CINXE.COM

Search results for: yoghurt

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: yoghurt</title> <meta name="description" content="Search results for: yoghurt"> <meta name="keywords" content="yoghurt"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="yoghurt" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="yoghurt"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 30</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: yoghurt</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Effects of Artificial Sweeteners on the Quality Parameters of Yogurt during Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Arbab%20Sakandar">Hafiz Arbab Sakandar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabahat%20Yaqub"> Sabahat Yaqub</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Sameen"> Ayesha Sameen</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Imran"> Muhammad Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarfraz%20Ahmad"> Sarfraz Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yoghurt is one of the famous nutritious fermented milk products which have myriad of positive health effects on human beings and curable against different intestinal diseases. This research was conducted to observe effects of different artificial sweeteners on the quality parameters of yoghurt with relation to storage. Some people are allergic to natural sweeteners so artificial sweetener will be helpful for them. Physical-chemical, Microbiology and various sensory evaluation tests were carried out with the interval of 7, 14, 21, and 28 days. It was outcome from this study that addition of artificial sweeteners in yoghurt has shown much harmful effects on the yoghurt microorganisms and other physicochemical parameters from quality point of view. Best results for acceptance were obtained when aspartame was added in yoghurt at level of 0.022 percent. In addition, growth of beneficial microorganisms in yoghurt was also improved as well as other sensory attributes were enhanced by the addition of aspartame. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title="yoghurt">yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20sweetener" title=" artificial sweetener"> artificial sweetener</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20parameters" title=" quality parameters"> quality parameters</a> </p> <a href="https://publications.waset.org/abstracts/17629/effects-of-artificial-sweeteners-on-the-quality-parameters-of-yogurt-during-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Yoghurt Kepel Stelechocarpus burahol as an Effort of Functional Food Diversification from Region of Yogyakarta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dian%20Nur%20Amalia">Dian Nur Amalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rifqi%20Dhiemas%20Aji"> Rifqi Dhiemas Aji</a>, <a href="https://publications.waset.org/abstracts/search?q=Tri%20Septa%20Wahyuningsih"> Tri Septa Wahyuningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Endang%20Wahyuni"> Endang Wahyuni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kepel fruit (Stelechocarpus burahol) is a scarce fruit that belongs as a logogram of Daerah Istimewa Yogyakarta. Kepel fruit can be used as substance of beauty treatment product, such as deodorant and good for skin health, and also contains antioxidant compound. Otherwise, this fruit is scarcely cultivated by people because of its image as a palace fruit and also the flesh percentage just a little, so it has low economic value. The flesh of kepel fruit is about 49% of its whole fruit. This little part as supporting point why kepel fruit has to be extracted and processed with the other product. Yoghurt is milk processing product that also have a role as functional food. Economically, the price of yoghurt is higher than whole milk or other milk processing product. Yoghurt is usually added with flavor of dye from plant or from chemical substance. Kepel fruit has a role as flavor in yoghurt, besides as product that good for digestion, yoghurt with kepel also has function as “beauty” food. Writing method that used is literature study by looking for the potential of kepel fruit as a local fruit of Yogyakarta and yoghurt as milk processing product. The process just like making common yoghurt because kepel fruit just have a role as flavor substance, so it does not affect to the other processing of yoghurt. Food diversification can be done as an effort to increase the value of local resources that proper to compete in Asean Economic Community (AEC), one of the way is producing kepel yoghurt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kepel" title="kepel">kepel</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title=" yoghurt"> yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Daerah%20Istimewa%20Yogyakarta" title=" Daerah Istimewa Yogyakarta"> Daerah Istimewa Yogyakarta</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20food" title=" functional food"> functional food</a> </p> <a href="https://publications.waset.org/abstracts/52281/yoghurt-kepel-stelechocarpus-burahol-as-an-effort-of-functional-food-diversification-from-region-of-yogyakarta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Effect of Moringa (Moringa oleifera LAM) Leaves Extract on Physicochemical and Organoleptic Properties of Fullfat and Lowfat Yoghurt </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20F.%20Muhammad">B. F. Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Abdulqadeer"> A. M. Abdulqadeer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study determined the effect of fortification using Moringa (Moringa oleifera) Leaves Extract (MLE) at different inclusion levels (0, 6, 8, and 10% v/v) on physicochemical and sensory properties of fullfat (FFY) and lowfat (LFY) yoghurt. The results revealed significantly higher protein (p<0.01), fat (p<0.001) and pH in FFY compared to LFY. The MLE inclusion significantly (p<0.001) increased fat contents of the yoghurt types. The pH of LFY produced with 6% MLE was significantly the lowest (p<0.001). The concentration of Mg (21.0 mg/100g), Na (63.0 mg/100g), Ca (173.0 mg/100g), P (416.7 mg/100g), Cu (0.59 mg/100g), Co (0.30 mg/100g), Fe (1.13 mg/100g), and Mn (0.059 mg/100g) were significantly (p<0.001) higher in 10% MLE inclusion level for both FFY and LFY. Also, Mg, Na, Cu and Fe showed significant (p<0.001) negative correlation in fullfat and positive in lowfat yoghurt. The sensory assessment revealed that taste, flavour, colour, texture, and overall acceptability of yoghurt produced with 6% MLE (rated as liked very much) was significantly (p<0.001) better than that produced with 8 and 10% (rated liked slightly). It was concluded that fortification of FFY and LFY with 6% MLE produced acceptable yoghurt that has high nutritional value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moringa" title="moringa">moringa</a>, <a href="https://publications.waset.org/abstracts/search?q=fortification" title=" fortification"> fortification</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title=" yoghurt"> yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a> </p> <a href="https://publications.waset.org/abstracts/18417/effect-of-moringa-moringa-oleifera-lam-leaves-extract-on-physicochemical-and-organoleptic-properties-of-fullfat-and-lowfat-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Extraction of Inulin from Cichorium Intybus and Its Application as Fat Replacer in Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Khuram%20Wasim%20Aslam">Hafiz Khuram Wasim Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saeed"> Muhammad Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Shakeel"> Azam Shakeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Inam%20Ur%20Raheem"> Muhammad Inam Ur Raheem</a>, <a href="https://publications.waset.org/abstracts/search?q=Moazzam%20Rafiq%20Khan"> Moazzam Rafiq Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Atif%20Randhawa"> Muhammad Atif Randhawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inulin is significant ingredient used in food industry that functions technologically as a fat replacer often without compromising taste and texture. In this study inulin was extracted from the chicory roots and the effect of inulin addition as a fat replacer on the physiochemical, microbiological and sensory properties of non-fat yogurt was investigated. The supplementation of chicory inulin reduced the magnitude of firmness in comparison with non-inulin ¬supplemented non-fat yoghurt. Higher values of acidity were observed due to the more microbial fermentation in the inulin containing yogurt as compared to non-inulin yogurt and were in the range of 0.56 to 0.75 during storage days. Syneresis in control sample increased from 43.9% to 47.9% during the storage study. However inulin addition at different treatment enhanced syneresis from 44.5% to 47.6%. Inulin addition at various concentrations caused an increase in the TPC due to its probiotic effect. No effects of inuline addition on fat and protein contents were observed. Non-fat yoghurt supplemented with inulin demonstrated sensory behavior better than that of the control yoghurt. The most important effect of the addition of inulin to non-fat yoghurt is an increase in the sensory attributes appearance, body and texture, taste and mouth feel, overall acceptability. On an average, yoghurt supplemented with 1 to 2% inulin was better in overall acceptance as compared to control yoghurt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inulin" title="inulin">inulin</a>, <a href="https://publications.waset.org/abstracts/search?q=fat%20replacer" title=" fat replacer"> fat replacer</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title=" yoghurt"> yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20evaluation" title=" sensory evaluation"> sensory evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20fat" title=" low fat"> low fat</a> </p> <a href="https://publications.waset.org/abstracts/23498/extraction-of-inulin-from-cichorium-intybus-and-its-application-as-fat-replacer-in-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Effect of Hull-Less Barley Flakes and Malt Extract on Yoghurt Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilze%20Beitane">Ilze Beitane</a>, <a href="https://publications.waset.org/abstracts/search?q=Evita%20Straumite"> Evita Straumite</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research was to evaluate the influence of flakes from biologically activated hull-less barley grain and malt extract on quality of yoghurt during its storage. The results showed that the concentration of added malt extract and storage time influenced the changes of pH and lactic acid in yoghurt samples. Sensory properties-aroma, taste, consistency and appearance-of yoghurt enriched with flakes from biologically activated hull-less barley grain and malt extract changed significantly (p<0.05) during storage. Yoghurt with increased proportion of malt extract had sweeter taste and more flowing consistency. Sensory properties (taste, aroma, consistency, and appearance) of yoghurt samples enriched with 5% flakes from biologically activated hull-less barley grain (YFBG 5%) and 5% flakes from biologically activated hull-less barley grain and 2% malt extract (YFBG 5% ME 2%) did not change significantly during one week of storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barley%20flakes" title="Barley flakes">Barley flakes</a>, <a href="https://publications.waset.org/abstracts/search?q=malt%20extract" title=" malt extract"> malt extract</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title=" yoghurt"> yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20analysis" title=" sensory analysis"> sensory analysis</a> </p> <a href="https://publications.waset.org/abstracts/5994/effect-of-hull-less-barley-flakes-and-malt-extract-on-yoghurt-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Functional Yoghurt Enriched with Microencapsulated Olive Leaves Extract Powder Using Polycaprolactone via Double Emulsion/Solvent Evaporation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamer%20El-Messery">Tamer El-Messery</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20Sanchez-Moya"> Teresa Sanchez-Moya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruben%20Lopez-Nicolas"> Ruben Lopez-Nicolas</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaspar%20Ros"> Gaspar Ros</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmat%20Aly"> Esmat Aly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Olive leaves (OLs), the main by-product of the olive oil industry, have a considerable amount of phenolic compounds. The exploitation of these compounds represents the current trend in food processing. In this study, OLs polyphenols were microencapsulated with polycaprolactone (PCL) and utilized in formulating novel functional yoghurt. PCL-microcapsules were characterized by scanning electron microscopy, and Fourier transform infrared spectrometry analysis. Their total phenolic (TPC), total flavonoid (TFC) contents, and antioxidant activities (DPPH, FRAP, ABTS), and polyphenols bioaccessibility were measured after oral, gastric, and intestinal steps of in vitro digestion. The four yoghurt formulations (containing 0, 25, 50, and 75 mg of PCL-microsphere/100g yoghurt) were evaluated for their pH, acidity, syneresis viscosity, and color during storage. In vitro digestion significantly affected the phenolic composition in non-encapsulated extract while had a lower impact on encapsulated phenolics. Higher protection was provided for encapsulated OLs extract, and their higher release was observed at the intestinal phase. Yoghurt with PCL-microsphere had lower viscosity, syneresis, and color parameters, as compared to control yoghurt. Thus, OLs represent a valuable and cheap source of polyphenols which can be successfully applied, in microencapsulated form, to formulate functional yoghurt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yoghurt%20quality%20attributes" title="yoghurt quality attributes">yoghurt quality attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20leaves" title=" olive leaves"> olive leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20and%20flavonoids%20compounds" title=" phenolic and flavonoids compounds"> phenolic and flavonoids compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone%20as%20microencapsulant" title=" polycaprolactone as microencapsulant"> polycaprolactone as microencapsulant</a> </p> <a href="https://publications.waset.org/abstracts/135540/functional-yoghurt-enriched-with-microencapsulated-olive-leaves-extract-powder-using-polycaprolactone-via-double-emulsionsolvent-evaporation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Effect of Antioxidants Addition in Combination with Milk Re Pasteurization on the Physical, Chemical and Sensory Properties of Condensed Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Abu-Ghoush">Mahmoud Abu-Ghoush</a>, <a href="https://publications.waset.org/abstracts/search?q=Murad%20Al%20Holy"> Murad Al Holy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our main goal in this project is to study the causes and finding solutions for both the hydrolytic and the oxidative rancidity that can be produced during condensed yoghurt production. The re pasteurization of the pasteurized milk and the addition of different types of antioxidants (ascorbic acid and propyl gallate) were used to achieve this goal. Chemical, physical, microbial and sensory tests were done to evaluate the product. It was found that there were significant differences between the different treatments and the control regarding the peroxide value. This means that the addition of both types of antioxidants have a positive effect in decreasing the rancidity value. However, it was found that there were some samples have hydrolytic rancidity flavour without any type of oxidative rancidity (low peroxide value). To overcome this problem the re pasteurization step was used to destroy all the vegetative form of microbes. It was found that this treatment was very useful in controlling the rancidity flavour according to the sensory evaluation of the condensed yoghurt products for several batches. The best condensed yoghurt which contains 0.25% ascorbic acid exhibited the highest sensory properties values. Also, it has the ability in lowering the oxidative rancidity in the combination with the re pasteurization step of the pasteurized milk. This suggests that a higher quality and stable condensed yoghurt can be obtained upon using this combination. These results may help producers in selecting the best treatment methods to overcome the rancidity flavor in this type of condensed yoghurt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=condensed%20yoghurt" title=" condensed yoghurt"> condensed yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=repasturization" title=" repasturization"> repasturization</a>, <a href="https://publications.waset.org/abstracts/search?q=condensed%20milk" title=" condensed milk"> condensed milk</a> </p> <a href="https://publications.waset.org/abstracts/19672/effect-of-antioxidants-addition-in-combination-with-milk-re-pasteurization-on-the-physical-chemical-and-sensory-properties-of-condensed-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Application of Chitosan as a Natural Antimicrobial Compound in Stirred Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Hesari">Javad Hesari</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahereh%20Donyatalab"> Tahereh Donyatalab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sodeif%20Azadmard%20Damirchi"> Sodeif Azadmard Damirchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Rezaii%20Mokaram"> Reza Rezaii Mokaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Rafat"> Abbas Rafat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research was to increase shelf life of stirred yoghurt by adding chitosan as a naturally antimicrobial compound. Chitosan were added at different concentrations (0.1, 0.3 and 0.6%) to the stirred yoghurt. Samples were stored at refrigerator and room temperature for 3 weeks and tested with respect of microbial properties (counts of starter bacteria, mold and yeast, coliforms and E. coli). Starter bacteria and yeast counts in samples containing chitosan was significantly (p<0.05) lower than those in control samples and its antibacterial and anti-yeast effects increased with increasing concentration of chitosan. The lowest counts of starter bacteria and yeast were observed at samples whit 0.6% of chitosan. The Results showed Chitosan had a positive effect on increasing shelf life and controlling of yeasts and therefore can be used as a natural preservative in stirred yogurt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20preservative" title=" natural preservative"> natural preservative</a>, <a href="https://publications.waset.org/abstracts/search?q=stirred%20yoghurt" title=" stirred yoghurt"> stirred yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=self-life" title=" self-life"> self-life</a> </p> <a href="https://publications.waset.org/abstracts/32001/application-of-chitosan-as-a-natural-antimicrobial-compound-in-stirred-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Effects of Camel Casein Hydrolysate Addition on Rheological Properties of Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Al-Saleh">A. A. Al-Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Ismail"> E. A. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Metwalli"> A. A. Metwalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of camel and cow casein hydrolysates by trypsin enzyme on rheological and sensory properties and growth of starter culture of the yoghurts made from cow milk have been investigated. The hydrolysates strongly decreased the fermentation and coagulation time of the yoghurts. The rate of pH decrease was higher with camel casein hydrolysate in comparison with cow casein hydrolysate at all concentrations used (0.5; 1.0 and 1.5%). Viscosities of the yoghurt made with hydrolysates significantly (p<0.05) decreased compared to control samples. The addition of the hydrolysates significantly (p <0.05) increased the hardness and adhesiveness of the yoghurts. No significant differences in water holding capacity of control and treated samples were obsereved at 0.5 and 1.0% casein hydrolysate addition. However, increasing casein hydrolysate addition to 1.5% decreased water holding capacity of yoghurt samples. The sensory evaluation scores of the yoghurts were significantly (p<0.05) improved with the addition of casein hydrolysates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title="yoghurt">yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=camel%20casein%20hydrolysates" title=" camel casein hydrolysates"> camel casein hydrolysates</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20casein%20hydrolysate" title=" cow casein hydrolysate"> cow casein hydrolysate</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20evaluation" title=" sensory evaluation"> sensory evaluation</a> </p> <a href="https://publications.waset.org/abstracts/6018/effects-of-camel-casein-hydrolysate-addition-on-rheological-properties-of-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> The Survival of Bifidobacterium longum in Frozen Yoghurt Ice Cream and Its Properties Affected by Prebiotics (Galacto-Oligosaccharides and Fructo-Oligosaccharides) and Fat Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Thaiudom">S. Thaiudom</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Toommuangpak"> W. Toommuangpak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yoghurt ice cream (YIC) containing prebiotics and probiotics seems to be much more recognized among consumers who concern for their health. Not only can it be a benefit on consumers’ health but also its taste and freshness provide people easily accept. However, the survival of such probiotic especially Bifidobacterium longum, found in human gastrointestinal tract and to be benefit to human gut, was still needed to study in the severe condition as whipping and freezing in ice cream process. Low and full-fat yoghurt ice cream containing 2 and 10% (w/w) fat content (LYIC and FYIC), respectively was produced by mixing 20% yoghurt containing B. longum into milk ice cream mix. Fructo-oligosaccharides (FOS) or galacto-oligosaccharides (GOS) at 0, 1, and 2% (w/w) were separately used as prebiotic in order to improve the survival of B. longum. Survival of this bacteria as a function of ice cream storage time and ice cream properties were investigated. The results showed that prebiotic; especially FOS could improve viable count of B. longum. The more concentration of prebiotic used, the more is the survival of B. Longum. These prebiotics could prolong the survival of B. longum up to 60 days, and the amount of survival number was still in the recommended level (106 cfu per gram). Fat content and prebiotic did not significantly affect the total acidity and the overrun of all samples, but an increase of fat content significantly increased the fat particle size which might be because of partial coalescence found in FYIC rather than in LYIC. However, addition of GOS or FOS could reduce the fat particle size, especially in FYIC. GOS seemed to reduce the hardness of YIC rather than FOS. High fat content (10% fat) significantly influenced on lowering the melting rate of YIC better than 2% fat content due to the 3-dimension networks of fat partial coalescence theoretically occurring more in FYIC than in LYIC. However, FOS seemed to retard the melting rate of ice cream better than GOS. In conclusion, GOS and FOS in YIC with different fat content can enhance the survival of B. longum and affect physical and chemical properties of such yoghurt ice cream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bifidobacterium%20longum" title="Bifidobacterium longum">Bifidobacterium longum</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotic" title=" prebiotic"> prebiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt%20ice%20cream" title=" yoghurt ice cream"> yoghurt ice cream</a> </p> <a href="https://publications.waset.org/abstracts/90605/the-survival-of-bifidobacterium-longum-in-frozen-yoghurt-ice-cream-and-its-properties-affected-by-prebiotics-galacto-oligosaccharides-and-fructo-oligosaccharides-and-fat-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Production of Soy Yoghurt Using Soymilk-Based Lactic Acid Bacteria as Starter Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayobami%20Solomon%20Popoola">Ayobami Solomon Popoola</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20N.%20Enujiugha"> Victor N. Enujiugha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of soy-yogurt by fermentation of soymilk with lactic acid bacteria isolated from soymilk was studied. Soymilk was extracted from dehulled soybean seeds and pasteurized at 95 °C for 15 min. The soymilk was left to naturally ferment (temperature 40 °C; time 8 h) and lactic acid bacteria were isolated, screened and selected for yogurt production. Freshly prepared soymilk was pasteurized (95 °C, 15 min), inoculated with the lactic acid bacteria isolated (3% w/v starter culture) and incubated at 40 °C for 8 h. The yogurt produced was stored at 4 °C. Investigations were carried out with the aim of improving the sensory qualities and acceptability of soy yogurt. Commercial yogurt was used as a control. The percentage of soymilk inoculated was 70% of the broth. Soy-yoghurt samples produced were subsequently subjected to biochemical and microbiological assays which included total viable counts of fresh milk and soy-based yoghurt; proximate composition of functional soy-based yoghurt fermented with Lactobacillus plantarum; changes in pH, Titratable acidity, and lactic acid bacteria during a 14 day period of storage; as well as morphological and biochemical characteristics of lactic acid bacteria isolated. The results demonstrated that using Lactobacillus plantarum to inoculate soy milk for yogurt production takes about 8 h. The overall acceptability of the soy-based yogurt produced was not significantly different from that of the control sample. The use of isolate from soymilk had the added advantage of reducing the cost of yogurt starter culture, thereby making soy-yogurt, a good source of much desired good quality protein. However, more experiments are needed to improve the sensory qualities such as beany or astringent flavor and color. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soy" title="soy">soy</a>, <a href="https://publications.waset.org/abstracts/search?q=soymilk" title=" soymilk"> soymilk</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title=" yoghurt"> yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=starter%20culture" title=" starter culture"> starter culture</a> </p> <a href="https://publications.waset.org/abstracts/97353/production-of-soy-yoghurt-using-soymilk-based-lactic-acid-bacteria-as-starter-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Effect of Addition Cinnamon Extract (Cinnamomum burmannii) to Water Content, pH Value, Total Lactid Acid Bacteria Colonies, Antioxidant Activity and Cholesterol Levels of Goat Milk Yoghurt Isolates Dadih (Pediococcus pentosaceus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endang%20Purwati">Endang Purwati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ely%20Vebriyanti"> Ely Vebriyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Puji%20Hartini"> R. Puji Hartini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendri%20Purwanto"> Hendri Purwanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to determine the effect of addition cinnamon extract (Cinnamomum burmannii) in making goat milk yogurt product isolates dadih (Pediococcus pentosaceus) to antioxidant activity and cholesterol levels. The method of research was the experimental method by using a Randomized Block Design (RBD), which consists of 5 treatments with 4 groups as replication. Treatment in this study was used of cinnamon extract as A (0%), B (1%), C (2%), D (3%), E (4%) in a goat’s milk yoghurt. This study was used 4200 ml of Peranakan Etawa goat’s milk and 80 ml of cinnamon extract. The variable analyzed were water content, pH value, total lactic acid bacterial colonies, antioxidant activity and cholesterol levels. The average water content ranged from 81.2-85.56%. Mean pH values rang between 4.74–4.30. Mean total lactic acid bacteria colonies ranged from 3.87 x 10⁸ - 7.95 x 10⁸ CFU/ml. The average of the antioxidant activity ranged between 10.98%-27.88%. Average of cholesterol levels ranged from 14.0 mg/ml–17.5 mg/ml. The results showed that the addition of cinnamon extract in making goat milk yoghurt product isolates dadih (Pediococcus pentosaceus) significantly different (P < 0.05) to water content, pH value, total lactic acid bacterial colonies, antioxidant activity and cholesterol levels. In conclusion, the study shows that using of cinnamon extract 4% is the best in making goat milk yoghurt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=cinnamon" title=" cinnamon"> cinnamon</a>, <a href="https://publications.waset.org/abstracts/search?q=Pediococcus%20pentosaceus" title=" Pediococcus pentosaceus"> Pediococcus pentosaceus</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title=" yoghurt"> yoghurt</a> </p> <a href="https://publications.waset.org/abstracts/68244/effect-of-addition-cinnamon-extract-cinnamomum-burmannii-to-water-content-ph-value-total-lactid-acid-bacteria-colonies-antioxidant-activity-and-cholesterol-levels-of-goat-milk-yoghurt-isolates-dadih-pediococcus-pentosaceus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> The Dynamics of Microorganisms in Dried Yogurt Storages at Different Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaruwan%20Chutrtong">Jaruwan Chutrtong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yoghurt is a fermented milk product. The process of making yogurt involves fermenting milk with live and active bacterial cultures by adding bacteria directly to the dairy product. It is usually made with a culture of Lactobacillus sp. (L. acidophilus or L. bulgaricus) and Streptococcus thermophilus. Many people like to eat it plain or flavored and it's also use as ingredient in many dishes. Yogurt is rich in nutrients including the microorganism which have important role in balancing the digestion and absorption of the boy.Consumers will benefit from lactic acid bacteria more or less depending on the amount of bacteria that lives in yogurt while eating. When purchasing yogurt, consumers should always check the label for live cultures. Yoghurt must keep in refrigerator at 4°C for up to ten days. After this amount of time, the cultures often become weak. This research studied freezing dry yogurt storage by monitoring on the survival of microorganisms when stored at different temperatures. At 300°C, representative room temperature of country in equator zone, number of lactic acid bacteria reduced 4 log cycles in 10 week. At 400°C, representative temperature in summer of country in equator zone, number of lactic acid bacteria also dropped 4 log cycle in 10 week, similar as storage at 300°C. But drying yogurt storage at 400°C couldn’t reformed to be good character yogurt as good as storage at 400°C only 4 week storage too. After 1 month, it couldn’t bring back the yogurt form. So if it is inevitable to keep yogurt powder at a temperature of 40°C, yoghurt is maintained only up to 4 weeks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic" title="dynamic">dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20yoghurt" title=" dry yoghurt"> dry yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/7210/the-dynamics-of-microorganisms-in-dried-yogurt-storages-at-different-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Microencapsulation for Enhancing the Survival of S. thermophilus and L. bulgaricus during Spray Drying of Sweetened Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dibyakanta%20Seth">Dibyakanta Seth</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20Niwas%20Mishra"> Hari Niwas Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sankar%20Chandra%20Deka"> Sankar Chandra Deka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microencapsulation is an established method of protecting bacteria from the adverse conditions. An improved extrusion spraying technique was used to encapsulate mixed bacteria culture of S. thermophilus and L. bulgaricus using sodium alginate as the coating material. The effect of nozzle air pressure (200, 300, 400 and 500 kPa), sodium alginate concentration (1%, 1.5%, 2%, 2.5% and 3% w/v), different concentration of calcium chloride (0.1, 0.2, 1 M) and initial cell loads (10⁷, 10⁸, 10⁹ cfu/ml) on the viability of encapsulated bacteria were investigated. With the increase in air pressure the size of microcapsules decreased, however the effect was non-significant. There was no significant difference (p > 0.05) in the viability of encapsulated cells when the concentration of calcium chloride was increased. Increased level of sodium alginate significantly increased the survival ratio of encapsulated bacteria (P < 0.01). Encapsulation with 3% alginate was treated as optimum since a higher concentration of alginate increased the gel strength of the solution and thus was difficult to spray. Under optimal conditions 3% alginate, 10⁹ cfu/ml cell load, 20 min hardening time in 0.1 M CaCl2 and 400 kPa nozzle air pressure, the viability of bacteria cells was maximum compared to the free cells. The microcapsules made at the optimal condition when mixed with yoghurt and subjected to spray drying at 148°C, the survival ratio was 2.48×10⁻¹ for S. thermophilus and 7.26×10⁻¹ for L. bulgaricus. In contrast, the survival ratio of free cells of S. thermophilus and L. bulgaricus were 2.36×10⁻³ and 8.27×10⁻³, respectively. This study showed a decline in viable cells count of about 0.5 log over a period of 7 weeks while there was a decline of about 1 log in cultures which were incorporated as free cells in yoghurt. Microencapsulation provided better protection at higher acidity compared to free cells. This study demonstrated that microencapsulation of yoghurt culture in sodium alginate is an effective technique of protection against extreme drying conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion" title="extrusion">extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a>, <a href="https://publications.waset.org/abstracts/search?q=sweetened%20yoghurt" title=" sweetened yoghurt"> sweetened yoghurt</a> </p> <a href="https://publications.waset.org/abstracts/60735/microencapsulation-for-enhancing-the-survival-of-s-thermophilus-and-l-bulgaricus-during-spray-drying-of-sweetened-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> The Effect of Inulin on Aflatoxin M1 Binding Ability of Probiotic Bacteria in Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumeyra%20Sevim">Sumeyra Sevim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulsum%20Gizem%20Topal"> Gulsum Gizem Topal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercan%20Merve%20Tengilimoglu-Metin"> Mercan Merve Tengilimoglu-Metin</a>, <a href="https://publications.waset.org/abstracts/search?q=Banu%20Sancak"> Banu Sancak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mevlude%20Kizil"> Mevlude Kizil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxin M1 (AFM1) represents mutagenic, carcinogenic, hepatotoxic and immunosuppressive properties, and shows adverse effect on human health. Recently the use of probiotics are focused on AFM1 detoxification because of the fact that probiotic strains have a binding ability to AFM1. Moreover, inulin is a prebiotic to improve the ability of probiotic bacteria. Therefore, the aim of the study is to investigate the effect of inulin on AFM1 binding ability of some probiotic bacteria. Yoghurt samples were manufactured by using skim milk powder artificially contaminated with AFM1 at concentration 100 pg/ml. Different samples were prepared for the study as: first sample consists of yoghurt starter bacteria (L. bulgaricus and S. thermophilus), the second sample consists of starter and L. plantarum, starter and B. bifidum ATCC were added to the third sample, starter and B. animalis ATCC 27672 were added to the forth sample, and the fifth sample is a binary culture consisted of starter and B. bifidum and B. animalis. Moreover, the same work groups were prepared with inulin (4%). The samples were incubated at 42°C for 4 hours, then stored for three different time interval (1,5 and 10 days). The toxin was measured by the ELISA. When inulin was added to work groups, there was significant change on AFM1 binding ability at least one sample in all groups except the one with L. plantarum (p<0.05). The highest levels of AFM1 binding ability (68.7%) in samples with inulin were found in the group which B. bifidum was added, whereas the lowest levels of AFM1 binding ability (44.4%) in samples with inulin was found in the fifth sample. The most impressive effect of inulin was found on B.bifidum. In this study, it was obtained that there was a significant effect of storage on AFM1 binding ability in the all groups with inulin except the one with L. plantarum (p<0.05). Consequently, results show that AFM1 detoxification by probiotics have a potential application to reduce toxin concentrations in yoghurt. Besides, inulin has different effects on AFM1 binding ability of each probiotic bacteria strain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20M1" title="aflatoxin M1">aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=inulin" title=" inulin"> inulin</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/60080/the-effect-of-inulin-on-aflatoxin-m1-binding-ability-of-probiotic-bacteria-in-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Consumption Habits of Low-Fat Plant Sterol-Enriched Yoghurt Enriched with Phytosterols</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Reis%20Lima">M. J. Reis Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Oliveira"> J. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Sousa%20Pereira"> A. C. Sousa Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Castilho"> M. C. Castilho</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Teixeira-Lemos"> E. Teixeira-Lemos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing interest in plant sterol enriched foods is due to the fact that they reduce blood cholesterol concentrations without adverse side effects. In this context, enriched foods with phytosterols may be helpful in protecting population against atherosclerosis and cardiovascular diseases. The aim of the present work was to evaluate in a population of Viseu, Portugal, the consumption habits low-fat, plant sterol-enriched yoghurt. For this study, 577 inquiries were made and the sample was randomly selected for people shopping in various supermarkets. The preliminary results showed that the biggest consumers of these products were women aged 45 to 65 years old. Most of the people who claimed to buy these products consumed them once a day. Also, most of the consumers under antidyslipidemic therapeutics noticed positive effects on hypercholesterolemia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumption%20habits" title="consumption habits">consumption habits</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented%20milk" title=" fermented milk"> fermented milk</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20foods" title=" functional foods"> functional foods</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20fat" title=" low fat"> low fat</a>, <a href="https://publications.waset.org/abstracts/search?q=phytosterols" title=" phytosterols"> phytosterols</a> </p> <a href="https://publications.waset.org/abstracts/11513/consumption-habits-of-low-fat-plant-sterol-enriched-yoghurt-enriched-with-phytosterols" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Dairy Products on the Algerian Market: Proportion of Imitation and Degree of Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bentayeb-Ait%20Lounis%20Sa%C3%AFda">Bentayeb-Ait Lounis Saïda</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheref%20Zahia"> Cheref Zahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherifi%20Thizi"> Cherifi Thizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ri%20Kahina%20Bahmed"> Ri Kahina Bahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahina%20Hallali%20Yasmine%20Abdellaoui"> Kahina Hallali Yasmine Abdellaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenza%20Adli"> Kenza Adli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algeria is the leading consumer of dairy products in North Africa. This is a fact. However, the nutritional quality of the latter remains unknown. The aim of this study is to characterise the dairy products available on the Algerian market in order to assess whether they constitute a healthy and safe choice. To do this, it collected data on the labelling of 390 dairy products, including cheese, yoghurt, UHT milk and milk drinks, infant formula and dairy creams. We assessed their degree of processing according to the NOVA classification, as well as the proportion of imitation products. The study was carried out between March 2020 and August 2023. The results show that 88% are ultra-processed; 84% for 'cheese', 92% for dairy creams, 92% for 'yoghurt', 100% for infant formula, 92% for margarines and 36% for UHT milk/dairy drinks. As for imitation/analogue dairy products, the study revealed the following proportions: 100% for infant formula, 78% for butter/margarine, 18% for UHT milk/milk-based drinks, 54% for cheese, 2% for camembert and 75% for dairy cream. The harmful effects of consuming ultra-processed products on long-term health are increasingly documented in dozens of publications. The findings of this study sound the alarm about the health risks to which Algerian consumers are exposed. Various scientific, economic and industrial bodies need to be involved in order to safeguard consumer health in both the short and long term. Food awareness and education campaigns should be organised. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy" title="dairy">dairy</a>, <a href="https://publications.waset.org/abstracts/search?q=UPF" title=" UPF"> UPF</a>, <a href="https://publications.waset.org/abstracts/search?q=NOVA" title=" NOVA"> NOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title=" yoghurt"> yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=cheese" title=" cheese"> cheese</a> </p> <a href="https://publications.waset.org/abstracts/187439/dairy-products-on-the-algerian-market-proportion-of-imitation-and-degree-of-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> The Effect of Probiotic Bacteria on Aflatoxin M1 Detoxification in Phosphate Buffer Saline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumeyra%20Sevim">Sumeyra Sevim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulsum%20Gizem%20Topal"> Gulsum Gizem Topal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercan%20Merve%20Tengilimoglu-Metin"> Mercan Merve Tengilimoglu-Metin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mevlude%20Kizil"> Mevlude Kizil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxin M1 (AFM1) is a major toxic and carcinogenic molecule in milk and milk products. Therefore, it poses a risk for public health. Probiotics can be biological agent to remove AFM1. The aim of this study is to evaluate the effect of probiotic bacteria on AFM1 detoxification in phosphate buffer saline. The PBS samples artificially contaminated with AFM1 at concentration 100 pg/ml were prepared with probiotics bacteria that including monoculture (L. plantarum, B. bifidum ATCC, B. animalis ATCC 27672) and binary culture (L. bulgaricus + S. thermophiles, B. bifidum ATCC + B. animalis ATCC 27672, L. plantarum+B. bifidum ATCC, L. plantarum+ B. animalis ATCC 27672). The samples were incubated at 37°C for 4 hours and stored for 1, 5 and 10 days. The toxin was measured by the ELISA. The highest levels of AFM1 binding ability (63.6%) in PBS were detected yoghurt starter bacteria, while L. plantarum had the lowest levels of AFM1 binding ability (35.5%) in PBS. In addition, it was found that there was significant effect of storage on AFM1 binding ability in all groups except the one including B. animalis (p < 0.05). Consequently, results demonstrate that AFM1 detoxification by probiotic bacteria has a potential application to reduce toxin concentrations in yoghurt. Moreover, probiotic strains can react with itself as synergic or antagonist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20M1" title="aflatoxin M1">aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA" title=" ELISA"> ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/60083/the-effect-of-probiotic-bacteria-on-aflatoxin-m1-detoxification-in-phosphate-buffer-saline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Characterization of Antioxidant-Antimicrobial Microcapsules Containing Carum Copticum Essential Oil and Their Effect on the Sensory Quality of Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Rahimi">Maryam Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Moslehishad"> Maryam Moslehishad</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyede%20Marzieh%20Hosseini"> Seyede Marzieh Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, preparation of spray dried Carum copticum essential oil (CCEO)-loaded microcapsules by maltodextrin and its blending with two other natural biodegradable polymers, gum Arabic (GA) or modified starch (MS) were investigated. Addition of these polymers to maltodextrin resulted in the encasement of encapsulation efficiency (EE). The highest EE (78.22±0.34%) and total phenolic (TP) content (83.86±1.72 mg GAE/100g) was related to MD-MS microcapsules. CCEO-loaded microcapsules showed spherical surface, good antioxidant and antimicrobial properties. In addition, sensory tests confirmed the possible application of CCEO-loaded microcapsules as natural food additives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carum%20copticum" title="carum copticum">carum copticum</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20evaluation" title=" sensory evaluation"> sensory evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title=" antioxidants"> antioxidants</a> </p> <a href="https://publications.waset.org/abstracts/98910/characterization-of-antioxidant-antimicrobial-microcapsules-containing-carum-copticum-essential-oil-and-their-effect-on-the-sensory-quality-of-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Use of Lactic Strains Isolated from Algerian Ewe&#039;s Milk in the Manufacture of a Natural Yogurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chougrani%20Fadela">Chougrani Fadela</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheriguene%20Abderrahim"> Cheriguene Abderrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fifty three strains of thermophilic and mesophilic lactic acid bacteria were isolated from the ewe’s milk. Identification reveals the presence of nineteen strains (36%) of Lactobacillus sp., seventeen strains (32%) of Lactococcus sp., nine strains (17%) of Streptococcus thermophilus and eight strains (15%) of Leuconostoc sp. The strains were characterized for their technological properties. A high diversity of properties among the studied strains was demonstrated. On the basis of technological characteristics, two strains (Lactobacillus bulgaricus and Streptococcus thermophilus) were screened with respect to their acid and flavour production for the preparation of a natural yogurt and compared to a commercial starter cultures. Sensorial analyses revealed that the product manufactured on the basis of the isolated strains have a cohesiveness and adhesiveness corresponding to standard products. The pH and the acidity recorded are also within accepted levels during all the period of conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus%20bulgaricus" title="Lactobacillus bulgaricus">Lactobacillus bulgaricus</a>, <a href="https://publications.waset.org/abstracts/search?q=Streptococcus%20thermophilus" title=" Streptococcus thermophilus"> Streptococcus thermophilus</a>, <a href="https://publications.waset.org/abstracts/search?q=yoghurt" title=" yoghurt"> yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesiveness" title=" cohesiveness"> cohesiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesiveness" title=" adhesiveness"> adhesiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=Algerian%20ewe%E2%80%99s%20milk" title=" Algerian ewe’s milk"> Algerian ewe’s milk</a> </p> <a href="https://publications.waset.org/abstracts/7427/use-of-lactic-strains-isolated-from-algerian-ewes-milk-in-the-manufacture-of-a-natural-yogurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Analysis of Probiotic Properties of Lactobacillus Acidophilus from Commercial Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Ali%20Abdulla">Anwar Ali Abdulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Thekra%20Abdulaali%20Abed%20Al-Chaabawi"> Thekra Abdulaali Abed Al-Chaabawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Kadhim%20Al-Saffar"> Anwar Kadhim Al-Saffar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Kadhim%20Al-Saffar"> Hussein Kadhim Al-Saffar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lactic acid bacteria are very significant to human health due to the production of some antimicrobial substances and ability to inhibit pathogenic bacteria. Furthermore, the bacteria are also used as starter culture in the production of various foods. The present study was focused on isolation and characterization of Lactobacillus acidophilus from yogurt and to demonstrate some of probiotic properties of these isolates. All isolates were phenotypically characterized including studying, biochemical, effect of sodium chloride and pH during growth, carbohydrates test and characterizing the antimicrobial activity of Lactobacillus acidophilus against pathogens. The present study demonstrates that Lactobacillus acidophilus produced a bacteriocin- like inhibitory substance with a broad spectrum of antimicrobial activity directed against pathogenic indicator organism suggesting its protective value against enteric pathogens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactobacillus%20acidophilus" title="lactobacillus acidophilus">lactobacillus acidophilus</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriocin" title=" bacteriocin"> bacteriocin</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a> </p> <a href="https://publications.waset.org/abstracts/28935/analysis-of-probiotic-properties-of-lactobacillus-acidophilus-from-commercial-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Utilization of Rice and Corn Bran with Dairy By-Product in Tarhana Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K%C3%BCbra%20Akta%C5%9F">Kübra Aktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihat%20Akin"> Nihat Akin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tarhana is a traditional Turkish fermented food. It is widely consumed as soup and includes many different ingredients such as wheat flour, various vegetables, and spices, yoghurt, bakery yeast. It can also be enriched by adding other ingredients. Thus, its nutritional properties can be enhanced. In this study, tarhana was supplemented with two different types of brans (rice bran and corn bran) and WPC (whey protein concentrate powder) to improve its nutritional and functional properties. Some chemical properties of tarhana containing two different brans and their levels (0, 5, 10 and 15%) and WPC (0, 5, 10%) were investigated. The results indicated that addition of WPC increased ash content in tarhanas which were fortified with rice and corn bran. The highest antioxidant and phenolic content values were obtained with addition of rice bran in tarhana formulation. Compared to tarhana with corn bran, rice bran addition gave higher oil content values. The cellulose content of tarhana samples was determined between 0.75% and 2.74% and corn bran showed an improving effect on cellulose contents of samples. In terms of protein content, addition of WPC into the tarhana raised protein content for the samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn" title="corn">corn</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a>, <a href="https://publications.waset.org/abstracts/search?q=tarhana" title=" tarhana"> tarhana</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/63106/utilization-of-rice-and-corn-bran-with-dairy-by-product-in-tarhana-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Use of Nano-Crystalline Starch in Probiotic Yogurt and Its Effects on the Physicochemical and Biological Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Seirafi">Ali Seirafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to investigate the effect and application of starch nanocrystals on physicochemical and microbial properties in the industrial production of probiotic yogurt. In this study, probiotic yoghurt was manufactured by industrial method with the optimization and control of the technological factors affecting the probabilistic biomass, using probiotic bacteria Lactobacillus acidophilus and Bifidobacterium bifidum with commonly used yogurt primers. Afterwards, the effects of different levels of fat (1.3%, 2.5 and 4%), as well as the effects of various perbiotic compounds include starch nanocrystals (0.5%, 1 and 1.5%), galactolegalosaccharide (0.5% 1 and 1.5%) and fructooligosaccharide (0.5%, 1 and 1.5%) were evaluated. In addition, the effect of packaging (polyethylene and glass) was studied, while the effect of pH changes and final acidity were studied at each stage. In this research, all experiments were performed in 3 replications and the results were analyzed in a completely randomized design with SAS version 9.1 software. The results of this study showed that the addition of starch nanocrystal compounds as well as the use of glass packaging had the most positive effects on the survival of Lactobacillus acidophilus bacteria and the addition of nano-crystals and the increase in the cooling rate of the product, had the most positive effects on the survival of bacteria Bifidobacterium bifidum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bifidobacterium%20bifidum" title="Bifidobacterium bifidum">Bifidobacterium bifidum</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus%20acidophilus" title=" Lactobacillus acidophilus"> Lactobacillus acidophilus</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotics" title=" prebiotics"> prebiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic%20yogurt" title=" probiotic yogurt"> probiotic yogurt</a> </p> <a href="https://publications.waset.org/abstracts/96054/the-use-of-nano-crystalline-starch-in-probiotic-yogurt-and-its-effects-on-the-physicochemical-and-biological-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Contact Address Levels and Human Health Risk of Metals In Milk and Milk Products Bought from Abeokuta, Southwestern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olukayode%20Bamgbose">Olukayode Bamgbose</a>, <a href="https://publications.waset.org/abstracts/search?q=Feyisola%20Agboola"> Feyisola Agboola</a>, <a href="https://publications.waset.org/abstracts/search?q=Adewale%20M.%20Taiwo"> Adewale M. Taiwo</a>, <a href="https://publications.waset.org/abstracts/search?q=Olanrewaju%20Olujimi%20Oluwole%20Terebo"> Olanrewaju Olujimi Oluwole Terebo</a>, <a href="https://publications.waset.org/abstracts/search?q=Azeez%20Soyingbe"> Azeez Soyingbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Akeem%20Bamgbade"> Akeem Bamgbade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study evaluated the contents and health risk assessment of metals determined in milk and milk product samples collected from the Abeokuta market. Forty-five milk and milk product (yoghurt) samples were digested and analysed for selected metals using Atomic Absorption Spectrophotometric method. Health risk assessment was evaluated for hazard quotient (HQ), hazard index (HI), and cancer risk (CR). Data were subjected to descriptive and inferential statistics. The concentrations of Zn, which ranged from 3.24±0.59 to 4.35±0.59 mg/kg, were the highest in the samples. Cr and Cd were measured below the detection limit of the analytical instrument, while the Pb level was higher than the Codex Alimentarius Commission value of 0.02 mg/kg, indicating unsafe for consumption. However, the HQ of Pb and other metals in milk and milk product samples was less than 1.0, thereby establishing no adverse health effects for Pb and other metals. The distribution pattern of metals in milk and milk product samples followed the decreasing order of Zn > Fe > Ni > Co > Cu > Mn > Pb > Cd/Cr. The CR levels of meals were also less than the permissible limit of 1.0 x 10-4, establishing no possible development of cancer. Keywords: adverse effects, cancer, metals, milk, milk product, the permissible limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20effects" title="adverse effects">adverse effects</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20product" title=" milk product"> milk product</a>, <a href="https://publications.waset.org/abstracts/search?q=permissible%20limit" title=" permissible limit"> permissible limit</a> </p> <a href="https://publications.waset.org/abstracts/164446/contact-address-levels-and-human-health-risk-of-metals-in-milk-and-milk-products-bought-from-abeokuta-southwestern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Chemical Composition and Antibacterial Activity of the Essential Oils from Bunium alpinum and Bunium incrassatum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayet%20El%20Kolli">Hayet El Kolli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Laouer"> Hocine Laouer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bunium in the world comprises about 50 to 100 species, mostly distributed in: Algeria, Italy, Pakistan, Iran, and South Africa. Bunium species have several uses like: Bunium persicum which is commonly used as antispasmodic, carminative, anti-obesity and lactogage. This plant have been widely used as an additive in food stuff such as in bread cooking, rice and yoghurt for its carminative, anti-dyspepsia and antispasmodic effect. The B. paucifolium oil has a wide spectrum of action against moulds, yeast and bacteria. The chemical compositions of Bunium incrassatum and Bunium alpinum essential oils were carry out by GC and GC/MS. Therefore, antibacterial activity of two oils was investigated by disk diffusion method against Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 1331, Staphylococcus aureus ATCC 25923, Klebsiella pneumoniae ATCC 700603, Bacillus cereus ATCC 10876, Enterococcus faecalis ATCC 49452, Lysteria monocytogenes ATCC 15313, Citrobacter freundii ATCC 8090, Proteus mirabilis ATCC 35659. A moderate antibacterial activity was found. In conclusion, it is found that essential oils of the two species are rich in sesquiterpens and other oxygenated compounds. These compounds have been reported to show bactericidal activity and the presence of phenolic compounds makes them useful antioxidants so that results confirm some ethnopharmacologique applications of these two oils of Bunium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bunium%20alpinum" title="Bunium alpinum">Bunium alpinum</a>, <a href="https://publications.waset.org/abstracts/search?q=Bunium%20incrassatum" title=" Bunium incrassatum"> Bunium incrassatum</a>, <a href="https://publications.waset.org/abstracts/search?q=apiaceae" title=" apiaceae"> apiaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=sesquiterpens" title=" sesquiterpens"> sesquiterpens</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activities" title=" antioxidant activities"> antioxidant activities</a> </p> <a href="https://publications.waset.org/abstracts/6330/chemical-composition-and-antibacterial-activity-of-the-essential-oils-from-bunium-alpinum-and-bunium-incrassatum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Selection of Potential Starter Using Their Transcription Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Coskun%20Daggecen">Elif Coskun Daggecen</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyma%20Dokucu"> Seyma Dokucu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yekta%20Gezginc"> Yekta Gezginc</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Akyol"> Ismail Akyol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fermented dairy food quality is mainly determined by the sensory perception and influenced by many factors. Today, starter cultures for fermented foods are being developed to have a constant quality in these foods. Streptococcus thermophilus is one of the main species of most a starter cultures of yogurt fermentation. This species produces lactate by lactose fermentation from pyruvate. On the other hand, a small amount of pyruvate can alternatively be converted to various typical yoghurt flavor compounds such as diacetyl, acetoin, acetaldehyde, or acetic acid, for which the activity of three genes are shown to be especially important; ldh, nox and als. Up to date, commercially produced yoghurts have not yet met the desired aromatic properties that Turkish consumers find in traditional homemade yoghurts. Therefore, it is important to select starters carrying favorable metabolic characteristics from natural isolates. In this study, 30 strains of Str. Thermophilus were isolated from traditional Turkish yoghurts obtained from different regions of the country. In these strains, transcriptional levels of ldh, nox and als genes were determined via a newly developed qPCR protocol, which is a more reliable and precision method for analyzing the quantitative and qualitative expression of specific genes in different experimental conditions or in different organisms compared to conventional analytical methods. Additionally, the metabolite production potentials of the isolates were measured. Of all the strains examined, 60% were found to carry the metabolite production potential and the gene activity which appeared to be suitable to be used as a starter culture. Probable starter cultures were determined according to real-time PCR results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title="gene expression">gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-PCR" title=" RT-PCR"> RT-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=starter%20culture" title=" starter culture"> starter culture</a>, <a href="https://publications.waset.org/abstracts/search?q=Streptococcus%20thermophilus" title=" Streptococcus thermophilus"> Streptococcus thermophilus</a> </p> <a href="https://publications.waset.org/abstracts/91926/selection-of-potential-starter-using-their-transcription-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Comparison of Methods for the Detection of Biofilm Formation in Yeast and Lactic Acid Bacteria Species Isolated from Dairy Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goksen%20Arik">Goksen Arik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihriban%20Korukluoglu"> Mihriban Korukluoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lactic acid bacteria (LAB) and some yeast species are common microorganisms found in dairy products and most of them are responsible for the fermentation of foods. Such cultures are isolated and used as a starter culture in the food industry because of providing standardisation of the final product during the food processing. Choice of starter culture is the most important step for the production of fermented food. Isolated LAB and yeast cultures which have the ability to create a biofilm layer can be preferred as a starter in the food industry. The biofilm formation could be beneficial to extend the period of usage time of microorganisms as a starter. On the other hand, it is an undesirable property in pathogens, since biofilm structure allows a microorganism become more resistant to stress conditions such as antibiotic presence. It is thought that the resistance mechanism could be turned into an advantage by promoting the effective microorganisms which are used in the food industry as starter culture and also which have potential to stimulate the gastrointestinal system. Development of the biofilm layer is observed in some LAB and yeast strains. The resistance could make LAB and yeast strains dominant microflora in the human gastrointestinal system; thus, competition against pathogen microorganisms can be provided more easily. Based on this circumstance, in the study, 10 LAB and 10 yeast strains were isolated from various dairy products, such as cheese, yoghurt, kefir, and cream. Samples were obtained from farmer markets and bazaars in Bursa, Turkey. As a part of this research, all isolated strains were identified and their ability of biofilm formation was detected with two different methods and compared with each other. The first goal of this research was to determine whether&nbsp;<em>isolates</em>&nbsp;have the potential for <em>biofilm</em>&nbsp;production, and the second was to compare the validity of two different methods, which are known as &ldquo;Tube method&rdquo; and &ldquo;96-well plate-based method&rdquo;. This study may offer an insight into developing a point of view about biofilm formation and its beneficial properties in LAB and yeast cultures used as a starter in the food industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20products" title=" dairy products"> dairy products</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/61705/comparison-of-methods-for-the-detection-of-biofilm-formation-in-yeast-and-lactic-acid-bacteria-species-isolated-from-dairy-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> High Acid-Stable α-Amylase Production by Milk in Liquid Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shohei%20Matsuo">Shohei Matsuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Saki%20Mikai"> Saki Mikai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Shochu is a popular Japanese distilled spirits. In the production of shochu, the filamentous fungus Aspergillus kawachii has traditionally been used. A. kawachii produces two types of starch hydrolytic enzymes, α-amylase (enzymatic liquefaction) and glucoamylase (enzymatic saccharification). Liquid culture system is a relatively easy microorganism to ferment with relatively low cost of production compared for solid culture. In liquid culture system, acid-unstable α-amylase (α-A) was produced abundantly, but, acid-stable α-amylase (Aα-A) was not produced. Since there is high enzyme productivity, most in shochu brewing have been adopted by a solid culture method. In this study, therefore, we investigated production of Aα-A in liquid culture system. Materials and methods: Microorganism Aspergillus kawachii NBRC 4308 was used. The mold was cultured at 30 °C for 7~14 d to allow formation of conidiospores on slant agar medium. Liquid Culture System: A. kawachii was cultured in a 100 ml of following altered SLS medium: 1.0 g of rice flour, 0.1 g of K2HPO4, 0.1 g of KCl, 0.6 g of tryptone, 0.05 g of MgSO4・7H2O, 0.001 g of FeSO4・7H2O, 0.0003 g of ZnSO4・7H2O, 0.021 g of CaCl2, 0.33 of citric acid (pH 3.0). The pH of the medium was adjusted to the designated value with 10 % HCl solution. The cultivation was shaking at 30 °C and 200 rpm for 72 h. It was filtered to obtain a crude enzyme solution. Aα-A assay: The crude enzyme solution was analyzed. An acid-stable α-amylase activity was carried out using an α-amylase assay kit (Kikkoman Corporation, Noda, Japan). It was conducted after adding 9 ml of 100 mM acetate buffer (pH 3.0) to 1 ml of the culture product supernatant and acid treatment at 37°C for 1 h. One unit of a-amylase activity was defined as the amount of enzyme that yielded 1 mmol of 2-chloro-4-nitrophenyl 6-azide-6-deoxy-b-maltopentaoside (CNP) per minute. Results and Conclusion: We experimented with co-culture of A. kawachii and lactobacillus in order to get control of pH in altered SLS medium. However, high production of acid-stable α-amylase was not obtained. We experimented with yoghurt or milk made an addition to liquid culture. The result indicated that high production of acid-stable α-amylase (964 U/g-substrate) was obtained when milk made an addition to liquid culture. Phosphate concentration in the liquid medium was a major cause of increased acid-stable α-amylase activity. In liquid culture, acid-stable α-amylase activity was enhanced by milk, but Fats and oils in the milk were oxidized. In addition, Tryptone is not approved as a food additive in Japan. Thus, alter SLS medium added to skim milk excepting for the fats and oils in the milk instead of tryptone. The result indicated that high production of acid-stable α-amylase was obtained with the same effect as milk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid-stable%20%CE%B1-amylase" title="acid-stable α-amylase">acid-stable α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20culture" title=" liquid culture"> liquid culture</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=shochu" title=" shochu"> shochu</a> </p> <a href="https://publications.waset.org/abstracts/49381/high-acid-stable-a-amylase-production-by-milk-in-liquid-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Bioaccessible Phenolics, Phenolic Bioaccessibility and Antioxidant Activity of Pumpkin Flour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20Aydin">Emine Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Gocmen"> Duygu Gocmen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pumpkin flour (PF) has a long shelf life and can be used as a nutritive, functional (antioxidant properties, phenolic contents, etc.) and coloring agent in many food items, especially in bakery products, sausages, instant noodles, pasta and flour mixes. Pre-treatment before drying is one of the most important factors affecting the quality of a final powdered product. Pretreatment, such as soaking in a bisulfite solution, provides that total carotenoids in raw materials rich in carotenoids, especially pumpkins, are retained in the dried product. This is due to the beneficial effect of antioxidant additives in the protection of carotenoids in the dehydrated plant foods. The oxygen present in the medium is removed by the radical SO₂, and thus the carotene degradation caused by the molecular oxygen is inhibited by the presence of SO₂. In this study, pumpkin flours (PFs) produced by two different applications (with or without metabisulfite pre-treatment) and then dried in a freeze dryer. The phenolic contents and antioxidant activities of pumpkin flour were determined. In addition to this, the compound of bioavailable phenolic substances which is obtained by PF has also been investigated using in vitro methods. As a result of researches made in recent years, it has been determined that all nutrients taken with foodstuffs are not bioavailable. Bioavailability changes depending on physical properties, chemical compounds, and capacities of individual digestion of foods. Therefore in this study; bioaccessible phenolics and phenolic bioaccessibility were also determined. The phenolics of the samples with metabisulfite application were higher than those of the samples without metabisulfite pre-treatment. Soaking in metabisulfite solution might have a protective effect for phenolic compounds. Phenolics bioaccessibility of pumpkin flours was investigated in order to assess pumpkin flour as sources of accessible phenolics. The higher bioaccessible phenolics (384.19 mg of GAE 100g⁻¹ DW) and phenolic bioaccessibility values (33.65 mL 100 mL⁻¹) were observed in the pumpkin flour with metabisulfite pre-treatment. Metabisulfite application caused an increase in bioaccessible phenolics of pumpkin flour. According to all assay (ABTS, CUPRAC, DPPH, and FRAP) results, both free and bound phenolics of pumpkin flour with metabisulfite pre-treatment had higher antioxidant activity than those of the sample without metabisulfite pre-treatment. The samples subjected to MS pre-treatment exhibited higher antioxidant activities than those of the samples without MS pre-treatment, this possibly due to higher phenolic contents of the samples with metabisulfite applications. As a result, metabisulfite application caused an increase in phenolic contents, bioaccessible phenolics, phenolic bioaccessibility and antioxidant activities of pumpkin flour. It can be said that pumpkin flour can be used as an alternative functional and nutritional ingredient in bakery products, dairy products (yoghurt, ice-cream), soups, sauces, infant formulae, confectionery, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pumpkin%20flour" title="pumpkin flour">pumpkin flour</a>, <a href="https://publications.waset.org/abstracts/search?q=bioaccessible%20phenolics" title=" bioaccessible phenolics"> bioaccessible phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20bioaccessibility" title=" phenolic bioaccessibility"> phenolic bioaccessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity "> antioxidant activity </a> </p> <a href="https://publications.waset.org/abstracts/69035/bioaccessible-phenolics-phenolic-bioaccessibility-and-antioxidant-activity-of-pumpkin-flour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Effect of Fermented Orange Juice Intake on Urinary 6‑Sulfatoxymelatonin in Healthy Volunteers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Cerrillo">I. Cerrillo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Carrillo-Vico"> A. Carrillo-Vico</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ortega"> M. A. Ortega</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Escudero-L%C3%B3pez"> B. Escudero-López</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20%C3%81lvarez-S%C3%A1nchez"> N. Álvarez-Sánchez</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mart%C3%ADn"> F. Martín</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Fern%C3%A1ndez-Pach%C3%B3n"> M. S. Fernández-Pachón</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melatonin is a bioactive compound involved in multiple biological activities such as glucose tolerance, circadian rhythm regulation, antioxidant defense or immune system action. In elderly subjects the intake of foods and drinks rich in melatonin is very important due to its endogenous level decreases with age. Alcoholic fermentation is a process carried out in fruits, vegetables and legumes to obtain new products with improved bioactive compounds profile in relation to original substrates. Alcoholic fermentation process carried out by Saccharomycetaceae var. Pichia kluyveri induces an important synthesis of melatonin in orange juice. A novel beverage derived of fermented orange juice could be a promising source of this bioactive compound. The aim of the present study was to determine whether the acute intake of fermented orange juice increase the levels of urinary 6-sulfatoxymelatonin in healthy humans. Nine healthy volunteers (7 women and 2 men), aged between 20 and 25 years old and BMI of 21.1  2.4 kg/m2, were recruited. On the study day, participants ingested 500 mL of fermented orange juice. The first urine collection was made before fermented orange juice consumption (basal). The rest of urine collections were made in the following time intervals after fermented orange juice consumption: 0-2, 2-5, 5-10, 10- 15 and 15-24 hours. During the experimental period only the consumption of water was allowed. At lunch time a meal was provided (60 g of white bread, two slices of ham, a slice of cheese, 125 g of sweetened natural yoghurt and water). The subjects repeated the protocol with orange juice following a 2-wk washout period between both types of beverages. The levels of 6-sulfatoxymelatonin (6-SMT) were measured in urine recollected at different time points using the Melatonin-Sulfate Urine ELISA (IBL International GMBH, Hamburg, Germany). Levels of 6-SMT were corrected to those of creatinine for each sample. A significant (p < 0.05) increase in urinary 6-SMT levels was observed between 2-5 hours after fermented orange juice ingestion with respect to basal values (increase of 67,8 %). The consumption of orange juice did not induce any significant change in urinary 6-SMT levels. In addition, urinary 6-SMT levels obtained between 2-5 hours after fermented orange juice ingestion (115,6 ng/mg) were significantly different (p < 0.05) from those of orange juice (42,4 ng/mg). The enhancement of urinary 6-SMT after the ingestion of 500 mL of fermented orange juice in healthy humans compared to orange juice could be an important advantage of this novel product as an excellent source of melatonin. Fermented orange juice could be a new functional food, and its consumption could exert a potentially positive effect on health in both the maintenance of health status and the prevention of chronic diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermented%20orange%20juice" title="fermented orange juice">fermented orange juice</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20beverage" title=" functional beverage"> functional beverage</a>, <a href="https://publications.waset.org/abstracts/search?q=healthy%20human" title=" healthy human"> healthy human</a>, <a href="https://publications.waset.org/abstracts/search?q=melatonin" title=" melatonin"> melatonin</a> </p> <a href="https://publications.waset.org/abstracts/63461/effect-of-fermented-orange-juice-intake-on-urinary-6sulfatoxymelatonin-in-healthy-volunteers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10