CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;28 of 28 results for author: <span class="mathjax">Drozdov, I</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Drozdov%2C+I">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Drozdov, I"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Drozdov%2C+I&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Drozdov, I"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06557">arXiv:2410.06557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06557">pdf</a>, <a href="https://arxiv.org/format/2410.06557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Observation of disorder-free localization and efficient disorder averaging on a quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T">Tyler Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lensky%2C+Y">Yuri Lensky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a> , et al. (195 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06557v1-abstract-short" style="display: inline;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06557v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06557v1-abstract-full" style="display: none;"> One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06557v1-abstract-full').style.display = 'none'; document.getElementById('2410.06557v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17142">arXiv:2409.17142</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17142">pdf</a>, <a href="https://arxiv.org/format/2409.17142">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jobst%2C+B">Bernhard Jobst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eassa%2C+N">Norhan Eassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Will%2C+M">Melissa Will</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Browne%2C+D+A">David A. Browne</a> , et al. (167 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17142v1-abstract-short" style="display: inline;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17142v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17142v1-abstract-full" style="display: none;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'none'; document.getElementById('2409.17142v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18519">arXiv:2405.18519</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.18519">pdf</a>, <a href="https://arxiv.org/format/2405.18519">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.224507">10.1103/PhysRevB.109.224507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Shallow core levels, or how to determine the doping and $T_c$ of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ and Bi$_{2}$Sr$_2$CuO$_{6+未}$ without cooling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pervan%2C+P">Petar Pervan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pletikosi%C4%87%2C+I">Ivo Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">Ilya K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zebin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">Genda D. Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18519v1-abstract-short" style="display: inline;"> Determining the doping level in high-temperature cuprate superconductors is crucial for understanding the origin of superconductivity in these materials and for unlocking their full potential. However, accurately determining the doping level remains a significant challenge due to a complex interplay of factors and limitations in various measurement techniques. In particular, in Bi$_{2}$Sr$_2$CuO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18519v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18519v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18519v1-abstract-full" style="display: none;"> Determining the doping level in high-temperature cuprate superconductors is crucial for understanding the origin of superconductivity in these materials and for unlocking their full potential. However, accurately determining the doping level remains a significant challenge due to a complex interplay of factors and limitations in various measurement techniques. In particular, in Bi$_{2}$Sr$_2$CuO$_{6+未}$ and Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$, where the mobile carriers are introduced by non-stoichiometric oxygen $未$, the determination has been extremely problematic. Here, we study the doping dependence of the electronic structure of these materials in angle-resolved photoemission and find that both the doping level, $p$, and the superconducting transition temeprature, $T_c$ can be precisely determined from the binding energy of the Bi $5d$ core-levels. The measurements can be performed at room temperature, enabling the determination of $p$ and $T_c$ without cooling the samples. This should be very helpful for further studies of these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18519v1-abstract-full').style.display = 'none'; document.getElementById('2405.18519v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures. arXiv admin note: text overlap with arXiv:1811.05425</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 224507 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17385">arXiv:2405.17385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17385">pdf</a>, <a href="https://arxiv.org/format/2405.17385">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Thermalization and Criticality on an Analog-Digital Quantum Simulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karamlou%2C+A+H">Amir H. Karamlou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berndtsson%2C+J">Julia Berndtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Motruk%2C+J">Johannes Motruk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szasz%2C+A">Aaron Szasz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gross%2C+J+A">Jonathan A. Gross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuckert%2C+A">Alexander Schuckert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yaxing Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forati%2C+E">Ebrahim Forati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+D">Dario Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kobrin%2C+B">Bryce Kobrin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Paolo%2C+A">Agustin Di Paolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klots%2C+A+R">Andrey R. Klots</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurilovich%2C+V+D">Vladislav D. Kurilovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petukhov%2C+A">Andre Petukhov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ioffe%2C+L+B">Lev B. Ioffe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elben%2C+A">Andreas Elben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rath%2C+A">Aniket Rath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vitale%2C+V">Vittorio Vitale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vermersch%2C+B">Benoit Vermersch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beni%2C+L+A">Laleh Aghababaie Beni</a> , et al. (202 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17385v2-abstract-short" style="display: inline;"> Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal qua&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17385v2-abstract-full').style.display = 'inline'; document.getElementById('2405.17385v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17385v2-abstract-full" style="display: none;"> Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators. Unlocking the full potential of such systems toward this goal requires flexible initial state preparation, precise time evolution, and extensive probes for final state characterization. We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. Emulating a two-dimensional (2D) XY quantum magnet, we leverage a wide range of measurement techniques to study quantum states after ramps from an antiferromagnetic initial state. We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions attributed to the interplay between quantum and classical coarsening of the correlated domains. This interpretation is corroborated by injecting variable energy density into the initial state, which enables studying the effects of the eigenstate thermalization hypothesis (ETH) in targeted parts of the eigenspectrum. Finally, we digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization. These results establish the efficacy of superconducting analog-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17385v2-abstract-full').style.display = 'none'; document.getElementById('2405.17385v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04792">arXiv:2303.04792</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.04792">pdf</a>, <a href="https://arxiv.org/format/2303.04792">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06505-7">10.1038/s41586-023-06505-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement-induced entanglement and teleportation on a noisy quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hoke%2C+J+C">Jesse C. Hoke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ippoliti%2C+M">Matteo Ippoliti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buell%2C+D+A">David A. Buell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burger%2C+T">Tim Burger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burkett%2C+B">Brian Burkett</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bushnell%2C+N">Nicholas Bushnell</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zijun Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiaro%2C+B">Ben Chiaro</a> , et al. (138 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04792v2-abstract-short" style="display: inline;"> Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the &#34;arrow of time&#34; that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04792v2-abstract-full').style.display = 'inline'; document.getElementById('2303.04792v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04792v2-abstract-full" style="display: none;"> Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the &#34;arrow of time&#34; that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04792v2-abstract-full').style.display = 'none'; document.getElementById('2303.04792v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 622, 481-486 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10255">arXiv:2210.10255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.10255">pdf</a>, <a href="https://arxiv.org/format/2210.10255">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Non-Abelian braiding of graph vertices in a superconducting processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kechedzhi%2C+K">Kostyantyn Kechedzhi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+S">Sabrina Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morvan%2C+A">Alexis Morvan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+X">Xiao Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Opremcak%2C+A">Alex Opremcak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allen%2C+R">Richard Allen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bacon%2C+D">Dave Bacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bortoli%2C+G">Gina Bortoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brill%2C+L">Leon Brill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckley%2C+B+B">Bob B. Buckley</a> , et al. (144 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10255v2-abstract-short" style="display: inline;"> Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10255v2-abstract-full').style.display = 'inline'; document.getElementById('2210.10255v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10255v2-abstract-full" style="display: none;"> Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10255v2-abstract-full').style.display = 'none'; document.getElementById('2210.10255v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05674">arXiv:2208.05674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05674">pdf</a>, <a href="https://arxiv.org/format/2208.05674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-023-01325-2">10.1038/s41565-023-01325-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-photon detection using high-temperature superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Charaev%2C+I">I. Charaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bandurin%2C+D+A">D. A. Bandurin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bollinger%2C+A+T">A. T. Bollinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phinney%2C+I+Y">I. Y. Phinney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I">I. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colangelo%2C+M">M. Colangelo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butters%2C+B+A">B. A. Butters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">T. Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">K. Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+X">X. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bo%C5%BEovi%C4%87%2C+I">I. Bo啪ovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jarillo-Herrero%2C+P">P. Jarillo-Herrero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berggren%2C+K+K">K. K. Berggren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05674v1-abstract-short" style="display: inline;"> The detection of individual quanta of light is important for quantum computation, fluorescence lifetime imaging, single-molecule detection, remote sensing, correlation spectroscopy, and more. Thanks to their broadband operation, high detection efficiency, exceptional signal-to-noise ratio, and fast recovery times, superconducting nanowire single-photon detectors (SNSPDs) have become a critical com&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05674v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05674v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05674v1-abstract-full" style="display: none;"> The detection of individual quanta of light is important for quantum computation, fluorescence lifetime imaging, single-molecule detection, remote sensing, correlation spectroscopy, and more. Thanks to their broadband operation, high detection efficiency, exceptional signal-to-noise ratio, and fast recovery times, superconducting nanowire single-photon detectors (SNSPDs) have become a critical component in these applications. The operation of SNSPDs based on conventional superconductors, which have a low critical temperature ($T_c$), requires costly and bulky cryocoolers. This motivated exploration of other superconducting materials with higher $T_c$ that would enable single-photon detection at elevated temperatures, yet this task has proven exceedingly difficult. Here we show that with proper processing, high-$T_c$ cuprate superconductors can meet this challenge. We fabricated superconducting nanowires (SNWs) out of thin flakes of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ and La$_{1.55}$Sr$_{0.45}$CuO$_4$/La$_2$CuO$_4$ (LSCO-LCO) bilayer films and demonstrated their single-photon response up to $25$ and $8$ K, respectively. The single-photon operation is revealed through the linear scaling of the photon count rate (PCR) on the radiation power. Both of our cuprate-based SNSPDs exhibited single-photon sensitivity at the technologically-important $1.5$ $渭$m telecommunications wavelength. Our work expands the family of superconducting materials for SNSPD technology, opens the prospects of raising the temperature ceiling, and raises important questions about the underlying mechanisms of single-photon detection by unconventional superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05674v1-abstract-full').style.display = 'none'; document.getElementById('2208.05674v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Nanotechnology 18, 343-349 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01702">arXiv:2205.01702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01702">pdf</a>, <a href="https://arxiv.org/format/2205.01702">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.224515">10.1103/PhysRevB.106.224515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strongly-overdoped La$_{2-x}$Sr$_x$CuO$_4$: Evidence for Josephson-coupled grains of strongly-correlated superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yangmu Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sapkota%2C+A">A. Sapkota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lozano%2C+P+M">P. M. Lozano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Z">Zengyi Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zebin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koch%2C+R+J">R. J. Koch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Lijun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winn%2C+B+L">B. L. Winn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chi%2C+S">Songxue Chi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+M">M. Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frontzek%2C+M">M. Frontzek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bozin%2C+E+S">E. S. Bozin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yimei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bozovic%2C+I">I. Bozovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pasupathy%2C+A+N">Abhay N. Pasupathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">Ilya K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujita%2C+K">Kazuhiro Fujita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaliznyak%2C+I">Igor Zaliznyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tranquada%2C+J+M">J. M. Tranquada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01702v3-abstract-short" style="display: inline;"> The interpretation of how superconductivity disappears in cuprates at large hole doping has been controversial. To address this issue, we present an experimental study of single-crystal and thin film samples of La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) with $x\ge0.25$. In particular, measurements of bulk susceptibility on LSCO crystals with $x=0.25$ indicate an onset of diamagnetism at $T_{c1}=38.5$ K, with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01702v3-abstract-full').style.display = 'inline'; document.getElementById('2205.01702v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01702v3-abstract-full" style="display: none;"> The interpretation of how superconductivity disappears in cuprates at large hole doping has been controversial. To address this issue, we present an experimental study of single-crystal and thin film samples of La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) with $x\ge0.25$. In particular, measurements of bulk susceptibility on LSCO crystals with $x=0.25$ indicate an onset of diamagnetism at $T_{c1}=38.5$ K, with a sharp transition to a phase with full bulk shielding at $T_{c2}=18$ K, independent of field direction. Strikingly, the in-plane resistivity only goes to zero at $T_{c2}$. Inelastic neutron scattering on $x=0.25$ crystals confirms the presence of low-energy incommensurate magnetic excitations with reduced strength compared to lower doping levels. The ratio of the spin gap to $T_{c2}$ is anomalously large. Our results are consistent with a theoretical prediction for strongly overdoped cuprates by Spivak, Oreto, and Kivelson, in which superconductivity initially develops within disconnected self-organized grains characterized by a reduced hole concentration, with bulk superconductivity occurring only after superconductivity is induced by proximity effect in the surrounding medium of higher hole concentration. Beyond the superconducting-to-metal transition, local differential conductance measurements on an LSCO thin film suggest that regions with pairing correlations survive, but are too dilute to support superconducting order. Future experiments will be needed to test the degree to which these results apply to overdoped cuprates in general. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01702v3-abstract-full').style.display = 'none'; document.getElementById('2205.01702v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 15 figures; added more sample characterizations, results for another sample, more discussion; accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 224515 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.10303">arXiv:2101.10303</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.10303">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.124801">10.1103/PhysRevMaterials.4.124801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Homogeneous superconducting gap in DBCO synthesized by oxide molecular beam epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Ze-Bin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzky%2C+D">Daniel Putzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S">Shize Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Du%2C+Z">Zengyi Du</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joo%2C+S+H">Sang Hyun Joo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">Jinho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Yimei Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Logvenov%2C+G">Gennady Logvenov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujita%2C+K">Kazuhiro Fujita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valla%2C+T">Tonica Valla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bozovic%2C+I">Ivan Bozovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">Ilya K. Drozdov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.10303v1-abstract-short" style="display: inline;"> Much of what is known about high-temperature cuprate superconductors stems from studies based on two surface analytical tools, angle-resolved photoemission spectroscopy (ARPES) and spectroscopic imaging scanning tunneling microscopy (SI-STM). A question of general interest is whether and when the surface properties probed by ARPES and SI-STM are representative of the intrinsic properties of bulk m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10303v1-abstract-full').style.display = 'inline'; document.getElementById('2101.10303v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.10303v1-abstract-full" style="display: none;"> Much of what is known about high-temperature cuprate superconductors stems from studies based on two surface analytical tools, angle-resolved photoemission spectroscopy (ARPES) and spectroscopic imaging scanning tunneling microscopy (SI-STM). A question of general interest is whether and when the surface properties probed by ARPES and SI-STM are representative of the intrinsic properties of bulk materials. We find this question is prominent in thin films of a rarely studied cuprate DBCO. We synthesize DBCO films by oxide molecular beam epitaxy and study them by in situ ARPES and SI-STM. Both ARPES and SI-STM show that the surface DBCO layer is different from the bulk of the film. It is heavily underdoped, while the doping level in the bulk is close to optimal doping evidenced by bulk-sensitive mutual inductance measurements. ARPES shows the typical electronic structure of a heavily underdoped CuO2 plane and two sets of one-dimensional bands originating from the CuO chains with one of them gapped. SI-STM reveals two different energy scales in the local density of states, with one corresponding to the superconductivity and the other one to the pseudogap. While the pseudogap shows large variations over the length scale of a few nanometers, the superconducting gap is very homogeneous. This indicates that the pseudogap and superconductivity are of different origins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.10303v1-abstract-full').style.display = 'none'; document.getElementById('2101.10303v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12947">arXiv:2012.12947</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.12947">pdf</a>, <a href="https://arxiv.org/format/2012.12947">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/134/17002">10.1209/0295-5075/134/17002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hole-Like Fermi Surface in the Overdoped Non-Superconducting Bi$_{1.8}$Pb$_{0.4}$Sr$_2$CuO$_{6+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pervan%2C+P">P. Pervan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pletikosi%C4%87%2C+I">I. Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Zebin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12947v2-abstract-short" style="display: inline;"> In high-temperature cuprate superconductors, the anti-ferromagnetic spin fluctuations are thought to have a very important role in naturally producing an attractive interaction between the electrons in the $d$-wave channel. The connection between superconductivity and spin fluctuations is expected to be especially consequential at the overdoped end point of the superconducting dome. In some materi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12947v2-abstract-full').style.display = 'inline'; document.getElementById('2012.12947v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12947v2-abstract-full" style="display: none;"> In high-temperature cuprate superconductors, the anti-ferromagnetic spin fluctuations are thought to have a very important role in naturally producing an attractive interaction between the electrons in the $d$-wave channel. The connection between superconductivity and spin fluctuations is expected to be especially consequential at the overdoped end point of the superconducting dome. In some materials, that point seems to coincide with a Lifshitz transition, where the Fermi surface changes from the hole-like centered at ($蟺, 蟺$) to the electron-like, centered at the $螕$ point causing a loss of large momentum anti-ferromagnetic fluctuations. Here, we study the doping dependence of the electronic structure of Bi$_{1.8}$Pb$_{0.4}$Sr$_2$CuO$_{6+未}$ in angle-resolved photoemission and find that the superconductivity vanishes at lower doping than at which the Lifshitz transition occurs. This requires a more detailed re-examination of a spin-fluctuation scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12947v2-abstract-full').style.display = 'none'; document.getElementById('2012.12947v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 Figures, 1 Table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EPL 134 17002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.04272">arXiv:2007.04272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.04272">pdf</a>, <a href="https://arxiv.org/format/2007.04272">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qute.202000038">10.1002/qute.202000038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Origin of Suppression of Proximity Induced Superconductivity in Bi/Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ Heterostructure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kundu%2C+A+K">Asish K. Kundu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Z">Ze-Bin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.04272v1-abstract-short" style="display: inline;"> Mixing of topological states with superconductivity could result in topological superconductivity with the elusive Majorana fermions potentially applicable in fault-tolerant quantum computing. One possible candidate considered for realization of topological superconductivity is thin bismuth films on Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212). Here, we present angle-resolved and core-level photoemissio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04272v1-abstract-full').style.display = 'inline'; document.getElementById('2007.04272v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.04272v1-abstract-full" style="display: none;"> Mixing of topological states with superconductivity could result in topological superconductivity with the elusive Majorana fermions potentially applicable in fault-tolerant quantum computing. One possible candidate considered for realization of topological superconductivity is thin bismuth films on Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212). Here, we present angle-resolved and core-level photoemission spectroscopy studies of thin Bi films grown {\it in-situ} on as-grown Bi2212 that show the absence of proximity effect. We find that the electron transfer from the film to the substrate and the resulting severe underdoping of Bi2212 at the interface is a likely origin for the absence of proximity effect. We also propose a possible way of preventing a total loss of proximity effect in this system. Our results offer a better and more universal understanding of the film/cuprate interface and resolve many issues related to the proximity effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04272v1-abstract-full').style.display = 'none'; document.getElementById('2007.04272v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Quantum Technol. 2000038, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.11645">arXiv:1909.11645</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.11645">pdf</a>, <a href="https://arxiv.org/format/1909.11645">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.241112">10.1103/PhysRevB.100.241112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstruction of the Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ Fermi Surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pletikosi%C4%87%2C+I">I. Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.11645v2-abstract-short" style="display: inline;"> The effects of structural supermodulation with the period $位\approx26$ 脜\ along the $b$-axis of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ have been observed in photoemission studies from the early days as the presence of diffraction replicas of the intrinsic electronic structure. Although predicted to affect the electronic structure of the Cu-O plane, the influence of supermodulation potential on Cu-O electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.11645v2-abstract-full').style.display = 'inline'; document.getElementById('1909.11645v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.11645v2-abstract-full" style="display: none;"> The effects of structural supermodulation with the period $位\approx26$ 脜\ along the $b$-axis of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ have been observed in photoemission studies from the early days as the presence of diffraction replicas of the intrinsic electronic structure. Although predicted to affect the electronic structure of the Cu-O plane, the influence of supermodulation potential on Cu-O electrons has never been observed in photoemission. In the present study, we clearly see, for the first time, the effects on the Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ electronic structure - we observe a hybridization of the intrinsic bands with the supermodulation replica bands in the form of avoided crossings and a corresponding reconstruction of the Fermi surface. We estimate the hybridization gap, $2螖_h\sim25$ meV in the slightly underdoped samples. The hybridization weakens with doping and the anti-crossing can no longer be resolved in strongly overdoped samples. In contrast, the shadow replica, shifted by $(蟺, 蟺)$, is found not to hybridize with the original bands within our detection limits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.11645v2-abstract-full').style.display = 'none'; document.getElementById('1909.11645v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 241112 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.01370">arXiv:1905.01370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.01370">pdf</a>, <a href="https://arxiv.org/format/1905.01370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-14282-4">10.1038/s41467-020-14282-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disappearance of Superconductivity Due to Vanishing Coupling in the Overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.01370v1-abstract-short" style="display: inline;"> In high-temperature cuprate superconductors, superconductivity is accompanied by a &#34;plethora of orders&#34;, and phenomena that may compete, or cooperate with superconductivity, but which certainly complicate our understanding of origins of superconductivity in these materials. While prominent in the underdoped regime, these orders are known to significantly weaken or completely vanish with overdoping&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.01370v1-abstract-full').style.display = 'inline'; document.getElementById('1905.01370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.01370v1-abstract-full" style="display: none;"> In high-temperature cuprate superconductors, superconductivity is accompanied by a &#34;plethora of orders&#34;, and phenomena that may compete, or cooperate with superconductivity, but which certainly complicate our understanding of origins of superconductivity in these materials. While prominent in the underdoped regime, these orders are known to significantly weaken or completely vanish with overdoping. Here, we approach the superconducting phase from the more conventional highly overdoped side. We present angle-resolved photoemission spectroscopy (ARPES) studies of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi2212) single crystals cleaved and annealed in ozone to increase the doping all the way to the metallic, non-superconducting phase. We show that the mass renormalization in the antinodal region of the Fermi surface, associated with the structure in the quasiparticle self-energy, that possibly reflects the pairing interaction, monotonically weakens with increasing doping and completely disappears precisely where superconductivity disappears. This is the direct evidence that in the overdoped regime, superconductivity is determined by the coupling strength. A strong doping dependence and an abrupt disappearance above the transition temperature ($T_{\mathrm c}$) eliminate the conventional phononic mechanism of the observed mass renormalization and identify the onset of spin-fluctuations as its likely origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.01370v1-abstract-full').style.display = 'none'; document.getElementById('1905.01370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 11, 569 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.05425">arXiv:1811.05425</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.05425">pdf</a>, <a href="https://arxiv.org/format/1811.05425">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-018-07686-w">10.1038/s41467-018-07686-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase Diagram of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ Revisited </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pletikosi%C4%87%2C+I">I. Pletikosi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C+-">C. -K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujita%2C+K">K. Fujita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davis%2C+J+C+S">J. C. S茅amus Davis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+P+D">P. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bo%C5%BEovi%C4%87%2C+I">I. Bo啪ovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valla%2C+T">T. Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.05425v1-abstract-short" style="display: inline;"> In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level $p$. In most materials, $p$ cannot be determined from the chemical composition, but it is derived from the superconducting transition temperature, $T_\mathrm{c}$, using the assumption tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05425v1-abstract-full').style.display = 'inline'; document.getElementById('1811.05425v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.05425v1-abstract-full" style="display: none;"> In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level $p$. In most materials, $p$ cannot be determined from the chemical composition, but it is derived from the superconducting transition temperature, $T_\mathrm{c}$, using the assumption that $T_\mathrm{c}$ dependence on doping is universal. Here, we present angle-resolved photoemission studies of Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$, cleaved and annealed in vacuum or in ozone to reduce or increase the doping from the initial value corresponding to $T_\mathrm{c}=91$ K. We show that $p$ can be determined from the underlying Fermi surfaces and that $in-situ$ annealing allows mapping of a wide doping regime, covering the superconducting dome and the non-superconducting phase on the overdoped side. Our results show a surprisingly smooth dependence of the inferred Fermi surface with doping. In the highly overdoped regime, the superconducting gap approaches the value of $2螖_0=(4\pm1)k_\mathrm{B}T_\mathrm{c}$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05425v1-abstract-full').style.display = 'none'; document.getElementById('1811.05425v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Comm. 9, 5210 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.04811">arXiv:1805.04811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.04811">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> In-situ angle-resolved photoemission spectroscopy of copper-oxide thin films synthesized by molecular beam epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+C+K">Chung Koo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">Ilya K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujita%2C+K">Kazuhiro Fujita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Davis%2C+J+C+S">J. C. S茅amus Davis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bo%C5%BEovi%C4%87%2C+I">Ivan Bo啪ovi膰</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valla%2C+T">Tonica Valla</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.04811v1-abstract-short" style="display: inline;"> Angle-resolved photoemission spectroscopy (ARPES) is the key momentum-resolved technique for direct probing of the electronic structure of a material. However, since it is very surface-sensitive, it has been applied to a relatively small set of complex oxides that can be easily cleaved in ultra-high vacuum. Here we describe a new multi-module system at Brookhaven National Laboratory (BNL) in which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04811v1-abstract-full').style.display = 'inline'; document.getElementById('1805.04811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.04811v1-abstract-full" style="display: none;"> Angle-resolved photoemission spectroscopy (ARPES) is the key momentum-resolved technique for direct probing of the electronic structure of a material. However, since it is very surface-sensitive, it has been applied to a relatively small set of complex oxides that can be easily cleaved in ultra-high vacuum. Here we describe a new multi-module system at Brookhaven National Laboratory (BNL) in which an oxide molecular beam epitaxy (OMBE) is interconnected with an ARPES and a spectroscopic-imaging scanning tunneling microscopy (SI-STM) module. This new capability largely expands the range of complex-oxide materials and artificial heterostructures accessible to these two most powerful and complementary techniques for studies of electronic structure of materials. We also present the first experimental results obtained using this system - the ARPES studies of electronic band structure of a La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) thin film grown by OMBE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04811v1-abstract-full').style.display = 'none'; document.getElementById('1805.04811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.02585">arXiv:1802.02585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.02585">pdf</a>, <a href="https://arxiv.org/format/1802.02585">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-018-0224-7">10.1038/s41567-018-0224-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher-Order Topology in Bismuth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schindler%2C+F">Frank Schindler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhijun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cook%2C+A+M">Ashley M. Cook</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murani%2C+A">Anil Murani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sengupta%2C+S">Shamashis Sengupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kasumov%2C+A+Y">Alik Yu. Kasumov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deblock%2C+R">Richard Deblock</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeon%2C+S">Sangjun Jeon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bouchiat%2C+H">H茅l猫ne Bouchiat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%C3%A9ron%2C+S">Sophie Gu茅ron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">Ali Yazdani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.02585v2-abstract-short" style="display: inline;"> The mathematical field of topology has become a framework to describe the low-energy electronic structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface states. This constitutes the topological bulk-boundary correspondence. Here, we establish that the electronic structure of bismuth, an element consistently&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02585v2-abstract-full').style.display = 'inline'; document.getElementById('1802.02585v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.02585v2-abstract-full" style="display: none;"> The mathematical field of topology has become a framework to describe the low-energy electronic structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface states. This constitutes the topological bulk-boundary correspondence. Here, we establish that the electronic structure of bismuth, an element consistently described as bulk topologically trivial, is in fact topological and follows a generalized bulk-boundary correspondence of higher-order: not the surfaces of the crystal, but its hinges host topologically protected conducting modes. These hinge modes are protected against localization by time-reversal symmetry locally, and globally by the three-fold rotational symmetry and inversion symmetry of the bismuth crystal. We support our claim theoretically and experimentally. Our theoretical analysis is based on symmetry arguments, topological indices, first-principle calculations, and the recently introduced framework of topological quantum chemistry. We provide supporting evidence from two complementary experimental techniques. With scanning-tunneling spectroscopy, we probe the unique signatures of the rotational symmetry of the one-dimensional states located at step edges of the crystal surface. With Josephson interferometry, we demonstrate their universal topological contribution to the electronic transport. Our work establishes bismuth as a higher-order topological insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.02585v2-abstract-full').style.display = 'none'; document.getElementById('1802.02585v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures, accepted manuscript</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 14, 918-924 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.02707">arXiv:1611.02707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.02707">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys3947">10.1038/nphys3947 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-resolution studies of the Majorana atomic chain platform </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feldman%2C+B+E">Benjamin E. Feldman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Randeria%2C+M+T">Mallika T. Randeria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeon%2C+S">Sangjun Jeon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+Y">Yonglong Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhijun Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">Ilya K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">Ali Yazdani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.02707v1-abstract-short" style="display: inline;"> Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a 1D topological superconductor and have revealed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02707v1-abstract-full').style.display = 'inline'; document.getElementById('1611.02707v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.02707v1-abstract-full" style="display: none;"> Ordered assemblies of magnetic atoms on the surface of conventional superconductors can be used to engineer topological superconducting phases and realize Majorana fermion quasiparticles (MQPs) in a condensed matter setting. Recent experiments have shown that chains of Fe atoms on Pb generically have the required electronic characteristics to form a 1D topological superconductor and have revealed spatially resolved signatures of localized MQPs at the ends of such chains. Here we report higher resolution measurements of the same atomic chain system performed using a dilution refrigerator scanning tunneling microscope (STM). With significantly better energy resolution than previous studies, we show that the zero bias peak (ZBP) in Fe chains has no detectable splitting from hybridization with other states. The measurements also reveal that the ZBP exhibits a distinctive &#39;double eye&#39; spatial pattern on nanometer length scales. Theoretically we show that this is a general consequence of STM measurements of MQPs with substantial spectral weight in the superconducting substrate, a conclusion further supported by measurements of Pb overlayers deposited on top of the Fe chains. Finally, we report experiments performed with superconducting tips in search of the particle-hole symmetric MQP signature expected in such measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.02707v1-abstract-full').style.display = 'none'; document.getElementById('1611.02707v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Nature Physics; available through Advance online publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.04370">arXiv:1603.04370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.04370">pdf</a>, <a href="https://arxiv.org/format/1603.04370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.93.161115">10.1103/PhysRevB.93.161115 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scanning Josephson spectroscopy on the atomic scale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Randeria%2C+M+T">Mallika T. Randeria</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feldman%2C+B+E">Benjamin E. Feldman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">Ilya K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">Ali Yazdani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.04370v1-abstract-short" style="display: inline;"> The Josephson effect provides a direct method to probe the strength of the pairing interaction in superconductors. By measuring the phase fluctuating Josephson current between a superconducting tip of a scanning tunneling microscope (STM) and a BCS superconductor with isolated magnetic adatoms on its surface, we demonstrate that the spatial variation of the pairing order parameter can be character&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.04370v1-abstract-full').style.display = 'inline'; document.getElementById('1603.04370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.04370v1-abstract-full" style="display: none;"> The Josephson effect provides a direct method to probe the strength of the pairing interaction in superconductors. By measuring the phase fluctuating Josephson current between a superconducting tip of a scanning tunneling microscope (STM) and a BCS superconductor with isolated magnetic adatoms on its surface, we demonstrate that the spatial variation of the pairing order parameter can be characterized on the atomic scale. This system provides an example where the local pairing potential suppression is not directly reflected in the spectra measured via quasipartcile tunneling. Spectroscopy with such superconducting tips also show signatures of previously unexplored Andreev processes through individual impurity-bound Shiba states. The atomic resolution achieved here establishes scanning Josephson spectroscopy as a promising technique for the study of novel superconducting phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.04370v1-abstract-full').style.display = 'none'; document.getElementById('1603.04370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.3453">arXiv:1410.3453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.3453">pdf</a>, <a href="https://arxiv.org/format/1410.3453">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.90.235433">10.1103/PhysRevB.90.235433 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Superconductivity induced by Ferromagnetic Metal Chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hua Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">Ilya K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">A. Yazdani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacDonald%2C+A+H">A. H. MacDonald</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.3453v3-abstract-short" style="display: inline;"> Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some properties of this type of systems by using a Slater-Koster tight-binding model. We predict that topological superconductivity is nearly universal when ferro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.3453v3-abstract-full').style.display = 'inline'; document.getElementById('1410.3453v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.3453v3-abstract-full" style="display: none;"> Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some properties of this type of systems by using a Slater-Koster tight-binding model. We predict that topological superconductivity is nearly universal when ferromagnetic transition metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. The proximity induced superconducting gap is $\sim 螖E_{so} / J$ where $螖$ is the $s$-wave pair-potential on the chain, $E_{so}$ is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and $J$ is the exchange-splitting of the ferromagnetic chain $d$-bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the $p$-wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong $s-$wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple Majorana modes at the end of a single chain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.3453v3-abstract-full').style.display = 'none'; document.getElementById('1410.3453v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 15 figures; an analysis of Majorana decay length scale has been added in the revised version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 90, 235433 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1410.0682">arXiv:1410.0682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1410.0682">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.1259327">10.1126/science.1259327 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Majorana Fermions in Ferromagnetic Atomic Chains on a Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nadj-Perge%2C+S">Stevan Nadj-Perge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">Ilya K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">Jian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hua Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeon%2C+S">Sangjun Jeon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J">Jungpil Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=MacDonald%2C+A+H">Allan H. MacDonald</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">Ali Yazdani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1410.0682v1-abstract-short" style="display: inline;"> Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconduc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.0682v1-abstract-full').style.display = 'inline'; document.getElementById('1410.0682v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1410.0682v1-abstract-full" style="display: none;"> Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero energy end states. This spatially resolved signature provides strong evidence, corroborated by other observations, for the formation of a topological phase and edge-bound Majorana fermions in our atomic chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1410.0682v1-abstract-full').style.display = 'none'; document.getElementById('1410.0682v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures, and supplementary information. appears in Science (2014)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.2598">arXiv:1404.2598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.2598">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys3048">10.1038/nphys3048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-dimensional Topological Edge States of Bismuth Bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">Ilya K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alexandradinata%2C+A">A. Alexandradinata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeon%2C+S">Sangjun Jeon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nadj-Perge%2C+S">Stevan Nadj-Perge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+H">Huiwen Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">R. J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. A. Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">Ali Yazdani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.2598v1-abstract-short" style="display: inline;"> The hallmark of a time-reversal symmetry protected topologically insulating state of matter in two-dimensions (2D) is the existence of chiral edge modes propagating along the perimeter of the system. To date, evidence for such electronic modes has come from experiments on semiconducting heterostructures in the topological phase which showed approximately quantized values of the overall conductance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.2598v1-abstract-full').style.display = 'inline'; document.getElementById('1404.2598v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.2598v1-abstract-full" style="display: none;"> The hallmark of a time-reversal symmetry protected topologically insulating state of matter in two-dimensions (2D) is the existence of chiral edge modes propagating along the perimeter of the system. To date, evidence for such electronic modes has come from experiments on semiconducting heterostructures in the topological phase which showed approximately quantized values of the overall conductance as well as edge-dominated current flow. However, there have not been any spectroscopic measurements to demonstrate the one-dimensional (1D) nature of the edge modes. Among the first systems predicted to be a 2D topological insulator are bilayers of bismuth (Bi) and there have been recent experimental indications of possible topological boundary states at their edges. However, the experiments on such bilayers suffered from irregular structure of their edges or the coupling of the edge states to substrate&#39;s bulk states. Here we report scanning tunneling microscopy (STM) experiments which show that a subset of the predicted Bi-bilayers&#39; edge states are decoupled from states of Bi substrate and provide direct spectroscopic evidence of their 1D nature. Moreover, by visualizing the quantum interference of edge mode quasi-particles in confined geometries, we demonstrate their remarkable coherent propagation along the edge with scattering properties that are consistent with strong suppression of backscattering as predicted for the propagating topological edge states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.2598v1-abstract-full').style.display = 'none'; document.getElementById('1404.2598v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures, and supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 10, 664-669 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.1046">arXiv:1310.1046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.1046">pdf</a>, <a href="https://arxiv.org/ps/1310.1046">ps</a>, <a href="https://arxiv.org/format/1310.1046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4822271">10.1063/1.4822271 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Misra%2C+S">Shashank Misra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B+B">Brian B. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">Ilya K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J">Jungpil Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gyenis%2C+A">Andras Gyenis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kingsley%2C+S+C+J">Simon C. J. Kingsley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jones%2C+H">Howard Jones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">Ali Yazdani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.1046v1-abstract-short" style="display: inline;"> We describe the construction and performance of a scanning tunneling microscope (STM) capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.1046v1-abstract-full').style.display = 'inline'; document.getElementById('1310.1046v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.1046v1-abstract-full" style="display: none;"> We describe the construction and performance of a scanning tunneling microscope (STM) capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically-resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.1046v1-abstract-full').style.display = 'none'; document.getElementById('1310.1046v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 84, 103903 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.0043">arXiv:1306.0043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1306.0043">pdf</a>, <a href="https://arxiv.org/format/1306.0043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.125414">10.1103/PhysRevB.88.125414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gyenis%2C+A">A. Gyenis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nadj-Perge%2C+S">S. Nadj-Perge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+O+B">O. B. Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J">J. Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pletikosic%2C+I">I. Pletikosic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">A. Yazdani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.0043v2-abstract-short" style="display: inline;"> Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0043v2-abstract-full').style.display = 'inline'; document.getElementById('1306.0043v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.0043v2-abstract-full" style="display: none;"> Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb$_{1-x}$Sn$_{x}$Se in the topologically non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb$_{0.77}$Sn$_{0.23}$Se and PbSe have different topological nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0043v2-abstract-full').style.display = 'none'; document.getElementById('1306.0043v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 125414 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.3558">arXiv:1305.3558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1305.3558">pdf</a>, <a href="https://arxiv.org/format/1305.3558">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.081108">10.1103/PhysRevB.88.081108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Termination dependent topological surface states of the natural superlattice phase Bi$_4$Se$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gibson%2C+Q+D">Q. D. Gibson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">L. M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber%2C+A+P">A. P. Weber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ji%2C+H">Huiwen Ji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nadj-Perge%2C+S">S. Nadj-Perge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beidenkopf%2C+H">H. Beidenkopf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sadowski%2C+J+T">J. T. Sadowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">A. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">A. Yazdani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valla%2C+T">T. Valla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">R. J. Cava</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.3558v3-abstract-short" style="display: inline;"> We describe the topological surface states of Bi$_4$Se$_3$, a compound in the infinitely adaptive Bi$_2$-Bi$_2$Se$_3$ natural superlattice phase series, determined by a combination of experimental and theoretical methods. Two observable cleavage surfaces, terminating at Bi or Se, are characterized by angle resolved photoelectron spectroscopy and scanning tunneling microscopy, and modeled by ab-ini&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.3558v3-abstract-full').style.display = 'inline'; document.getElementById('1305.3558v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.3558v3-abstract-full" style="display: none;"> We describe the topological surface states of Bi$_4$Se$_3$, a compound in the infinitely adaptive Bi$_2$-Bi$_2$Se$_3$ natural superlattice phase series, determined by a combination of experimental and theoretical methods. Two observable cleavage surfaces, terminating at Bi or Se, are characterized by angle resolved photoelectron spectroscopy and scanning tunneling microscopy, and modeled by ab-initio density functional theory calculations. Topological surface states are observed on both surfaces, but with markedly different dispersions and Kramers point energies. Bi$_4$Se$_3$ therefore represents the only known compound with different topological states on differently terminated surfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.3558v3-abstract-full').style.display = 'none'; document.getElementById('1305.3558v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures references added Published in PRB: http://link.aps.org/doi/10.1103/PhysRevB.88.081108</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.6363">arXiv:1303.6363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1303.6363">pdf</a>, <a href="https://arxiv.org/format/1303.6363">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.020407">10.1103/PhysRevB.88.020407 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Majorana fermions in chains of magnetic atoms on a superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nadj-Perge%2C+S">S. Nadj-Perge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. A. Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">Ali Yazdani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.6363v2-abstract-short" style="display: inline;"> We propose an easy-to-build easy-to-detect scheme for realizing Majorana fermions at the ends of a chain of magnetic atoms on the surface of a superconductor. Model calculations show that such chains can be easily tuned between trivial and topological ground state. In the latter, spatial resolved spectroscopy can be used to probe the Majorana fermion end states. Decoupled Majorana bound states can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.6363v2-abstract-full').style.display = 'inline'; document.getElementById('1303.6363v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.6363v2-abstract-full" style="display: none;"> We propose an easy-to-build easy-to-detect scheme for realizing Majorana fermions at the ends of a chain of magnetic atoms on the surface of a superconductor. Model calculations show that such chains can be easily tuned between trivial and topological ground state. In the latter, spatial resolved spectroscopy can be used to probe the Majorana fermion end states. Decoupled Majorana bound states can form even in short magnetic chains consisting of only tens of atoms. We propose scanning tunneling microscopy as the ideal technique to fabricate such systems and probe their topological properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.6363v2-abstract-full').style.display = 'none'; document.getElementById('1303.6363v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures + supplementary</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 020407(R) (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.2089">arXiv:1108.2089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1108.2089">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys2108">10.1038/nphys2108 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatial Fluctuations of Helical Dirac Fermions on the Surface of Topological Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Beidenkopf%2C+H">Haim Beidenkopf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roushan%2C+P">Pedram Roushan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J">Jungpil Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorman%2C+L">Lindsay Gorman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I">Ilya Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hor%2C+Y+S">Yew San Hor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">R. J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yazdani%2C+A">Ali Yazdani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.2089v1-abstract-short" style="display: inline;"> Surfaces of topological insulators host a new class of states with Dirac dispersion and helical spin texture. Potential quantum computing and spintronic applications using these states require manipulation of their electronic properties at the Dirac energy of their band structure by inducing magnetism or superconductivity through doping and proximity effect. Yet, the response of these states near&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.2089v1-abstract-full').style.display = 'inline'; document.getElementById('1108.2089v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.2089v1-abstract-full" style="display: none;"> Surfaces of topological insulators host a new class of states with Dirac dispersion and helical spin texture. Potential quantum computing and spintronic applications using these states require manipulation of their electronic properties at the Dirac energy of their band structure by inducing magnetism or superconductivity through doping and proximity effect. Yet, the response of these states near the Dirac energy in their band structure to various perturbations has remained unexplored. Here we use spectroscopic mapping with the scanning tunneling microscope to study their response to magnetic and non-magnetic bulk dopants in Bi2Te3 and Bi2Se3. Far from the Dirac energy helicity provides remarkable resilience to backscattering even in the presence of ferromagnetism. However, approaching the Dirac point, where the surface states&#39; wavelength diverges bulk doping results in pronounced nanoscale spatial fluctuations of energy, momentum, and helicity. Our results and their connection with similar studies of Dirac electrons in graphene demonstrate that while backscattering and localization are absent for Dirac topological surface states, reducing charge defects is required for both tuning the chemical potential to Dirac energy and achieving high electrical mobility for these novel states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.2089v1-abstract-full').style.display = 'none'; document.getElementById('1108.2089v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1004.1840">arXiv:1004.1840</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1004.1840">pdf</a>, <a href="https://arxiv.org/ps/1004.1840">ps</a>, <a href="https://arxiv.org/format/1004.1840">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.104.136804">10.1103/PhysRevLett.104.136804 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extra Spin-Wave mode in Quantum Hall systems. Beyond the Skyrmion Limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kulik%2C+L+V">L. V. Kulik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuravlev%2C+A+S">A. S. Zhuravlev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirpichev%2C+V+E">V. E. Kirpichev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukushkin%2C+I+V">I. V. Kukushkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmult%2C+S">S. Schmult</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dietsche%2C+W">W. Dietsche</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1004.1840v1-abstract-short" style="display: inline;"> We report on the observation of a new spin mode in a quantum Hall system in the vicinity of odd electron filling factors under experimental conditions excluding the possibility of Skyrmion excitations. The new mode having presumably zero energy at odd filling factors emerges at small deviations from odd filling factors and couples to the spin-exciton. The existence of an extra spin mode assumes a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.1840v1-abstract-full').style.display = 'inline'; document.getElementById('1004.1840v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1004.1840v1-abstract-full" style="display: none;"> We report on the observation of a new spin mode in a quantum Hall system in the vicinity of odd electron filling factors under experimental conditions excluding the possibility of Skyrmion excitations. The new mode having presumably zero energy at odd filling factors emerges at small deviations from odd filling factors and couples to the spin-exciton. The existence of an extra spin mode assumes a nontrivial magnetic order at partial fillings of Landau levels surrounding quantum Hall ferromagnets other then the Skyrmion crystal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.1840v1-abstract-full').style.display = 'none'; document.getElementById('1004.1840v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0812.1489">arXiv:0812.1489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0812.1489">pdf</a>, <a href="https://arxiv.org/ps/0812.1489">ps</a>, <a href="https://arxiv.org/format/0812.1489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.79.121310">10.1103/PhysRevB.79.121310 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiphased Cyclotron-Magnetoplasma Mode in a Quantum Hall System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kulik%2C+L+V">L. V. Kulik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dickmann%2C+S">S. Dickmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Drozdov%2C+I+K">I. K. Drozdov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuravlev%2C+I+S">I. S. Zhuravlev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirpichev%2C+V+E">V. E. Kirpichev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kukushkin%2C+I+V">I. V. Kukushkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmult%2C+S">S. Schmult</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dietsche%2C+W">W. Dietsche</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0812.1489v1-abstract-short" style="display: inline;"> An antiphased magnetoplasma (MP) mode in a two-dimensional electron gas (2DEG) has been studied by means of inelastic light scattering (ILS) spectroscopy. Unlike the cophased MP mode it is purely quantum excitation which has no classic plasma analogue. It is found that zero momentum degeneracy for the antiphased and cophased modes predicted by the first-order perturbation approach in terms of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0812.1489v1-abstract-full').style.display = 'inline'; document.getElementById('0812.1489v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0812.1489v1-abstract-full" style="display: none;"> An antiphased magnetoplasma (MP) mode in a two-dimensional electron gas (2DEG) has been studied by means of inelastic light scattering (ILS) spectroscopy. Unlike the cophased MP mode it is purely quantum excitation which has no classic plasma analogue. It is found that zero momentum degeneracy for the antiphased and cophased modes predicted by the first-order perturbation approach in terms of the {\it e-e} interaction is lifted. The zero momentum energy gap is determined by a negative correlation shift of the antiphased mode. This shift, observed experimentally and calculated theoretically within the second-order perturbation approach, is proportional to the effective Rydberg constant in a semiconductor material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0812.1489v1-abstract-full').style.display = 'none'; document.getElementById('0812.1489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 79, 121310(R) (2009) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10