CINXE.COM

(infinity,1)Cat in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> (infinity,1)Cat in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> (infinity,1)Cat </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="category_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a></strong></p> <p><strong>Background</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28n%2Cr%29-category">(n,r)-category</a></p> </li> </ul> <p><strong>Basic concepts</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hom-object+in+a+quasi-category">hom-objects</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivalence+in+a+quasi-category">equivalences in</a>/<a class="existingWikiWord" href="/nlab/show/equivalence+of+quasi-categories">of</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-categories</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sub-quasi-category">sub-(∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/reflective+sub-%28%E2%88%9E%2C1%29-category">reflective sub-(∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/localization+of+an+%28%E2%88%9E%2C1%29-category">reflective localization</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/opposite+quasi-category">opposite (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/over+quasi-category">over (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/join+of+quasi-categories">join of quasi-categories</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/exact+%28%E2%88%9E%2C1%29-functor">exact (∞,1)-functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-functors">(∞,1)-category of (∞,1)-functors</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-presheaves">(∞,1)-category of (∞,1)-presheaves</a></p> </li> </ul> </li> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/fibrations+of+quasi-categories">fibrations</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/inner+fibration">inner fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/left+fibration">left/right fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cartesian+fibration">Cartesian fibration</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Cartesian+morphism">Cartesian morphism</a></li> </ul> </li> </ul> </li> </ul> <p><strong>Universal constructions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limit+in+quasi-categories">limit</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/terminal+object+in+a+quasi-category">terminal object</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+%28%E2%88%9E%2C1%29-functor">adjoint functors</a></p> </li> </ul> <p><strong>Local presentation</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+presentable+%28%E2%88%9E%2C1%29-category">locally presentable</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/essentially+small+%28%E2%88%9E%2C1%29-category">essentially small</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+small+%28%E2%88%9E%2C1%29-category">locally small</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/accessible+%28%E2%88%9E%2C1%29-category">accessible</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/idempotent-complete+%28%E2%88%9E%2C1%29-category">idempotent-complete</a></p> </li> </ul> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Yoneda+lemma">(∞,1)-Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Grothendieck+construction">(∞,1)-Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+%28%E2%88%9E%2C1%29-functor+theorem">adjoint (∞,1)-functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">(∞,1)-monadicity theorem</a></p> </li> </ul> <p><strong>Extra stuff, structure, properties</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a></p> </li> </ul> <p><strong>Models</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+with+weak+equivalences">category with weak equivalences</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derivator">derivator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+quasi-categories">model structure for quasi-categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+Cartesian+fibrations">model structure for Cartesian fibrations</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+quasi-categories+and+simplicial+categories">relation to simplicial categories</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coherent+nerve">homotopy coherent nerve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+model+category">simplicial model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/presentable+%28%E2%88%9E%2C1%29-category">presentable quasi-category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+complex">Kan complex</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+sets">model structure for Kan complexes</a></li> </ul> </li> </ul> </div></div> <h4 id=""><a class="existingWikiWord" href="/nlab/show/categories+of+categories+-+contents">categories of categories</a></h4> <div class="hide"><div> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n+1,r+1)</annotation></semantics></math>-categories of <a class="existingWikiWord" href="/nlab/show/%28n%2Cr%29-categories">(n,r)-categories</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Pos">Pos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Set">Set</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Rel">Rel</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grpd">Grpd</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9EGrpd">∞Grpd</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ho%28Cat%29">Ho(Cat)</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/AccCat">AccCat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/PrCat">PrCat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/LexCat">LexCat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/MonCat">MonCat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/VCat">VCat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/CatAdj">CatAdj</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Prof">Prof</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Operad">Operad</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2Cat">2Cat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ModCat">ModCat</a>, <a class="existingWikiWord" href="/nlab/show/CombModCat">CombModCat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29Cat">(∞,1)Cat</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Pr%28%E2%88%9E%2C1%29Cat">Pr(∞,1)Cat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29Operad">(∞,1)Operad</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29Cat">(∞,n)Cat</a></p> </li> </ul> </div></div> </div> </div> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">(\infty,1)Cat</annotation></semantics></math></strong> is the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C2%29-category">(∞,2)-category</a> of all small <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-categories">(∞,1)-categories</a>.</p> <p>Its full <a class="existingWikiWord" href="/nlab/show/subcategory">subcategory</a> on <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-groupoid">∞-groupoid</a>s is <a class="existingWikiWord" href="/nlab/show/%E2%88%9EGrpd">∞Grpd</a>.</p> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#the_category'>The <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,2)</annotation></semantics></math>-category</a></li> <ul> <li><a href='#as_an_category'>As an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SSet</mi></mrow><annotation encoding="application/x-tex">SSet</annotation></semantics></math>-category</a></li> <li><a href='#as_an_enriched_model_category'>As an enriched model category</a></li> </ul> <li><a href='#the_category_2'>The <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category</a></li> <ul> <li><a href='#as_an_category_2'>As an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SSet</mi></mrow><annotation encoding="application/x-tex">SSet</annotation></semantics></math>-category</a></li> <li><a href='#as_an_enriched_model_category_2'>As an enriched model category</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#LimitsAndColimits'>Limits and colimits in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>Cat</a></li> <li><a href='#Automorphisms'>Automorphisms</a></li> </ul> </ul> <li><a href='#presentations'>Presentations</a></li> <li><a href='#related_concepts'>Related concepts</a></li> </ul> </div> <h2 id="the_category">The <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,2)</annotation></semantics></math>-category</h2> <h3 id="as_an_category">As an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SSet</mi></mrow><annotation encoding="application/x-tex">SSet</annotation></semantics></math>-category</h3> <p>One incarnation of <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C2%29-categories">(∞,2)-categories</a> is given by <a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a>-enriched categories (see there for details). As such <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">(\infty,1)Cat</annotation></semantics></math> is the full <a class="existingWikiWord" href="/nlab/show/SSet">SSet</a>-<a class="existingWikiWord" href="/nlab/show/enriched+category">enriched</a> <a class="existingWikiWord" href="/nlab/show/subcategory">subcategory</a> of <a class="existingWikiWord" href="/nlab/show/SSet">SSet</a> on those <a class="existingWikiWord" href="/nlab/show/simplicial+set">simplicial set</a>s that are <a class="existingWikiWord" href="/nlab/show/quasi-categories">quasi-categories</a>. By the fact described at <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-functors">(∞,1)-category of (∞,1)-functors</a> this is indeed a <a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a>-enriched category.</p> <h3 id="as_an_enriched_model_category">As an enriched model category</h3> <p>The <a class="existingWikiWord" href="/nlab/show/model+category">model category</a> presenting this <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C2%29-category">(∞,2)-category</a> is the Joyal <a class="existingWikiWord" href="/nlab/show/model+structure+for+quasi-categories">model structure for quasi-categories</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>sSet</mi> <mi>Joyal</mi></msub></mrow><annotation encoding="application/x-tex">sSet_{Joyal}</annotation></semantics></math>. Its full <a class="existingWikiWord" href="/nlab/show/sSet">sSet</a>-<a class="existingWikiWord" href="/nlab/show/subcategory">subcategory</a> is the <a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a> enriched category of quasi-categories from above.</p> <h2 id="the_category_2">The <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category</h2> <p>Sometimes it is useful to consider inside the full <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,2)</annotation></semantics></math>-catgeory of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-categories just the maximal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category and discarding all non-invertible <a class="existingWikiWord" href="/nlab/show/k-morphism">2-morphisms</a>. This is the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-categories">(∞,1)-category of (∞,1)-categories</a>.</p> <h3 id="as_an_category_2">As an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SSet</mi></mrow><annotation encoding="application/x-tex">SSet</annotation></semantics></math>-category</h3> <p>As an <a class="existingWikiWord" href="/nlab/show/SSet">SSet</a>-<a class="existingWikiWord" href="/nlab/show/enriched+category">enriched category</a> the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-categories">(∞,1)-category of (∞,1)-categories</a> is obtained from the quasi-category-enriched version by picking in each <a class="existingWikiWord" href="/nlab/show/hom-object">hom-object</a> simplicial set of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">(\infty,1)Cat</annotation></semantics></math> the maximal <a class="existingWikiWord" href="/nlab/show/Kan+complex">Kan complex</a>.</p> <h3 id="as_an_enriched_model_category_2">As an enriched model category</h3> <p>One <a class="existingWikiWord" href="/nlab/show/model+category">model category</a> structure presenting this is the <a class="existingWikiWord" href="/nlab/show/model+structure+on+marked+simplicial+over-sets">model structure on marked simplicial sets</a>. As a plain <a class="existingWikiWord" href="/nlab/show/model+category">model category</a> this is <a class="existingWikiWord" href="/nlab/show/Quillen+equivalence">Quillen equivalent</a> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>sSet</mi> <mi>Joyal</mi></msub></mrow><annotation encoding="application/x-tex">sSet_{Joyal}</annotation></semantics></math>, but as an <a class="existingWikiWord" href="/nlab/show/enriched+model+category">enriched model category</a> it is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>sSet</mi> <mi>Quillen</mi></msub></mrow><annotation encoding="application/x-tex">sSet_{Quillen}</annotation></semantics></math> enriched, so that its full <a class="existingWikiWord" href="/nlab/show/SSet">SSet</a>-subcategory on fibrant-cofibrant objects presents the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-categories.</p> <h3 id="properties">Properties</h3> <h4 id="LimitsAndColimits">Limits and colimits in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>Cat</h4> <p><a class="existingWikiWord" href="/nlab/show/limit+in+a+quasi-category">Limits and colimits</a> over a <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a> with values in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">(\infty,1)Cat</annotation></semantics></math> may be reformulation in terms of the <a class="existingWikiWord" href="/nlab/show/universal+fibration+of+%28infinity%2C1%29-categories">universal fibration of (infinity,1)-categories</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi><mo>→</mo><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><msup><mi>Cat</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">Z \to (\infty,1)Cat^{op}</annotation></semantics></math></p> <p>Then let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> be any <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> and</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><mi>X</mi><mo>→</mo><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex"> F : X \to (\infty,1)Cat </annotation></semantics></math></div> <p>an <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a>. Recall that the <a class="existingWikiWord" href="/nlab/show/Cartesian+fibration">coCartesian fibration</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mi>F</mi></msub><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">E_F \to X</annotation></semantics></math> classified by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is the pullback of the <a class="existingWikiWord" href="/nlab/show/universal+fibration+of+%28%E2%88%9E%2C1%29-categories">universal fibration of (∞,1)-categories</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Z</mi></mrow><annotation encoding="application/x-tex">Z</annotation></semantics></math> along F:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msub><mi>E</mi> <mi>F</mi></msub></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>Z</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>X</mi></mtd> <mtd><mover><mo>→</mo><mi>F</mi></mover></mtd> <mtd><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ E_F &amp;\to&amp; Z \\ \downarrow &amp;&amp; \downarrow \\ X &amp;\stackrel{F}{\to}&amp; (\infty,1)Cat } </annotation></semantics></math></div> <div class="un_prop"> <h6 id="proposition">Proposition</h6> <p>Let the assumptions be as above. Then:</p> <ul> <li> <p>The colimit of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is equivalent to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mi>F</mi></msub></mrow><annotation encoding="application/x-tex">E_F</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mi>F</mi></msub><mo>≃</mo><mi>colim</mi><mi>F</mi></mrow><annotation encoding="application/x-tex"> E_F \simeq colim F </annotation></semantics></math></div></li> <li> <p>The limit of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> is equivalent to the <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category+of+cartesian+section">(infinity,1)-category of cartesian section</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>E</mi> <mi>F</mi></msub><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">E_F \to X</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>Γ</mi> <mi>X</mi></msub><mo stretchy="false">(</mo><msub><mi>E</mi> <mi>F</mi></msub><mo stretchy="false">)</mo><mo>≃</mo><mi>lim</mi><mi>F</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \Gamma_X(E_F) \simeq lim F \,. </annotation></semantics></math></div></li> </ul> </div> <div class="proof"> <h6 id="proof">Proof</h6> <p>This is <a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">HTT, section 3.3</a>.</p> </div> <h4 id="Automorphisms">Automorphisms</h4> <div class="un_theorem"> <h6 id="theorem">Theorem</h6> <p>The full subcategory of the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-categories">(∞,1)-category of (∞,1)-categories</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Func</mi><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi><mo>,</mo><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Func((\infty,1)Cat, (\infty,1)Cat)</annotation></semantics></math> on those <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a>s that are equivalences is equivalent to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mi>Id</mi><mo>,</mo><mi>op</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{Id, op\}</annotation></semantics></math>: it contains only the identity functor and the one that sends an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-category to its <a class="existingWikiWord" href="/nlab/show/opposite+%28infinity%2C1%29-category">opposite (infinity,1)-category</a>.</p> </div> <div class="proof"> <h6 id="proof_2">Proof</h6> <p>This is due to</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Bertrand+Toen">Bertrand Toen</a>, <em>Vers une axiomatisation de la théorie des catégories supérieures</em> , K-theory 34 (2005), no. 3, <p>233-263.</p> </li> </ul> <p>It appears as <a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">HTT, theorem 5.2.9.1</a> (<a href="http://arxiv.org/abs/math.CT/0608040">arxiv v4+</a> only)</p> <p>First of all the statement is true for the ordinary category of <a class="existingWikiWord" href="/nlab/show/poset">poset</a>s. This is <a href="http://arxiv.org/PS_cache/math/pdf/0608/0608040v4.pdf#page=311">prop. 5.2.9.14</a>.</p> <p>From this the statement is deduced for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math> -categories by observing that posets are characterized by the fact that two parallel functors into them that are objectwise equivalent are already equivalent, <a href="http://arxiv.org/PS_cache/math/pdf/0608/0608040v4.pdf#page=310">prop. 5.2.9.11</a>, which means that posets <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> are characterized by the fact that</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi><mo stretchy="false">(</mo><mi>D</mi><mo>,</mo><mi>C</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>Hom</mi> <mi>Set</mi></msub><mo stretchy="false">(</mo><msub><mi>π</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi><mo stretchy="false">(</mo><mo>*</mo><mo>,</mo><mi>D</mi><mo stretchy="false">)</mo><mo>,</mo><msub><mi>π</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi><mo stretchy="false">(</mo><mo>*</mo><mo>,</mo><mi>C</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> \pi_0 (\infty,1)Cat(D,C) \to Hom_{Set}( \pi_0 (\infty,1)Cat(*,D) , \pi_0 (\infty,1)Cat(*,C) ) </annotation></semantics></math></div> <p>is an injection for all <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi><mo>∈</mo><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">D \in (\infty,1)Cat</annotation></semantics></math>.</p> <p>This is preserved under automorphisms of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">(\infty,1)Cat</annotation></semantics></math>, hence any such automorphism preserves posets, hence restricts to an automorphism of the category of posets, hence must be either the identity or <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">(-)^{op}</annotation></semantics></math> there, by the above statement for posets.</p> <p>Now finally the main point of the proof is to see that the linear posets <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Δ</mi><mo>⊂</mo><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">\Delta \subset (\infty,1)Cat</annotation></semantics></math> are <a class="existingWikiWord" href="/nlab/show/dense+functor">dense</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">(\infty,1)Cat</annotation></semantics></math>, i.e. that the identity transformation of the inclusion functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Δ</mi><mo>↪</mo><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">\Delta \hookrightarrow (\infty,1)Cat</annotation></semantics></math> exhibits <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Id</mi> <mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mrow></msub></mrow><annotation encoding="application/x-tex">Id_{(\infty,1)Cat}</annotation></semantics></math> as the left <a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>Δ</mi></mtd> <mtd><mo>↪</mo></mtd> <mtd><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><msub><mo>↗</mo> <mrow><mi>Lan</mi><mo>=</mo><mpadded width="0"><mi>Id</mi></mpadded></mrow></msub></mtd></mtr> <mtr><mtd><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo><mi>Cat</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ \Delta &amp;\hookrightarrow&amp; (\infty,1)Cat \\ \downarrow &amp; \nearrow_{Lan = \mathrlap{Id}} \\ (\infty,1)Cat } \,. </annotation></semantics></math></div></div> <h2 id="presentations">Presentations</h2> <div> <p>The entries of the following table display <a class="existingWikiWord" href="/nlab/show/model+categories">model categories</a> and <a class="existingWikiWord" href="/nlab/show/Quillen+equivalences">Quillen equivalences</a> between these that <a class="existingWikiWord" href="/nlab/show/presentable+%28%E2%88%9E%2C1%29-category">present</a> the <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> of <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-categories">(∞,1)-categories</a> (second table), of <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-operads">(∞,1)-operads</a> (third table) and of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi></mrow><annotation encoding="application/x-tex">\mathcal{O}</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/monoidal+%28%E2%88%9E%2C1%29-categories">monoidal (∞,1)-categories</a> (fourth table).</p> <table><thead><tr><th></th><th>general pattern</th><th></th><th></th><th></th></tr></thead><tbody><tr><td style="text-align: left;">strict <a class="existingWikiWord" href="/nlab/show/enriched+%28%E2%88%9E%2C1%29-category">enrichment</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a>/<a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-operad">(∞,1)-operad</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">↓</mo></mrow><annotation encoding="application/x-tex">\downarrow</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">↓</mo></mrow><annotation encoding="application/x-tex">\downarrow</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/enriched+%28%E2%88%9E%2C1%29-category">enriched (∞,1)-category</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>↪</mo></mrow><annotation encoding="application/x-tex">\hookrightarrow</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/internal+category+in+an+%28%E2%88%9E%2C1%29-category">internal (∞,1)-category</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"><strong><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29Cat">(∞,1)Cat</a></strong></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/model+structure+on+sSet-categories">SimplicialCategories</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo></mrow><annotation encoding="application/x-tex">-</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/homotopy+coherent+nerve">homotopy coherent nerve</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+sets">SimplicialSets</a>/<a class="existingWikiWord" href="/nlab/show/quasi-categories">quasi-categories</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/model+structure+for+Cartesian+fibrations">RelativeSimplicialSets</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">↓</mo></mrow><annotation encoding="application/x-tex">\downarrow</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/nerve">simplicial nerve</a></td><td style="text-align: left;"></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">↓</mo></mrow><annotation encoding="application/x-tex">\downarrow</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/model+structure+for+Segal+categories">SegalCategories</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>↪</mo></mrow><annotation encoding="application/x-tex">\hookrightarrow</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/model+structure+for+complete+Segal+spaces">CompleteSegalSpaces</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"><strong><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29Operad">(∞,1)Operad</a></strong></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+operads">SimplicialOperads</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo></mrow><annotation encoding="application/x-tex">-</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/homotopy+coherent+dendroidal+nerve">homotopy coherent dendroidal nerve</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/model+structure+on+dendroidal+sets">DendroidalSets</a></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/model+structure+for+dendroidal+Cartesian+fibrations">RelativeDendroidalSets</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">↓</mo></mrow><annotation encoding="application/x-tex">\downarrow</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/dendroidal+set">dendroidal nerve</a></td><td style="text-align: left;"></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">↓</mo></mrow><annotation encoding="application/x-tex">\downarrow</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/model+structure+for+Segal+operads">SegalOperads</a></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>↪</mo></mrow><annotation encoding="application/x-tex">\hookrightarrow</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/model+structure+for+dendroidal+complete+Segal+spaces">DendroidalCompleteSegalSpaces</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"><strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi></mrow><annotation encoding="application/x-tex">\mathcal{O}</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Mon%28%E2%88%9E%2C1%29Cat">Mon(∞,1)Cat</a></strong></td><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> <tr><td style="text-align: left;"></td><td style="text-align: left;"></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/model+structure+for+dendroidal+Cartesian+fibrations">DendroidalCartesianFibrations</a></td><td style="text-align: left;"></td><td style="text-align: left;"></td></tr> </tbody></table> </div> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/formal+%28infinity%2C1%29-category+theory">formal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mo stretchy="false">(</mo> <mn>∞</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <annotation encoding="application/x-tex">(\infty,1)</annotation> </semantics> </math>-category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Pos">Pos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Set">Set</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grpd">Grpd</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9EGrpd">∞Grpd</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cat">Cat</a>, <a class="existingWikiWord" href="/nlab/show/Operad">Operad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2Cat">2Cat</a></p> </li> <li> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>Cat</strong>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29Operad">(∞,1)Operad</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+2-category+of+%28%E2%88%9E%2C1%29-categories">homotopy 2-category of (∞,1)-categories</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29Cat">(∞,n)Cat</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28infinity%2C+1%29Prof">(infinity, 1)Prof</a></p> </li> </ul> <div class="property">category: <a class="category_link" href="/nlab/all_pages/category">category</a></div></body></html> </div> <div class="revisedby"> <p> Last revised on October 13, 2021 at 15:32:54. See the <a href="/nlab/history/%28infinity%2C1%29Cat" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/%28infinity%2C1%29Cat" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/%28infinity%2C1%29Cat/18" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/%28infinity%2C1%29Cat" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/%28infinity%2C1%29Cat" accesskey="S" class="navlink" id="history" rel="nofollow">History (18 revisions)</a> <a href="/nlab/show/%28infinity%2C1%29Cat/cite" style="color: black">Cite</a> <a href="/nlab/print/%28infinity%2C1%29Cat" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/%28infinity%2C1%29Cat" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10