CINXE.COM
Search results for: curved fluid flow
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: curved fluid flow</title> <meta name="description" content="Search results for: curved fluid flow"> <meta name="keywords" content="curved fluid flow"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="curved fluid flow" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="curved fluid flow"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5968</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: curved fluid flow</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5968</span> MHD Flow in a Curved Duct with FCI under a Uniform Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yue%20Yan">Yue Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Nyung%20Kim"> Chang Nyung Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The numerical investigation of the three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with flow channel insert (FCI) is presented in this paper, based on the computational fluid dynamics (CFD) method. A uniform magnetic field is applied perpendicular to the duct. The interdependency of the flow variables is examined in terms of the flow velocity, current density, electric potential and pressure. The electromagnetic characteristics of the LM MHD flows are reviewed with an introduction of the electric-field component and electro-motive component of the current. The influence of the existence of the FCI on the fluid flow is investigated in detail. The case with FCI slit located near the side layer yields smaller pressure gradient with stable flow field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20duct" title="curved duct">curved duct</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20channel%20insert" title=" flow channel insert"> flow channel insert</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-metal" title=" liquid-metal"> liquid-metal</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic" title=" magnetohydrodynamic"> magnetohydrodynamic</a> </p> <a href="https://publications.waset.org/abstracts/25447/mhd-flow-in-a-curved-duct-with-fci-under-a-uniform-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5967</span> A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Murtaza">M. G. Murtaza</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Tzirtzilakis"> E. E. Tzirtzilakis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ferdows"> M. Ferdows</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixed convective flow of MHD incompressible, steady boundary layer in heat transfer over a curved stretching sheet due to temperature dependent thermal conductivity is studied. We use curvilinear coordinate system in order to describe the governing flow equations. Finite difference solutions with central differencing have been used to solve the transform governing equations. Numerical results for the flow velocity and temperature profiles are presented as a function of the non-dimensional curvature radius. Skin friction coefficient and local Nusselt number at the surface of the curved sheet are discussed as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20stretching%20sheet" title="curved stretching sheet">curved stretching sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20thermal%20conductivity" title=" variable thermal conductivity"> variable thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/85972/a-note-on-mhd-flow-and-heat-transfer-over-a-curved-stretching-sheet-by-considering-variable-thermal-conductivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5966</span> Numerical Simulation of the Flow Channel in the Curved Plane Oil Skimmer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xing%20Feng">Xing Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanbin%20Li"> Yuanbin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil spills at sea can cause severe marine environmental damage, including bringing huge hazards to living resources and human beings. In situ burning or chemical dispersant methods can be used to handle the oil spills sometimes, but these approaches will bring secondary pollution and fail in some situations. Oil recovery techniques have also been developed to recover oil using oil skimmer equipment installed on ships, while the hydrodynamic process of the oil flowing through the oil skimmer is very complicated and important for evaluating the recovery efficiency. Based on this, a two-dimensional numerical simulation platform for simulating the hydrodynamic process of the oil flowing through the oil skimmer is established based on the Navier-Stokes equations for viscous, incompressible fluid. Finally, the influence of the design of the flow channel in the curved plane oil skimmer on the hydrodynamic process of the oil flowing through the oil skimmer is investigated based on the established simulation platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20plane%20oil%20skimmer" title="curved plane oil skimmer">curved plane oil skimmer</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20channel" title=" flow channel"> flow channel</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF" title=" VOF"> VOF</a> </p> <a href="https://publications.waset.org/abstracts/76300/numerical-simulation-of-the-flow-channel-in-the-curved-plane-oil-skimmer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5965</span> Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rei-Tang%20Tsai">Rei-Tang Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yang%20Wu"> Chih-Yang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Yuan%20Chang"> Chia-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Ying%20Kuo"> Ming-Ying Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate the mixing behaviors of deionized (DI) water and carboxymethyl cellulose (CMC) solutions in C-shaped serpentine micromixers over a wide range of flow conditions. The flow of CMC solutions exhibits shear-thinning behaviors. Numerical simulations are performed to investigate the effects of the mean flow speed, fluid properties and geometry parameters on flow and mixing in the micromixers with serpentine channel of the same overall channel length. From the results, we can find the following trends. When fluid mixing is dominated by convection, the curvature-induced vortices enhance fluid mixing effectively. The mixing efficiency of a micromixer consisting of semicircular C-shaped repeating units with a smaller center-line radius is better than that of a micromixer consisting of major-segment repeating units with a larger center-line radius. The viscosity of DI water is less than the overall average apparent viscosity of CMC solutions, and so the effect of curvature-induced vortices on fluid mixing in DI water is larger than that in CMC solutions for the cases with the same mean flow speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20channel" title="curved channel">curved channel</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=non-newtonian%20fluids" title=" non-newtonian fluids"> non-newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a> </p> <a href="https://publications.waset.org/abstracts/25985/mixing-behaviors-of-shear-thinning-fluids-in-serpentine-channel-micromixers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5964</span> Modeling Continuous Flow in a Curved Channel Using Smoothed Particle Hydrodynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indri%20Mahadiraka%20Rumamby">Indri Mahadiraka Rumamby</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Dwinanti%20Rika%20Marthanty"> R. R. Dwinanti Rika Marthanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Sjah"> Jessica Sjah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smoothed particle hydrodynamics (SPH) was originally created to simulate nonaxisymmetric phenomena in astrophysics. However, this method still has several shortcomings, namely the high computational cost required to model values with high resolution and problems with boundary conditions. The difficulty of modeling boundary conditions occurs because the SPH method is influenced by particle deficiency due to the integral of the kernel function being truncated by boundary conditions. This research aims to answer if SPH modeling with a focus on boundary layer interactions and continuous flow can produce quantifiably accurate values with low computational cost. This research will combine algorithms and coding in the main program of meandering river, continuous flow algorithm, and solid-fluid algorithm with the aim of obtaining quantitatively accurate results on solid-fluid interactions with the continuous flow on a meandering channel using the SPH method. This study uses the Fortran programming language for modeling the SPH (Smoothed Particle Hydrodynamics) numerical method; the model is conducted in the form of a U-shaped meandering open channel in 3D, where the channel walls are soil particles and uses a continuous flow with a limited number of particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smoothed%20particle%20hydrodynamics" title="smoothed particle hydrodynamics">smoothed particle hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title=" fluid mechanics"> fluid mechanics</a> </p> <a href="https://publications.waset.org/abstracts/149236/modeling-continuous-flow-in-a-curved-channel-using-smoothed-particle-hydrodynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5963</span> Herschel-Bulkley Fluid Flow through Narrow Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20Nallapu">Santhosh Nallapu</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Radhakrishnamacharya"> G. Radhakrishnamacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A two-fluid model of Herschel-Bulkley fluid flow through tubes of small diameters is studied. It is assumed that the core region consists of Herschel-Bulkley fluid and Newtonian fluid in the peripheral region. The analytical solutions for velocity, flow flux, effective viscosity, core hematocrit and mean hematocrit have been derived and the effects of various relevant parameters on these flow variables have been studied. It has been observed that the effective viscosity and mean hematocrit increase with yield stress, power-law index, hematocrit and tube radius. Further, the core hematocrit decreases with hematocrit and tube radius. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-layered%20model" title="two-layered model">two-layered model</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluid" title=" non-Newtonian fluid"> non-Newtonian fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=hematocrit" title=" hematocrit"> hematocrit</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahraeus-Lindqvist%20effect" title=" Fahraeus-Lindqvist effect"> Fahraeus-Lindqvist effect</a>, <a href="https://publications.waset.org/abstracts/search?q=plug%20flow" title=" plug flow"> plug flow</a> </p> <a href="https://publications.waset.org/abstracts/18820/herschel-bulkley-fluid-flow-through-narrow-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5962</span> Failure Mechanism of Slip-Critical Connections on Curved Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bae%20Doobyong">Bae Doobyong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoo%20Jaejun"> Yoo Jaejun</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20Ilgyu"> Park Ilgyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Choi%20Seowon"> Choi Seowon</a>, <a href="https://publications.waset.org/abstracts/search?q=Oh%20Chang%20Kook"> Oh Chang Kook</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Variation of slip coefficient in slip-critical connections of curved plates. This paper presents the results of analytical investigations of slip coefficients in slip-critical bolted connections of curved plates. It may depend on the contact stress distribution at interface and the flexibility of spliced plate. Non-linear FEM analyses have been made to simulate the behavior of bolted connections of curved plates with various radiuses of curvature and thicknesses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slip%20coefficient" title="slip coefficient">slip coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=curved%20plates" title=" curved plates"> curved plates</a>, <a href="https://publications.waset.org/abstracts/search?q=slip-critical%20bolted%20connection" title=" slip-critical bolted connection"> slip-critical bolted connection</a>, <a href="https://publications.waset.org/abstracts/search?q=radius%20of%20curvature" title=" radius of curvature"> radius of curvature</a> </p> <a href="https://publications.waset.org/abstracts/45974/failure-mechanism-of-slip-critical-connections-on-curved-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5961</span> Simulation of Internal Flow Field of Pitot-Tube Jet Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iqra%20Noor">Iqra Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihtzaz%20Qamar"> Ihtzaz Qamar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20circulation" title=" flow circulation"> flow circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20pump" title=" high pressure pump"> high pressure pump</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller" title=" impeller"> impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20flow" title=" internal flow"> internal flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pickup%20tube%20pump" title=" pickup tube pump"> pickup tube pump</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangle%20channels" title=" rectangle channels"> rectangle channels</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20casing" title=" rotating casing"> rotating casing</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/132118/simulation-of-internal-flow-field-of-pitot-tube-jet-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5960</span> Hydrodynamic Study of Laminar Flow in Agitated Vessel by a Curved Blade Agitator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benmoussa">A. Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouanini"> M. Bouanini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rebhi"> M. Rebhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixing and agitation of fluid in stirred tank is one of the most important unit operations for many industries such as chemical, biotechnological, pharmaceutical, petrochemical, cosmetic, and food processing. Therefore, determining the level of mixing and overall behaviour and performance of the mixing tanks are crucial from the product quality and process economics point of views. The most fundamental needs for the analysis of these processes from both a theoretical and industrial perspective is the knowledge of the hydrodynamic behaviour and the flow structure in such tanks. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. Initially, a local and global study namely the velocity and power number on a typical agitation system agitated by a mobile-type two-blade straight (d/D=0.5) allowed us to test the reliability of the CFD, the result were compared with those of experimental literature, a very good concordance was observed. The stream function, the velocity profile, the velocity fields and power number are analyzed. It was shown that the hydrodynamics is modified by the curvature of the mobile which plays a key role. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agitated%20tanks" title="agitated tanks">agitated tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=curved%20blade%20agitator" title=" curved blade agitator"> curved blade agitator</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20modelling" title=" CFD modelling"> CFD modelling</a> </p> <a href="https://publications.waset.org/abstracts/9594/hydrodynamic-study-of-laminar-flow-in-agitated-vessel-by-a-curved-blade-agitator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5959</span> Numerical Study of Pressure Losses of Turbulence Drilling Fluid Flow in the Oil Wellbore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mehdizadeh">Alireza Mehdizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghanbarali%20Sheikhzadeh"> Ghanbarali Sheikhzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the pressure loss of drilling fluid flow in the annulus is investigated. On this purpose the domains between two concentric and two eccentric cylinders are considered as computational domains. In this research foam is used as drilling fluid. Firstly simulation results for laminar flow and non Newtonian fluid and different density like 100, 200, 300 kg/m3 and different inner cylinder rotational velocity like 100, 200, 300 RPM is presented. These results are compared and matched with references results. The power law and Herschel Bulkly methods are used for non Newtonian fluid modeling. After that computations are repeated with turbulence flow considering. K- Model is used for turbulence modeling. Results show that in laminar flow Herschel bulkly model has best result in comparison with power law model. And pressure loss in turbulence flow is higher than laminar flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=concentric%20cylinders" title=" concentric cylinders"> concentric cylinders</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20Newtonian" title=" non Newtonian"> non Newtonian</a> </p> <a href="https://publications.waset.org/abstracts/16391/numerical-study-of-pressure-losses-of-turbulence-drilling-fluid-flow-in-the-oil-wellbore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5958</span> Magnetohydrodynamic Couette Flow of Fractional Burger’s Fluid in an Annulus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sani%20Isa">Sani Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Musa"> Ali Musa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Burgers’ fluid with a fractional derivatives model in an annulus was analyzed. Combining appropriately the basic equations, with the fractionalized fractional Burger’s fluid model allow us to determine the velocity field, temperature and shear stress. The governing partial differential equation was solved using the combine Laplace transformation method and Riemann sum approximation to give velocity field, temperature and shear stress on the fluid flow. The influence of various parameters like fractional parameters, relaxation time and retardation time, are drawn. The results obtained are simulated using Mathcad software and presented graphically. From the graphical results, we observed that the relaxation time and time helps the flow pattern, on the other hand, other material constants resist the fluid flow while fractional parameters effect on fluid flow is opposite to each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sani%20isa" title="sani isa">sani isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20musaburger%E2%80%99s%20fluid" title=" Ali musaburger’s fluid"> Ali musaburger’s fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplace%20transform" title=" Laplace transform"> Laplace transform</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20derivatives" title=" fractional derivatives"> fractional derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=annulus" title=" annulus"> annulus</a> </p> <a href="https://publications.waset.org/abstracts/190150/magnetohydrodynamic-couette-flow-of-fractional-burgers-fluid-in-an-annulus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5957</span> On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhadef">M. Bouhadef</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bouzelha-Hammoum"> K. Bouzelha-Hammoum</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Guendouzen-Dabouz"> T. Guendouzen-Dabouz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Younsi"> A. Younsi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zitoun"> T. Zitoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiments" title="experiments">experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=free-surface%20flow" title=" free-surface flow"> free-surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20channel" title=" hydraulic channel"> hydraulic channel</a>, <a href="https://publications.waset.org/abstracts/search?q=subcritical%20regime" title=" subcritical regime"> subcritical regime</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20flow" title=" supercritical flow"> supercritical flow</a> </p> <a href="https://publications.waset.org/abstracts/75299/on-the-free-surface-generated-by-the-flow-over-an-obstacle-in-a-hydraulic-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5956</span> Effect of Magnetic Field on Unsteady MHD Poiseuille Flow of a Third Grade Fluid Under Exponential Decaying Pressure Gradient with Ohmic Heating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20W.%20Lawal">O. W. Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20O.%20Ahmed"> L. O. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Ali"> Y. K. Ali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unsteady MHD Poiseuille flow of a third grade fluid between two parallel horizontal nonconducting porous plates is studied with heat transfer. The two plates are fixed but maintained at different constant temperature with the Joule and viscous dissipation taken into consideration. The fluid motion is produced by a sudden uniform exponential decaying pressure gradient and external uniform magnetic field that is perpendicular to the plates. The momentum and energy equations governing the flow are solved numerically using Maple program. The effects of magnetic field and third grade fluid parameters on velocity and temperature profile are examined through several graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20decaying%20pressure%20gradient" title="exponential decaying pressure gradient">exponential decaying pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20flow" title=" MHD flow"> MHD flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Poiseuille%20flow" title=" Poiseuille flow"> Poiseuille flow</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20grade%20fluid" title=" third grade fluid"> third grade fluid</a> </p> <a href="https://publications.waset.org/abstracts/30709/effect-of-magnetic-field-on-unsteady-mhd-poiseuille-flow-of-a-third-grade-fluid-under-exponential-decaying-pressure-gradient-with-ohmic-heating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5955</span> Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ainul%20Haque">Ainul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameeye%20Kumar%20Nayak"> Ameeye Kumar Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroosmotic%20flow" title="electroosmotic flow">electroosmotic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20surface" title=" hydrophobic surface"> hydrophobic surface</a>, <a href="https://publications.waset.org/abstracts/search?q=power-law%20fluid" title=" power-law fluid"> power-law fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20effect" title=" shear effect"> shear effect</a> </p> <a href="https://publications.waset.org/abstracts/81689/electrokinetic-transport-of-power-law-fluid-through-hydrophobic-micro-slits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5954</span> Cavitating Flow through a Venturi Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imane%20Benghalia">Imane Benghalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Zamoum"> Mohammed Zamoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Boucetta"> Rachid Boucetta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrodynamic cavitation is a complex physical phenomenon that appears in hydraulic systems (pumps, turbines, valves, Venturi tubes, etc.) when the fluid pressure decreases below the saturated vapor pressure. The works carried out in this study aimed to get a better understanding of the cavitating flow phenomena. For this, we have numerically studied a cavitating bubbly flow through a Venturi nozzle. The cavitation model is selected and solved using a commercial computational fluid dynamics (CFD) code. The obtained results show the effect of the inlet pressure (10, 7, 5, and 2 bars) of the Venturi on pressure, the velocity of the fluid flow, and the vapor fraction. We found that the inlet pressure of the Venturi strongly affects the evolution of the pressure, velocity, and vapor fraction formation in the cavitating flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitating%20flow" title="cavitating flow">cavitating flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change" title=" phase change"> phase change</a>, <a href="https://publications.waset.org/abstracts/search?q=venturi" title=" venturi"> venturi</a> </p> <a href="https://publications.waset.org/abstracts/166565/cavitating-flow-through-a-venturi-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5953</span> Comparison Analysis of CFD Turbulence Fluid Numerical Study for Quick Coupling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=JoonHo%20Lee">JoonHo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=KyoJin%20An"> KyoJin An</a>, <a href="https://publications.waset.org/abstracts/search?q=JunSu%20Kim"> JunSu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Chul%20Park"> Young-Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the fluid flow characteristics and performance numerical study through CFD model of the Non-split quick coupling for flow control in hydraulic system equipment for the aerospace business group focused to predict. In this study, we considered turbulence models for the application of Computational Fluid Dynamics for the CFD model of the Non-split Quick Coupling for aerospace business. In addition to this, the adequacy of the CFD model were verified by comparing with standard value. Based on this analysis, accurate the fluid flow characteristics can be predicted. It is, therefore, the design of the fluid flow characteristic contribute the reliability for the Quick Coupling which is required in industries on the basis of research results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=quick%20coupling" title=" quick coupling"> quick coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/31538/comparison-analysis-of-cfd-turbulence-fluid-numerical-study-for-quick-coupling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5952</span> Dynamic Response of Doubly Curved Composite Shell with Embedded Shape Memory Alloys Wires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Ardali">Amin Ardali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Khalili"> Mohammadreza Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Rezai"> Mohammadreza Rezai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, dynamic response of thin smart composite panel subjected to low-velocity transverse impact is investigated. Shape memory wires are used to reinforced curved composite panel in a smart way. One-dimensional thermodynamic constitutive model by Liang and Rogers is used for estimating the structural recovery stress. The two degrees-of-freedom mass-spring model is used for evaluation of the contact force between the curved composite panel and the impactor. This work is benefited from the Hertzian linear contact model which is linearized for the impact analysis of curved composite panel. The governing equations of curved panel are provided by first-order shear theory and solved by Fourier series related to simply supported boundary condition. For this purpose, the equation of doubly curved panel motion included the uniform in-plane forces is obtained. By the present analysis, the curved panel behavior under low-velocity impact, and also the effect of the impact parameters, the shape memory wire and the curved panel dimensions are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubly%20curved%20shell" title="doubly curved shell">doubly curved shell</a>, <a href="https://publications.waset.org/abstracts/search?q=SMA%20wire" title=" SMA wire"> SMA wire</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20response" title=" impact response"> impact response</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20material" title=" smart material"> smart material</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a> </p> <a href="https://publications.waset.org/abstracts/49593/dynamic-response-of-doubly-curved-composite-shell-with-embedded-shape-memory-alloys-wires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5951</span> Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Malika">M. Y. Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzana"> Farzana</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rehman"> Abdul Rehman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20flow" title="boundary layer flow">boundary layer flow</a>, <a href="https://publications.waset.org/abstracts/search?q=exponentially%20stretched%20surface" title=" exponentially stretched surface"> exponentially stretched surface</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20fluid" title=" Maxwell fluid"> Maxwell fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a> </p> <a href="https://publications.waset.org/abstracts/23186/magnetohydrodynamic-3d-maxwell-fluid-flow-towards-a-horizontal-stretched-surface-with-convective-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5950</span> Studying Projection Distance and Flow Properties by Shape Variations of Foam Monitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Kyu%20Cho">Hyun-Kyu Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Su%20Kim"> Jun-Su Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon-Geun%20Huh"> Choon-Geun Huh</a>, <a href="https://publications.waset.org/abstracts/search?q=Geon%20Lee%20Young-Chul%20Park"> Geon Lee Young-Chul Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the relationship between flow properties and fluid projection distance look into connection for shape variations of foam monitor. A numerical analysis technique for fluid analysis of a foam monitor was developed for the prediction. Shape of foam monitor the flow path of fluid flow according to the shape, The fluid losses were calculated from flow analysis result.. The modified model used the length increase model of the flow path, and straight line of the model. Inlet pressure was 7 [bar] and external was atmosphere codition. am. The results showed that the length increase model of the flow path and straight line of the model was improved in the nozzle projection distance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20performance" title="injection performance">injection performance</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20monitor" title=" foam monitor"> foam monitor</a>, <a href="https://publications.waset.org/abstracts/search?q=Projection%20distance" title=" Projection distance"> Projection distance</a> </p> <a href="https://publications.waset.org/abstracts/58090/studying-projection-distance-and-flow-properties-by-shape-variations-of-foam-monitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5949</span> CFD-DEM Modelling and Analysis of the Continuous Separation of Sized Particles Using Inertial Microfluidics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhu">Hui Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Wang"> Yuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shibo%20Kuang"> Shibo Kuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Aibing%20Yu"> Aibing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inertial difference induced by the microfluidics inside a curved micro-channel has great potential to provide a fast, inexpensive, and portable solution to the separation of micro- and sub-micro particles in many applications such as aerosol collections, airborne bacteria and virus detections, as well as particle sortation. In this work, the separation behaviors of different sized particles inside a reported curved micro-channel have been studied by a combined approach of computational fluid dynamics for gas and discrete element model for particles (CFD-DEM). The micro-channel is operated by controlling the gas flow rates at all of its branches respectively used to load particles, introduce gas streams, collect particles of various sizes. The validity of the model has been examined by comparing by the calculated separation efficiency of different sized particles against the measurement. On this basis, the separation mechanisms of the inertial microfluidic separator are elucidated in terms of the interactions between particles, between particle and fluid, and between particle and wall. The model is then used to study the effect of feed solids concentration on the separation accuracy and efficiency. The results obtained from the present study demonstrate that the CFD-DEM approach can provide a convenient way to study the particle separation behaviors in micro-channels of various types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD-DEM" title="CFD-DEM">CFD-DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20effect" title=" inertial effect"> inertial effect</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/57240/cfd-dem-modelling-and-analysis-of-the-continuous-separation-of-sized-particles-using-inertial-microfluidics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5948</span> Spillage Prediction Using Fluid-Structure Interaction Simulation with Coupled Eulerian-Lagrangian Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Soni">Ravi Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Pathan"> Irfan Pathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Pande"> Manish Pande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current product development process needs simultaneous consideration of different physics. The performance of the product needs to be considered under both structural and fluid loads. Examples include ducts and valves where structural behavior affects fluid motion and vice versa. Simulation of fluid-structure interaction involves modeling interaction between moving components and the fluid flow. In these scenarios, it is difficult to calculate the damping provided by fluid flow because of dynamic motions of components and the transient nature of the flow. Abaqus Explicit offers general capabilities for modeling fluid-structure interaction with the Coupled Eulerian-Lagrangian (CEL) method. The Coupled Eulerian-Lagrangian technique has been used to simulate fluid spillage through fuel valves during dynamic closure events. The technique to simulate pressure drops across Eulerian domains has been developed using stagnation pressure. Also, the fluid flow is calculated considering material flow through elements at the outlet section of the valves. The methodology has been verified on Eaton products and shows a good correlation with the test results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coupled%20Eulerian-Lagrangian%20Technique" title="Coupled Eulerian-Lagrangian Technique">Coupled Eulerian-Lagrangian Technique</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20structure%20interaction" title=" fluid structure interaction"> fluid structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=spillage%20prediction" title=" spillage prediction"> spillage prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20pressure" title=" stagnation pressure"> stagnation pressure</a> </p> <a href="https://publications.waset.org/abstracts/56823/spillage-prediction-using-fluid-structure-interaction-simulation-with-coupled-eulerian-lagrangian-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5947</span> 3D Modelling of Fluid Flow in Tunnel Kilns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaber%20H.%20Almutairi">Jaber H. Almutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hosny%20Z.%20Abou-Ziyan"> Hosny Z. Abou-Ziyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Issa%20F.%20Almesri"> Issa F. Almesri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosab%20A.%20Alrahmani"> Mosab A. Alrahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work investigates the behavior of fluid flow inside tunnel kilns using 3D-CFD (Computational Fluid Dynamics) simulations. The CFD simulations are carried out with the FLUENT software and validated against experimental results on fluid flow and heat transfer in tunnel kilns. A grid dependency study is conducted in the current work to improve the accuracy of the results. Three turbulence models k–ω, standard k–ε, and RNG k–ε are tested where k–ω model gives the best results in comparison with the experiment. The numerical results reveal an intriguing phenomenon where a long flow separation zone behind the setting is observed under different geometric and operation conditions. It was found that the uniformity of flow distribution can be substantially improved by rearranging the geometrical parameters of brick setting relative to kiln/setting. This improvement of flow distribution plays a critical role to enhance the quality and quantity of the production. It can be concluded that a better design and operation of tunnel kilns in terms of productivity and energy consumption can be obtained by taking into consideration the flow uniformity inside the tunnel kilns using CFD modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel%20kilns" title="tunnel kilns">tunnel kilns</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title=" flow separation"> flow separation</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20uniformity" title=" flow uniformity"> flow uniformity</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/62902/3d-modelling-of-fluid-flow-in-tunnel-kilns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5946</span> Study on Multi-Point Stretch Forming Process for Double Curved Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiwoo%20Park">Jiwoo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Junseok%20Yoon"> Junseok Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Kim"> Jeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Beomsoo%20Kang"> Beomsoo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-point%20stretch%20forming" title="multi-point stretch forming">multi-point stretch forming</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20curved%20surface" title=" double curved surface"> double curved surface</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/7221/study-on-multi-point-stretch-forming-process-for-double-curved-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5945</span> Unsteady MHD Thin Film Flow of a Third-Grade Fluid with Heat Transfer and Slip Boundary Condition Down an Inclined Plane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Aiyesimi">Y. M. Aiyesimi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20T.%20Okedayo"> G. T. Okedayo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20W.%20Lawal"> O. W. Lawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation is made for unsteady MHD thin film flow of a third grade fluid down an inclined plane with slip boundary condition. The non-linear partial differential equation governing the flow and heat transfer are evaluated numerically using computer software called Maple to obtain velocity and temperature profile. The effect of slip and other various physical parameter on both velocity and temperature profile obtained are studied through several graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluid" title="non-Newtonian fluid">non-Newtonian fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20flow" title=" MHD flow"> MHD flow</a>, <a href="https://publications.waset.org/abstracts/search?q=third-grade%20fluid" title=" third-grade fluid"> third-grade fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=Maple" title=" Maple"> Maple</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20boundary%20condition" title=" slip boundary condition"> slip boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer "> heat transfer </a> </p> <a href="https://publications.waset.org/abstracts/11534/unsteady-mhd-thin-film-flow-of-a-third-grade-fluid-with-heat-transfer-and-slip-boundary-condition-down-an-inclined-plane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5944</span> A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20Elsaady">Wael Elsaady</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Olutunde%20Oyadiji"> S. Olutunde Oyadiji</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Nasser"> Adel Nasser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscoplastic%20fluid" title="viscoplastic fluid">viscoplastic fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20FE%20analysis" title=" magnetic FE analysis"> magnetic FE analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mesh" title=" dynamic mesh"> dynamic mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=user-defined%20functions" title=" user-defined functions"> user-defined functions</a> </p> <a href="https://publications.waset.org/abstracts/110056/a-transient-coupled-numerical-analysis-of-the-flow-of-magnetorheological-fluids-in-closed-domains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5943</span> Effect of Adverse Pressure Gradient on a Fluctuating Velocity over the Co-Flow Jet Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mirhosseini">Morteza Mirhosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20B.%20Khoshnevis"> Amir B. Khoshnevis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary layer separation and new active flow control of a NACA 0025 airfoil were studied experimentally. This new flow control is sometimes known as a co-flow jet (cfj) airfoil. This paper presents the fluctuating velocity in a wall jet over the co-flow jet airfoil subjected to an adverse pressure gradient and a curved surface. In these results, the fluctuating velocity at the inner part increasing by increased the angle of attack up to 12<sup>o</sup> and this has due to the jet energized, while the angle of attack 20<sup>o</sup> has different. The airfoil cord based Reynolds number has 10<sup>5</sup>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20pressure%20gradient" title="adverse pressure gradient">adverse pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=fluctuating%20velocity" title=" fluctuating velocity"> fluctuating velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20jet" title=" wall jet"> wall jet</a>, <a href="https://publications.waset.org/abstracts/search?q=co-flow%20jet%20airfoil" title=" co-flow jet airfoil"> co-flow jet airfoil</a> </p> <a href="https://publications.waset.org/abstracts/37038/effect-of-adverse-pressure-gradient-on-a-fluctuating-velocity-over-the-co-flow-jet-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5942</span> Entropy Generation of Unsteady Reactive Hydromagnetic Generalized Couette Fluid Flow of a Two-Step Exothermic Chemical Reaction Through a Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasaq%20Kareem">Rasaq Kareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Gbadeyan"> Jacob Gbadeyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, analysis of the entropy generation of an unsteady reactive hydromagnetic generalized couette fluid flow of a two-step exothermic chemical reaction through a channel with isothermal wall temperature under the influence of different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics was investigated. The modelled nonlinear dimensionless equations governing the fluid flow were simplified and solved using the combined Laplace Differential Transform Method (LDTM). The effects of fluid parameters associated with the problem on the fluid temperature, entropy generation rate and Bejan number were discussed and presented through graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=couette" title="couette">couette</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=exothermic" title=" exothermic"> exothermic</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady" title=" unsteady"> unsteady</a> </p> <a href="https://publications.waset.org/abstracts/26394/entropy-generation-of-unsteady-reactive-hydromagnetic-generalized-couette-fluid-flow-of-a-two-step-exothermic-chemical-reaction-through-a-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5941</span> A Fractional Derivative Model to Quantify Non-Darcy Flow in Porous and Fractured Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Golden%20J.%20Zhang">Golden J. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongbao%20Zhou"> Dongbao Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Darcy’s law is the fundamental theory in fluid dynamics and engineering applications. Although Darcy linearity was found to be valid for slow, viscous flow, non-linear and non-Darcian flow has been well documented under both small and large velocity fluid flow. Various classical models were proposed and used widely to quantify non-Darcian flow, including the well-known Forchheimer, Izbash, and Swartzendruber models. Applications, however, revealed limitations of these models. Here we propose a general model built upon the Caputo fractional derivative to quantify non-Darcian flow for various flows (laminar to turbulence).Real-world applications and model comparisons showed that the new fractional-derivative model, which extends the fractional model proposed recently by Zhou and Yang (2018), can capture the non-Darcian flow in the relatively small velocity in low-permeability deposits and the relatively high velocity in high-permeability sand. A scale effect was also identified for non-Darcian flow in fractured rocks. Therefore, fractional calculus may provide an efficient tool to improve classical models to quantify fluid dynamics in aquatic environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20derivative" title="fractional derivative">fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=darcy%E2%80%99s%20law" title=" darcy’s law"> darcy’s law</a>, <a href="https://publications.waset.org/abstracts/search?q=non-darcian%20flow" title=" non-darcian flow"> non-darcian flow</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20dynamics" title=" fluid dynamics"> fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/154329/a-fractional-derivative-model-to-quantify-non-darcy-flow-in-porous-and-fractured-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5940</span> Non-Isothermal Stationary Laminar Oil Flow Numerical Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniyar%20Bossinov">Daniyar Bossinov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers a non-isothermal stationary waxy crude oil flow in a two-dimensional axisymmetric pipe with the transition of a Newtonian fluid to a non-Newtonian fluid. The viscosity and yield stress of waxy crude oil are highly dependent on temperature changes. During the hot pumping of waxy crude oil through a buried pipeline, a non-isothermal flow occurs due to heat transfer to the surrounding soil. This leads to a decrease in flow temperature, an increase in viscosity, the appearance of yield stress, the crystallization of wax, and the deposition of solid particles on the pipeline's inner wall. The deposition of oil solid particles reduces a pipeline flow area and leads to the appearance of a stagnant zone with thermal insulation in the near-wall area. Waxy crude oil properties change. A Newtonian fluid at low temperatures transits to a non-Newtonian fluid. The one-dimensional modeling of a non-isothermal waxy crude oil flow in a two-dimensional axisymmetric pipeline by traditional averaging of temperature and velocity over the pipeline cross-section does not allow for explaining a physics phenomenon. Therefore, in this work, a two-dimensional flow model and the heat transfer of waxy oil are constructed. The calculated data show the transition of a Newtonian fluid to a non-Newtonian fluid due to the heat exchange of waxy oil with the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-isothermal%20laminar%20flow" title="non-isothermal laminar flow">non-isothermal laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=waxy%20crude%20oil" title=" waxy crude oil"> waxy crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnant%20zone" title=" stagnant zone"> stagnant zone</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a> </p> <a href="https://publications.waset.org/abstracts/188992/non-isothermal-stationary-laminar-oil-flow-numerical-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5939</span> Numerical Solution of Magneto-Hydrodynamic Flow of a Viscous Fluid in the Presence of Nanoparticles with Fractional Derivatives through a Cylindrical Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abdullah">Muhammad Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Rashid%20Butt"> Asma Rashid Butt</a>, <a href="https://publications.waset.org/abstracts/search?q=Nauman%20Raza"> Nauman Raza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomagnetic fluids like blood play key role in different applications of medical science and bioengineering. In this paper, the magnetohydrodynamic flow of a viscous fluid with magnetic particles through a cylindrical tube is investigated. The fluid is electrically charged in the presence of a uniform external magnetic field. The movement in the fluid is produced due to the cylindrical tube. Initially, the fluid and tube are at rest and at time t=0⁺, the tube starts to move along its axis. To obtain the mathematical model of flow with fractional derivatives fractional calculus approach is used. The solution of the flow model is obtained by using Laplace transformation. The Simon's numerical algorithm is employed to obtain inverse Laplace transform. The hybrid technique, we are employing has less computational effort as compared to other methods. The numerical calculations have been performed with Mathcad software. As the special cases of our problem, the solution of flow model with ordinary derivatives and flow without magnetic particles has been procured. Finally, the impact of non-integer fractional parameter alpha, Hartmann number Ha, and Reynolds number Re on flow and magnetic particles velocity is analyzed and depicted by graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscous%20fluid" title="viscous fluid">viscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20particles" title=" magnetic particles"> magnetic particles</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=laplace%20transformation" title=" laplace transformation"> laplace transformation</a> </p> <a href="https://publications.waset.org/abstracts/90032/numerical-solution-of-magneto-hydrodynamic-flow-of-a-viscous-fluid-in-the-presence-of-nanoparticles-with-fractional-derivatives-through-a-cylindrical-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20fluid%20flow&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20fluid%20flow&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20fluid%20flow&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20fluid%20flow&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20fluid%20flow&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20fluid%20flow&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20fluid%20flow&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20fluid%20flow&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20fluid%20flow&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20fluid%20flow&page=198">198</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20fluid%20flow&page=199">199</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=curved%20fluid%20flow&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>