CINXE.COM
Search results for: image segmentation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: image segmentation</title> <meta name="description" content="Search results for: image segmentation"> <meta name="keywords" content="image segmentation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="image segmentation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="image segmentation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1651</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: image segmentation</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1561</span> Feature's Extraction of Human Body Composition in Images by Segmentation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mousa%20Mojarrad">Mousa Mojarrad</a>, <a href="https://publications.waset.org/search?q=Mashallah%20Abbasi%20Dezfouli"> Mashallah Abbasi Dezfouli</a>, <a href="https://publications.waset.org/search?q=Amir%20Masoud%20Rahmani"> Amir Masoud Rahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Detection and recognition of the Human Body Composition and extraction their measures (width and length of human body) in images are a major issue in detecting objects and the important field in Image, Signal and Vision Computing in recent years. Finding people and extraction their features in Images are particularly important problem of object recognition, because people can have high variability in the appearance. This variability may be due to the configuration of a person (e.g., standing vs. sitting vs. jogging), the pose (e.g. frontal vs. lateral view), clothing, and variations in illumination. In this study, first, Human Body is being recognized in image then the measures of Human Body extract from the image.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Analysis%20of%20image%20processing" title="Analysis of image processing">Analysis of image processing</a>, <a href="https://publications.waset.org/search?q=canny%20edge%20detection" title=" canny edge detection"> canny edge detection</a>, <a href="https://publications.waset.org/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/search?q=human%20body%20recognition" title=" human body recognition"> human body recognition</a>, <a href="https://publications.waset.org/search?q=segmentation." title=" segmentation."> segmentation.</a> </p> <a href="https://publications.waset.org/8257/features-extraction-of-human-body-composition-in-images-by-segmentation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8257/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8257/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8257/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8257/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8257/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8257/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8257/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8257/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8257/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8257/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2771</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1560</span> Medical Image Edge Detection Based on Neuro-Fuzzy Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Mehena">J. Mehena</a>, <a href="https://publications.waset.org/search?q=M.%20C.%20Adhikary"> M. C. Adhikary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Edge%20detection" title="Edge detection">Edge detection</a>, <a href="https://publications.waset.org/search?q=neuro-fuzzy" title=" neuro-fuzzy"> neuro-fuzzy</a>, <a href="https://publications.waset.org/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/search?q=artificial%20image" title=" artificial image"> artificial image</a>, <a href="https://publications.waset.org/search?q=object%20recognition." title=" object recognition."> object recognition.</a> </p> <a href="https://publications.waset.org/10004525/medical-image-edge-detection-based-on-neuro-fuzzy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004525/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004525/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004525/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004525/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004525/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004525/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004525/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004525/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004525/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004525/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1282</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1559</span> Fast Document Segmentation Using Contourand X-Y Cut Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Boontee%20Kruatrachue">Boontee Kruatrachue</a>, <a href="https://publications.waset.org/search?q=Narongchai%20Moongfangklang"> Narongchai Moongfangklang</a>, <a href="https://publications.waset.org/search?q=Kritawan%20Siriboon"> Kritawan Siriboon </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper describes fast and efficient method for page segmentation of document containing nonrectangular block. The segmentation is based on edge following algorithm using small window of 16 by 32 pixels. This segmentation is very fast since only border pixels of paragraph are used without scanning the whole page. Still, the segmentation may contain error if the space between them is smaller than the window used in edge following. Consequently, this paper reduce this error by first identify the missed segmentation point using direction information in edge following then, using X-Y cut at the missed segmentation point to separate the connected columns. The advantage of the proposed method is the fast identification of missed segmentation point. This methodology is faster with fewer overheads than other algorithms that need to access much more pixel of a document.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Contour%20Direction%20Technique" title="Contour Direction Technique">Contour Direction Technique</a>, <a href="https://publications.waset.org/search?q=Missed%20SegmentationPoints" title=" Missed SegmentationPoints"> Missed SegmentationPoints</a>, <a href="https://publications.waset.org/search?q=Page%20Segmentation" title=" Page Segmentation"> Page Segmentation</a>, <a href="https://publications.waset.org/search?q=Recursive%20X-Y%20Cut%20Technique" title=" Recursive X-Y Cut Technique"> Recursive X-Y Cut Technique</a> </p> <a href="https://publications.waset.org/15977/fast-document-segmentation-using-contourand-x-y-cut-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15977/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15977/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15977/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15977/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15977/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15977/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15977/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15977/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15977/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15977/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2783</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1558</span> On Musical Information Geometry with Applications to Sonified Image Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shannon%20Steinmetz">Shannon Steinmetz</a>, <a href="https://publications.waset.org/search?q=Ellen%20Gethner"> Ellen Gethner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper a theoretical foundation is developed to segment, analyze and associate patterns within audio. We explore this on imagery via sonified audio applied to our segmentation framework. The approach involves a geodesic estimator within the statistical manifold, parameterized by musical centricity. We demonstrate viability by processing a database of random imagery to produce statistically significant clusters of similar imagery content.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Sonification" title="Sonification">Sonification</a>, <a href="https://publications.waset.org/search?q=musical%20information%20geometry" title=" musical information geometry"> musical information geometry</a>, <a href="https://publications.waset.org/search?q=image%0D%0Acontent%20extraction" title=" image content extraction"> image content extraction</a>, <a href="https://publications.waset.org/search?q=automated%20quantification" title=" automated quantification"> automated quantification</a>, <a href="https://publications.waset.org/search?q=audio%20segmentation" title=" audio segmentation"> audio segmentation</a>, <a href="https://publications.waset.org/search?q=pattern%20recognition." title=" pattern recognition."> pattern recognition.</a> </p> <a href="https://publications.waset.org/10012863/on-musical-information-geometry-with-applications-to-sonified-image-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012863/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012863/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012863/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012863/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012863/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012863/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012863/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012863/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012863/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012863/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1557</span> Analysis of Image Segmentation Techniques for Diagnosis of Dental Caries in X-ray Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20Geetha">V. Geetha</a>, <a href="https://publications.waset.org/search?q=K.%20S.%20Aprameya"> K. S. Aprameya </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Early diagnosis of dental caries is essential for maintaining dental health. In this paper, method for diagnosis of dental caries is proposed using Laplacian filter, adaptive thresholding, texture analysis and Support Vector Machine (SVM) classifier. Analysis of the proposed method is compared with Otsu thresholding, watershed segmentation and active contouring method. Adaptive thresholding has comparatively better performance with 96.9% accuracy and 96.1% precision. The results are validated using statistical method, two-way ANOVA, at significant level of 5%, that shows the interaction of proposed method on performance parameter measures are significant. Hence the proposed technique could be used for detection of dental caries in automated computer assisted diagnosis system.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computer%20assisted%20diagnosis" title="Computer assisted diagnosis">Computer assisted diagnosis</a>, <a href="https://publications.waset.org/search?q=dental%20caries" title=" dental caries"> dental caries</a>, <a href="https://publications.waset.org/search?q=dental%20radiography" title=" dental radiography"> dental radiography</a>, <a href="https://publications.waset.org/search?q=image%20segmentation." title=" image segmentation."> image segmentation.</a> </p> <a href="https://publications.waset.org/10010012/analysis-of-image-segmentation-techniques-for-diagnosis-of-dental-caries-in-x-ray-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010012/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010012/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010012/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010012/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010012/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010012/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010012/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010012/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010012/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010012/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1154</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1556</span> An Efficient Segmentation Method Based on Local Entropy Characteristics of Iris Biometrics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ali%20Shojaee%20Bakhtiari">Ali Shojaee Bakhtiari</a>, <a href="https://publications.waset.org/search?q=Ali%20Asghar%20Beheshti%20Shirazi"> Ali Asghar Beheshti Shirazi</a>, <a href="https://publications.waset.org/search?q=Amir%20Sepasi%20Zahmati"> Amir Sepasi Zahmati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An efficient iris segmentation method based on analyzing the local entropy characteristic of the iris image, is proposed in this paper and the strength and weaknesses of the method are analyzed for practical purposes. The method shows special strength in providing designers with an adequate degree of freedom in choosing the proper sections of the iris for their application purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Iris%20segmentation" title="Iris segmentation">Iris segmentation</a>, <a href="https://publications.waset.org/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/search?q=biocryptosystem" title=" biocryptosystem"> biocryptosystem</a>, <a href="https://publications.waset.org/search?q=biometric%20identification." title="biometric identification.">biometric identification.</a> </p> <a href="https://publications.waset.org/8025/an-efficient-segmentation-method-based-on-local-entropy-characteristics-of-iris-biometrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8025/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8025/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8025/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8025/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8025/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8025/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8025/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8025/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8025/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8025/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1428</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1555</span> Low Computational Image Compression Scheme based on Absolute Moment Block Truncation Coding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.Somasundaram">K.Somasundaram</a>, <a href="https://publications.waset.org/search?q=I.Kaspar%20Raj"> I.Kaspar Raj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we have proposed three and two stage still gray scale image compressor based on BTC. In our schemes, we have employed a combination of four techniques to reduce the bit rate. They are quad tree segmentation, bit plane omission, bit plane coding using 32 visual patterns and interpolative bit plane coding. The experimental results show that the proposed schemes achieve an average bit rate of 0.46 bits per pixel (bpp) for standard gray scale images with an average PSNR value of 30.25, which is better than the results from the exiting similar methods based on BTC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bit%20plane" title="Bit plane">Bit plane</a>, <a href="https://publications.waset.org/search?q=Block%20Truncation%20Coding" title=" Block Truncation Coding"> Block Truncation Coding</a>, <a href="https://publications.waset.org/search?q=Image%0Acompression" title=" Image compression"> Image compression</a>, <a href="https://publications.waset.org/search?q=lossy%20compression" title=" lossy compression"> lossy compression</a>, <a href="https://publications.waset.org/search?q=quad%20tree%20segmentation" title=" quad tree segmentation"> quad tree segmentation</a> </p> <a href="https://publications.waset.org/8982/low-computational-image-compression-scheme-based-on-absolute-moment-block-truncation-coding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8982/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8982/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8982/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8982/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8982/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8982/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8982/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8982/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8982/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8982/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1750</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1554</span> Online Optic Disk Segmentation Using Fractals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Srinivasan%20Aruchamy">Srinivasan Aruchamy</a>, <a href="https://publications.waset.org/search?q=Partha%20Bhattacharjee"> Partha Bhattacharjee</a>, <a href="https://publications.waset.org/search?q=Goutam%20Sanyal"> Goutam Sanyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optic disk segmentation plays a key role in the mass screening of individuals with diabetic retinopathy and glaucoma ailments. An efficient hardware-based algorithm for optic disk localization and segmentation would aid for developing an automated retinal image analysis system for real time applications. Herein, TMS320C6416DSK DSP board pixel intensity based fractal analysis algorithm for an automatic localization and segmentation of the optic disk is reported. The experiment has been performed on color and fluorescent angiography retinal fundus images. Initially, the images were pre-processed to reduce the noise and enhance the quality. The retinal vascular tree of the image was then extracted using canny edge detection technique. Finally, a pixel intensity based fractal analysis is performed to segment the optic disk by tracing the origin of the vascular tree. The proposed method is examined on three publicly available data sets of the retinal image and also with the data set obtained from an eye clinic. The average accuracy achieved is 96.2%. To the best of the knowledge, this is the first work reporting the use of TMS320C6416DSK DSP board and pixel intensity based fractal analysis algorithm for an automatic localization and segmentation of the optic disk. This will pave the way for developing devices for detection of retinal diseases in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Color%20retinal%20fundus%20images" title="Color retinal fundus images">Color retinal fundus images</a>, <a href="https://publications.waset.org/search?q=Diabetic%20retinopathy" title=" Diabetic retinopathy"> Diabetic retinopathy</a>, <a href="https://publications.waset.org/search?q=Fluorescein%20angiography%20retinal%20fundus%20images" title=" Fluorescein angiography retinal fundus images"> Fluorescein angiography retinal fundus images</a>, <a href="https://publications.waset.org/search?q=Fractal%20analysis." title=" Fractal analysis."> Fractal analysis.</a> </p> <a href="https://publications.waset.org/10002026/online-optic-disk-segmentation-using-fractals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002026/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002026/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002026/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002026/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002026/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002026/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002026/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002026/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002026/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002026/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2513</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1553</span> A New Ridge Orientation based Method of Computation for Feature Extraction from Fingerprint Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jayadevan%20R.">Jayadevan R.</a>, <a href="https://publications.waset.org/search?q=Jayant%20V.%20Kulkarni"> Jayant V. Kulkarni</a>, <a href="https://publications.waset.org/search?q=Suresh%20N.%20Mali"> Suresh N. Mali</a>, <a href="https://publications.waset.org/search?q=Hemant%20K.%20Abhyankar"> Hemant K. Abhyankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An important step in studying the statistics of fingerprint minutia features is to reliably extract minutia features from the fingerprint images. A new reliable method of computation for minutiae feature extraction from fingerprint images is presented. A fingerprint image is treated as a textured image. An orientation flow field of the ridges is computed for the fingerprint image. To accurately locate ridges, a new ridge orientation based computation method is proposed. After ridge segmentation a new method of computation is proposed for smoothing the ridges. The ridge skeleton image is obtained and then smoothed using morphological operators to detect the features. A post processing stage eliminates a large number of false features from the detected set of minutiae features. The detected features are observed to be reliable and accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Minutia" title="Minutia">Minutia</a>, <a href="https://publications.waset.org/search?q=orientation%20field" title=" orientation field"> orientation field</a>, <a href="https://publications.waset.org/search?q=ridge%20segmentation" title=" ridge segmentation"> ridge segmentation</a>, <a href="https://publications.waset.org/search?q=textured%20image." title=" textured image."> textured image.</a> </p> <a href="https://publications.waset.org/3120/a-new-ridge-orientation-based-method-of-computation-for-feature-extraction-from-fingerprint-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3120/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3120/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3120/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3120/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3120/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3120/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3120/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3120/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3120/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3120/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1853</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1552</span> A New Method for Detection of Artificial Objects and Materials from Long Distance Environmental Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Dujmic">H. Dujmic</a>, <a href="https://publications.waset.org/search?q=V.%20Papic"> V. Papic</a>, <a href="https://publications.waset.org/search?q=H.%20Turic"> H. Turic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents a new method for detection of artificial objects and materials from images of the environmental (non-urban) terrain. Our approach uses the hue and saturation (or Cb and Cr) components of the image as the input to the segmentation module that uses the mean shift method. The clusters obtained as the output of this stage have been processed by the decision-making module in order to find the regions of the image with the significant possibility of representing human. Although this method will detect various non-natural objects, it is primarily intended and optimized for detection of humans; i.e. for search and rescue purposes in non-urban terrain where, in normal circumstances, non-natural objects shouldn-t be present. Real world images are used for the evaluation of the method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Landscape%20surveillance" title="Landscape surveillance">Landscape surveillance</a>, <a href="https://publications.waset.org/search?q=mean%20shift%20algorithm" title=" mean shift algorithm"> mean shift algorithm</a>, <a href="https://publications.waset.org/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/search?q=target%20detection." title=" target detection."> target detection.</a> </p> <a href="https://publications.waset.org/2356/a-new-method-for-detection-of-artificial-objects-and-materials-from-long-distance-environmental-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2356/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2356/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2356/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2356/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2356/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2356/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2356/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2356/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2356/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2356/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1397</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1551</span> Retrieving Similar Segmented Objects Using Motion Descriptors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Konstantinos%20C.%20Kartsakalis">Konstantinos C. Kartsakalis</a>, <a href="https://publications.waset.org/search?q=Angeliki%20Skoura"> Angeliki Skoura</a>, <a href="https://publications.waset.org/search?q=Vasileios%20Megalooikonomou"> Vasileios Megalooikonomou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fuzzy%20Object" title="Fuzzy Object">Fuzzy Object</a>, <a href="https://publications.waset.org/search?q=Fuzzy%20Image%20Segmentation" title=" Fuzzy Image Segmentation"> Fuzzy Image Segmentation</a>, <a href="https://publications.waset.org/search?q=Motion%0D%0ADescriptors" title=" Motion Descriptors"> Motion Descriptors</a>, <a href="https://publications.waset.org/search?q=MRI%20Imaging" title=" MRI Imaging"> MRI Imaging</a>, <a href="https://publications.waset.org/search?q=Object-Based%20Image%20Retrieval." title=" Object-Based Image Retrieval."> Object-Based Image Retrieval.</a> </p> <a href="https://publications.waset.org/10000106/retrieving-similar-segmented-objects-using-motion-descriptors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000106/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000106/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000106/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000106/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000106/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000106/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000106/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000106/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000106/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000106/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2302</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1550</span> Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohamed%20Gouskir">Mohamed Gouskir</a>, <a href="https://publications.waset.org/search?q=Belaid%20Bouikhalene"> Belaid Bouikhalene</a>, <a href="https://publications.waset.org/search?q=Hicham%20Aissaoui"> Hicham Aissaoui</a>, <a href="https://publications.waset.org/search?q=Benachir%20Elhadadi"> Benachir Elhadadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in this paper, is the use of an edge-based anisotropic diffusion tensor for the segmentation task by integrating both image edge geometry and Riemannian manifold (geodesic, metric tensor) to regularize the convergence contour and extract complex anatomical structures. We check the accuracy of the segmentation results on simulated brain MRI scans of single T1-weighted, T2-weighted and Proton Density sequences. We validate our approach using two different databases: BrainWeb database, and MRI Multiple sclerosis Database (MRI MS DB). We have compared, qualitatively and quantitatively, our approach with the well-known brain extraction algorithms. We show that using a Riemannian manifolds to medical image analysis improves the efficient results to brain extraction, in real time, outperforming the results of the standard techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Riemannian%20manifolds" title="Riemannian manifolds">Riemannian manifolds</a>, <a href="https://publications.waset.org/search?q=Riemannian%20Tensor" title=" Riemannian Tensor"> Riemannian Tensor</a>, <a href="https://publications.waset.org/search?q=Brain%0D%0ASegmentation" title=" Brain Segmentation"> Brain Segmentation</a>, <a href="https://publications.waset.org/search?q=Non-Euclidean%20data" title=" Non-Euclidean data"> Non-Euclidean data</a>, <a href="https://publications.waset.org/search?q=Brain%20Extraction." title=" Brain Extraction."> Brain Extraction.</a> </p> <a href="https://publications.waset.org/10002794/riemannian-manifolds-for-brain-extraction-on-multi-modal-resonance-magnetic-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002794/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002794/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002794/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002794/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002794/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002794/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002794/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002794/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002794/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002794/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1662</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1549</span> Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abder-Rahman%20Ali">Abder-Rahman Ali</a>, <a href="https://publications.waset.org/search?q=Ad%C3%A9la%C3%AFde%20Albouy-Kissi"> Ad茅la茂de Albouy-Kissi</a>, <a href="https://publications.waset.org/search?q=Manuel%20Grand-Brochier"> Manuel Grand-Brochier</a>, <a href="https://publications.waset.org/search?q=Viviane%20Ladan-Marcus"> Viviane Ladan-Marcus</a>, <a href="https://publications.waset.org/search?q=Christine%20Hoeffl"> Christine Hoeffl</a>, <a href="https://publications.waset.org/search?q=Claude%20Marcus"> Claude Marcus</a>, <a href="https://publications.waset.org/search?q=Antoine%20Vacavant"> Antoine Vacavant</a>, <a href="https://publications.waset.org/search?q=Jean-Yves%20Boire"> Jean-Yves Boire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Defuzzification" title="Defuzzification">Defuzzification</a>, <a href="https://publications.waset.org/search?q=fuzzy%20clustering" title=" fuzzy clustering"> fuzzy clustering</a>, <a href="https://publications.waset.org/search?q=image%0D%0Asegmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/search?q=type-II%20fuzzy%20sets." title=" type-II fuzzy sets."> type-II fuzzy sets.</a> </p> <a href="https://publications.waset.org/10002261/liver-lesion-extraction-with-fuzzy-thresholding-in-contrast-enhanced-ultrasound-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002261/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002261/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002261/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002261/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002261/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002261/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002261/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002261/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002261/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002261/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2290</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1548</span> Detecting Circles in Image Using Statistical Image Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fathi%20M.%20O.%20Hamed">Fathi M. O. Hamed</a>, <a href="https://publications.waset.org/search?q=Salma%20F.%20Elkofhaifee"> Salma F. Elkofhaifee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20processing" title="Image processing">Image processing</a>, <a href="https://publications.waset.org/search?q=median%20filter" title=" median filter"> median filter</a>, <a href="https://publications.waset.org/search?q=projection" title=" projection"> projection</a>, <a href="https://publications.waset.org/search?q=scalespace" title=" scalespace"> scalespace</a>, <a href="https://publications.waset.org/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/search?q=threshold." title=" threshold."> threshold.</a> </p> <a href="https://publications.waset.org/10003054/detecting-circles-in-image-using-statistical-image-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003054/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003054/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003054/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003054/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003054/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003054/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003054/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003054/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003054/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003054/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1833</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1547</span> Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Elham%20Alaee">Elham Alaee</a>, <a href="https://publications.waset.org/search?q=Mousa%20Shamsi"> Mousa Shamsi</a>, <a href="https://publications.waset.org/search?q=Hossein%20Ahmadi"> Hossein Ahmadi</a>, <a href="https://publications.waset.org/search?q=Soroosh%20Nazem"> Soroosh Nazem</a>, <a href="https://publications.waset.org/search?q=Mohammadhossein%20Sedaaghi"> Mohammadhossein Sedaaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy CMeans (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic CMeans (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Facial%20image" title="Facial image">Facial image</a>, <a href="https://publications.waset.org/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/search?q=PCM" title=" PCM"> PCM</a>, <a href="https://publications.waset.org/search?q=FCM" title=" FCM"> FCM</a>, <a href="https://publications.waset.org/search?q=skin%20error" title=" skin error"> skin error</a>, <a href="https://publications.waset.org/search?q=facial%20surgery." title=" facial surgery."> facial surgery.</a> </p> <a href="https://publications.waset.org/9998526/automatic-facial-skin-segmentation-using-possibilistic-c-means-algorithm-for-evaluation-of-facial-surgeries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998526/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998526/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998526/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998526/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998526/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998526/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998526/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998526/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998526/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998526/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1990</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1546</span> Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Thiagarajan">B. Thiagarajan</a>, <a href="https://publications.waset.org/search?q=R.%20Bremananth"> R. Bremananth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conditional%20random%20field" title="Conditional random field">Conditional random field</a>, <a href="https://publications.waset.org/search?q=Magnetic%20resonance" title=" Magnetic resonance"> Magnetic resonance</a>, <a href="https://publications.waset.org/search?q=Markov%20random%20field" title=" Markov random field"> Markov random field</a>, <a href="https://publications.waset.org/search?q=Modified%20artificial%20bee%20colony." title=" Modified artificial bee colony."> Modified artificial bee colony.</a> </p> <a href="https://publications.waset.org/10000092/brain-image-segmentation-using-conditional-random-field-based-on-modified-artificial-bee-colony-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000092/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000092/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000092/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000092/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000092/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000092/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000092/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000092/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000092/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000092/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2948</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1545</span> A Fuzzy Tumor Volume Estimation Approach Based On Fuzzy Segmentation of MR Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sara%20A.Yones">Sara A.Yones</a>, <a href="https://publications.waset.org/search?q=Ahmed%20S.%20Moussa"> Ahmed S. Moussa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Quantitative measurements of tumor in general and tumor volume in particular, become more realistic with the use of Magnetic Resonance imaging, especially when the tumor morphological changes become irregular and difficult to assess by clinical examination. However, tumor volume estimation strongly depends on the image segmentation, which is fuzzy by nature. In this paper a fuzzy approach is presented for tumor volume segmentation based on the fuzzy connectedness algorithm. The fuzzy affinity matrix resulting from segmentation is then used to estimate a fuzzy volume based on a certainty parameter, an Alpha Cut, defined by the user. The proposed method was shown to highly affect treatment decisions. A statistical analysis was performed in this study to validate the results based on a manual method for volume estimation and the importance of using the Alpha Cut is further explained.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Alpha%20Cut" title="Alpha Cut">Alpha Cut</a>, <a href="https://publications.waset.org/search?q=Fuzzy%20Connectedness" title=" Fuzzy Connectedness"> Fuzzy Connectedness</a>, <a href="https://publications.waset.org/search?q=Magnetic%20Resonance%20Imaging" title=" Magnetic Resonance Imaging"> Magnetic Resonance Imaging</a>, <a href="https://publications.waset.org/search?q=Tumor%20volume%20estimation." title=" Tumor volume estimation."> Tumor volume estimation.</a> </p> <a href="https://publications.waset.org/332/a-fuzzy-tumor-volume-estimation-approach-based-on-fuzzy-segmentation-of-mr-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/332/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/332/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/332/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/332/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/332/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/332/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/332/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/332/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/332/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/332/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2398</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1544</span> Region-Based Image Fusion with Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shuo-Li%20Hsu">Shuo-Li Hsu</a>, <a href="https://publications.waset.org/search?q=Peng-Wei%20Gau"> Peng-Wei Gau</a>, <a href="https://publications.waset.org/search?q=I-Lin%20Wu"> I-Lin Wu</a>, <a href="https://publications.waset.org/search?q=Jyh-Horng%20Jeng"> Jyh-Horng Jeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For most image fusion algorithms separate relationship by pixels in the image and treat them more or less independently. In addition, they have to be adjusted different parameters in different time or weather. In this paper, we propose a region鈥揵ased image fusion which combines aspects of feature and pixel-level fusion method to replace only by pixel. The basic idea is to segment far infrared image only and to add information of each region from segmented image to visual image respectively. Then we determine different fused parameters according different region. At last, we adopt artificial neural network to deal with the problems of different time or weather, because the relationship between fused parameters and image features are nonlinear. It render the fused parameters can be produce automatically according different states. The experimental results present the method we proposed indeed have good adaptive capacity with automatic determined fused parameters. And the architecture can be used for lots of applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20fusion" title="Image fusion">Image fusion</a>, <a href="https://publications.waset.org/search?q=Region-based%20fusion" title=" Region-based fusion"> Region-based fusion</a>, <a href="https://publications.waset.org/search?q=Segmentation" title=" Segmentation"> Segmentation</a>, <a href="https://publications.waset.org/search?q=Neural%20network" title=" Neural network"> Neural network</a>, <a href="https://publications.waset.org/search?q=Multi-sensor." title=" Multi-sensor."> Multi-sensor.</a> </p> <a href="https://publications.waset.org/7557/region-based-image-fusion-with-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7557/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7557/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7557/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7557/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7557/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7557/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7557/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7557/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7557/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7557/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2258</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1543</span> A Multi Steps Algorithm for Sperm Segmentation in Microscopic Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fereidoon%20Nowshiravan%20Rahatabad">Fereidoon Nowshiravan Rahatabad</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Hassan%20Moradi"> Mohammad Hassan Moradi</a>, <a href="https://publications.waset.org/search?q=Vahid%20Reza%20Nafisi"> Vahid Reza Nafisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nothing that an effective cure for infertility happens when we can find a unique solution, a great deal of study has been done in this field and this is a hot research subject for to days study. So we could analyze the men-s seaman and find out about fertility and infertility and from this find a true cure for this, since this will be a non invasive and low risk procedure, it will be greatly welcomed. In this research, the procedure has been based on few Algorithms enhancement and segmentation of images which has been done on the images taken from microscope in different fertility institution and have obtained a suitable result from the computer images which in turn help us to distinguish these sperms from fluids and its surroundings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computer-Assisted%20Sperm%20Analysis%20%28CASA%29" title="Computer-Assisted Sperm Analysis (CASA)">Computer-Assisted Sperm Analysis (CASA)</a>, <a href="https://publications.waset.org/search?q=Spermidentification" title=" Spermidentification"> Spermidentification</a>, <a href="https://publications.waset.org/search?q=Segmentation." title=" Segmentation."> Segmentation.</a> </p> <a href="https://publications.waset.org/5691/a-multi-steps-algorithm-for-sperm-segmentation-in-microscopic-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5691/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5691/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5691/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5691/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5691/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5691/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5691/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5691/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5691/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5691/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1638</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1542</span> Selecting the Best Sub-Region Indexing the Images in the Case of Weak Segmentation Based On Local Color Histograms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mawloud%20Mosbah">Mawloud Mosbah</a>, <a href="https://publications.waset.org/search?q=Bachir%20Boucheham"> Bachir Boucheham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Color Histogram is considered as the oldest method used by CBIR systems for indexing images. In turn, the global histograms do not include the spatial information; this is why the other techniques coming later have attempted to encounter this limitation by involving the segmentation task as a preprocessing step. The weak segmentation is employed by the local histograms while other methods as CCV (Color Coherent Vector) are based on strong segmentation. The indexation based on local histograms consists of splitting the image into N overlapping blocks or sub-regions, and then the histogram of each block is computed. The dissimilarity between two images is reduced, as consequence, to compute the distance between the N local histograms of the both images resulting then in N*N values; generally, the lowest value is taken into account to rank images, that means that the lowest value is that which helps to designate which sub-region utilized to index images of the collection being asked. In this paper, we make under light the local histogram indexation method in the hope to compare the results obtained against those given by the global histogram. We address also another noteworthy issue when Relying on local histograms namely which value, among N*N values, to trust on when comparing images, in other words, which sub-region among the N*N sub-regions on which we base to index images. Based on the results achieved here, it seems that relying on the local histograms, which needs to pose an extra overhead on the system by involving another preprocessing step naming segmentation, does not necessary mean that it produces better results. In addition to that, we have proposed here some ideas to select the local histogram on which we rely on to encode the image rather than relying on the local histogram having lowest distance with the query histograms.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CBIR" title="CBIR">CBIR</a>, <a href="https://publications.waset.org/search?q=Color%20Global%20Histogram" title=" Color Global Histogram"> Color Global Histogram</a>, <a href="https://publications.waset.org/search?q=Color%20Local%0D%0AHistogram" title=" Color Local Histogram"> Color Local Histogram</a>, <a href="https://publications.waset.org/search?q=Weak%20Segmentation" title=" Weak Segmentation"> Weak Segmentation</a>, <a href="https://publications.waset.org/search?q=Euclidean%20Distance." title=" Euclidean Distance."> Euclidean Distance.</a> </p> <a href="https://publications.waset.org/9999547/selecting-the-best-sub-region-indexing-the-images-in-the-case-of-weak-segmentation-based-on-local-color-histograms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999547/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999547/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999547/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999547/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999547/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999547/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999547/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999547/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999547/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999547/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1730</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1541</span> Recognition-based Segmentation in Persian Character Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohsen%20Zand">Mohsen Zand</a>, <a href="https://publications.waset.org/search?q=Ahmadreza%20Naghsh%20Nilchi"> Ahmadreza Naghsh Nilchi</a>, <a href="https://publications.waset.org/search?q=S.%20Amirhassan%20Monadjemi"> S. Amirhassan Monadjemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical character recognition of cursive scripts presents a number of challenging problems in both segmentation and recognition processes in different languages, including Persian. In order to overcome these problems, we use a newly developed Persian word segmentation method and a recognition-based segmentation technique to overcome its segmentation problems. This method is robust as well as flexible. It also increases the system-s tolerances to font variations. The implementation results of this method on a comprehensive database show a high degree of accuracy which meets the requirements for commercial use. Extended with a suitable pre and post-processing, the method offers a simple and fast framework to develop a full OCR system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=OCR" title="OCR">OCR</a>, <a href="https://publications.waset.org/search?q=Persian" title=" Persian"> Persian</a>, <a href="https://publications.waset.org/search?q=Recognition" title=" Recognition"> Recognition</a>, <a href="https://publications.waset.org/search?q=Segmentation." title=" Segmentation."> Segmentation.</a> </p> <a href="https://publications.waset.org/9003/recognition-based-segmentation-in-persian-character-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9003/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9003/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9003/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9003/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9003/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9003/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9003/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9003/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9003/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9003/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1840</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1540</span> Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20H.%20Harun">N. H. Harun</a>, <a href="https://publications.waset.org/search?q=A.%20S.%20Abdul%20Nasir"> A. S. Abdul Nasir</a>, <a href="https://publications.waset.org/search?q=M.%20Y.%20Mashor"> M. Y. Mashor</a>, <a href="https://publications.waset.org/search?q=R.%20Hassan"> R. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Acute%20Leukaemia%20Images" title="Acute Leukaemia Images">Acute Leukaemia Images</a>, <a href="https://publications.waset.org/search?q=Clustering%20Algorithms" title=" Clustering Algorithms"> Clustering Algorithms</a>, <a href="https://publications.waset.org/search?q=Image%20Segmentation" title=" Image Segmentation"> Image Segmentation</a>, <a href="https://publications.waset.org/search?q=Moving%20k-Means." title=" Moving k-Means."> Moving k-Means.</a> </p> <a href="https://publications.waset.org/10000450/unsupervised-segmentation-technique-for-acute-leukemia-cells-using-clustering-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000450/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000450/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000450/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000450/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000450/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000450/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000450/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000450/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000450/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000450/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2789</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1539</span> Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hae-Yeoun%20Lee">Hae-Yeoun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring, which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cardiac%20MRI" title="Cardiac MRI">Cardiac MRI</a>, <a href="https://publications.waset.org/search?q=Graph%20searching" title=" Graph searching"> Graph searching</a>, <a href="https://publications.waset.org/search?q=Left%20ventricle%0D%0Asegmentation" title=" Left ventricle segmentation"> Left ventricle segmentation</a>, <a href="https://publications.waset.org/search?q=K-means%20clustering." title=" K-means clustering."> K-means clustering.</a> </p> <a href="https://publications.waset.org/10000872/automatic-lv-segmentation-with-k-means-clustering-and-graph-searching-on-cardiac-mri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000872/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000872/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000872/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000872/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000872/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000872/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000872/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000872/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000872/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000872/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2094</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1538</span> A New Hybrid RMN Image Segmentation Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Abdelouahab%20Moussaoui">Abdelouahab Moussaoui</a>, <a href="https://publications.waset.org/search?q=Nabila%20Ferahta"> Nabila Ferahta</a>, <a href="https://publications.waset.org/search?q=Victor%20Chen"> Victor Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Clustering" title="Clustering">Clustering</a>, <a href="https://publications.waset.org/search?q=Automatic%20Classification" title=" Automatic Classification"> Automatic Classification</a>, <a href="https://publications.waset.org/search?q=SKIZ" title=" SKIZ"> SKIZ</a>, <a href="https://publications.waset.org/search?q=MarkovFields" title=" MarkovFields"> MarkovFields</a>, <a href="https://publications.waset.org/search?q=Image%20segmentation" title=" Image segmentation"> Image segmentation</a>, <a href="https://publications.waset.org/search?q=Maximum%20Posterior%20Marginal%20%28MPM%29." title=" Maximum Posterior Marginal (MPM)."> Maximum Posterior Marginal (MPM).</a> </p> <a href="https://publications.waset.org/5907/a-new-hybrid-rmn-image-segmentation-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5907/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5907/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5907/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5907/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5907/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5907/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5907/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5907/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5907/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5907/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1412</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1537</span> Automatic Segmentation of Lung Areas in Magnetic Resonance Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Alireza%20Osareh">Alireza Osareh</a>, <a href="https://publications.waset.org/search?q=Bita%20Shadgar"> Bita Shadgar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Active%20contours" title="Active contours">Active contours</a>, <a href="https://publications.waset.org/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/search?q=fuzzy%20c-means%0Asegmentation" title=" fuzzy c-means segmentation"> fuzzy c-means segmentation</a>, <a href="https://publications.waset.org/search?q=treatment%20planning." title=" treatment planning."> treatment planning.</a> </p> <a href="https://publications.waset.org/11281/automatic-segmentation-of-lung-areas-in-magnetic-resonance-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11281/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11281/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11281/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11281/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11281/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11281/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11281/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11281/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11281/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11281/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2057</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1536</span> Tracking Objects in Color Image Sequences: Application to Football Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mourad%20Moussa">Mourad Moussa</a>, <a href="https://publications.waset.org/search?q=Ali%20Douik"> Ali Douik</a>, <a href="https://publications.waset.org/search?q=Hassani%20Messaoud"> Hassani Messaoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20segmentation" title="Image segmentation">Image segmentation</a>, <a href="https://publications.waset.org/search?q=objects%20tracking" title=" objects tracking"> objects tracking</a>, <a href="https://publications.waset.org/search?q=Parzen%20window" title=" Parzen window"> Parzen window</a>, <a href="https://publications.waset.org/search?q=singular%20value%20decomposition" title=" singular value decomposition"> singular value decomposition</a>, <a href="https://publications.waset.org/search?q=target%20recognition." title=" target recognition."> target recognition.</a> </p> <a href="https://publications.waset.org/633/tracking-objects-in-color-image-sequences-application-to-football-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/633/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/633/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/633/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/633/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/633/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/633/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/633/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/633/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/633/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/633/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1985</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1535</span> Embedding a Large Amount of Information Using High Secure Neural Based Steganography Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nameer%20N.%20EL-Emam">Nameer N. EL-Emam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we construct and implement a new Steganography algorithm based on learning system to hide a large amount of information into color BMP image. We have used adaptive image filtering and adaptive non-uniform image segmentation with bits replacement on the appropriate pixels. These pixels are selected randomly rather than sequentially by using new concept defined by main cases with sub cases for each byte in one pixel. According to the steps of design, we have been concluded 16 main cases with their sub cases that covere all aspects of the input information into color bitmap image. High security layers have been proposed through four layers of security to make it difficult to break the encryption of the input information and confuse steganalysis too. Learning system has been introduces at the fourth layer of security through neural network. This layer is used to increase the difficulties of the statistical attacks. Our results against statistical and visual attacks are discussed before and after using the learning system and we make comparison with the previous Steganography algorithm. We show that our algorithm can embed efficiently a large amount of information that has been reached to 75% of the image size (replace 18 bits for each pixel as a maximum) with high quality of the output. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Adaptive%20image%20segmentation" title="Adaptive image segmentation">Adaptive image segmentation</a>, <a href="https://publications.waset.org/search?q=hiding%20with%20high%0Acapacity" title=" hiding with high capacity"> hiding with high capacity</a>, <a href="https://publications.waset.org/search?q=hiding%20with%20high%20security" title=" hiding with high security"> hiding with high security</a>, <a href="https://publications.waset.org/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/search?q=Steganography." title=" Steganography."> Steganography.</a> </p> <a href="https://publications.waset.org/6054/embedding-a-large-amount-of-information-using-high-secure-neural-based-steganography-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6054/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6054/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6054/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6054/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6054/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6054/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6054/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6054/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6054/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6054/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1989</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1534</span> Multidimensional Sports Spectators Segmentation and Social Media Marketing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Schmid">B. Schmid</a>, <a href="https://publications.waset.org/search?q=C.%20Kexel"> C. Kexel</a>, <a href="https://publications.waset.org/search?q=E.%20Djafarova"> E. Djafarova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding consumers is elementary for practitioners in marketing. Consumers of sports events, the sports spectators, are a particularly complex consumer crowd. In order to identify and define their profiles different segmentation approaches can be found in literature, one of them being multidimensional segmentation. Multidimensional segmentation models correspond to the broad range of attitudes, behaviours, motivations and beliefs of sports spectators, other than earlier models. Moreover, in sports there are some well-researched disciplines (e.g. football or North American sports) where consumer profiles and marketing strategies are elaborate and others where no research at all can be found. For example, there is almost no research on athletics spectators. This paper explores the current state of research on sports spectators segmentation. An in-depth literature review provides the framework for a spectators segmentation in athletics. On this basis, additional potential consumer groups and implications for social media marketing will be explored. The findings are the basis for further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multidimensional%20segmentation" title="Multidimensional segmentation">Multidimensional segmentation</a>, <a href="https://publications.waset.org/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/search?q=sports%20marketing" title=" sports marketing"> sports marketing</a>, <a href="https://publications.waset.org/search?q=sports%20spectators%20segmentation." title=" sports spectators segmentation."> sports spectators segmentation.</a> </p> <a href="https://publications.waset.org/10005081/multidimensional-sports-spectators-segmentation-and-social-media-marketing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005081/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005081/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005081/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005081/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005081/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005081/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005081/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005081/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005081/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005081/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2613</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1533</span> Segmentation of Ascending and Descending Aorta in CTA Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20%C3%96zkan">H. 脰zkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a new and fast algorithm for Ascending Aorta (AscA) and Descending Aorta (DesA) segmentation is presented using Computed Tomography Angiography images. This process is quite important especially at the detection of aortic plaques, aneurysms, calcification or stenosis. The applied method has been carried out at four steps. At first step, lung segmentation is achieved. At the second one, Mediastinum Region (MR) is detected to use in the segmentation. At the third one, images have been applied optimal threshold and components which are outside of the MR were removed. Lastly, identifying and segmentation of AscA and DesA have been carried out. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ascending%20aorta%20%28AscA%29" title="Ascending aorta (AscA)">Ascending aorta (AscA)</a>, <a href="https://publications.waset.org/search?q=Descending%20aorta%20%28DesA%29" title=" Descending aorta (DesA)"> Descending aorta (DesA)</a>, <a href="https://publications.waset.org/search?q=Computed%20tomography%20angiography%20%28CTA%29" title=" Computed tomography angiography (CTA)"> Computed tomography angiography (CTA)</a>, <a href="https://publications.waset.org/search?q=Computer%20aided%0Adetection%20%28CAD%29" title=" Computer aided detection (CAD)"> Computer aided detection (CAD)</a>, <a href="https://publications.waset.org/search?q=Segmentation" title=" Segmentation"> Segmentation</a> </p> <a href="https://publications.waset.org/313/segmentation-of-ascending-and-descending-aorta-in-cta-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/313/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/313/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/313/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/313/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/313/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/313/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/313/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/313/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/313/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/313/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1833</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1532</span> A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Peifei%20Zhu">Peifei Zhu</a>, <a href="https://publications.waset.org/search?q=Zisheng%20Li"> Zisheng Li</a>, <a href="https://publications.waset.org/search?q=Yasuki%20Kakishita"> Yasuki Kakishita</a>, <a href="https://publications.waset.org/search?q=Mayumi%20Suzuki"> Mayumi Suzuki</a>, <a href="https://publications.waset.org/search?q=Tomoaki%20Chono"> Tomoaki Chono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is widely used for LV segmentation, but it suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is improved to achieve a fast and efficient LV segmentation. First, a robust and efficient detection based on Hough forest localizes cardiac feature points. Such feature points are used to predict the initial fitting of the LV shape model. Second, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. With the robust initialization, ASM is able to achieve more accurate segmentation. The performance of the proposed method is evaluated on a dataset of 810 cardiac ultrasound images that are mostly abnormal shapes. This proposed method is compared with several combinations of ASM and existing initialization methods. Our experiment results demonstrate that accuracy of the proposed method for feature point detection for initialization was 40% higher than the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops and thus speeds up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hough%20forest" title="Hough forest">Hough forest</a>, <a href="https://publications.waset.org/search?q=active%20shape%20model" title=" active shape model"> active shape model</a>, <a href="https://publications.waset.org/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/search?q=cardiac%20left%20ventricle." title=" cardiac left ventricle."> cardiac left ventricle.</a> </p> <a href="https://publications.waset.org/10003260/a-robust-and-efficient-segmentation-method-applied-for-cardiac-left-ventricle-with-abnormal-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003260/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003260/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003260/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003260/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003260/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003260/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003260/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003260/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003260/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003260/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1504</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=3" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=3">3</a></li> <li class="page-item active"><span class="page-link">4</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=55">55</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=56">56</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=image%0Asegmentation&page=5" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>