CINXE.COM

Search results for: Kraft-cellulose insulating paper

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Kraft-cellulose insulating paper</title> <meta name="description" content="Search results for: Kraft-cellulose insulating paper"> <meta name="keywords" content="Kraft-cellulose insulating paper"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Kraft-cellulose insulating paper" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Kraft-cellulose insulating paper"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 25046</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Kraft-cellulose insulating paper</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25046</span> Rejuvenation of Aged Kraft-Cellulose Insulating Paper Used in Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Jeon">Y. Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bissessur"> A. Bissessur</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Lin"> J. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ndungu"> P. Ndungu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most transformers employ the usage of cellulose paper, which has been chemically modified through the Kraft process that acts as an effective insulator. Cellulose ageing and oil degradation are directly linked to fouling of the transformer and accumulation of large quantities of waste insulating paper. In addition to technical difficulties, this proves costly for power utilities to deal with. Currently there are no cost effective method for the rejuvenation of cellulose paper that has been documented nor proposed, since renewal of used insulating paper is implemented as the best option. This study proposes and contrasts different rejuvenation methods of accelerated aged cellulose insulating paper by chemical and bio-bleaching processes. Of the three bleaching methods investigated, two are, conventional chlorine-based sodium hypochlorite (m/v), and chlorine-free hydrogen peroxide (v/v), whilst the third is a bio-bleaching technique that uses a bacterium isolate, Acinetobacter strain V2. Through chemical bleaching, varying the strengths of the bleaching reagents at 0.3 %, 0.6 %, 0.9 %, 1.2 %, 1.5 % and 1.8 % over 4 hrs. were analyzed. Bio-bleaching implemented a bacterium isolate, Acinetobacter strain V2, to bleach the aged Kraft paper over 4 hrs. The determination of the amount of alpha cellulose, degree of polymerization and viscosity carried out on Kraft-cellulose insulating paper before and after bleaching. Overall the investigated techniques of chemical and bio-bleaching were successful and effective in treating degraded and accelerated aged Kraft-cellulose insulating paper, however, to varying extents. Optimum conditions for chemical bleaching were attained at bleaching strengths of 1.2 % (m/v) NaOCl and 1.5 % (v/v) H2O2 yielding alpha cellulose contents of 82.4 % and 80.7 % and degree of polymerizations of 613 and 616 respectively. Bio-bleaching using Acinetobacter strain V2 proved to be the superior technique with alpha cellulose levels of 89.0 % and a degree of polymerization of 620. Chemical bleaching techniques require careful and controlled clean-up treatments as it is chlorine and hydrogen peroxide based while bio-bleaching is an extremely eco-friendly technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha%20cellulose" title="alpha cellulose">alpha cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-bleaching" title=" bio-bleaching"> bio-bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20polymerization" title=" degree of polymerization"> degree of polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper" title=" Kraft-cellulose insulating paper"> Kraft-cellulose insulating paper</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer" title=" transformer"> transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/30881/rejuvenation-of-aged-kraft-cellulose-insulating-paper-used-in-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25045</span> An Investigation of Vegetable Oils as Potential Insulating Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Celal%20Kocatepe">Celal Kocatepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Eyup%20Taslak"> Eyup Taslak</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20Fadil%20Kumru"> Celal Fadil Kumru</a>, <a href="https://publications.waset.org/abstracts/search?q=Oktay%20Arikan"> Oktay Arikan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While choosing insulating oil, characteristic features such as thermal cooling, endurance, efficiency and being environment-friendly should be considered. Mineral oils are referred as petroleum-based oil. In this study, vegetable oils investigated as an alternative insulating liquid to mineral oil. Dissipation factor, breakdown voltage, relative dielectric constant and resistivity changes with the frequency and voltage of mineral, rapeseed and nut oils were measured. Experimental studies were performed according to ASTM D924 and IEC 60156 standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakdown%20voltage" title="breakdown voltage">breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20dissipation%20factor" title=" dielectric dissipation factor"> dielectric dissipation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20oil" title=" mineral oil"> mineral oil</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oils" title=" vegetable oils"> vegetable oils</a> </p> <a href="https://publications.waset.org/abstracts/35815/an-investigation-of-vegetable-oils-as-potential-insulating-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">694</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25044</span> Study on Breakdown Voltage Characteristics of Different Types of Oils with Contaminations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Jouhar">C. Jouhar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Rajesh%20Kamath"> B. Rajesh Kamath</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Veeraiah"> M. K. Veeraiah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Kurian"> M. Z. Kurian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since long time ago, petroleum-based mineral oils have been used for liquid insulation in high voltage equipments. Mineral oils are widely used as insulation for transmission and distribution power transformers, capacitors and other high voltage equipment. Petroleum-based insulating oils have excellent dielectric properties such as high electric field strength, low dielectric losses and good long-term performance. Due to environmental consideration, an attempt to search the alternate liquid insulation is required. The influence of particles on the voltage breakdown in insulating oil and other liquids has been recognized for many years. Particles influence both AC and DC voltage breakdown in insulating oil. Experiments are conducted under AC voltage. The breakdown process starts with a microscopic bubble, an area of large distance where ions or electrons initiate avalanches. Insulating liquids drive their dielectric strength from the much higher density compare to gases. Experiments are carried out under High Voltage AC (HVAC) in different types of oils namely castor oil, vegetable oil and mineral oil. The Breakdown Voltage (BDV) with presence of moisture and particle contamination in different types of oils is studied. The BDV of vegetable oil is better when compared to other oils without contamination. The BDV of mineral oil is better when compared to other types of oils in presence of contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakdown%20voltage" title="breakdown voltage">breakdown voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20AC" title=" high voltage AC"> high voltage AC</a>, <a href="https://publications.waset.org/abstracts/search?q=insulating%20oil" title=" insulating oil"> insulating oil</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20breakdown" title=" oil breakdown"> oil breakdown</a> </p> <a href="https://publications.waset.org/abstracts/52370/study-on-breakdown-voltage-characteristics-of-different-types-of-oils-with-contaminations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25043</span> Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Chemani">Bachir Chemani</a>, <a href="https://publications.waset.org/abstracts/search?q=Halima%20Chemani"> Halima Chemani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20to%20compression" title=" resistance to compression"> resistance to compression</a>, <a href="https://publications.waset.org/abstracts/search?q=insulating%20bricks" title=" insulating bricks"> insulating bricks</a> </p> <a href="https://publications.waset.org/abstracts/10532/effect-of-coal-on-engineering-properties-in-building-materials-opportunity-to-manufacturing-insulating-bricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25042</span> Study of Compatibility and Oxidation Stability of Vegetable Insulating Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helena%20M.%20Wilhelm">Helena M. Wilhelm</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20O.%20Fernandes"> Paulo O. Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=La%C3%ADs%20P.%20Dill"> Laís P. Dill</a>, <a href="https://publications.waset.org/abstracts/search?q=Kethlyn%20G.%20Moscon"> Kethlyn G. Moscon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of vegetable oil (or natural ester) as an insulating fluid in electrical transformers is a trend that aims to contribute to environmental preservation since it is biodegradable and non-toxic. Besides, vegetable oil has high flash and combustion points, being considered a fire safety fluid. However, vegetable oil is usually less stable towards oxidation than mineral oil. Both insulating fluids, mineral and vegetable oils, need to be tested periodically according to specific standards. Oxidation stability can be determined by the induction period measured by conductivity method (Rancimat) by monitoring the effectivity of oil&rsquo;s antioxidant additives, a methodology already developed for food application and biodiesel but still not standardized for insulating fluids. Besides adequate oxidation stability, fluids must be compatible with transformer&#39;s construction materials under normal operating conditions to ensure that damage to the oil and parts of the transformer does not occur. ASTM standard and Brazilian normative differ in parameters evaluated, which reveals the need to regulate tests for each oil type. The aim of this study was to assess oxidation stability and compatibility of vegetable oils to suggest the best way to assure a viable performance of vegetable oil as transformer insulating fluid. The determination of the induction period for several vegetable insulating oils from the local market by using Rancimat was carried out according to BS EN 14112 standard, at different temperatures (110, 120, and 130 &deg;C). Also, the compatibility of vegetable oil was assessed according to ASTM and ABNT NBR standards. The main results showed that the best temperature for use in the Rancimat test is 130 &deg;C, which allows a better observation of conductivity change. The compatibility test results presented differences between vegetable and mineral oil standards that should be taken into account in oil testing since materials compatibility and oxidation stability are essential for equipment reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compatibility" title="compatibility">compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=Rancimat" title=" Rancimat"> Rancimat</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20ester" title=" natural ester"> natural ester</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a> </p> <a href="https://publications.waset.org/abstracts/134515/study-of-compatibility-and-oxidation-stability-of-vegetable-insulating-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25041</span> Development of Low-Cost Vibro-Acoustic, and Fire-Resistant, Insulation Material from Natural and Sustainable Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Nasir">K. Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ahmad"> S. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khan"> A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Benkreira"> H. Benkreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topic of the research is to develop sustainable fire-resistant materials for vibration and acoustic damping of structure and airborne noises from sustainable recycled materials and biodegradable binders. The paper reports, methods and techniques of enhancing fire resistive, vibration and acoustic properties of building insulation materials made from natural resources like wood and recycled materials like rubber and textile waste. The structures are designed to optimize the number, size and stratification of closed (heat insulating) and open (noise insulating) pores. The samples produced are tested for their heat and noise insulating properties, including vibration damping and their structural properties (airflow resistivity, porosity, tortuosity and elastic modulus). The structural properties are then used in theoretical models to check the acoustic insulation measurements. Initial data indicate that one layer of such material can yield as much as 18 times more damping, increasing the loss factor by 18%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20resistant" title="fire resistant">fire resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20damping" title=" vibration damping"> vibration damping</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20material" title=" acoustic material"> acoustic material</a>, <a href="https://publications.waset.org/abstracts/search?q=vibro-acoustic" title=" vibro-acoustic"> vibro-acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20material" title=" sustainable material"> sustainable material</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20cost%20materials" title=" low cost materials"> low cost materials</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20materials" title=" recycled materials"> recycled materials</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20material" title=" construction material"> construction material</a> </p> <a href="https://publications.waset.org/abstracts/106069/development-of-low-cost-vibro-acoustic-and-fire-resistant-insulation-material-from-natural-and-sustainable-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25040</span> Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Zach">J. Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hroudova"> J. Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Brozovsky"> J. Brozovsky </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials" title="thermal insulating materials">thermal insulating materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20fibers" title=" hemp fibers"> hemp fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20wool%20fibers" title=" sheep wool fibers"> sheep wool fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a> </p> <a href="https://publications.waset.org/abstracts/12473/study-of-hydrothermal-behavior-of-thermal-insulating-materials-based-on-natural-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25039</span> Effect of Different Contaminants on Mineral Insulating Oil Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Wilhelm">H. M. Wilhelm</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20O.%20Fernandes"> P. O. Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20P.%20Dill"> L. P. Dill</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Steffens"> C. Steffens</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G.%20Moscon"> K. G. Moscon</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Peres"> S. M. Peres</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bender"> V. Bender</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Marchesan"> T. Marchesan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20B.%20Ferreira%20Neto"> J. B. Ferreira Neto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 &deg;C for 8 h); test II) only copper (at 250 &deg;C for 11 h); and test III) only paper (at 250 &deg;C for 8 h and at 350 &deg;C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO<sub>2</sub> and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferrography" title="Ferrography">Ferrography</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20analysis" title=" gas analysis"> gas analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=insulating%20mineral%20oil" title=" insulating mineral oil"> insulating mineral oil</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20contamination" title=" particle contamination"> particle contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20failures" title=" transformer failures"> transformer failures</a> </p> <a href="https://publications.waset.org/abstracts/134514/effect-of-different-contaminants-on-mineral-insulating-oil-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25038</span> Improvement of GVPI Insulation System Characteristics by Curing Process Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shadmand">M. Shadmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulation%20system" title="insulation system">insulation system</a>, <a href="https://publications.waset.org/abstracts/search?q=GVPI" title=" GVPI"> GVPI</a>, <a href="https://publications.waset.org/abstracts/search?q=PDC" title=" PDC"> PDC</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a> </p> <a href="https://publications.waset.org/abstracts/79906/improvement-of-gvpi-insulation-system-characteristics-by-curing-process-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25037</span> Thermal Securing of Electrical Contacts inside Oil Power Transformers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioan%20Rusu">Ioan Rusu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the operation of power transformers of 110 kV/MV from substations, these are traveled by fault current resulting from MV line damage. Defect electrical contacts are heated when they are travelled from fault currents. In the case of high temperatures when 135 &deg;C is reached, the electrical insulating oil in the vicinity of the electrical faults comes into contact with these contacts releases gases, and activates the electrical protection. To avoid auto-flammability of electro-insulating oil, we designed a security system thermal of electrical contact defects by pouring fire-resistant polyurethane foam, mastic or mortar fire inside a cardboard electro-insulating cylinder. From practical experience, in the exploitation of power transformers of 110 kV/MT in oil electro-insulating were recorded some passing disconnecting commanded by the gas protection at internal defects. In normal operation and in the optimal load, nominal currents do not require thermal secure contacts inside electrical transformers, contacts are made at the fabrication according to the projects or to repair by solder. In the case of external short circuits close to the substation, the contacts inside electrical transformers, even if they are well made in sizes of Rcontact = 10<sup>‑6</sup>&nbsp;&Omega;, are subjected to short-circuit currents of the order of 10 kA-20 kA which lead to the dissipation of some significant second-order electric powers, 100 W-400 W, on contact. At&nbsp;some internal or external factors which action on electrical contacts, including electrodynamic efforts at short-circuits, these factors could be degraded over time to values in the range of 10<sup>-4</sup> &Omega; to 10<sup>-5 </sup>&Omega; and if the action time of protection is great, on the order of seconds, power dissipation on electrical contacts achieve high values of 1,0 kW to 40,0 kW. This power leads to strong local heating, hundreds of degrees Celsius and can initiate self-ignition and burning oil in the vicinity of electro-insulating contacts with action the gas relay. Degradation of electrical contacts inside power transformers may not be limited for the duration of their operation. In order to avoid oil burn with gas release near electrical contacts, at short-circuit currents 10 kA-20 kA, we have outlined the following solutions: covering electrical contacts in fireproof materials that would avoid direct burn oil at short circuit and transmission of heat from electrical contact along the conductors with heat dissipation gradually over time, in a large volume of cooling. Flame retardant materials are: polyurethane foam, mastic, cement (concrete). In the normal condition of operation of transformer, insulating of conductors coils is with paper and insulating oil. Ignition points of its two components respectively are approximated: 135 &deg;C heat for oil and 200 <sup>0</sup>C for paper. In the case of a faulty electrical contact, about 10<sup>-3 </sup>&Omega;, at short-circuit; the temperature can reach for a short time, a value of 300 &deg;C-400 &deg;C, which ignite the paper and also the oil. By burning oil, there are local gases that disconnect the power transformer. Securing thermal electrical contacts inside the transformer, in cardboard tube with polyurethane foams, mastik or cement, ensures avoiding gas release and also gas protection working. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20transformer" title="power transformer">power transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20insulatation" title=" oil insulatation"> oil insulatation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20contacts" title=" electric contacts"> electric contacts</a>, <a href="https://publications.waset.org/abstracts/search?q=Bucholtz%20relay" title=" Bucholtz relay"> Bucholtz relay</a> </p> <a href="https://publications.waset.org/abstracts/84051/thermal-securing-of-electrical-contacts-inside-oil-power-transformers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25036</span> Development of Thermal Insulation Materials Based on Silicate Using Non-Traditional Binders and Fillers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Hroudova">J. Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Zach"> J. Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Vodova"> L. Vodova </a> </p> <p class="card-text"><strong>Abstract:</strong></p> When insulation and rehabilitation of structures is important to use quality building materials with high utility value. One potentially interesting and promising groups of construction materials in this area are advanced, thermally insulating plaster silicate based. With the present trend reduction of energy consumption of building structures and reducing CO2 emissions to be developed capillary-active materials that are characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The paper describes the results of research activities aimed at the development of thermal insulating and rehabilitation material ongoing at the Technical University in Brno, Faculty of Civil Engineering. The achieved results of this development will be the basis for subsequent experimental analysis of the influence of thermal and moisture loads developed on these materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulation%20materials" title="insulation materials">insulation materials</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation%20materials" title=" rehabilitation materials"> rehabilitation materials</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20aggregate" title=" lightweight aggregate"> lightweight aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20fibers" title=" hemp fibers"> hemp fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibers" title=" glass fibers"> glass fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title=" metakaolin "> metakaolin </a> </p> <a href="https://publications.waset.org/abstracts/10589/development-of-thermal-insulation-materials-based-on-silicate-using-non-traditional-binders-and-fillers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25035</span> Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nina%20Penkova">Nina Penkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalin%20Krumov"> Kalin Krumov</a>, <a href="https://publications.waset.org/abstracts/search?q=Liliana%20Zashcova"> Liliana Zashcova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Kassabov"> Ivan Kassabov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulating%20glass%20units" title="insulating glass units">insulating glass units</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20loads" title=" thermal loads"> thermal loads</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20pressure" title=" internal pressure"> internal pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title=" CFD analysis"> CFD analysis</a> </p> <a href="https://publications.waset.org/abstracts/65370/modeling-and-numerical-simulation-of-heat-transfer-and-internal-loads-at-insulating-glass-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25034</span> Suitability of Alternative Insulating Fluid for Power Transformer: A Laboratory Investigation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Deepa">S. N. Deepa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Srinivasan"> A. D. Srinivasan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20T.%20Veeramanju"> K. T. Veeramanju</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sandeep%20Kumar"> R. Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20Mathapati"> Ashwini Mathapati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Power transformer is a vital element in a power system as it continuously regulates power flow, maintaining good voltage regulation. The working of transformer much depends on the oil insulation, the oil insulation also decides the aging of transformer and hence its reliability. The mineral oil based liquid insulation is globally accepted for power transformer insulation; however it is potentially hazardous due to its non-biodegradability. In this work efficient alternative biodegradable insulating fluid is presented as a replacement to conventional mineral oil. Dielectric tests are performed as distinct alternating fluid to evaluate the suitability for transformer insulation. The selection of the distinct natural esters for an insulation system is carried out by the laboratory investigation of Breakdown voltage, Oxidation stability, Dissipation factor, Permittivity, Viscosity, Flash and Fire point. It is proposed to study and characterize the properties of natural esters to be used in power transformer. Therefore for the investigation of the dielectric behavior rice bran oil, sesame oil, and sunflower oil are considered for the study. The investigated results have been compared with the mineral oil to validate the dielectric behavior of natural esters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20insulating%20fluid" title="alternative insulating fluid">alternative insulating fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20esters" title=" natural esters"> natural esters</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transformers" title=" power transformers"> power transformers</a> </p> <a href="https://publications.waset.org/abstracts/109877/suitability-of-alternative-insulating-fluid-for-power-transformer-a-laboratory-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25033</span> Manufacturing New Insulating Materials: A Study on Thermal Properties of Date Palm Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Almi">K. Almi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lakel"> S. Lakel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benchabane"> A. Benchabane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kriker"> A. Kriker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit a high tensile strength values compared to the other residue. On the other hand the low value of bulk density of Petiole and Fibrillium leads to high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palm%20fiber" title=" date palm fiber"> date palm fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibers" title=" natural fibers"> natural fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20tests" title=" tensile tests"> tensile tests</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20proprieties" title=" thermal proprieties"> thermal proprieties</a> </p> <a href="https://publications.waset.org/abstracts/14220/manufacturing-new-insulating-materials-a-study-on-thermal-properties-of-date-palm-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">642</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25032</span> Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Hroudova">Jitka Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Zach"> Jiri Zach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Green%20thermal%20and%20acoustic%20insulating%20materials" title="Green thermal and acoustic insulating materials">Green thermal and acoustic insulating materials</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibres" title=" natural fibres"> natural fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20hemp" title=" technical hemp"> technical hemp</a>, <a href="https://publications.waset.org/abstracts/search?q=flax" title=" flax"> flax</a>, <a href="https://publications.waset.org/abstracts/search?q=floor%20construction" title=" floor construction"> floor construction</a> </p> <a href="https://publications.waset.org/abstracts/15542/acoustic-and-thermal-insulating-materials-based-on-natural-fibres-used-in-floor-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25031</span> Flashover Voltage of Silicone Insulating Surface Covered by Water Drops under AC Voltage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Aouabed">Fatiha Aouabed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Bayadi"> Abdelhafid Bayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Boudissa"> Rabah Boudissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, silicone rubber insulation materials are widely used in high voltage outdoor insulation systems as they can combat pollution flashover problems. The difference in pollution flashover performance of silicone rubber and other insulating materials is due to the way that water wets their surfaces. It resides as discrete drops on silicone rubber, and the mechanism of flashover is due to the breakdown of the air between the water drops and the distortion of these drops in the direction of the electric field which brings the insulation to degradation and failure. The main objective of this work is to quantify the effect of different types of water drops arrangements, their position and dry bands width on the flashover voltage of the silicone insulating surface with non-uniform electric field systems. The tests were carried out on a rectangular sample under AC voltage. A rod-rod electrode system is used. The findings of this work indicate that the performance of the samples decreases with the presence of water drops on their surfaces. Further, these experimental findings show that there is a limiting number of rows from which the flashover voltage of the insulation is minimal and constant. This minimum is a function of the distance between two successive rows. Finally, it is concluded that the system withstand voltage increases when the row of droplets on the electrode axis is removed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=flashover" title=" flashover"> flashover</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20rubber%20insulators" title=" silicone rubber insulators"> silicone rubber insulators</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wettability" title=" surface wettability"> surface wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20droplets" title=" water droplets"> water droplets</a> </p> <a href="https://publications.waset.org/abstracts/13301/flashover-voltage-of-silicone-insulating-surface-covered-by-water-drops-under-ac-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25030</span> Upgrading of Old Large Turbo Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shadmand">M. Shadmand</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Enayaty%20Ahangar"> T. Enayaty Ahangar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kazemi"> S. Kazemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulation system of electrical machineries is the most critical point for their durability. Depending on generator nominal voltage, its insulation system is designed. In this research, a new stator insulation system is designed by new type of mica tapes which will consequently enables us to decrease the nominal ground-wall insulation thickness for the same voltage level. By keeping constant the slot area, it will be possible to increase the copper value in stator bars which will consequently able us to increase the nominal output current of turbo-generator. This will affect the cooling capability of machinery to some extent. But by considering the thermal conductivity of new insulating system which is improved, it is possible to increase the output power of generator up to 6% more. This research is done practically on a 200 MVA and 15.75 kV turbo-generators which its insulating system is Resin Rich (RR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulation%20system" title="insulation system">insulation system</a>, <a href="https://publications.waset.org/abstracts/search?q=resin%20rich" title=" resin rich"> resin rich</a>, <a href="https://publications.waset.org/abstracts/search?q=VPI" title=" VPI"> VPI</a>, <a href="https://publications.waset.org/abstracts/search?q=upgrading" title=" upgrading"> upgrading</a> </p> <a href="https://publications.waset.org/abstracts/35957/upgrading-of-old-large-turbo-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25029</span> Replacing MOSFETs with Single Electron Transistors (SET) to Reduce Power Consumption of an Inverter Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shariful%20Alam">Ahmed Shariful Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Hena%20M.%20Mustafa%20Kamal"> Abu Hena M. Mustafa Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdul%20Rahman"> M. Abdul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nasmus%20Sakib%20Khan%20Shabbir"> M. Nasmus Sakib Khan Shabbir</a>, <a href="https://publications.waset.org/abstracts/search?q=Atiqul%20Islam"> Atiqul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the rules of quantum mechanics there is a non-vanishing probability of for an electron to tunnel through a thin insulating barrier or a thin capacitor which is not possible according to the laws of classical physics. Tunneling of electron through a thin insulating barrier or tunnel junction is a random event and the magnitude of current flowing due to the tunneling of electron is very low. As the current flowing through a Single Electron Transistor (SET) is the result of electron tunneling through tunnel junctions of its source and drain the supply voltage requirement is also very low. As a result, the power consumption across a Single Electron Transistor is ultra-low in comparison to that of a MOSFET. In this paper simulations have been done with PSPICE for an inverter built with both SETs and MOSFETs. <em>35mV</em> supply voltage was used for a SET built inverter circuit and the supply voltage used for a CMOS inverter was <em>3.5V</em>. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ITRS" title="ITRS">ITRS</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20type%20MOSFET" title=" enhancement type MOSFET"> enhancement type MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=island" title=" island"> island</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20analysis" title=" DC analysis"> DC analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20analysis" title=" transient analysis"> transient analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20consumption" title=" power consumption"> power consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20charge%20co-tunneling" title=" background charge co-tunneling"> background charge co-tunneling</a> </p> <a href="https://publications.waset.org/abstracts/17949/replacing-mosfets-with-single-electron-transistors-set-to-reduce-power-consumption-of-an-inverter-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25028</span> Thermal Proprieties of Date Palm Wood </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Almi">K. Almi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lakel"> S. Lakel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benchabane"> A. Benchabane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kriker"> A. Kriker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical, and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit high tensile strength values compared to the other residue. On the other hand, the low value of the bulk density of Petiole and Fibrillium leads to a high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palm%20fiber" title=" date palm fiber"> date palm fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibers" title=" natural fibers"> natural fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20tests" title=" tensile tests"> tensile tests</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20proprieties" title=" thermal proprieties"> thermal proprieties</a> </p> <a href="https://publications.waset.org/abstracts/14539/thermal-proprieties-of-date-palm-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25027</span> The Impact of Space Charges on the Electromechanical Constraints in HVDC Power Cable Containing Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Medoukali">H. Medoukali</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Zegnini"> B. Zegnini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulation techniques in high-voltage cables rely heavily on chemically synapsed polyethylene. The latter may contain manufacturing defects such as small cavities, for example. The presence of the cavity affects the distribution of the electric field at the level of the insulating layer; this change in the electric field is affected by the presence of different space charge densities within the insulating material. This study is carried out by performing simulations to determine the distribution of the electric field inside the insulator. The simulations are based on the creation of a two-dimensional model of a high-voltage cable of 154 kV using the COMSOL Multiphysics software. Each time we study the effect of changing the space charge density of on the electromechanical Constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COMSOL%20multiphysics" title="COMSOL multiphysics">COMSOL multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC" title=" HVDC"> HVDC</a>, <a href="https://publications.waset.org/abstracts/search?q=microcavities" title=" microcavities"> microcavities</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20charges" title=" space charges"> space charges</a>, <a href="https://publications.waset.org/abstracts/search?q=XLPE" title=" XLPE"> XLPE</a> </p> <a href="https://publications.waset.org/abstracts/158346/the-impact-of-space-charges-on-the-electromechanical-constraints-in-hvdc-power-cable-containing-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25026</span> Analysis of Sound Loss from the Highway Traffic through Lightweight Insulating Concrete Walls and Artificial Neural Network Modeling of Sound Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Tosun">Mustafa Tosun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Dincer"> Kevser Dincer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, analysis on whether the lightweight concrete walled structures used in four climatic regions of Turkey are also capable of insulating sound was conducted. As a new approach, first the wall’s thermal insulation sufficiency’s were calculated and then, artificial neural network (ANN) modeling was used on their cross sections to check if they are sound transmitters too. The ANN was trained and tested by using MATLAB toolbox on a personal computer. ANN input parameters that used were thickness of lightweight concrete wall, frequency and density of lightweight concrete wall, while the transmitted sound was the output parameter. When the results of the TS analysis and those of ANN modeling are evaluated together, it is found from this study, that sound transmit loss increases at higher frequencies, higher wall densities and with larger wall cross sections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neuron%20network" title="artificial neuron network">artificial neuron network</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20concrete" title=" lightweight concrete"> lightweight concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20insulation" title=" sound insulation"> sound insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20transmit%20loss" title=" sound transmit loss"> sound transmit loss</a> </p> <a href="https://publications.waset.org/abstracts/41076/analysis-of-sound-loss-from-the-highway-traffic-through-lightweight-insulating-concrete-walls-and-artificial-neural-network-modeling-of-sound-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25025</span> Dielectric Properties of Mineral Oil Blended with Soyabean Oil for Power Transformers: A Laboratory Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepa%20S%20N">Deepa S N</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasan%20a%20D"> Srinivasan a D</a>, <a href="https://publications.waset.org/abstracts/search?q=Veeramanju%20K%20T"> Veeramanju K T</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power transformer is a critical equipment in the transmission and distribution network that must be managed to ensure uninterrupted power service. The liquid insulation is essential for the proper functioning of the transformer, as it serves as both coolant and insulating medium, which influences the transformer’s durability. Further, the insulating state of a power transformer has a significant impact on its reliability. Mineral oil derived from petroleum crude oil has been employed as liquid dielectrics for decades due to its superior functional characteristics, however as a resource for the same are getting depleted over the years. Research is undertaken across the globe to identify a viable substitute for mineral oil. Further, alternate insulating oils are being investigated for better environmental impact, biodegradability and economics. Several combinations of vegetable oil derived natural esters are being inspected by researchers across the globe in these domains. In this work, mineral oil is blended with soyabean oil with various proportions and dielectric properties such as dielectric breakdown voltage, relative permittivity, dissipation factor, viscosity, flash and fire point have been investigated according to international standards. A quantitative comparison is made among various samples and is observed that the blended oil sample of equal proportion of mineral oil and soyabean oil, MO50+SO50 exhibits superior dielectric properties such as breakdown voltage of 65kV, dissipation factor of 0.0044, relative permittivity of 3.1680 that are closer to the range of values recommended for power transformer applications. Also, Breakdown voltage values of all the investigated oil samples obeyed the Weibull and Normal probability distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20oil" title="blended oil">blended oil</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20breakdown" title=" dielectric breakdown"> dielectric breakdown</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20insulation" title=" liquid insulation"> liquid insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transformer" title=" power transformer"> power transformer</a> </p> <a href="https://publications.waset.org/abstracts/168436/dielectric-properties-of-mineral-oil-blended-with-soyabean-oil-for-power-transformers-a-laboratory-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25024</span> Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Hanif">Asad Hanif</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavithra%20Parthasarathy"> Pavithra Parthasarathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Zongjin%20Li"> Zongjin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer&ndash;Emmett&ndash;Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m<sup>3 </sup>to 1027.85 kg/m<sup>3</sup>. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 <sup>o</sup>C was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerogel" title="aerogel">aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=cement-based" title=" cement-based"> cement-based</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash%20cenosphere" title=" fly ash cenosphere"> fly ash cenosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight" title=" lightweight"> lightweight</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/61566/utilizing-fly-ash-cenosphere-and-aerogel-for-lightweight-thermal-insulating-cement-based-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25023</span> Products in Early Development Phases: Ecological Classification and Evaluation Using an Interval Arithmetic Based Calculation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helen%20L.%20Hein">Helen L. Hein</a>, <a href="https://publications.waset.org/abstracts/search?q=Joachim%20Schwarte"> Joachim Schwarte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a pillar of sustainable development, ecology has become an important milestone in research community, especially due to global challenges like climate change. The ecological performance of products can be scientifically conducted with life cycle assessments. In the construction sector, significant amounts of CO<sub>2</sub> emissions are assigned to the energy used for building heating purposes. Therefore, sustainable construction materials for insulating purposes are substantial, whereby aerogels have been explored intensively in the last years due to their low thermal conductivity. Therefore, the WALL-ACE project aims to develop an aerogel-based thermal insulating plaster that would achieve minor thermal conductivities. But as in the early stage of development phases, a lot of information is still missing or not yet accessible, the ecological performance of innovative products bases increasingly on uncertain data that can lead to significant deviations in the results. To be able to predict realistically how meaningful the results are and how viable the developed products may be with regard to their corresponding respective market, these deviations however have to be considered. Therefore, a classification method is presented in this study, which may allow comparing the ecological performance of modern products with already established and competitive materials. In order to achieve this, an alternative calculation method was used that allows computing with lower and upper bounds to consider all possible values without precise data. The life cycle analysis of the considered products was conducted with an interval arithmetic based calculation method. The results lead to the conclusion that the interval solutions describing the possible environmental impacts are so wide that the result usability is limited. Nevertheless, a further optimization in reducing environmental impacts of aerogels seems to be needed to become more competitive in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerogel-based" title="aerogel-based">aerogel-based</a>, <a href="https://publications.waset.org/abstracts/search?q=insulating%20material" title=" insulating material"> insulating material</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20development%20phase" title=" early development phase"> early development phase</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20arithmetic" title=" interval arithmetic"> interval arithmetic</a> </p> <a href="https://publications.waset.org/abstracts/102735/products-in-early-development-phases-ecological-classification-and-evaluation-using-an-interval-arithmetic-based-calculation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25022</span> Thermal Insulating Silicate Materials Suitable for Thermal Insulation and Rehabilitation Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Hroudov%C3%A1">Jitka Hroudová</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Sedlmajer"> Martin Sedlmajer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Zach"> Jiří Zach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems insulation of building structures is often closely connected with the problem of moisture remediation. In the case of historic buildings or if only part of the redevelopment of envelope of structures, it is not possible to apply the classical external thermal insulation composite systems. This application is mostly effective thermal insulation plasters with high porosity and controlled capillary properties which assures improvement of thermal properties construction, its diffusion openness towards the external environment and suitable treatment capillary properties of preventing the penetration of liquid moisture and salts thereof toward the outer surface of the structure. With respect to the current trend of reducing the energy consumption of building structures and reduce the production of CO2 is necessary to develop capillary-active materials characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The aim of researchers at the Faculty of Civil Engineering, Brno University of Technology is the development and study of hygrothermal behaviour of optimal materials for thermal insulation and rehabilitation of building structures with the possible use of alternative, less energy demanding binders in comparison with conventional, frequently used binder, which represents cement. The paper describes the evaluation of research activities aimed at the development of thermal insulation and repair materials using lightweight aggregate and alternative binders such as metakaolin and finely ground fly ash. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20plasters" title="thermal insulating plasters">thermal insulating plasters</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation%20materials" title=" rehabilitation materials"> rehabilitation materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20aggregate" title=" lightweight aggregate"> lightweight aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20binders." title=" alternative binders. "> alternative binders. </a> </p> <a href="https://publications.waset.org/abstracts/30075/thermal-insulating-silicate-materials-suitable-for-thermal-insulation-and-rehabilitation-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25021</span> Optimization of Heat Insulation Structure and Heat Flux Calculation Method of Slug Calorimeter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Xinxin">Zhu Xinxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Hui"> Wang Hui</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Kai"> Yang Kai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat flux is one of the most important test parameters in the ground thermal protection test. Slug calorimeter is selected as the main sensor measuring heat flux in arc wind tunnel test due to the convenience and low cost. However, because of excessive lateral heat transfer and the disadvantage of the calculation method, the heat flux measurement error of the slug calorimeter is large. In order to enhance measurement accuracy, the heat insulation structure and heat flux calculation method of slug calorimeter were improved. The heat transfer model of the slug calorimeter was built according to the energy conservation principle. Based on the heat transfer model, the insulating sleeve of the hollow structure was designed, which helped to greatly decrease lateral heat transfer. And the slug with insulating sleeve of hollow structure was encapsulated using a package shell. The improved insulation structure reduced heat loss and ensured that the heat transfer characteristics were almost the same when calibrated and tested. The heat flux calibration test was carried out in arc lamp system for heat flux sensor calibration, and the results show that test accuracy and precision of slug calorimeter are improved greatly. In the meantime, the simulation model of the slug calorimeter was built. The heat flux values in different temperature rise time periods were calculated by the simulation model. The results show that extracting the data of the temperature rise rate as soon as possible can result in a smaller heat flux calculation error. Then the different thermal contact resistance affecting calculation error was analyzed by the simulation model. The contact resistance between the slug and the insulating sleeve was identified as the main influencing factor. The direct comparison calibration correction method was proposed based on only heat flux calibration. The numerical calculation correction method was proposed based on the heat flux calibration and simulation model of slug calorimeter after the simulation model was solved by solving the contact resistance between the slug and the insulating sleeve. The simulation and test results show that two methods can greatly reduce the heat flux measurement error. Finally, the improved slug calorimeter was tested in the arc wind tunnel. And test results show that the repeatability accuracy of improved slug calorimeter is less than 3%. The deviation of measurement value from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement value between slug calorimeter and Gordon Gage is less than 4% in the same fluid field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correction%20method" title="correction method">correction method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flux%20calculation" title=" heat flux calculation"> heat flux calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20insulation%20structure" title=" heat insulation structure"> heat insulation structure</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20model" title=" heat transfer model"> heat transfer model</a>, <a href="https://publications.waset.org/abstracts/search?q=slug%20calorimeter" title=" slug calorimeter"> slug calorimeter</a> </p> <a href="https://publications.waset.org/abstracts/116493/optimization-of-heat-insulation-structure-and-heat-flux-calculation-method-of-slug-calorimeter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25020</span> Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar">Neeraj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Narayan"> J. P. Narayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure-soil-structure%20interactions" title="structure-soil-structure interactions">structure-soil-structure interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20wave%20propagation" title=" Rayleigh wave propagation"> Rayleigh wave propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20simulation" title=" finite difference simulation"> finite difference simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response%20of%20buildings" title=" dynamic response of buildings"> dynamic response of buildings</a> </p> <a href="https://publications.waset.org/abstracts/75186/quantification-of-effects-of-structure-soil-structure-interactions-on-urban-environment-under-rayleigh-wave-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25019</span> Sound Absorbing and Thermal Insulating Properties of Natural Fibers (Coir/Jute) Hybrid Composite Materials for Automotive Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robel%20Legese%20Meko">Robel Legese Meko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibers have been used as end-of-life textiles and made into textile products which have become a well-proven and effective way of processing. Nowadays, resources to make primary synthetic fibers are becoming less and less as the world population is rising. Hence it is necessary to develop processes to fabricate textiles that are easily converted to composite materials. Acoustic comfort is closely related to the concept of sound absorption and includes protection against noise. This research paper presents an experimental study on sound absorption coefficients, for natural fiber composite materials: a natural fiber (Coir/Jute) with different blend proportions of raw materials mixed with rigid polyurethane foam as a binder. The natural fiber composite materials were characterized both acoustically (sound absorption coefficient SAC) and also in terms of heat transfer (thermal conductivity). The acoustic absorption coefficient was determined using the impedance tube method according to the ASTM Standard (ASTM E 1050). The influence of the structure of these materials on the sound-absorbing properties was analyzed. The experimental results signify that the porous natural coir/jute composites possess excellent performance in the absorption of high-frequency sound waves, especially above 2000 Hz, and didn’t induce a significant change in the thermal conductivity of the composites. Thus, the sound absorption performances of natural fiber composites based on coir/jute fiber materials promote environmentally friendly solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coir%2Fjute%20fiber" title="coir/jute fiber">coir/jute fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20coefficients" title=" sound absorption coefficients"> sound absorption coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20molding" title=" compression molding"> compression molding</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20tube" title=" impedance tube"> impedance tube</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20properties" title=" thermal insulating properties"> thermal insulating properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM%20analysis" title=" SEM analysis"> SEM analysis</a> </p> <a href="https://publications.waset.org/abstracts/163181/sound-absorbing-and-thermal-insulating-properties-of-natural-fibers-coirjute-hybrid-composite-materials-for-automotive-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25018</span> Effect of Copper Particle on the PD Characteristics in a Coaxial Duct with Mixture of SF6 (10%) and N2 (90%) Gases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Rajesh%20Kamath">B. Rajesh Kamath</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sundara%20Rajan"> J. Sundara Rajan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Veeraiah"> M. K. Veeraiah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Kurian"> M. Z. Kurian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulation performance of a gas insulated system is severely affected by particle contaminants. These metallic particles adversely affect the characteristics of insulating system. These particles can produce surface charges due to partial discharge activities. These particles which are free to move enhance the local electric fields. This paper deals with the influence of conducting particle placed in a co-axial duct on the discharge characteristics of gas mixtures. Co-axial duct placed in a high pressure chamber is used for the purpose. A gas pressure of 0.1, 0.2 and 0.3 MPa have been considered with a 10:90 SF<sub>6</sub> and N<sub>2</sub> gas mixtures. The 2D and 3D histograms of clean duct and duct with copper particle are discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coaxial%20duct" title="coaxial duct">coaxial duct</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20insulated%20system" title=" gas insulated system"> gas insulated system</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20mixtures" title=" gas mixtures"> gas mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20particle" title=" metallic particle"> metallic particle</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20discharges" title=" partial discharges"> partial discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=histograms" title=" histograms"> histograms</a> </p> <a href="https://publications.waset.org/abstracts/44559/effect-of-copper-particle-on-the-pd-characteristics-in-a-coaxial-duct-with-mixture-of-sf6-10-and-n2-90-gases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25017</span> Investigation into the Homoepitaxy of AlGaN/GaN Heterostructure via Molecular Beam Epitaxy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiajia%20Yao">Jiajia Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanlin%20Wu"> Guanlin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Liu"> Fang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junshuai%20Xue"> Junshuai Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Hao"> Yue Hao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the production process of self-standing GaN substrates evolves, the commercialization of low dislocation density, large-scale, semi-insulating self-standing GaN substrates is gradually becoming a reality. This advancement has given rise to increased interest in GaN materials' homoepitaxial technology. However, at the homoepitaxial interface, there are considerable concentrations of impurity elements, including C, Si, and O, which generate parasitic leakage channels at the re-growth junction. This phenomenon results in leaked HEMTs that prove difficult to switch off, rendering them effectively non-functional. The emergence of leakage channels can also degrade the high-frequency properties and lower the power devices' breakdown voltage. In this study, the uniform epitaxy of AlGaN/GaN heterojunction with high electron mobility was accomplished through the surface treatment of the GaN substrates prior to growth and the design of the AlN isolation layer structure. By employing a procedure combining gallium atom in-situ cleaning and plasma nitridation, the C and O impurity concentrations at the homoepitaxial interface were diminished to the scale of 10¹⁷ cm-³. Additionally, the 1.5 nm nitrogen-rich AlN isolation layer successfully prevented the diffusion of Si impurities into the GaN channel layer. The result was an AlGaN/GaN heterojunction with an electron mobility of 1552 cm²/Vs and an electron density of 1.1 × 10¹³ cm-² at room temperature, obtained on a Fe-doped semi-insulating GaN substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MBE" title="MBE">MBE</a>, <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN" title=" AlGaN/GaN"> AlGaN/GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenerous%20epitaxy" title=" homogenerous epitaxy"> homogenerous epitaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=HEMT" title=" HEMT"> HEMT</a> </p> <a href="https://publications.waset.org/abstracts/183594/investigation-into-the-homoepitaxy-of-algangan-heterostructure-via-molecular-beam-epitaxy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper&amp;page=834">834</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper&amp;page=835">835</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Kraft-cellulose%20insulating%20paper&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10