CINXE.COM
Search results for: green walnut husk
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: green walnut husk</title> <meta name="description" content="Search results for: green walnut husk"> <meta name="keywords" content="green walnut husk"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="green walnut husk" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="green walnut husk"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2258</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: green walnut husk</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2258</span> Preparation and Characterization of Maltodextrin Microcapsules Containing Walnut Green Husk Extract </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Cheraghali">Fatemeh Cheraghali</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Shojaee-Aliabadi"> Saeedeh Shojaee-Aliabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyede%20Marzieh%20Hosseini"> Seyede Marzieh Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Mirmoghtadaie"> Leila Mirmoghtadaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the field of natural antimicrobial and antioxidant compounds is one of the main research topics in the food industry. Application of agricultural residues is mainly cheap, and available resources are receiving increased attention. Walnut green husk is one of the agricultural residues that is considered as natural compounds with biological properties because of phenolic compounds. In this study, maltodextrin 10% was used for microencapsulation of walnut green husk extract. At first, the extract was examined to consider extraction yield, total phenolic compounds, and antioxidant activation. The results showed the extraction yield of 81.43%, total phenolic compounds of 3997 [mg GAE/100 g], antioxidant activity [DPPH] of 84.85% for walnut green husk extract. Antioxidant activity is about 75%-81% and by DPPH. At the next stage, microencapsulation was done by spry-drying method. The microencapsulation efficiency was 72%-79%. The results of SEM tests confirmed this microencapsulation process. In addition, microencapsulated and free extract was more effective on gram-positive bacteria’s rather than the gram-negative ones. According to the study, walnut green husk can be used as a cheap antioxidant and antimicrobial compounds due to sufficient value of phenolic compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title="biopolymer">biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=spray-drying" title=" spray-drying"> spray-drying</a>, <a href="https://publications.waset.org/abstracts/search?q=walnut%20green%20husk" title=" walnut green husk"> walnut green husk</a> </p> <a href="https://publications.waset.org/abstracts/98739/preparation-and-characterization-of-maltodextrin-microcapsules-containing-walnut-green-husk-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2257</span> Effects of Green Walnut Husk and Olive Pomace Extracts on Growth of Tomato Plants and Root-Knot Nematode (Meloidogyne incognita)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20Kavdir">Yasemin Kavdir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugur%20Gozel"> Ugur Gozel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to determine the nematicidal activity of green walnut husk (GWH) and olive pomace (OP) extracts against root-knot nematode (Meloidogyne incognita). Aqueous extracts of GWH and OP were mixed with sandy loam soil at the rates of 0, 6,12,18,24, 60 and 120 ml kg-1. All pots were arranged in a randomized complete block design and replicated four times under controlled atmosphere conditions. Tomato seedlings were grown in sterilized soil then they were transplanted to pots. Inoculation was done by pouring the 20 ml suspension including 1000 M. incognita juvenile pot-1 into 3 cm deep hole made around the base of the plant root. Tomato root and shoot growth and nematode populations have been determined. In general, both GWH and OP extracts resulted in better growth parameters compared to the control plants. However, GWH extract was the most effective in improving growth parameters. Applications of 24 ml kg-1 OP extract enhanced plant growth compared to other OP treatments while 60 ml kg-1 application rate had the lowest nematode number and root galling. In this study, applications of GWH and OP extracts reduced the number of Meloidogyne incognita and root galling compared to control soils. Additionally GWH and OP extracts can be used safely for tomato growth. It could be concluded that OP and GWH extracts used as organic amendments showed promising nematicidal activity in the control of M. incognita. This research was supported by TUBİTAK Grant Number 214O422. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive%20pomace" title="olive pomace">olive pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk" title=" green walnut husk"> green walnut husk</a>, <a href="https://publications.waset.org/abstracts/search?q=Meloidogyne%20incognita" title=" Meloidogyne incognita"> Meloidogyne incognita</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=extract" title=" extract"> extract</a> </p> <a href="https://publications.waset.org/abstracts/74902/effects-of-green-walnut-husk-and-olive-pomace-extracts-on-growth-of-tomato-plants-and-root-knot-nematode-meloidogyne-incognita" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2256</span> Viability of Rice Husk Ash Concrete Brick/Block from Green Electricity in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20N.%20M.%20Shafiqul%20Karim">Mohammad A. N. M. Shafiqul Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a developing country, Bangladesh has to face numerous challenges. Self Independence in electricity, contributing to climate change by reducing carbon emission and bringing the backward population of society to the mainstream is more challenging for them. Therefore, it is essential to ensure recycled use of local products to the maximum level in every sector. Some private organizations have already worked alongside government to bring the backward population to the mainstream by developing their financial capacities. As rice husk is the largest single category of the total energy supply in Bangladesh. As part of this strategy, rice husk can play a great as a promising renewable energy source, which is readily available, has considerable environmental benefits and can produce electricity and ensure multiple uses of byproducts in construction technology. For the first time in Bangladesh, an experimental multidimensional project depending on Rice Husk Electricity and Rice Husk Ash (RHA) concrete brick/block under Green Eco-Tech Limited has already been started. Project analysis, opportunity, sustainability, the high monitoring component, limitations and finally evaluated data reflecting the viability of establishing more projects using rice husk are discussed in this paper. The by-product of rice husk from the production of green electricity, RHA, can be used for making, in particular, RHA concrete brick/block in Bangladeshi aspects is also discussed here. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=project%20analysis" title="project analysis">project analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash%20concrete%20brick%2Fblock" title=" rice husk ash concrete brick/block"> rice husk ash concrete brick/block</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength%20of%20rice%20husk%20ash%20concrete%20brick%2Fblock" title=" compressive strength of rice husk ash concrete brick/block"> compressive strength of rice husk ash concrete brick/block</a> </p> <a href="https://publications.waset.org/abstracts/43545/viability-of-rice-husk-ash-concrete-brickblock-from-green-electricity-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2255</span> First Report of Rahnella Victoriana Associated with Walnut Decline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Hajialigol">Mohammadreza Hajialigol</a>, <a href="https://publications.waset.org/abstracts/search?q=Nargues%20Falahi%20Charkhabi"> Nargues Falahi Charkhabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Shahryari"> Fatemeh Shahryari</a>, <a href="https://publications.waset.org/abstracts/search?q=Saadat%20Sarikhani"> Saadat Sarikhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BACKGROUND AND OBJECTIVES Iran is the third producer of Persian walnut worldwide. However, its walnut trees have been under threat from decline during last decade. Walnut canker caused by B. nigrifluens and B. rubrifaciens was recorded in multiple regions of Iran. Furthermore, Brenneria rosae subsp. rosae and Gibbsiella quercinecans were recently recognized as responsible for walnut decline in northwestern Iran. This study aimed to identify the causal agent of walnut decline in Kermanshah and Isfahan. MATERIAL AND METHODS Symptomatic samples were collected from affected walnut trees of Kermanshah and Isfahan provinces. The pathogenicity of strains was proved on immature walnut fruits cv. ‘Hartley’ and young green twigs of two-year-old walnut seedling cv. ‘Chandler’. Pathogenic strains were subjected to conventional phenotypic tests. 16S rRNA, gyrB, and infB genes were partially amplified and sequenced. RESULTS Irregular longitudinal cankers and dark lesions were observed in the outer and inner bark, respectively. Twenty-four strains were isolated on EMB-agar media. Fourteen strains were able to cause necrosis and a dark-colored region in the mesocarp and on young green twigs around the inoculation site 14 and 30 days post-inoculation, respectively. Strains were able to hydrolyze Tween 20, Tween 80, gelatin and esculin, however, did not produce indole or urease. Pairwise comparison, the 16S rRNA gene nucleotide sequences of strain I2 were 100% identical with those of Rahnella victoriana FRB 225T. Moreover, a phylogenetic tree reconstructed based on the concatenated sequences of two housekeeping gene fragments, gyrB (601 bp) and infB (615 bp), revealed that the strains I2, I5, and KE6 were clustered with R. victoriana FRB 225T. CONCLUSION To the best of our knowledge, this is the first report of R. victoriana in association with walnut decline. This result is necessary to find resistant genotypes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emerging%20pathogens" title="emerging pathogens">emerging pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=juglans%20regia" title=" juglans regia"> juglans regia</a>, <a href="https://publications.waset.org/abstracts/search?q=MLSA" title=" MLSA"> MLSA</a> </p> <a href="https://publications.waset.org/abstracts/172638/first-report-of-rahnella-victoriana-associated-with-walnut-decline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2254</span> Dry Matter, Moisture, Ash and Crude Fibre Content in Distinct Segments of ‘Durian Kampung’ Husk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norhanim%20Nordin">Norhanim Nordin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosnah%20Shamsudin"> Rosnah Shamsudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Azrina%20Azlan"> Azrina Azlan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Effendy%20Ya%E2%80%99acob"> Mohammad Effendy Ya’acob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An environmental friendly approach for disposal of voluminous durian husk waste could be implemented by substituting them into various valuable commodities, such as healthcare and biofuel products. Thus, the study of composition value in each segment of durian husk was very crucial to determine the suitable proportions of nutrients that need to be added and mixed in the product. A total of 12 ‘Durian Kampung’ fruits from Sg Ruan, Pahang were selected and each fruit husk was divided into four segments and labelled as P-L (thin neck area of white inner husk), P-B (thick bottom area of white inner husk), H (green and thorny outer husk) and W (whole combination of P-B and H). Four experiments have been carried out to determine the dry matter, moisture, ash and crude fibre content. The results show that the H segment has the highest dry matter content (30.47%), while the P-B segment has the highest percentage in moisture (81.83%) and ash (6.95%) content. It was calculated that the ash content of the P-B segment has a higher rate of moisture level which causes the ash content to increase about 2.89% from the P-L segment. These data have proven that each segment of durian husk has a significant difference in terms of composition value, which might be useful information to fully utilize every part of the durian husk in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durian%20husk" title="durian husk">durian husk</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20fibre%20content" title=" crude fibre content"> crude fibre content</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20matter%20content" title=" dry matter content"> dry matter content</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a> </p> <a href="https://publications.waset.org/abstracts/74287/dry-matter-moisture-ash-and-crude-fibre-content-in-distinct-segments-of-durian-kampung-husk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2253</span> Catalytic and Non-Catalytic Pyrolysis of Walnut Shell Waste to Biofuel: Characterisation of Catalytic Biochar and Biooil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saimatun%20Nisa">Saimatun Nisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Walnut is an important export product from the Union Territory of Jammy and Kashmir. After extraction of the kernel, the walnut shell forms a solid waste that needs to be managed. Pyrolysis is one interesting option for the utilization of this walnut waste. In this study microwave pyrolysis reactor is used to convert the walnut shell biomass into its value-added products. Catalytic and non-catalytic conversion of walnut shell waste to oil, gas and char was evaluated using a Co-based catalyst. The catalyst was characterized using XPS and SEM analysis. Pyrolysis temperature, reaction time, particle size and sweeping gas (N₂) flow rate were set in the ranges of 400–600 °C, 40 min, <0.6mm to < 4.75mm and 300 ml min−1, respectively. The heating rate was fixed at 40 °C min−1. Maximum gas yield was obtained at 600 °C, 40 min, particle size range 1.18-2.36, 0.5 molar catalytic as 45.2%. The liquid product catalytic and non-catalytic was characterized by GC–MS analyses. In addition, the solid product was analyzed by means of FTIR & SEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=walnut%20shell" title="walnut shell">walnut shell</a>, <a href="https://publications.waset.org/abstracts/search?q=biooil" title=" biooil"> biooil</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20pyrolysis" title=" microwave pyrolysis"> microwave pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/185833/catalytic-and-non-catalytic-pyrolysis-of-walnut-shell-waste-to-biofuel-characterisation-of-catalytic-biochar-and-biooil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2252</span> Experimental Study on Effects of Addition of Rice Husk on Coal Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bharath">M. Bharath</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasudevan%20Raghavan"> Vasudevan Raghavan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20S.%20S.%20S.%20Prasad"> B. V. S. S. S. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Chakravarthy"> S. R. Chakravarthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this experimental study, effects of addition of rice husk on coal gasification in a bubbling fluidized bed gasifier, operating at atmospheric pressure with air as gasifying agent, are reported. Rice husks comprising of 6.5% and 13% by mass are added to coal. Results show that, when rice husk is added the methane yield increases from volumetric percentage of 0.56% (with no rice husk) to 2.77% (with 13% rice husk). CO and H<sub>2</sub> remain almost unchanged and CO<sub>2</sub> decreases with addition of rice husk. The calorific value of the synthetic gas is around 2.73 MJ/Nm<sup>3</sup>. All performance indices, such as cold gas efficiency and carbon conversion, increase with addition of rice husk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubbling%20fluidized%20bed%20reactor" title="bubbling fluidized bed reactor">bubbling fluidized bed reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=calorific%20value" title=" calorific value"> calorific value</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20gasification" title=" coal gasification"> coal gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a> </p> <a href="https://publications.waset.org/abstracts/90338/experimental-study-on-effects-of-addition-of-rice-husk-on-coal-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2251</span> Green Materials for Hot Mixed Asphalt Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salisu%20Dahiru">Salisu Dahiru</a>, <a href="https://publications.waset.org/abstracts/search?q=Jibrin%20M.%20Kaura"> Jibrin M. Kaura</a>, <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20I.%20Jumare"> Abubakar I. Jumare</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20M.%20Mahmood"> Sulaiman M. Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reclaimed asphalt, used automobile tires and rice husk, were regarded as waste. These materials could be used in construction of new roads and for roads rehabilitation. Investigation into the production of a Green Hot Mixed Asphalt (GHMA) pavement using Reclaimed Asphalt Pavement (RAP) as partial replacement for coarse aggregate, Crumb Rubber (CR) from waste automobile tires as modifier for bitumen binder and Rice Husk Ash (RHA) as partial replacement of ordinary portland cement (OPC) filler, for roads construction and rehabilitation was presented. 30% Reclaimed asphalt of total aggregate, 15% Crumb Rubber of total binder content, 5% Rice Husk Ash of total mix, and 5.2% Crumb Rubber Modified Bitumen content were recommended for optimum performance. Loss of marshal stability was investigated on mix with the recommended optimum CRMB. The mix revealed good performance with only about 13% loss of stability after 24 hours of immersion in hot water bath, as against about 24% marshal stability lost reported in previous studies for conventional Hot Mixed Asphalt (HMA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title="rice husk">rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=reclaimed%20asphalt" title=" reclaimed asphalt"> reclaimed asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=filler" title=" filler"> filler</a>, <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title=" crumb rubber"> crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen%20content%20green%20hot%20mix%20asphalt" title=" bitumen content green hot mix asphalt"> bitumen content green hot mix asphalt</a> </p> <a href="https://publications.waset.org/abstracts/40160/green-materials-for-hot-mixed-asphalt-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2250</span> Citrobacter Braakii, a New Plant Pathogen, Causal Agent of Walnut Decline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Hajialigol">Mohammadreza Hajialigol</a>, <a href="https://publications.waset.org/abstracts/search?q=Nargues%20Falahi%20Charkhabi"> Nargues Falahi Charkhabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Shahryari"> Fatemeh Shahryari</a>, <a href="https://publications.waset.org/abstracts/search?q=Saadat%20Sarikhani"> Saadat Sarikhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BACKGROUND AND OBJECTIVES Walnut canker is characterized by brown to blackish roundish blotches on the trunks and main branches, necrosis of inner bark and bleeding with dark brown to black-colored exudates. The present study aimed to identify the causative agents of walnut decline by their phenotypic features, approval of pathogenicity, the partial sequencing of the housekeeping genes in Razavi Khorasan. MATERIAL AND METHODS Ten Symptomatic samples were collected from walnut orchards of Razavi Khorasan in 2019. Pathogenicity of all isolated strains was carried out on walnut immature fruits cv. ‘Hartley’ and young green twigs of cv. ‘Chandler’. All pathogenic strains were subjected to physiological, morphological and biochemical tests. 16S rRNA and housekeeping genes (fusA, leuS, and pyrG) were partially amplified and sequenced. RESULTS Eight strains were able to cause necrosis and a dark-colored region in the mesocarp of immature walnut fruits, and three representative strains caused necrosis on young inoculated twigs. Strains utilized starch, however, did not utilized esculin, Tween 20, Tween 80, and gelatin. The partial 16S rRNA gene sequence of strain KH7 indicated 99.63 % similarity to that of Citrobacter braakii ATCC5113T. The phylogenetic analyses based on the partial sequencing of three housekeeping genes, fusA (633 bp), pyrG (305), and leuS (640 bp), demonstrated that strains KH1, KH3, and KH7 belong to C. braakii species in a monophyletic clade with high bootstrap support. CONCLUSION To the best of our knowledge, this is the first report of C. braakii as a new plant pathogen which cause walnut decline. Identification of bacteria associated with walnut decline will eventually improve our understanding of the etiology of the disease and may result in improved management techniques for control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emerging%20pathogens" title="emerging pathogens">emerging pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=juglans%20regia" title=" juglans regia"> juglans regia</a>, <a href="https://publications.waset.org/abstracts/search?q=MLSA" title=" MLSA"> MLSA</a> </p> <a href="https://publications.waset.org/abstracts/172635/citrobacter-braakii-a-new-plant-pathogen-causal-agent-of-walnut-decline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2249</span> Effect of Incineration Temperatures to Time on the Rice Husk Ash (RHA) Silica Structure: A Comparative Study to the Literature with Experimental Work</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Binyamien%20Ibrahim%20Rasoul">Binyamien Ibrahim Rasoul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlled burning of rice husk can produce amorphous rice husk ash (RHA) with high silica content which can significantly enhance the properties of concrete. This study has been undertaken to investigate the relationship between the incineration temperatures and time to produce RHA with ultimate reactivity. The rice husk samples were incinerated in an electrical muffle furnace at 350°C, 400°C, 425°C 450°C, 475°C, and 500°C for 60 and 90 minutes, respectively. The silica structure in the Rice Husk Ash (RHA) was determined using X-Ray diffraction analysis, while chemical properties obtained using X-Ray Fluorescence. The results show that RHA appeared to be the totally amorphous when the husk incineration up to 425°C for 60 and even at 90 minutes. However, with increased temperature to 450°C, 475°C and 500°C, traces of crystalline silica (quartz) were detected. However, cannot be taken into account as it does not affect on the ash structure. In conclusion, the result gives an idea of the temperature and the time required to produce ash from rice husk with totally amorphous form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title="rice husk ash">rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Ray%20diffraction" title=" X-Ray diffraction"> X-Ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=X-R%20florescence" title=" X-R florescence"> X-R florescence</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20activity" title=" pozzolanic activity"> pozzolanic activity</a> </p> <a href="https://publications.waset.org/abstracts/146345/effect-of-incineration-temperatures-to-time-on-the-rice-husk-ash-rha-silica-structure-a-comparative-study-to-the-literature-with-experimental-work" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2248</span> Prospective Use of Rice Husk Ash to Produce Concrete in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalyan%20Kumar%20Moulick">Kalyan Kumar Moulick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the author studied the possibilities of using Rice Husk Ash (RHA) available in India; to produce concrete. The effect of RHA on concrete discussed. Traditional uses of Rice Husk in India pointed out and the advantages of using RHA in making concrete highlighted. Suggestion provided regarding prospective application of RHA concrete in India which in turn will definitely reduce the cost of concrete and environmental friendly due to utilization of waste and replacement of Cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20replacement" title="cement replacement">cement replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20friendly" title=" environmental friendly"> environmental friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a> </p> <a href="https://publications.waset.org/abstracts/23437/prospective-use-of-rice-husk-ash-to-produce-concrete-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2247</span> Effect of Temperature and Time on the Yield of Silica from Rice Husk Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Adamu%20Musa">Mohammed Adamu Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shehu%20Saminu%20Babba"> Shehu Saminu Babba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technological trend towards waste utilization and cost reduction in industrial processing has attracted use of Rice Husk as a value added material. Both rice husk (RH) and Rice Husk Ash (RHA) has been found suitable for wide range of domestic as well as industrial applications. Therefore, the purpose of this research is to produce high grade sodium silicate from rice husk ash by considering the effect of temperature and time of heating as the process variables. The experiment was performed by heating the rice husk at temperatures 500 °C, 600 °C, 700 °C and 800 °C and time 60min, 90min, 120min and 150min were used to obtain the ash. 1.0M of aqueous sodium hydroxide solution was used to dissolve the silicate from the ash, which contained crude sodium silicate. In addition, the ash was neutralized by adding 5M of HCL until the pH reached 3.5 to give silica gel. At 6000C and 120mins, 94.23% silica was obtained from the RHA. At higher temperatures (700 °C and 800 °C) the percentage yield of silica reduced due to surface melting and carbon fixation in the lattice caused by presence of potassium. For this research, 600 °C is considered to be the optimum temperature for silica production from RHA. Silica produced from RHA can generate aggregate value and can be used in areas such as pulp and paper, plastic and rubber reinforcement industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burning" title="burning">burning</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20gel" title=" silica gel"> silica gel</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/44042/effect-of-temperature-and-time-on-the-yield-of-silica-from-rice-husk-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2246</span> Characterization of Candlenut Shells and Its Application to Remove Oil and Fine Solids of Produced Water in Nutshell Filters of Water Cleaning Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annur%20Suhadi">Annur Suhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Haris%20B.%20Harahap"> Haris B. Harahap</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaim%20Arrosyidi"> Zaim Arrosyidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Epan"> Epan</a>, <a href="https://publications.waset.org/abstracts/search?q=Darmapala"> Darmapala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oilfields under waterflood often face the problem of plugging injectors either by internal filtration or external filter cake built up inside pore throats. The content of suspended solids shall be reduced to required level of filtration since corrective action of plugging is costly expensive. The performance of nutshell filters, where filtration takes place, is good using pecan and walnut shells. Candlenut shells were used instead of pecan and walnut shells since they were abundant in Indonesia, Malaysia, and East Africa. Physical and chemical properties of walnut, pecan, and candlenut shells were tested and the results were compared. Testing, using full-scale nutshell filters, was conducted to determine the oil content, turbidity, and suspended solid removal, which was based on designed flux rate. The performance of candlenut shells, which were deeply bedded in nutshell filters for filtration process, was monitored. Cleaned water outgoing nutshell filters had total suspended solids of 17 ppm, while oil content could be reduced to 15.1 ppm. Turbidity, using candlenut shells, was below the specification for injection water, which was less than 10 Nephelometric Turbidity Unit (NTU). Turbidity of water, outgoing nutshell filter, was ranged from 1.7-5.0 NTU at various dates of operation. Walnut, pecan, and candlenut shells had moisture content of 8.98 wt%, 10.95 wt%, and 9.95 wt%, respectively. The porosity of walnut, pecan, and candlenut shells was significantly affected by moisture content. Candlenut shells had property of toluene solubility of 7.68 wt%, which was much higher than walnut shells, reflecting more crude oil adsorption. The hardness of candlenut shells was 2.5-3 Mohs, which was close to walnut shells’ hardness. It was advantage to guarantee the cleaning filter cake by fluidization process during backwashing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=candlenut%20shells" title="candlenut shells">candlenut shells</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=nutshell%20filter" title=" nutshell filter"> nutshell filter</a>, <a href="https://publications.waset.org/abstracts/search?q=pecan%20shells" title=" pecan shells"> pecan shells</a>, <a href="https://publications.waset.org/abstracts/search?q=walnut%20shells" title=" walnut shells "> walnut shells </a> </p> <a href="https://publications.waset.org/abstracts/118388/characterization-of-candlenut-shells-and-its-application-to-remove-oil-and-fine-solids-of-produced-water-in-nutshell-filters-of-water-cleaning-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2245</span> Walnut (Juglans Regia) Extracts: Investigation of Antioxidant Effect, Total Phenols and Tyrosinase Inhibitory Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Saki">N. Saki</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Nalbantoglu"> S. Nalbantoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Akin"> M. Akin</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Arabaci"> G. Arabaci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Walnut has a great range of phenolic profile and it is used in Asia and Africa for treatment of many diseases and cancer. Phenolic compounds play a number of crucial roles in complex metabolism of plants and of also fruit trees. Consumption of certain phenolics in the food is considered beneficial for human nutrition. Phenolic compounds known as anti-radical inactivators with their high antioxidant activities and these activities play an important role in inhibition of multi-metal corrosion. Many common corrosion inhibitors that are still in use today are health hazards. Therefore, there is still an increased attention directed towards the development of environmentally compatible, nonpolluting corrosion inhibitors. The present study reports the total phenols content, antioxidant potentials and tyrosinase inhibitory activity of the walnut (Juglans regia L.) produced in Turkey. The anti-tyrosinase activity was investigated for walnut at 2 h extraction time and all extracts exhibited tyrosinase activity. The results of this study suggested that walnut can be used as an excellent, easily accessible source of natural antioxidant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Juglans%20Regia" title=" Juglans Regia"> Juglans Regia</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenols" title=" total phenols"> total phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=tyrosinase%20activity" title=" tyrosinase activity"> tyrosinase activity</a> </p> <a href="https://publications.waset.org/abstracts/12885/walnut-juglans-regia-extracts-investigation-of-antioxidant-effect-total-phenols-and-tyrosinase-inhibitory-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2244</span> Improvisation of N₂ Foam with Black Rice Husk Ash in Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishaq%20Ahmad">Ishaq Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomin%20Li"> Zhaomin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Chengwen"> Liu Chengwen</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20yan%20Li"> Song yan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Lei"> Wang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhoujie%20Wang"> Zhoujie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Lei"> Zheng Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because nanoparticles have the potential to improve foam stability, only a small amount of surfactant or polymer is required to control gas mobility in the reservoir. Numerous researches have revealed that this specific application is in use. The goal is to improve foam formation and foam stability. As a result, the foam stability and foam ability of black rice husk ash were investigated. By injecting N₂ gases into a core flood condition, black rice husk ash was used to produce stable foam. The properties of black rice husk ash were investigated using a variety of characterization techniques. The black rice husk ash was mixed with the best-performing anionic foaming surfactants at various concentrations (ppm). Sodium dodecyl benzene sulphonate was the anionic surfactant used (SDBS). In this article, the N₂ gas- black rice husk ash (BRHA) with high Silica content is shown to be beneficial for foam stability and foam ability. For the test, a 30 cm sand pack was prepared. For the experiment, N₂ gas cylinders and SDBS surfactant liquid cylinders were used. Two N₂ gas experiments were carried out: one without a sand pack and one with a sand pack and oil addition. The black rice husk and SDBS surfactant concentration was 0.5 percent. The high silica content of black rice husk ash has the potential to improve foam stability in sand pack conditions, which is beneficial. On N₂ foam, there is an increase in black rice husk ash particles, which may play an important role in oil recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20rice%20husk%20ash%20nanoparticle" title="black rice husk ash nanoparticle">black rice husk ash nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=N%E2%82%82%20foam" title=" N₂ foam"> N₂ foam</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20pack" title=" sand pack"> sand pack</a> </p> <a href="https://publications.waset.org/abstracts/156241/improvisation-of-n2-foam-with-black-rice-husk-ash-in-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2243</span> Studies on Partial Replacement of Cement by Rice Husk Ash under Sodium Phosphate Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharmana%20Pradeep">Dharmana Pradeep</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Kumar%20Patnaikuni"> Chandan Kumar Patnaikuni</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20S.%20Venugopal"> N. V. S. Venugopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice Husk Ash (RHA) is a green product contains carbon and also loaded with silica. For the development of durability and strength of any concrete, curing phenomenon shall be very important. In this communication, we reported the exposure of partial replacement of cement with RHA at different percentages of 0%, 5%, 7.5%, 10%, 12.5% and 15% by weight under sodium phosphate curing atmosphere. The mix is designed for M40 grade concrete with the proportions of 1:2.2:3.72. The tests conducted on concrete was a compressive strength, and the specimens were cured in normal water & exposed to the chemical solution for 7, 28 & 56 days. For chemical curing 0.5% & 1% concentrated sodium phosphates were used and were compared with normal concrete strength results. The strength of specimens of 1% sodium phosphate exposure showed that the compressive strength decreased with increase in RHA percentages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title="rice husk ash">rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20phosphate" title=" sodium phosphate"> sodium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=curing" title=" curing"> curing</a> </p> <a href="https://publications.waset.org/abstracts/67999/studies-on-partial-replacement-of-cement-by-rice-husk-ash-under-sodium-phosphate-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2242</span> The Impact of Black Rice Ash Nanoparticles on Foam Stability through Foam Scanning in Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishaq%20Ahmad">Ishaq Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomin%20Li"> Zhaomin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Chengwen"> Liu Chengwen</a>, <a href="https://publications.waset.org/abstracts/search?q=Song%20Yan%20Li"> Song Yan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zihan%20Gu"> Zihan Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Shaopeng"> Li Shaopeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to manage gas mobility in the reservoir, only a small amount of surfactant or polymer is needed because nanoparticles have the potential to improve foam stability. The aim is to enhance foam formation and stability, so it was decided to investigate the foam stability and foam ability of black rice husk ash. Several characterization techniques were used to investigate the properties of black rice husk ash. The best-performing anionic foaming surfactants were combined with black rice husk ash at different concentrations (ppm). Sodium dodecyl benzene sulphonate was used as the anionic surfactant. This study demonstrates the value of black rice husk ash (BRHA), which has a high silica concentration, for foam stability and ability. For the test, black rice husk ash and raw ash were used with SDS (Sodium Dodecyl Sulfate) and SDBS (Sodium dodecyl benzenesulfonate) surfactants under different parameters. Different concentration percentages were utilized to create the foam, and the hydrophobic test and shaking method were applied. The foam scanner was used to observe the behavior of the black rice husk ash foam. The high silica content of black rice husk ash has the potential to improve foam stability, which is favorable and could possibly improve oil recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20rice%20husk%20ash%20nanoparticle" title="black rice husk ash nanoparticle">black rice husk ash nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20life" title=" foam life"> foam life</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20scanning" title=" foam scanning"> foam scanning</a> </p> <a href="https://publications.waset.org/abstracts/159872/the-impact-of-black-rice-ash-nanoparticles-on-foam-stability-through-foam-scanning-in-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2241</span> Utilization of Coconut Husk and Sugarcane Bagasse as a Natural Component in Making Water Resistance Tote Bags</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Mae%20B.%20Mationg">Cyril Mae B. Mationg</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexa%20T.%20Belizar"> Alexa T. Belizar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vethany%20B.%20Bellen"> Vethany B. Bellen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine the use of coconut husks and sugarcane bagasse as natural components in making water-resistant tote bags. The study consists of three concentrations: 70% Coconut Husk - 30% Sugarcane Bagasse, 70% cellulose, and 30% cellulose. The results of these tests revealed that, out of the three concentration concentrations, the one consisting of 70% Coconut Husk and 30% sugarcane bagasse exhibited superior performance in breaking capacity and water penetration. During tensile strength testing, the coconut husk and sugarcane bagasse withstood a force of 207.7 Newtons (N) in the machine direction and 216.5 N in the cross-machine direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20husk" title="coconut husk">coconut husk</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse" title=" sugarcane bagasse"> sugarcane bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=tote%20bags" title=" tote bags"> tote bags</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resistance" title=" water resistance"> water resistance</a> </p> <a href="https://publications.waset.org/abstracts/182732/utilization-of-coconut-husk-and-sugarcane-bagasse-as-a-natural-component-in-making-water-resistance-tote-bags" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2240</span> Optimization of Biomass Components from Rice Husk Treated with Trichophyton Soudanense and Trichophyton Mentagrophyte and Effect of Yeast on the Bio-Ethanol Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chukwuma%20S.%20Ezeonu">Chukwuma S. Ezeonu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikechukwu%20N.%20E.%20Onwurah"> Ikechukwu N. E. Onwurah</a>, <a href="https://publications.waset.org/abstracts/search?q=Uchechukwu%20U.%20Nwodo"> Uchechukwu U. Nwodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chibuike%20S.%20Ubani"> Chibuike S. Ubani</a>, <a href="https://publications.waset.org/abstracts/search?q=Chigozie%20M.%20Ejikeme"> Chigozie M. Ejikeme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trichophyton soudanense and Trichophyton mentagrophyte were isolated from the rice mill environment, cultured and used singly and as di-culture in the treatment of measure quantities of preheated rice husk. Optimized conditions studied showed that carboxymethylcellulase (CMCellulase) activity of 57.61 µg/ml/min was optimum for Trichophyton mentagrophyte heat pretreated rice husk crude enzymes at 50oC and 80oC respectively. Duration of 120 hours (5 days) gave the highest CMcellulase activity of 75.84 µg/ml/min for crude enzyme of Trichophyton mentagrophyte heat pretreated rice husk. However, 96 hours (4 days) duration gave maximum activity of 58.21 µg/ml/min for crude enzyme of Trichophyton soudanense heat pretreated rice husk. Highest CMCellulase activities of 67.02 µg/ml/min and 69.02 µg/ml/min at pH of 5 were recorded for crude enzymes of monocultures of Trichophyton soudanense (TS) and Trichophyton mentagrophyte (TM) heat pretreated rice husk respectively. Biomass components showed that rice husk cooled after heating followed by treatment with Trichophyton mentagrophyte gave 44.50 ± 10.90 (% ± Standard Error of Mean) cellulose as the highest yield. Maximum total lignin value of 28.90 ± 1.80 (% ± SEM) was obtained from pre-heated rice husk treated with di-culture of Trichophyton soudanense and Trichophyton mentagrophyte (TS+TM). The hemicellulose content of 30.50 ± 2.12 (% ± SEM) from pre-heated rice husk treated with Trichophyton soudanense (TS); lignin value of 28.90 ± 1.80 from pre-heated rice husk treated with di-culture of Trichophyton soudanense and Trichophyton mentagrophyte (TS+TM); also carbohydrate content of 16.79 ± 9.14 (% ± SEM) , reducing and non-reducing sugar values of 2.66 ± 0.45 and 14.13 ± 8.69 (% ± SEM) were all obtained from for pre- heated rice husk treated with Trichophyton mentagrophyte (TM). All the values listed above were the highest values obtained from each rice husk treatment. The pre-heated rice husk treated with Trichophyton mentagrophyte (TM) fermented with palmwine yeast gave bio-ethanol value of 11.11 ± 0.21 (% ± Standard Deviation) as the highest yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trichophyton%20soudanense" title="Trichophyton soudanense">Trichophyton soudanense</a>, <a href="https://publications.waset.org/abstracts/search?q=Trichophyton%20mentagrophyte" title=" Trichophyton mentagrophyte"> Trichophyton mentagrophyte</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a> </p> <a href="https://publications.waset.org/abstracts/27579/optimization-of-biomass-components-from-rice-husk-treated-with-trichophyton-soudanense-and-trichophyton-mentagrophyte-and-effect-of-yeast-on-the-bio-ethanol-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">679</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2239</span> Comparison of the Effects of Fresh Leaf, Septum and Peel Extracts of Walnut on Blood Glucose and Pancreatic Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahmineh%20Hasanzadeh">Tahmineh Hasanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Farahbakhsh"> Afshin Farahbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is some report about the hypoglycemic effect of Juglans rejia L. leaf in alloxan induced diabetic rats and hypoglycemic effect of its fruit peel administered intraperitoneally.In Iranian traditional medicine, septum of walnut shell (SWS) was recommended to reduce blood glucose. For this purpose, 41 male bulb/C mice 25-30 gm were divided into five groups. All the animals received IP injection of streptozotocin (STZ) (220 mg/kg). Two weeks later, the diabetic animals were received daily oral treatment of normal saline and aqueous extract of SWS (200, 400, 600 and 800 mg/kg) respectively for four weeks. Blood samples were taken from retro orbital sinus before the start of the experiment and repeated each two weeks. At the end of the experiment, the animals were sacrificed and the pancreatic tissues were fixed, prepared and stained by Hematoxylin-Eosin for light microscope studies. The results showed that in each group, the SWS extract reduced blood glucose in a long time (p < 0.05). metabolic extract in STZ- induced diabetic rats, which was accompanied by the hypoglycemic effect of leaf extract. However, this effect should be determined with scientific researches. Therefore, the aim of this study is to evaluate the effect of the aqueous extract of SWS on blood glucose and histopathological structure of pancreas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=septum%20of%20walnut" title="septum of walnut">septum of walnut</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20glucose" title=" blood glucose"> blood glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=pancreas" title=" pancreas"> pancreas</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=walnut%20leaf" title=" walnut leaf"> walnut leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=walnut%20peel" title=" walnut peel"> walnut peel</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin" title=" insulin"> insulin</a> </p> <a href="https://publications.waset.org/abstracts/46409/comparison-of-the-effects-of-fresh-leaf-septum-and-peel-extracts-of-walnut-on-blood-glucose-and-pancreatic-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2238</span> The Optimal Production of Long-Beans in the Swamp Land by Application of Rhizobium and Rice Husk Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Basri%20Jumin">Hasan Basri Jumin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The swamp land contains high iron, aluminum, and low pH. Calcium and magnesium in the rice husk ash can reduce plant poisoning so that plant growth increases in fertility. The first factor was the doze of rice husk, and the second factor was 0.0 g rhizobium inoculant /kg seed, 4.0 g rhizobium inoculant/kg seed, 8 g rhizobium inoculant /kg seed, and 12 g l rhizobium inoculant /kg seed. The plants were maintained under light conditions with a + 11.45 – 12.15 hour photoperiod. The combination between rhizobium inoculant and rice husk ash has been an interacting effect on the production of long bean pod fresh weight. The mean relative growth rate, net assimilation rate, and pod fresh weight are increased by a combination of husk rice ash and rhizobium inoculant. Rice husk ash affected increases the availability of nitrogen in the land, albeit in poor condition of nutrition. Rhizobium is active in creating a fixation of nitrogen in the atmosphere because rhizobium increases the abilities of intercellular and symbiotic nitrogen in the long beans. The combination of rice husk ash and rhizobium could be effected to create a thriving in the land. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium" title="aluminium">aluminium</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=fixation" title=" fixation"> fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a> </p> <a href="https://publications.waset.org/abstracts/164831/the-optimal-production-of-long-beans-in-the-swamp-land-by-application-of-rhizobium-and-rice-husk-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2237</span> Biosorption of Ni (II) Using Alkaline-Treated Rice Husk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khanom%20Simarani">Khanom Simarani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice husk has been widely reported as a good sorbent for heavy metals. Pre treatment of rice husk minimizes cellulose crystallinity and increases the surface area thus ensuring better adsorption capacity. Commercial base and natural base-treated rice husk were used to investigate the potential of Ni(II) adsorption from synthetic solutions and waste water in batch systems. Effects of process variables such as pH, contact time, adsorbent dose, initial Ni (II) concentration were studied. Optimum Ni (II) adsorption was observed at pH 6 within 60 min of contact time. Experimental data showed increased amount of adsorbed Ni(II) with increasing adsorbent dose and decreased percent of adsorption with increasing initial Ni(II) concentration. Kinetic isotherms (Langmuir, Freundlich) were also applied. Biosorption mechanism of rice husk was analyzed using SEM/EDS, FT-IR, and XRD. The results revealed that natural base produced from agroindustrial waste could be used as efficient as commercial bases during pre treatment rice husk in removing Ni(II) from waste waters within 15 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nickel%20removal" title="Nickel removal">Nickel removal</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/30082/biosorption-of-ni-ii-using-alkaline-treated-rice-husk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2236</span> Experimental Investigation on Utilization of Waste Materials in Fly Ash Brick</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Southamirajan">S. Southamirajan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Dhavashankaran"> D. Dhavashankaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fly ash is one of the major residues generated during combustion of coal in thermal power plants. Fly ash brick technology is the process of converting industrial waste materials into quality building material. Another issue in earth is dumping of the Bagasse ash, rice husk ash and copper slag waste. In a growing country like India a huge amount of fly ash waste materials are polluting the environment. The necessity of recycling the materials play a big role in the development of the safe and non- polluted earth. Fly ash, lime, gypsum and quarry dust are used as a replacement material for fly ash. The fly ash was replaced by the Bagasse ash and rice husk ash in the proportion of 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 25%27.5% and 30%. Two types of fly ash bricks were casted. One type is Bagasse ash replaced fly ash and another type is rice husk ash replaced fly ash bricks then copper slag are partially replaced in quarry dust. The prepared bricks are cured for 7 days and 28 days and dried in regular temperature. The mechanical and durability properties of optimum percentages of Bagasse ash and rice husk ash replaced fly ash bricks. The use of Bagasse ash and rice husk ash provides for considerable value – added utilization of Bagasse and rice husk in bricks and significant reductions in the production of greenhouse gases by the cement industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bagasse%20Ash" title="Bagasse Ash">Bagasse Ash</a>, <a href="https://publications.waset.org/abstracts/search?q=Fly%20ash" title=" Fly ash"> Fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=bricks" title=" bricks"> bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20%26%20durability%20properties" title=" mechanical & durability properties"> mechanical & durability properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Rice%20husk%20ash" title=" Rice husk ash"> Rice husk ash</a> </p> <a href="https://publications.waset.org/abstracts/120696/experimental-investigation-on-utilization-of-waste-materials-in-fly-ash-brick" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2235</span> Experimental Investigation on Mechanical Properties of Rice Husk Filled Jute Reinforced Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyankar%20P.%20Deka">Priyankar P. Deka</a>, <a href="https://publications.waset.org/abstracts/search?q=Sutanu%20Samanta"> Sutanu Samanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the development of new class of epoxy based hybrid composites reinforced with jute and filled with rice husk flour. Rice husk flour is added in 0%, 1%, 3%, 5% by weight. Epoxy resin and triethylene tetramine (T.E.T.A) is used as matrix and hardener respectively. It investigates the mechanical properties of the composites and a comparison is done for monolithic jute composite and the filled ones. The specimens are prepared according to the ASTM standards and experimentation is carried out using INSTRON 8801. The result shows that with the increase of filler percentage the tensile properties increases but compressive and flexural properties decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jute" title="jute">jute</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characterization" title=" mechanical characterization"> mechanical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title=" natural fiber"> natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a> </p> <a href="https://publications.waset.org/abstracts/37807/experimental-investigation-on-mechanical-properties-of-rice-husk-filled-jute-reinforced-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2234</span> Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Zuhaira%20Abd%20Aziz">Noor Zuhaira Abd Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical and mechanical properties were investigated. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hybrid%20composites" title="Hybrid composites">Hybrid composites</a>, <a href="https://publications.waset.org/abstracts/search?q=Water%20absorption" title=" Water absorption"> Water absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Mechanical%20properties" title=" Mechanical properties "> Mechanical properties </a> </p> <a href="https://publications.waset.org/abstracts/17840/effects-of-kenaf-and-rice-husk-on-water-absorption-and-flexural-properties-of-kenafcaco3hdpe-and-rice-huskcaco3hdpe-hybrid-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2233</span> Removal of Chromium (VI) from Aqueous Solution by Teff (Eragrostis Teff) Husk Activated Carbon: Optimization, Kinetics, Isotherm, and Practical Adaptation Study Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsegaye%20Adane%20Birhan">Tsegaye Adane Birhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, rapid industrialization has led to the excessive release of heavy metals such as Cr (VI) into the environment. Exposure to chromium (VI) can cause kidney and liver damage, depressed immune systems, and a variety of cancers. Therefore, treatment of Cr (VI) containing wastewater is mandatory. This study aims to optimize the removal of Cr (VI) from an aqueous solution using locally available Teff husk-activated carbon adsorbent. The laboratory-based study was conducted on the optimization of Cr (VI) removal efficiency of Teff husk-activated carbon from aqueous solution. A central composite design was used to examine the effect of the interaction of process parameters and to optimize the process using Design Expert version 7.0 software. The optimized removal efficiency of Teff husk activated carbon (95.597%) was achieved at 1.92 pH, 87.83mg/L initial concentration, 20.22g/L adsorbent dose and 2.07Hrs contact time. The adsorption of Cr (VI) on Teff husk-activated carbon was found to be best fitted with pseudo-second-order kinetics and Langmuir isotherm model of the adsorption. Teff husk-activated carbon can be used as an efficient adsorbent for the removal of chromium (VI) from contaminated water. Column adsorption needs to be studied in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batch%20adsorption" title="batch adsorption">batch adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium%20%28VI%29" title=" chromium (VI)"> chromium (VI)</a>, <a href="https://publications.waset.org/abstracts/search?q=teff%20husk%20activated%20carbon" title=" teff husk activated carbon"> teff husk activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=tannery%20wastewater" title=" tannery wastewater"> tannery wastewater</a> </p> <a href="https://publications.waset.org/abstracts/194677/removal-of-chromium-vi-from-aqueous-solution-by-teff-eragrostis-teff-husk-activated-carbon-optimization-kinetics-isotherm-and-practical-adaptation-study-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2232</span> Effect of Supplemental Phytase on the Digestibility of Crude Protein and Phosphorus of Rice Husk in Broiler Chicken</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibinabo%20I.%20Ilaboya">Ibinabo I. Ilaboya</a>, <a href="https://publications.waset.org/abstracts/search?q=Eustace%20A.%20Iyayi"> Eustace A. Iyayi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phosphorus (P) is an indispensable mineral in broiler diets. Rice husk contains phytate-P and other nutrients like protein, carbohydrates, which are poorly digested in broiler chickens. Broiler chickens (BC) lacks sufficient phytase to help hydrolyse phytate-bound P. Hence excess of P is excreted by these chickens into the environment causing environmental pollution. Supplementation of such diets with microbial phytase helps to improve the digestibility of these nutrients. The study was conducted to determine the effect of phytase supplementation on the digestibility of crude protein (CP) and P of rice husk in BC. Six semi-purified diets of three levels of total P (3.46, 4.91 and 6.37g/kg) without and with 1,000 units of phytase per kg were formulated. Titanium dioxide was added to the diets at the rate of 5g/kg as an indigestible marker. At 20dposthatch, 288 broilers (Abor Acre) were weighed and allotted to the diets with 6 replicates of 8 birds each in a randomized complete block design. The birds had free access to the experimental diets until day 26 post-hatch. Phytase supplementation increased (p < 0.05) digestibility of P from 75-93%. Rice husk and its interaction with phytase had no significant (p > 0.05) effect on P digestibility, whereas there was significant (p < 0.01) effect on the interaction of rice husk with phytase on CP digestibility. There were linear increases (p < 0.01) in digested P and CP with phytase supplementation. The P and CP losses from the BC was reduced with the addition of phytase. Results suggest that supplementation of rice husk-based diets with microbial phytase improved pre-caecal digestibility of P and CP in broilers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20protein" title="crude protein">crude protein</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=phytase" title=" phytase"> phytase</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a> </p> <a href="https://publications.waset.org/abstracts/105601/effect-of-supplemental-phytase-on-the-digestibility-of-crude-protein-and-phosphorus-of-rice-husk-in-broiler-chicken" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2231</span> Fermentable Bio-Ethanol Using Bakers and Palmwine Yeasts: Indices of Bioavailability of Carbohydrate and Sugar from Fungal Treated Rice Husk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezeonu">Ezeonu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chukwuma%20Stephen"> Chukwuma Stephen</a>, <a href="https://publications.waset.org/abstracts/search?q=Onwurah"> Onwurah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikechukwu%20Noel%20Emmanuel"> Ikechukwu Noel Emmanuel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pure strains of Aspergillus fumigatus (AF), aspergillus niger (AN), aspergillus oryzae (AO), trichophyton mentagrophyte (TM), trichophyton rubrum (TR) and Trichophyton soudanense (TS) were isolated from decomposing rice husk. Freshly processed rice husk in Mandle’s medium were heat pre-treated using an autoclave at 121oC for 20 minutes. The isolated fungi as monoculture and di-culture combinations were inoculated into each of the pre-treated rice husk with the exception of two controls. Seven days hydrolysis was followed by estimation of carbohydrate, reducing sugar and non-reducing sugar. Fungal treated rice husks were left to ferment for 7 days with introduction of both baker’s and palm wine yeast. The result obtained in the work gave the highest carbohydrate (20.53 ± 2.73 %) from rice husks treated with TS + TR di-culture. The highest soluble reducing sugar (2.66 ± 0.14 %) was obtained from rice husk treated with TM. The highest soluble nonreducing sugar (18.08 ± 2.61 %) was from AF. The introduction of yeasts from palm wine gave the highest bio-ethanol (12.82 ± 0.39 %) from AO. The highest bio-ethanol (6.60 ± 0.10 %) from baker's yeast fermentation was in AO + TS treated rice husk. There was increased availability of sugar and moderate yield of bio-ethanol, especially from palm wine yeast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fungi" title="fungi">fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate" title=" carbohydrate"> carbohydrate</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20sugar" title=" reducing sugar"> reducing sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=non-reducing%20sugar" title=" non-reducing sugar"> non-reducing sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/27558/fermentable-bio-ethanol-using-bakers-and-palmwine-yeasts-indices-of-bioavailability-of-carbohydrate-and-sugar-from-fungal-treated-rice-husk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2230</span> Effect of Rice Husk Ash and Metakaolin on the Compressive Strengths of Ternary Cement Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olubajo%20Olumide%20Olu">Olubajo Olumide Olu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the effect of Metakaolin (MK) and Rice husk ash (RHA) on the compressive strength of ternary cement mortar at replacement level up to 30%. The compressive strength test of the blended cement mortars were conducted using Tonic Technic compression and machine. Nineteen ternary cement mortars were prepared comprising of ordinary Portland cement (OPC), Rice husk ash (RHA) and Metakaolin (MK) at different proportion. Ternary mortar prisms in which Portland cement was replaced by up to 30% were tested at various age; 2, 7, 28 and 60 days. Result showed that the compressive strength of the cement mortars increased as the curing days were lengthened for both OPC and the blended cement samples. The ternary cement’s compressive strengths showed significant improvement compared with the control especially beyond 28 days. This can be attributed to the slow pozzolanic reaction resulting from the formation of additional CSH from the interaction of the residual CH content and the silica available in the Metakaolin and Rice husk ash, thus providing significant strength gain at later age. Results indicated that the addition of metakaolin with rice husk ash kept constant was found to lead to an increment in the compressive strength. This can either be attributed to the high silica/alumina contribution to the matrix or the C/S ratio in the cement matrix. Whereas, increment in the rice husk ash content while metakaolin was held constant led to an increment in the compressive strength, which could be attributed to the reactivity of the rice husk ash followed by decrement owing to the presence of unburnt carbon in the RHA matrix. The best compressive strength results were obtained at 10% cement replacement (5% RHA, 5% MK); 15% cement replacement (10% MK and 5% RHA); 20% cement replacement (15% MK and 5% RHA); 25% cement replacement (20% MK and 5% RHA); 30% cement replacement (10%/20% MK and 20%/10% RHA). With the optimal combination of either 15% and 20% MK with 5% RHA giving the best compressive strength of 40.5MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title="metakaolin">metakaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20mortar" title=" ternary mortar"> ternary mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20days" title=" curing days"> curing days</a> </p> <a href="https://publications.waset.org/abstracts/28975/effect-of-rice-husk-ash-and-metakaolin-on-the-compressive-strengths-of-ternary-cement-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2229</span> Computational Analyses of Persian Walnut Genetic Data: Notes on Genetic Diversity and Cultivar Phylogeny</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Sheidaei">Masoud Sheidaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Melica%20Tabasi"> Melica Tabasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahimeh%20Koohdar"> Fahimeh Koohdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Sheidaei"> Mona Sheidaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Juglans regia L. is an economically important species of edible nuts. Iran is known as a center of origin of genetically rich walnut germplasm and expected to be found a large diversity within Iranian walnut populations. A detailed population genetic of local populations is useful for developing an optimal strategy for in situ conservation and can assist the breeders in crop improvement programs. Different phylogenetic studies have been carried out in this genus, but none has been concerned with genetic changes associated with geographical divergence and the identification of adaptive SNPs. Therefore, we carried out the present study to identify discriminating ITS nucleotides among Juglans species and also reveal association between ITS SNPs and geographical variables. We used different computations approaches like DAPC, CCA, and RDA analyses for the above-mentioned tasks. We also performed population genetics analyses for population effective size changes associated with the species expansion. The results obtained suggest that latitudinal distribution has a more profound effect on the species genetic changes. Similarly, multiple analytical approaches utilized for the identification of both discriminating DNA nucleotides/ SNPs almost produced congruent results. The SNPs with different phylogenetic importance were also identified by using a parsimony approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Persian%20walnut" title="Persian walnut">Persian walnut</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20SNPs" title=" adaptive SNPs"> adaptive SNPs</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20analyses" title=" data analyses"> data analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a> </p> <a href="https://publications.waset.org/abstracts/148098/computational-analyses-of-persian-walnut-genetic-data-notes-on-genetic-diversity-and-cultivar-phylogeny" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk&page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk&page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20walnut%20husk&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>