation, which drives proteolytic activation of SREBP1c. This mechanism is conserved in human patients with MASH. Notably, disrupted minor intron splicing activates glutamine reductive metabolism for de novo lipogenesis through the induction of Idh1, which causes the accumulation of ammonia in the liver, thereby initiating hepatic fibrosis upon LXR activation. Ammonia clearance or IDH1 inhibition blocks hepatic fibrogenesis and mitigates MASH progression. More importantly, the overexpression of Zrsr1 restored minor intron retention and ameliorated the development of MASH, indicating that dysfunctional minor intron splicing is an emerging pathogenic mechanism that drives MASH progression. Additionally, reductive carboxylation flux triggered by minor intron retention in hepatocytes serves as a crucial checkpoint and potential target for MASH therapy.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Yinkun Fu, Xin Peng, Hongyong Song, Xiaoyun Li, Yang Zhi, Jieting Tang, Yifan Liu, Ding Chen, Wenyan Li, Jing Zhang, Jing Ma, Ming He, Yimin Mao, Xu-Yun Zhao</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/181754">Absence of intracellular lipolytic inhibitor G0S2 enhances intravascular triglyceride clearance and abolishes diet-induced hypertriglyceridemia</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/181754">Yongbin Chen, … , Cailin E. McMahon, Jun Liu</a> <a class='hide-for-small show-more' data-reveal-id='article45883-more' href='#'> <div class='article-authors'> Yongbin Chen, … , Cailin E. McMahon, Jun Liu </div> </a> <span class='article-published-at'> Published March 18, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI181754">https://doi.org/10.1172/JCI181754</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/181754">Text</a> | <a href="/articles/view/181754/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI181754' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45883-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/181754">Absence of intracellular lipolytic inhibitor G0S2 enhances intravascular triglyceride clearance and abolishes diet-induced hypertriglyceridemia</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/181754">Text</a></li> <li><a class="button tiny" href="/articles/view/181754/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>The interplay between intracellular and intravascular lipolysis is crucial for maintaining circulating lipid levels and systemic energy homeostasis. Adipose triglyceride lipase (ATGL) and lipoprotein lipase (LPL), the primary triglyceride (TG) lipases responsible for these two spatially separate processes, are highly expressed in adipose tissue. Yet, their coordinated regulation remains undetermined. Here, we demonstrate that genetic ablation of G0S2, a specific inhibitory protein of ATGL, completely abolishes diet-induced hypertriglyceridemia and significantly attenuates atherogenesis in mice. These effects are attributed to enhanced whole-body TG clearance, not altered hepatic TG secretion. Specifically, G0S2 deletion increases circulating LPL concentration and activity, predominantly through LPL production from white adipose tissue (WAT). Strikingly, transplantation of G0S2-deficient WAT normalizes plasma TG levels in mice with hypertriglyceridemia. In conjunction with improved insulin sensitivity and decreased ANGPTL4 expression, the absence of G0S2 enhances the stability of LPL protein in adipocytes, a phenomenon that can be reversed upon ATGL inhibition. Collectively, these findings highlight the pivotal role of adipocyte G0S2 in regulating both intracellular and intravascular lipolysis, and the possibility of targeting G0S2 as a viable pharmacological approach to reduce circulating TGs.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Yongbin Chen, Scott M. Johnson, Stephanie D. Burr, Davide Povero, Aaron M. Anderson, Cailin E. McMahon, Jun Liu</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/186633">Gene-environment interaction modifies the association between hyperinsulinemia and serum urate levels through SLC22A12</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/186633">Wataru Fujii, … , Yuta Kochi, Shigeru Shibata</a> <a class='hide-for-small show-more' data-reveal-id='article45882-more' href='#'> <div class='article-authors'> Wataru Fujii, … , Yuta Kochi, Shigeru Shibata </div> </a> <span class='article-published-at'> Published March 18, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI186633">https://doi.org/10.1172/JCI186633</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/186633">Text</a> | <a href="/articles/view/186633/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI186633' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45882-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/186633">Gene-environment interaction modifies the association between hyperinsulinemia and serum urate levels through SLC22A12</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/186633">Text</a></li> <li><a class="button tiny" href="/articles/view/186633/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>BACKGROUND. Hyperinsulinemia and insulin resistance often accompany elevated serum urate levels (hyperuricemia), a highly heritable condition that triggers gout; however, the underlying mechanisms are unclear. METHODS. We evaluated the association between the index of hyperinsulinemia and the fractional excretion of urate (FEUA) in 162 outpatients. The underlying mechanisms were investigated through single-cell data analysis and kinase screening combined with cell culture experiments. In 377,358 participants of the UK Biobank (UKBB), we analyzed serum urate, hyperinsulinemia, and salt intake. We also examined gene-environment interactions using single nucleotide variants in SLC22A12, which encodes urate transporter 1 (URAT1). RESULTS. The index of hyperinsulinemia was inversely associated with FEUA independently of other covariates. Mechanistically, URAT1 cell-surface abundance and urate transport activity were regulated by URAT1-Thr408 phosphorylation, which was stimulated by hyperinsulinemia via AKT. Kinase screening and single-cell data analysis revealed that SGK1, induced by high salt, activated the same pathway, increasing URAT1. Arg405 was essential for these kinases to phosphorylate URAT1-Thr408. In UKBB participants, hyperinsulinemia and high salt intake were independently associated with increased serum urate levels. We found that SLC22A12 eQTL rs475688 synergistically enhanced the positive association between serum urate and hyperinsulinemia. CONCLUSION. URAT1 mediates the association between hyperinsulinemia and hyperuricemia. Our data provide evidence for the role of gene-environment interactions in determining serum urate levels, paving the way for personalized management of hyperuricemia. FUNDING. ACRO Research Grants of Teikyo University; JSPS; the Japanese Society of Gout and Uric & Nucleic Acids; Fuji Yakuhin; Nanken-Kyoten; Medical Research Center Initiative for High Depth Omics.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Wataru Fujii, Osamu Yamazaki, Daigoro Hirohama, Ken Kaseda, Emiko Kuribayashi-Okuma, Motonori Tsuji, Makoto Hosoyamada, Yuta Kochi, Shigeru Shibata</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/184740">ATGL links insulin dysregulation to insulin resistance in adolescents with obesity and hepatosteatosis</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/184740">Aaron L. Slusher, … , Gerald I. Shulman, Sonia Caprio</a> <a class='hide-for-small show-more' data-reveal-id='article45853-more' href='#'> <div class='article-authors'> Aaron L. Slusher, … , Gerald I. Shulman, Sonia Caprio </div> </a> <span class='article-published-at'> Published March 17, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025;<a id="article_metadata" href="http://www.jci.org/135/6">135(6)</a>:e184740. <a href="https://doi.org/10.1172/JCI184740">https://doi.org/10.1172/JCI184740</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/184740">Text</a> | <a href="/articles/view/184740/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI184740' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> <div class='medium-3 hide-for-small columns'> <a href='https://www.jci.org/articles/view/184740/figure/1' ref='group' title='In response to the HEC, no differences in plasma glucose were observed between groups. (A) Plasma insulin concentrations were greater in participants with IR compared with those with IS throughout the HEC, whereas relative increases in plasma insulin concentrations (compared with time point 0) were similar in both groups (B and C). Peripheral insulin sensitivity (M; adjusted for plasma insulin concentrations) during the second step of the HEC was lower in participants with IR compared with those with IS (D). Insulin-induced suppression of plasma non esterified fatty acid (NEFA) concentrations tended to be lower in participants with IR compared with those with IS during the first step of the HEC and were suppressed similarly in both groups throughout the HEC (E and F). Glycerol turnover rates reached steady state during each step of the HEC in both participant groups, and glycerol turnover rates were lower in participants with IR compared with those with IS throughout step 1 of the HEC (G). Consistent with these findings, insulin-induced suppression of glycerol turnover during the first step of the HEC was lower in participants with IR compared with those with IS (H). Finally, AT-IR was elevated in participants with IR compared with those with IS at the initiation of HEC and remained elevated during the first step. Similarly, the level of suppression tended to be lower in participants with IR compared with those with IS before near complete suppression was observed in both participant groups (I and J). Differences in continuous data were determined by Student’s t test or Mann–Whitney U analysis, and the impact of time on plasma protein and indices of insulin resistance in response to HEC tests were examined by repeated measures ANOVA. P values less than 0.05 were considered significant. Data are presented as means ± SD or IQR (25%, 75%). *P > 0.05.'> <img src='//dm5migu4zj3pb.cloudfront.net/manuscripts/184000/184740/small/JCI184740.f1.gif'> </a> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45853-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/184740">ATGL links insulin dysregulation to insulin resistance in adolescents with obesity and hepatosteatosis</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/184740">Text</a></li> <li><a class="button tiny" href="/articles/view/184740/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>BACKGROUND This study examined the underlying cellular mechanisms associated with insulin resistance (IR) and metabolic disease risk within subcutaneous adipose tissue (SAT) in youth with obesity and IR compared with those without IR.METHODS Thirteen adolescents who were insulin sensitive (IS) and 17 adolescents with IR and obesity underwent a 3-hour oral glucose tolerance test and MRI to measure abdominal fat distribution and liver fat content. Lipolysis was determined by glycerol turnover ([2H5]-glycerol infusion) and adipose triglyceride lipase (ATGL) phosphorylation (Western blot) from SAT samples biopsied prior to and 30-minutes following insulin infusion during a hyperinsulinemic-euglycemic clamp (HEC).RESULTS Glycerol turnover suppression during the HEC (first step) was lower in participants with IR compared with those with IS. Prior to insulin infusion, activated ATGL (reflected by the p-ATGL (Ser406)-to-ATGL ratio) was greater in participants with IR compared with those with IS and suppressed in response to a 30-minute insulin exposure in participants with IS, but not in those with IR. Lastly, greater ATGL inactivation is associated with greater glycerol suppression and lower liver fat.CONCLUSIONS Insulin-mediated inhibition of adipose tissue lipolysis via ATGL is dysregulated among adolescents with IR compared with those with IS, thereby serving as a vital mechanism linking glucose and insulin dysregulation and ectopic lipid storage within the liver.FUNDING This work was supported by funding from the NIH (R01-HD028016-25A1, T32- DK-007058, R01-DK124272, RO1-DK119968, R01MD015974, RO1-DK113984, P3-DK045735, RO1-DK133143, and RC2-DK120534) and the Robert E. Leet and Clara Guthrie Patterson Trust Mentored Research Award.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Aaron L. Slusher, Nicola Santoro, Alla Vash-Margita, Alfonso Galderisi, Pamela Hu, Fuyuze Tokoglu, Zhongyao Li, Elena Tarabra, Jordan Strober, Daniel F. Vatner, Gerald I. Shulman, Sonia Caprio</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/185340">Identification of lysosomal lipolysis as an essential noncanonical mediator of adipocyte fasting and cold-induced lipolysis</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/185340">Yu-Sheng Yeh, … , Irfan J. Lodhi, Babak Razani</a> <a class='hide-for-small show-more' data-reveal-id='article45866-more' href='#'> <div class='article-authors'> Yu-Sheng Yeh, … , Irfan J. Lodhi, Babak Razani </div> </a> <span class='article-published-at'> Published March 17, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025;<a id="article_metadata" href="http://www.jci.org/135/6">135(6)</a>:e185340. <a href="https://doi.org/10.1172/JCI185340">https://doi.org/10.1172/JCI185340</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/185340">Text</a> | <a href="/articles/view/185340/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI185340' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> <div class='medium-3 hide-for-small columns'> <a href='https://www.jci.org/articles/view/185340/ga' ref='group' title='Graphical abstract'> <img src='//dm5migu4zj3pb.cloudfront.net/manuscripts/185000/185340/small/JCI185340.ga.gif'> </a> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45866-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/185340">Identification of lysosomal lipolysis as an essential noncanonical mediator of adipocyte fasting and cold-induced lipolysis</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/185340">Text</a></li> <li><a class="button tiny" href="/articles/view/185340/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Adipose tissue lipolysis is the process by which triglycerides in lipid stores are hydrolyzed into free fatty acids (FFAs), serving as fuel during fasting or cold-induced thermogenesis. Although cytosolic lipases are considered the predominant mechanism of liberating FFAs, lipolysis also occurs in lysosomes via lysosomal acid lipase (LIPA), albeit with unclear roles in lipid storage and whole-body metabolism. We found that adipocyte LIPA expression increased in adipose tissue of mice when lipolysis was stimulated during fasting, cold exposure, or β-adrenergic agonism. This was functionally important, as inhibition of LIPA genetically or pharmacologically resulted in lower plasma FFAs under lipolytic conditions. Furthermore, adipocyte LIPA deficiency impaired thermogenesis and oxygen consumption and rendered mice susceptible to diet-induced obesity. Importantly, lysosomal lipolysis was independent of adipose triglyceride lipase, the rate-limiting enzyme of cytosolic lipolysis. Our data suggest a significant role for LIPA and lysosomal lipolysis in adipocyte lipid metabolism beyond classical cytosolic lipolysis.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Yu-Sheng Yeh, Trent D. Evans, Mari Iwase, Se-Jin Jeong, Xiangyu Zhang, Ziyang Liu, Arick Park, Ali Ghasemian, Borna Dianati, Ali Javaheri, Dagmar Kratky, Satoko Kawarasaki, Tsuyoshi Goto, Hanrui Zhang, Partha Dutta, Francisco J. Schopfer, Adam C. Straub, Jaehyung Cho, Irfan J. Lodhi, Babak Razani</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/185796">Ablating VHL in Rod Photoreceptors Modulates RPE Glycolysis and Improves Preclinical Model of Retinitis Pigmentosa</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/185796">Salvatore Marco Caruso, … , James B. Hurley, Stephen H. Tsang</a> <a class='hide-for-small show-more' data-reveal-id='article45768-more' href='#'> <div class='article-authors'> Salvatore Marco Caruso, … , James B. Hurley, Stephen H. Tsang </div> </a> <span class='article-published-at'> Published February 12, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI185796">https://doi.org/10.1172/JCI185796</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/185796">Text</a> | <a href="/articles/view/185796/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI185796' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45768-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/185796">Ablating VHL in Rod Photoreceptors Modulates RPE Glycolysis and Improves Preclinical Model of Retinitis Pigmentosa</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/185796">Text</a></li> <li><a class="button tiny" href="/articles/view/185796/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Neuroretinal degenerations including retinitis pigmentosa (RP) comprise a heterogeneous collection of pathogenic mutations that ultimately result in blindness. Despite recent advances in precision medicine, therapies for rarer mutations are hindered by burdensome developmental costs. To this end, Von Hippel-Lindau (VHL) is an attractive therapeutic target to treat RP. By ablating VHL in rod photoreceptors and elevating hypoxia-inducible factor (HIF) levels, we demonstrate a path to therapeutically enhancing glycolysis independent of the underlying genetic variant that slows degeneration of both rod and cone photoreceptors in a preclinical model of retinitis pigmentosa. This rod-specific intervention also resulted in reciprocal, decreased glycolytic activity within the retinal pigment epithelium (RPE) cells despite no direct genetic modifications to the RPE. Suppressing glycolysis in the RPE provided notable, non-cell-autonomous therapeutic benefits to the photoreceptors, indicative of metabolically sensitive crosstalk between different cellular compartments of the retina. Surprisingly, targeting HIF2A in RPE cells did not impact RPE glycolysis, potentially implicating HIF1A as a major regulator in mouse RPE and providing a rationale for future therapeutic efforts aimed at modulating RPE metabolism.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Salvatore Marco Caruso, Xuan Cui, Brian M. Robbings, Noah Heaps, Aykut Demikrol, Bruna Lopes da Costa, Daniel T. Hass, Peter M.J. Quinn, Jianhai Du, James B. Hurley, Stephen H. Tsang</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 medium-9 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/178550">TRAF3 loss protects glioblastoma cells from lipid peroxidation and immune elimination via dysregulated lipid metabolism</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/178550">Yu Zeng, … , Ye Song, Aidong Zhou</a> <a class='hide-for-small show-more' data-reveal-id='article45757-more' href='#'> <div class='article-authors'> Yu Zeng, … , Ye Song, Aidong Zhou </div> </a> <span class='article-published-at'> Published February 11, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI178550">https://doi.org/10.1172/JCI178550</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/178550">Text</a> | <a href="/articles/view/178550/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI178550' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45757-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/178550">TRAF3 loss protects glioblastoma cells from lipid peroxidation and immune elimination via dysregulated lipid metabolism</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/178550">Text</a></li> <li><a class="button tiny" href="/articles/view/178550/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p>Glioblastoma (GBM) is a highly aggressive form of brain tumor characterized by dysregulated metabolism. Increased fatty acid oxidation (FAO) protects tumor cells from lipid peroxidation-induced cell death, although the precise mechanisms involved remain unclear. Herein, we report that loss of tumor necrosis factor receptor-associated factor 3 (TRAF3) in GBM critically regulates lipid peroxidation and tumorigenesis by controlling the oxidation of polyunsaturated fatty acids (PUFAs). TRAF3 is frequently repressed in GBM due to promoter hypermethylation. TRAF3 interacts with enoyl-CoA hydratase 1 (ECH1), an enzyme catalyzing the isomerization of unsaturated fatty acids (UFAs), and mediates K63-linked ubiquitination of ECH1 at Lys214. ECH1 ubiquitination impedes TOMM20-dependent mitochondrial translocation of ECH1, which otherwise promotes the oxidation of UFAs, preferentially the PUFAs, and limits lipid peroxidation. Overexpression of TRAF3 enhances the sensitivity of GBM to ferroptosis and anti-PD-L1 immunotherapy in mice. Thus, the TRAF3-ECH1 axis plays a key role in the metabolism of PUFAs, and is crucial for lipid peroxidation damage and immune elimination in GBM.</p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Yu Zeng, Liqian Zhao, Kunlin Zeng, Ziling Zhan, Zhengming Zhan, Shangbiao Li, Hongchao Zhan, Peng Chai, Cheng Xie, Shengfeng Ding, Yuxin Xie, Li Wang, Cuiying Li, Xiaoxia Chen, Daogang Guan, Enguang Bi, Jian-you Liao, Fan Deng, Xiaochun Bai, Ye Song, Aidong Zhou</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> <hr> <div class='row'> <div class='small-12 columns'> <div class='row'> <div class='small-12 columns'> <h5 class='article-title' style='display: inline-block;'><a href="/articles/view/187376">Safety and efficacy of pharmacological inhibition of ketohexokinase in hereditary fructose intolerance</a></h5> </div> </div> <div class='row'> <div class='small-12 columns article-metadata'> <a class="show-for-small" href="/articles/view/187376">Evi J.C. Koene, … , Patrick Schrauwen, Martijn C.G.J. Brouwers</a> <a class='hide-for-small show-more' data-reveal-id='article45765-more' href='#'> <div class='article-authors'> Evi J.C. Koene, … , Patrick Schrauwen, Martijn C.G.J. Brouwers </div> </a> <span class='article-published-at'> Published February 11, 2025 </span> <br/>Citation Information: <i>J Clin Invest.</i> 2025. <a href="https://doi.org/10.1172/JCI187376">https://doi.org/10.1172/JCI187376</a>. <div class='row'> <div class='small-12 columns article-links'> View: <a href="/articles/view/187376">Text</a> | <a href="/articles/view/187376/pdf">PDF</a> </div> </div> <div class='row'> <div class='small-12 columns'> <span class='altmetric-embed' data-badge-popover='bottom' data-badge-type='2' data-doi='10.1172/JCI187376' data-hide-no-mentions='true'></span> </div> </div> </div> </div> </div> </div> <div class='reveal-modal xlarge' data-reveal='' id='article45765-more'> <div class='row'> <div class='small-12 columns'> <h4><a href="/articles/view/187376">Safety and efficacy of pharmacological inhibition of ketohexokinase in hereditary fructose intolerance</a></h4> </div> <div class='small-12 columns'> <ul class='button-group'> <li><a class="button tiny" href="/articles/view/187376">Text</a></li> <li><a class="button tiny" href="/articles/view/187376/pdf">PDF</a></li> </ul> </div> <div class='small-12 columns'> <h5>Abstract</h5> </div> <div class='small-12 columns'> <p> </p> </div> <div class='small-12 columns'> <h5>Authors</h5> </div> <div class='small-12 columns'> <p>Evi J.C. Koene, Amée M. Buziau, David Cassiman, Timothy M. Cox, Judith Bons, Jean L. J. M. Scheijen, Casper G. Schalkwijk, Steven J.R. Meex, Aditi R. Saxena, William P. Esler, Vera B. Schrauwen-Hinderling, Patrick Schrauwen, Martijn C.G.J. Brouwers</p> </div> </div> <a class='close-reveal-modal'>×</a> </div> </div> </div> <div class='row'> <div class='small-12 columns'> <div role="navigation" aria-label="Pagination" class="pagination-centered" previous_label="<--" next_label="-->"><ul class="pagination"><li class="arrow unavailable"><a class="arrow unavailable">← Previous</a></li> <li class="current"><a class="current">1</a></li> <li><a rel="next" href="/tags/28?content=articles&page=2">2</a></li> <li><a href="/tags/28?content=articles&page=3">3</a></li> <li class="unavailable"><a>…</a></li> <li><a href="/tags/28?content=articles&page=60">60</a></li> <li><a href="/tags/28?content=articles&page=61">61</a></li> <li class="arrow"><a class="arrow" rel="next" href="/tags/28?content=articles&page=2">Next →</a></li></ul></div> </div> </div> </div> <div class='content ' id='posts'> <div class='row'> <div class='small-12 columns'> </div> </div> <div class='row'> <div class='small-12 columns'> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/482">Using SORLA to sort out human obesity</a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/482"><div class='article-metadata'> Vanessa Schmidt and colleagues demonstrate that the intracellular sorting receptor SORLA is an important regulator of lipid metabolism… <br> <span class='published-at smaller'> Published June 20, 2016 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/28"><span style='margin-right: 6px' class="label-specialty">Metabolism</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/482"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/432/thumb_Fig._10A.jpg" /></a> </div> </div> <hr> <div class='row'> <div class='small-12 columns'> <h5><a href="/posts/279">Intracellular calcium leak recasts β cell landscape </a></h5> </div> </div> <div class='row'> <div class='large-8 columns'> <div class='row'> <div class='small-12 columns'> <a href="/posts/279"><div class='article-metadata'> Gaetano Santulli and colleagues reveal that RyR2 calcium channels in pancreatic β cells mediate insulin release and glucose homeostasis… <br> <span class='published-at smaller'> Published April 6, 2015 </span> </div> </a></div> <div class='small-12 columns'> <a href="/tags/5"><span style='margin-right: 6px' class="label-article-type">Scientific Show Stopper</span></a><a href="/tags/28"><span style='margin-right: 6px' class="label-specialty">Metabolism</span></a> </div> </div> </div> <div class='large-4 columns'> <a href="/posts/279"><img width="100" src="//dm5migu4zj3pb.cloudfront.net/posts/file/359/thumb_May_B-_79273.jpg" /></a> </div> </div> </div> </div> <div class='row'> <div class='small-12 columns'> </div> </div> </div> </div> </div> <div class='large-2 medium-3 hide-for-small columns' style='padding: 12px 9px 12px 9px;'> <div style='width:100%; text-align: center;'> <div id='jci-interior-skyscraper-right-col'> <span class='secondary label'>Advertisement</span> <script> try { googletag.cmd.push(function () { googletag.display('jci-interior-skyscraper-right-col'); }); } catch(e){} </script> </div> </div> </div> </div> </div> </div> </div> </div> <div id='footer'> <div class='row panel-padding'> <div class='small-6 columns'> <div id='social-links'> <a onclick="trackOutboundLink('/twitter?ref=footer');" href="/twitter"><img title="Twitter" src="/assets/social/twitter-round-blue-78025a92064e3594e44e4ccf5446aefeafba696cd3c8e4a7be1850c7c9f62aba.png" /></a> <a onclick="trackOutboundLink('/facebook?ref=footer');" href="/facebook"><img title="Facebook" src="/assets/social/facebook-round-blue-2787910d46dcbdbee4bd34030fee044e5a77cfda2221af9191d437b2f5fadeb1.png" /></a> <a href="/rss"><img title="RSS" src="/assets/social/rss-round-color-6f5fa8e93dc066ee4923a36ba6a7cb97d53c5b77de78a2c7b2a721adc603f342.png" /></a> </div> <br> Copyright © 2025 <a href="http://www.the-asci.org">American Society for Clinical Investigation</a> <br> ISSN: 0021-9738 (print), 1558-8238 (online) </div> <div class='small-6 columns'> <div class='row'> <div class='small-12 columns'> <h4 class='notices-signup'>Sign up for email alerts</h4> <form action='https://notices.jci.org/subscribers/new' method='get'> <input name='utm_source' type='hidden' value='jci'> <input name='utm_medium' type='hidden' value='web'> <input name='utm_campaign' type='hidden' value='email_signup'> <input name='utm_content' type='hidden' value='footer'> <div class='row'> <div class='small-12 medium-9 columns'> <input name='email_address' placeholder='Your email address' required type='text'> </div> <div class='small-12 medium-3 columns'> <input class='button tiny orange' type='submit' value='Sign up'> </div> </div> </form> </div> </div> </div> </div> </div> </div> <!--[if gt IE 8]><!--><script src="/assets/application-27f18b5fe3b7302e5b3e3c6d7cf9bb3f54759fad32679209f5aef429b89f3aef.js"></script><!--<![endif]--> <!--[if (lt IE 9)]> <script src="/assets/ie8/application-8c033a599105d459c98ea08bf9ef15e25d3fed26e913e4a8de4a5101d04025fd.js"></script> <![endif]--> <script src="//s7.addthis.com/js/300/addthis_widget.js#pubid=ra-4d8389db4b0bb592" async="async"></script> <script src="//d1bxh8uas1mnw7.cloudfront.net/assets/embed.js" async="async"></script> <!--[if lt IE 9]> <script src="/assets/ie8/ie8-1af1fadfa0df4a7f5fcf8fc444742398e0579e1d8aede97903d74bad8167eb5f.js"></script> <![endif]--> </body> </html>