CINXE.COM

Search results for: incongruent stimuli

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: incongruent stimuli</title> <meta name="description" content="Search results for: incongruent stimuli"> <meta name="keywords" content="incongruent stimuli"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="incongruent stimuli" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="incongruent stimuli"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 331</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: incongruent stimuli</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">331</span> The Tendon Reflexes on the Performance of Flanker Task in the Subjects of Cerebrovascular Accidents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshdeep%20Singh">Harshdeep Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuljeet%20Singh%20Anand"> Kuljeet Singh Anand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Cerebrovascular Accidents (CVA) cause abnormal or asymmetrical tendon reflexes contributing to motor impairments. Since the tendon reflexes are mediated by the spinal cord, their effects on cognitive performances are overlooked. This study aims to find the contributions of tendon reflexes on the performance of the Flanker task. Methods: A total population of 46 mixed subjects with movement disorders were recruited for the study. Deep tendon reflexes (DTR) of the biceps, triceps and brachioradialis were assessed for both upper extremities. Later, the Flanker task was performed on all the subjects, and the mean Reaction Time (RT) along with both the congruent and incongruent stimuli were evaluated. For the final analysis, the Kruskal Wallis test was performed to see the difference between the DTR and the performance of the Flanker Task. Results: The Kruskal Wallis test results showed a significant difference between the DTR scores, X²(2) = 11.328, p= 0.023 with the mean RT of the flanker task and X²(2) = 9.531, p= 0.049 with mean RT of the Incongruent Stimuli. Whereas the result found a non-significant difference in the mean RT of the Congruent Stimuli. Conclusion: Each DTR score is distributed differently with the mean RT of the flanker task and for the incongruent stimuli as well. Therefore, the tendon reflexes in PD may be contributing to the performance of the Flanker Task and may be an indicator of abnormal cognitive performance. Further research is needed to evaluate how the RTs are distributed with each DTR score. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerebrovascular%20accidents" title="cerebrovascular accidents">cerebrovascular accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20tendon%20reflexes" title=" deep tendon reflexes"> deep tendon reflexes</a>, <a href="https://publications.waset.org/abstracts/search?q=flanker%20task" title=" flanker task"> flanker task</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20time" title=" reaction time"> reaction time</a>, <a href="https://publications.waset.org/abstracts/search?q=congruent%20stimuli" title=" congruent stimuli"> congruent stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli" title=" incongruent stimuli"> incongruent stimuli</a> </p> <a href="https://publications.waset.org/abstracts/162752/the-tendon-reflexes-on-the-performance-of-flanker-task-in-the-subjects-of-cerebrovascular-accidents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">330</span> Partial Differential Equation-Based Modeling of Brain Response to Stimuli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razieh%20Khalafi">Razieh Khalafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain" title="brain">brain</a>, <a href="https://publications.waset.org/abstracts/search?q=stimuli" title=" stimuli"> stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%20signal" title=" EEG signal"> EEG signal</a> </p> <a href="https://publications.waset.org/abstracts/29783/partial-differential-equation-based-modeling-of-brain-response-to-stimuli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">329</span> Trainability of Executive Functions during Preschool Age Analysis of Inhibition of 5-Year-Old Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20Andr%C3%A4">Christian Andrä</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauline%20H%C3%A4hner"> Pauline Hähner</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Ludyga"> Sebastian Ludyga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In the recent past, discussions on the importance of physical activity for child development have contributed to a growing interest in executive functions, which refer to cognitive processes. By controlling, modulating and coordinating sub-processes, they make it possible to achieve superior goals. Major components include working memory, inhibition and cognitive flexibility. While executive functions can be trained easily in school children, there are still research deficits regarding the trainability during preschool age. Methodology: This quasi-experimental study with pre- and post-design analyzes 23 children [age: 5.0 (mean value) ± 0.7 (standard deviation)] from four different sports groups. The intervention group was made up of 13 children (IG: 4.9 ± 0.6), while the control group consisted of ten children (CG: 5.1 ± 0.9). Between pre-test and post-test, children from the intervention group participated special games that train executive functions (i.e., changing rules of the game, introduction of new stimuli in familiar games) for ten units of their weekly sports program. The sports program of the control group was not modified. A computer-based version of the Eriksen Flanker Task was employed in order to analyze the participants’ inhibition ability. In two rounds, the participants had to respond 50 times and as fast as possible to a certain target (direction of sight of a fish; the target was always placed in a central position between five fish). Congruent (all fish have the same direction of sight) and incongruent (central fish faces opposite direction) stimuli were used. Relevant parameters were response time and accuracy. The main objective was to investigate whether children from the intervention group show more improvement in the two parameters than the children from the control group. Major findings: The intervention group revealed significant improvements in congruent response time (pre: 1.34 s, post: 1.12 s, p<.01), while the control group did not show any statistically relevant difference (pre: 1.31 s, post: 1.24 s). Likewise, the comparison of incongruent response times indicates a comparable result (IG: pre: 1.44 s, post: 1.25 s, p<.05 vs. CG: pre: 1.38 s, post: 1.38 s). In terms of accuracy for congruent stimuli, the intervention group showed significant improvements (pre: 90.1 %, post: 95.9 %, p<.01). In contrast, no significant improvement was found for the control group (pre: 88.8 %, post: 92.9 %). Vice versa, the intervention group did not display any significant results for incongruent stimuli (pre: 74.9 %, post: 83.5 %), while the control group revealed a significant difference (pre: 68.9 %, post: 80.3 %, p<.01). The analysis of three out of four criteria demonstrates that children who took part in a special sports program improved more than children who did not. The contrary results for the last criterion could be caused by the control group’s low results from the pre-test. Conclusion: The findings illustrate that inhibition can be trained as early as in preschool age. The combination of familiar games with increased requirements for attention and control processes appears to be particularly suitable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=executive%20functions" title="executive functions">executive functions</a>, <a href="https://publications.waset.org/abstracts/search?q=flanker%20task" title=" flanker task"> flanker task</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=preschool%20children" title=" preschool children"> preschool children</a> </p> <a href="https://publications.waset.org/abstracts/60480/trainability-of-executive-functions-during-preschool-age-analysis-of-inhibition-of-5-year-old-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">328</span> Event Related Potentials in Terms of Visual and Auditory Stimuli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seokbeen%20Lim">Seokbeen Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=KyeongSeok%20Sim"> KyeongSeok Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=DaKyeong%20Shin"> DaKyeong Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilwon%20Yoon"> Gilwon Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Event-related potential (ERP) is one of the useful tools for investigating cognitive reactions. In this study, the potential of ERP components detected after auditory and visual stimuli was examined. Subjects were asked to respond upon stimuli that were of three categories; Target, Non-Target and Standard stimuli. The ERP after stimulus was measured. In the experiment of visual evoked potentials (VEPs), the subjects were asked to gaze at a center point on the monitor screen where the stimuli were provided by the reversal pattern of the checkerboard. In consequence of the VEP experiments, we observed consistent reactions. Each peak voltage could be measured when the ensemble average was applied. Visual stimuli had smaller amplitude and a longer latency compared to that of auditory stimuli. The amplitude was the highest with Target and the smallest with Standard in both stimuli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auditory%20stimulus" title="auditory stimulus">auditory stimulus</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20related%20potential" title=" event related potential"> event related potential</a>, <a href="https://publications.waset.org/abstracts/search?q=oddball%20task" title=" oddball task"> oddball task</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20stimulus" title=" visual stimulus"> visual stimulus</a> </p> <a href="https://publications.waset.org/abstracts/62590/event-related-potentials-in-terms-of-visual-and-auditory-stimuli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">327</span> A Mathematical-Based Formulation of EEG Fluctuations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razi%20Khalafi">Razi Khalafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain is the information processing center of the human body. Stimuli in form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modeling of the EEG signal in case external stimuli but it can be used for the modeling of brain response in case of internal stimuli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brain" title="Brain">Brain</a>, <a href="https://publications.waset.org/abstracts/search?q=stimuli" title=" stimuli"> stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=eeg%20signal" title=" eeg signal"> eeg signal</a> </p> <a href="https://publications.waset.org/abstracts/30791/a-mathematical-based-formulation-of-eeg-fluctuations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">326</span> N400 Investigation of Semantic Priming Effect to Symbolic Pictures in Text</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Ousterhout">Thomas Ousterhout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to investigate if incorporating meaningful pictures of gestures and facial expressions in short sentences of text could supplement the text with enough semantic information to produce and N400 effect when probe words incongruent to the picture were subsequently presented. Event-related potentials (ERPs) were recorded from a 14-channel commercial grade EEG headset while subjects performed congruent/incongruent reaction time discrimination tasks. Since pictures of meaningful gestures have been shown to be semantically processed in the brain in a similar manner as words are, it is believed that pictures will add supplementary information to text just as the inclusion of their equivalent synonymous word would. The hypothesis is that when subjects read the text/picture mixed sentences, they will process the images and words just like in face-to-face communication and therefore probe words incongruent to the image will produce an N400. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEG" title="EEG">EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=ERP" title=" ERP"> ERP</a>, <a href="https://publications.waset.org/abstracts/search?q=N400" title=" N400"> N400</a>, <a href="https://publications.waset.org/abstracts/search?q=semantics" title=" semantics"> semantics</a>, <a href="https://publications.waset.org/abstracts/search?q=congruency" title=" congruency"> congruency</a>, <a href="https://publications.waset.org/abstracts/search?q=facilitation" title=" facilitation"> facilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=Emotiv" title=" Emotiv"> Emotiv</a> </p> <a href="https://publications.waset.org/abstracts/48705/n400-investigation-of-semantic-priming-effect-to-symbolic-pictures-in-text" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">325</span> The Non-Linear Analysis of Brain Response to Visual Stimuli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Namazi">H. Namazi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20N.%20Kuan"> H. T. N. Kuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to visual stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to visual stimuli but provide us with very good recommendations for clinical purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20stimuli" title="visual stimuli">visual stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20response" title=" brain response"> brain response</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%20signal" title=" EEG signal"> EEG signal</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=hurst%20exponent" title=" hurst exponent"> hurst exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=Je%EF%AC%80rey%E2%80%99s%20measure" title=" Jeffrey’s measure"> Jeffrey’s measure</a> </p> <a href="https://publications.waset.org/abstracts/19758/the-non-linear-analysis-of-brain-response-to-visual-stimuli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">324</span> The Analysis of Brain Response to Auditory Stimuli through EEG Signals’ Non-Linear Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Namazi">H. Namazi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20N.%20Kuan"> H. T. N. Kuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to auditory stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to auditory stimuli but provide us with very good recommendations for clinical purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auditory%20stimuli" title="auditory stimuli">auditory stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20response" title=" brain response"> brain response</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%20signal" title=" EEG signal"> EEG signal</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=hurst%20exponent" title=" hurst exponent"> hurst exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=Je%EF%AC%80rey%E2%80%99s%20measure" title=" Jeffrey’s measure"> Jeffrey’s measure</a> </p> <a href="https://publications.waset.org/abstracts/18990/the-analysis-of-brain-response-to-auditory-stimuli-through-eeg-signals-non-linear-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">323</span> The Global-Local Dimension in Cognitive Control after Left Lateral Prefrontal Cortex Damage: Evidence from the Non-Verbal Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Peristeri">Eleni Peristeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgia%20Fotiadou"> Georgia Fotiadou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ianthi-Maria%20Tsimpli"> Ianthi-Maria Tsimpli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The local-global dimension has been studied extensively in healthy controls and preference for globally processed stimuli has been validated in both the visual and auditory modalities. Critically, the local-global dimension has an inherent interference resolution component, a type of cognitive control, and left-prefrontal-cortex-damaged (LPFC) individuals have exhibited inability to override habitual response behaviors in item recognition tasks that involve representational interference. Eight patients with damage in the left PFC (age range: 32;5 to 69;0. Mean age: 54;6 yrs) and twenty age- and education-matched language-unimpaired adults (mean age: 56;7yrs) have participated in the study. Distinct performance patterns were found between the language-unimpaired and the LPFC-damaged group which have mainly stemmed from the latter’s difficulty with inhibiting global stimuli in incongruent trials. Overall, the local-global attentional dimension affects LPFC-damaged individuals with non-fluent aphasia in non-language domains implicating distinct types of inhibitory processes depending on the level of processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=left%20lateral%20prefrontal%20cortex%20damage%20%28LPFC%29" title="left lateral prefrontal cortex damage (LPFC)">left lateral prefrontal cortex damage (LPFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=local-global%20non-language%20attention" title=" local-global non-language attention"> local-global non-language attention</a>, <a href="https://publications.waset.org/abstracts/search?q=representational%20interference" title=" representational interference"> representational interference</a>, <a href="https://publications.waset.org/abstracts/search?q=non-fluent%20aphasia" title=" non-fluent aphasia"> non-fluent aphasia</a> </p> <a href="https://publications.waset.org/abstracts/14104/the-global-local-dimension-in-cognitive-control-after-left-lateral-prefrontal-cortex-damage-evidence-from-the-non-verbal-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">322</span> Odor-Color Association Stroop-Task and the Importance of an Odorant in an Odor-Imagery Task </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Ham">Jonathan Ham</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Koch"> Christopher Koch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are consistently observed associations between certain odors and colors, and there is an association between the ability to imagine vivid visual objects and imagine vivid odors. However, little has been done to investigate how the associations between odors and visual information effect visual processes. This study seeks to understand the relationship between odor imaging, color associations, and visual attention by utilizing a Stroop-task based on common odor-color associations. This Stroop-task was designed using three fruits with distinct odors that are associated with the color of the fruit: lime with green, strawberry with red, and lemon with yellow. Each possible word-color combination was presented in the experimental trials. When the word matched the associated color (lime written in green) it was considered congruent; if it did not, it was considered incongruent (lime written in red or yellow). In experiment I (n = 34) participants were asked to both imagine the odor of the fruit on the screen and identify which fruit it was, and each word-color combination was presented 20 times (a total of 180 trials, with 60 congruent and 120 incongruent instances). Response time and error rate of the participant responses were recorded. There was no significant difference in either measure between the congruent and incongruent trials. In experiment II participants (n = 18) followed the identical procedure as in the previous experiment with the addition of an odorant in the room. The odorant (orange) was not the fruit or color used in the experimental trials. With a fruit-based odorant in the room, the response times (measured in milliseconds) between congruent and incongruent trials were significantly different, with incongruent trials (M = 755.919, SD = 239.854) having significantly longer response times than congruent trials (M = 690.626, SD = 198.822), t (1, 17) = 4.154, p < 0.01. This suggests that odor imagery does affect visual attention to colors, and the ability to inhibit odor-color associations; however, odor imagery is difficult and appears to be facilitated in the presence of a related odorant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=odor-color%20associations" title="odor-color associations">odor-color associations</a>, <a href="https://publications.waset.org/abstracts/search?q=odor%20imagery" title=" odor imagery"> odor imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20attention" title=" visual attention"> visual attention</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a> </p> <a href="https://publications.waset.org/abstracts/102195/odor-color-association-stroop-task-and-the-importance-of-an-odorant-in-an-odor-imagery-task" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">321</span> Increasing Preference for Culturally Incongruent Offerings in Traditional Cultures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najam%20U.%20Saqib">Najam U. Saqib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-construal or an individual’s view of him or herself is an important variable by which culture affects the way people think and act. This notion of self-construal is identified with two distinct perspectives on the self. Within the independent construal, the self is seen as different from others, a way of defining the self, prominent in Western societies. The interdependent perspective which is typical for Eastern cultures emphasizes the connectedness of the self to others. The degree of independence-interdependence in one’s self-construal is thought to affect behavior, acceptance of social values, and decision making. This paper manipulates self-construal of Qatari consumers and investigates its effects on accepting incongruent changes in culture as a result of adopting market offerings and behavior that may be perceived as inconsistent with their self-construal. The research recommends strategies for policy makers in Qatar for successful advocacy of initiatives of national importance such as reducing diabetes and obesity by applying self-construal theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-cultural" title="cross-cultural">cross-cultural</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20behavior" title=" consumer behavior"> consumer behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=self-construal" title=" self-construal"> self-construal</a>, <a href="https://publications.waset.org/abstracts/search?q=GCC%20%28Gulf%20Cooperation%20Council%29" title=" GCC (Gulf Cooperation Council)"> GCC (Gulf Cooperation Council)</a> </p> <a href="https://publications.waset.org/abstracts/78282/increasing-preference-for-culturally-incongruent-offerings-in-traditional-cultures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">320</span> Effect of Dimensional Reinforcement Probability on Discrimination of Visual Compound Stimuli by Pigeons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20V.%20Vyazovska">O. V. Vyazovska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Behavioral efficiency is one of the main principles to be successful in nature. Accuracy of visual discrimination is determined by the attention, learning experience, and memory. In the experimental condition, pigeons’ responses to visual stimuli presented on the screen of the monitor are behaviorally manifested by pecking or not pecking the stimulus, by the number of pecking, reaction time, etc. The higher the probability of rewarding is, the more likely pigeons will respond to the stimulus. We trained 8 pigeons (Columba livia) on a stagewise go/no-go visual discrimination task.16 visual stimuli were created from all possible combinations of four binary dimensions: brightness (dark/bright), size (large/small), line orientation (vertical/horizontal), and shape (circle/square). In the first stage, we presented S+ and 4 S-stimuli: the first that differed in all 4-dimensional values from S+, the second with brightness dimension sharing with S+, the third sharing brightness and orientation with S+, the fourth sharing brightness, orientation and size. Then all 16 stimuli were added. Pigeons rejected correctly 6-8 of 11 new added S-stimuli at the beginning of the second stage. The results revealed that pigeons’ behavior at the beginning of the second stage was controlled by probabilities of rewarding for 4 dimensions learned in the first stage. More or fewer mistakes with dimension discrimination at the beginning of the second stage depended on the number S- stimuli sharing the dimension with S+ in the first stage. A significant inverse correlation between the number of S- stimuli sharing dimension values with S+ in the first stage and the dimensional learning rate at the beginning of the second stage was found. Pigeons were more confident in discrimination of shape and size dimensions. They made mistakes at the beginning of the second stage, which were not associated with these dimensions. Thus, the received results help elucidate the principles of dimensional stimulus control during learning compound multidimensional visual stimuli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20go%2Fno%20go%20discrimination" title="visual go/no go discrimination">visual go/no go discrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20attention" title=" selective attention"> selective attention</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20stimulus%20control" title=" dimensional stimulus control"> dimensional stimulus control</a>, <a href="https://publications.waset.org/abstracts/search?q=pigeon" title=" pigeon"> pigeon</a> </p> <a href="https://publications.waset.org/abstracts/111486/effect-of-dimensional-reinforcement-probability-on-discrimination-of-visual-compound-stimuli-by-pigeons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">319</span> Microbioreactor System for Cell Behavior Analysis Focused on Nerve Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusser%20Olgu%C3%ADn">Yusser Olguín</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Benavente"> Diego Benavente</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Dorta"> Fernando Dorta</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Orellana"> Nicole Orellana</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Acevedo"> Cristian Acevedo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the greatest challenges of tissue engineering is the generation of materials in which the highest possible number of conditions can be incorporated to stimulate the proliferation and differentiation of cells, which will be transformed together with the material into new functional tissue. In this sense, considering the properties of microfluidics and its relationship with cellular micro-environments, the possibility of controlling flow patterns and the ability to design diverse patterns in the chips, a microfluidic cell culture system can be established as a means for the evaluation of the effect of different parameters in a controlled and precise manner. Specifically in relation to the study and development of alternatives in peripheral nervous tissue engineering, it is necessary to consider different physical and chemical neurotrophic stimuli that promote cell growth and differentiation. Chemical stimuli include certain vitamins, glucocorticoids, gangliosides, and growth factors, while physical stimuli include topological stimuli, mechanical forces of the cellular environment and electrical stimulation. In this context, the present investigation shows the results of cell stimulation in a microbioreactor using electrical and chemical stimuli, where the differentiation of PC12 cells as a neuronal model is evidenced by neurite expression, dependent on the stimuli and their combination. The results were analysed with a multi-factor statistical approach, showing several relationships and dependencies between different parameters. Chip design, operating parameters and concentrations of neurotrophic chemical factors were found to be preponderant, based on the characteristics of the electrical stimuli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title="microfluidics">microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20tissue%20engineering" title=" nerve tissue engineering"> nerve tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=microbioreactor" title=" microbioreactor"> microbioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20stimuli" title=" electrical stimuli"> electrical stimuli</a> </p> <a href="https://publications.waset.org/abstracts/154288/microbioreactor-system-for-cell-behavior-analysis-focused-on-nerve-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">318</span> Deficient Multisensory Integration with Concomitant Resting-State Connectivity in Adult Attention Deficit/Hyperactivity Disorder (ADHD)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Schulze">Marcel Schulze</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrem%20%20Aslan"> Behrem Aslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Silke%20%20Lux"> Silke Lux</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20%20Philipsen"> Alexandra Philipsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Patients with Attention Deficit/Hyperactivity Disorder (ADHD) often report that they are being flooded by sensory impressions. Studies investigating sensory processing show hypersensitivity for sensory inputs across the senses in children and adults with ADHD. Especially the auditory modality is affected by deficient acoustical inhibition and modulation of signals. While studying unimodal signal-processing is relevant and well-suited in a controlled laboratory environment, everyday life situations occur multimodal. A complex interplay of the senses is necessary to form a unified percept. In order to achieve this, the unimodal sensory modalities are bound together in a process called multisensory integration (MI). In the current study we investigate MI in an adult ADHD sample using the McGurk-effect – a well-known illusion where incongruent speech like phonemes lead in case of successful integration to a new perceived phoneme via late top-down attentional allocation . In ADHD neuronal dysregulation at rest e.g., aberrant within or between network functional connectivity may also account for difficulties in integrating across the senses. Therefore, the current study includes resting-state functional connectivity to investigate a possible relation of deficient network connectivity and the ability of stimulus integration. Method: Twenty-five ADHD patients (6 females, age: 30.08 (SD:9,3) years) and twenty-four healthy controls (9 females; age: 26.88 (SD: 6.3) years) were recruited. MI was examined using the McGurk effect, where - in case of successful MI - incongruent speech-like phonemes between visual and auditory modality are leading to a perception of a new phoneme. Mann-Whitney-U test was applied to assess statistical differences between groups. Echo-planar imaging-resting-state functional MRI was acquired on a 3.0 Tesla Siemens Magnetom MR scanner. A seed-to-voxel analysis was realized using the CONN toolbox. Results: Susceptibility to McGurk was significantly lowered for ADHD patients (ADHDMdn:5.83%, ControlsMdn:44.2%, U= 160.5, p=0.022, r=-0.34). When ADHD patients integrated phonemes, reaction times were significantly longer (ADHDMdn:1260ms, ControlsMdn:582ms, U=41.0, p<.000, r= -0.56). In functional connectivity medio temporal gyrus (seed) was negatively associated with primary auditory cortex, inferior frontal gyrus, precentral gyrus, and fusiform gyrus. Conclusion: MI seems to be deficient for ADHD patients for stimuli that need top-down attentional allocation. This finding is supported by stronger functional connectivity from unimodal sensory areas to polymodal, MI convergence zones for complex stimuli in ADHD patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attention-deficit%20hyperactivity%20disorder" title="attention-deficit hyperactivity disorder">attention-deficit hyperactivity disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=audiovisual%20integration" title=" audiovisual integration"> audiovisual integration</a>, <a href="https://publications.waset.org/abstracts/search?q=McGurk-effect" title=" McGurk-effect"> McGurk-effect</a>, <a href="https://publications.waset.org/abstracts/search?q=resting-state%20functional%20connectivity" title=" resting-state functional connectivity"> resting-state functional connectivity</a> </p> <a href="https://publications.waset.org/abstracts/134426/deficient-multisensory-integration-with-concomitant-resting-state-connectivity-in-adult-attention-deficithyperactivity-disorder-adhd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">317</span> The Incidental Linguistic Information Processing and Its Relation to General Intellectual Abilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeniya%20V.%20Gavrilova">Evgeniya V. Gavrilova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofya%20S.%20Belova"> Sofya S. Belova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was aimed at clarifying the relationship between general intellectual abilities and efficiency in free recall and rhymed words generation task after incidental exposure to linguistic stimuli. The theoretical frameworks stress that general intellectual abilities are based on intentional mental strategies. In this context, it seems to be crucial to examine the efficiency of incidentally presented information processing in cognitive task and its relation to general intellectual abilities. The sample consisted of 32 Russian students. Participants were exposed to pairs of words. Each pair consisted of two common nouns or two city names. Participants had to decide whether a city name was presented in each pair. Thus words’ semantics was processed intentionally. The city names were considered to be focal stimuli, whereas common nouns were considered to be peripheral stimuli. Along with that each pair of words could be rhymed or not be rhymed, but this phonemic aspect of stimuli’s characteristic (rhymed and non-rhymed words) was processed incidentally. Then participants were asked to produce as many rhymes as they could to new words. The stimuli presented earlier could be used as well. After that, participants had to retrieve all words presented earlier. In the end, verbal and non-verbal abilities were measured with number of special psychometric tests. As for free recall task intentionally processed focal stimuli had an advantage in recall compared to peripheral stimuli. In addition all the rhymed stimuli were recalled more effectively than non-rhymed ones. The inverse effect was found in words generation task where participants tended to use mainly peripheral stimuli compared to focal ones. Furthermore peripheral rhymed stimuli were most popular target category of stimuli that was used in this task. Thus the information that was processed incidentally had a supplemental influence on efficiency of stimuli processing as well in free recall as in word generation task. Different patterns of correlations between intellectual abilities and efficiency in different stimuli processing in both tasks were revealed. Non-verbal reasoning ability correlated positively with free recall of peripheral rhymed stimuli, but it was not related to performance on rhymed words’ generation task. Verbal reasoning ability correlated positively with free recall of focal stimuli. As for rhymed words generation task, verbal intelligence correlated negatively with generation of focal stimuli and correlated positively with generation of all peripheral stimuli. The present findings lead to two key conclusions. First, incidentally processed stimuli had an advantage in free recall and word generation task. Thus incidental information processing appeared to be crucial for subsequent cognitive performance. Secondly, it was demonstrated that incidentally processed stimuli were recalled more frequently by participants with high nonverbal reasoning ability and were more effectively used by participants with high verbal reasoning ability in subsequent cognitive tasks. That implies that general intellectual abilities could benefit from operating by different levels of information processing while cognitive problem solving. This research was supported by the “Grant of President of RF for young PhD scientists” (contract № is 14.Z56.17.2980- MK) and the Grant № 15-36-01348a2 of Russian Foundation for Humanities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=focal%20and%20peripheral%20stimuli" title="focal and peripheral stimuli">focal and peripheral stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20intellectual%20abilities" title=" general intellectual abilities"> general intellectual abilities</a>, <a href="https://publications.waset.org/abstracts/search?q=incidental%20information%20processing" title=" incidental information processing"> incidental information processing</a> </p> <a href="https://publications.waset.org/abstracts/70096/the-incidental-linguistic-information-processing-and-its-relation-to-general-intellectual-abilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">316</span> Generation of Electro-Encephalography Readiness Potentials by Intention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seokbeen%20Lim">Seokbeen Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilwon%20Yoon"> Gilwon Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The readiness potential in brain waves is a brain activity related with an intention whose potential arises even before its conscious intention. This study was carried out in order to understand the generation and mechanism of the readiness potential more. The experiment with two subjects was conducted in two ways following the Oddball task protocol. Firstly, auditory stimuli were randomly presented to the subjects. The subject was allowed to press the keyboard with the right index finger only when the subject heard the target stimulus but not the standard stimulus. Secondly, unlike the first one, the auditory stimuli were randomly presented, and the subjects pressed the keyboard in the same manner, but at the same time with grasping action of the left hand. The readiness potential showed up for both of these experiments. In the first Oddball experiment, the readiness potential was detected only when the target stimulus was presented. However, in the second Oddball experiment with the left hand action of grasping something, the readiness potential was detected at the presentation of for both standard and target stimuli. However, detected readiness potentials with the target stimuli were larger than those of the standard stimuli. We found an interesting phenomenon that the readiness potential was able to be detected even the standard stimulus. This indicates that motor-related readiness potentials can be generated only by the intention to move. These results present a new perspective in psychology and brain engineering since subconscious brain action may be prior to conscious recognition of the intention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=readiness%20potential" title="readiness potential">readiness potential</a>, <a href="https://publications.waset.org/abstracts/search?q=auditory%20stimuli" title=" auditory stimuli"> auditory stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=event-related%20potential" title=" event-related potential"> event-related potential</a>, <a href="https://publications.waset.org/abstracts/search?q=electroencephalography" title=" electroencephalography"> electroencephalography</a>, <a href="https://publications.waset.org/abstracts/search?q=oddball%20task" title=" oddball task"> oddball task</a> </p> <a href="https://publications.waset.org/abstracts/88547/generation-of-electro-encephalography-readiness-potentials-by-intention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">315</span> Electroencephalography Correlates of Memorability While Viewing Advertising Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20N.%20Anisimov">Victor N. Anisimov</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20E.%20Serov"> Igor E. Serov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20M.%20Kolkova"> Ksenia M. Kolkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20V.%20Galkina"> Natalia V. Galkina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of memorability of the advertising content is closely connected with the key issues of neuromarketing. The memorability of the advertising content contributes to the marketing effectiveness of the promoted product. Significant directions of studying the phenomenon of memorability are the memorability of the brand (detected through the memorability of the logo) and the memorability of the product offer (detected through the memorization of dynamic audiovisual advertising content - commercial). The aim of this work is to reveal the predictors of memorization of static and dynamic audiovisual stimuli (logos and commercials). An important direction of the research was revealing differences in psychophysiological correlates of memorability between static and dynamic audiovisual stimuli. We assumed that static and dynamic images are perceived in different ways and may have a difference in the memorization process. Objective methods of recording psychophysiological parameters while watching static and dynamic audiovisual materials are well suited to achieve the aim. The electroencephalography (EEG) method was performed with the aim of identifying correlates of the memorability of various stimuli in the electrical activity of the cerebral cortex. All stimuli (in the groups of statics and dynamics separately) were divided into 2 groups – remembered and not remembered based on the results of the questioning method. The questionnaires were filled out by survey participants after viewing the stimuli not immediately, but after a time interval (for detecting stimuli recorded through long-term memorization). Using statistical method, we developed the classifier (statistical model) that predicts which group (remembered or not remembered) stimuli gets, based on psychophysiological perception. The result of the statistical model was compared with the results of the questionnaire. Conclusions: Predictors of the memorability of static and dynamic stimuli have been identified, which allows prediction of which stimuli will have a higher probability of remembering. Further developments of this study will be the creation of stimulus memory model with the possibility of recognizing the stimulus as previously seen or new. Thus, in the process of remembering the stimulus, it is planned to take into account the stimulus recognition factor, which is one of the most important tasks for neuromarketing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=memory" title="memory">memory</a>, <a href="https://publications.waset.org/abstracts/search?q=commercials" title=" commercials"> commercials</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromarketing" title=" neuromarketing"> neuromarketing</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=branding" title=" branding"> branding</a> </p> <a href="https://publications.waset.org/abstracts/91017/electroencephalography-correlates-of-memorability-while-viewing-advertising-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">314</span> Automatic Processing of Trauma-Related Visual Stimuli in Female Patients Suffering From Post-Traumatic Stress Disorder after Interpersonal Traumatization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theresa%20Slump">Theresa Slump</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Neumeister"> Paula Neumeister</a>, <a href="https://publications.waset.org/abstracts/search?q=Katharina%20Feldker"> Katharina Feldker</a>, <a href="https://publications.waset.org/abstracts/search?q=Carina%20Y.%20Heitmann"> Carina Y. Heitmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Straube"> Thomas Straube</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A characteristic feature of post-traumatic stress disorder (PTSD) is the automatic processing of disorder-specific stimuli that expresses itself in intrusive symptoms such as intense physical and psychological reactions to trauma-associated stimuli. That automatic processing plays an essential role in the development and maintenance of symptoms. The aim of our study was, therefore, to investigate the behavioral and neural correlates of automatic processing of trauma-related stimuli in PTSD. Although interpersonal traumatization is a form of traumatization that often occurs, it has not yet been sufficiently studied. That is why, in our study, we focused on patients suffering from interpersonal traumatization. While previous imaging studies on PTSD mainly used faces, words, or generally negative visual stimuli, our study presented complex trauma-related and neutral visual scenes. We examined 19 female subjects suffering from PTSD and examined 19 healthy women as a control group. All subjects did a geometric comparison task while lying in a functional-magnetic-resonance-imaging (fMRI) scanner. Trauma-related scenes and neutral visual scenes that were not relevant to the task were presented while the subjects were doing the task. Regarding the behavioral level, there were not any significant differences between the task performance of the two groups. Regarding the neural level, the PTSD patients showed significant hyperactivation of the hippocampus for task-irrelevant trauma-related stimuli versus neutral stimuli when compared with healthy control subjects. Connectivity analyses revealed altered connectivity between the hippocampus and other anxiety-related areas in PTSD patients, too. Overall, those findings suggest that fear-related areas are involved in PTSD patients' processing of trauma-related stimuli even if the stimuli that were used in the study were task-irrelevant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post-traumatic%20stress%20disorder" title="post-traumatic stress disorder">post-traumatic stress disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20processing" title=" automatic processing"> automatic processing</a>, <a href="https://publications.waset.org/abstracts/search?q=hippocampus" title=" hippocampus"> hippocampus</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20magnetic%20resonance%20imaging" title=" functional magnetic resonance imaging"> functional magnetic resonance imaging</a> </p> <a href="https://publications.waset.org/abstracts/140162/automatic-processing-of-trauma-related-visual-stimuli-in-female-patients-suffering-from-post-traumatic-stress-disorder-after-interpersonal-traumatization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">313</span> Reconstruction of Visual Stimuli Using Stable Diffusion with Text Conditioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ShyamKrishna%20Kirithivasan">ShyamKrishna Kirithivasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreyas%20Battula"> Shreyas Battula</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditi%20Soori"> Aditi Soori</a>, <a href="https://publications.waset.org/abstracts/search?q=Richa%20Ramesh"> Richa Ramesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramamoorthy%20Srinath"> Ramamoorthy Srinath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human brain, among the most complex and mysterious aspects of the body, harbors vast potential for extensive exploration. Unraveling these enigmas, especially within neural perception and cognition, delves into the realm of neural decoding. Harnessing advancements in generative AI, particularly in Visual Computing, seeks to elucidate how the brain comprehends visual stimuli observed by humans. The paper endeavors to reconstruct human-perceived visual stimuli using Functional Magnetic Resonance Imaging (fMRI). This fMRI data is then processed through pre-trained deep-learning models to recreate the stimuli. Introducing a new architecture named LatentNeuroNet, the aim is to achieve the utmost semantic fidelity in stimuli reconstruction. The approach employs a Latent Diffusion Model (LDM) - Stable Diffusion v1.5, emphasizing semantic accuracy and generating superior quality outputs. This addresses the limitations of prior methods, such as GANs, known for poor semantic performance and inherent instability. Text conditioning within the LDM's denoising process is handled by extracting text from the brain's ventral visual cortex region. This extracted text undergoes processing through a Bootstrapping Language-Image Pre-training (BLIP) encoder before it is injected into the denoising process. In conclusion, a successful architecture is developed that reconstructs the visual stimuli perceived and finally, this research provides us with enough evidence to identify the most influential regions of the brain responsible for cognition and perception. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BLIP" title="BLIP">BLIP</a>, <a href="https://publications.waset.org/abstracts/search?q=fMRI" title=" fMRI"> fMRI</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20diffusion%20model" title=" latent diffusion model"> latent diffusion model</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20perception." title=" neural perception."> neural perception.</a> </p> <a href="https://publications.waset.org/abstracts/179307/reconstruction-of-visual-stimuli-using-stable-diffusion-with-text-conditioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">312</span> Renewed Urban Waterfront: Spatial Conditions of a Contemporary Urban Space Typology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beate%20Niemann">Beate Niemann</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabian%20Pramel"> Fabian Pramel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The formerly industrially or militarily used Urban Waterfront is a potential area for urban development. Extensive interventions in the urban space come along with the development of these previously inaccessible areas in the city. The development of the Urban Waterfront in the European City is not subject to any recognizable urban paradigm. In this study, the development of the Urban Waterfront as a new urban space typology is analyzed by case studies of Urban Waterfront developments in European Cities. For humans, perceptible spatial conditions are categorized and it is identified whether the themed Urban Waterfront Developments are congruent or incongruent urban design interventions and which deviations the Urban Waterfront itself induce. As congruent urban design, a design is understood, which fits in the urban fabric regarding its similar spatial conditions to the surrounding. Incongruent urban design, however, shows significantly different conditions in its shape. Finally, the spatial relationship of the themed Urban Waterfront developments and their associated environment are compared in order to identify contrasts between new and old urban space. In this way, conclusions about urban design paradigms of the new urban space typology are tried to be drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composition" title="composition">composition</a>, <a href="https://publications.waset.org/abstracts/search?q=congruence" title=" congruence"> congruence</a>, <a href="https://publications.waset.org/abstracts/search?q=identity" title=" identity"> identity</a>, <a href="https://publications.waset.org/abstracts/search?q=paradigm" title=" paradigm"> paradigm</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20condition" title=" spatial condition"> spatial condition</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20design" title=" urban design"> urban design</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20development" title=" urban development"> urban development</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20waterfront" title=" urban waterfront"> urban waterfront</a> </p> <a href="https://publications.waset.org/abstracts/58261/renewed-urban-waterfront-spatial-conditions-of-a-contemporary-urban-space-typology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">311</span> High Motivational Salient Face Distractors Slowed Target Detection: Evidence from Behavioral Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Gupta">Rashmi Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rewarding stimuli capture attention involuntarily as a result of an association process that develops quickly during value learning, referred to as the reward or value-driven attentional capture. It is essential to compare reward with punishment processing to get a full picture of value-based modulation in visual attention processing. Hence, the present study manipulated both valence/value (reward as well as punishment) and motivational salience (probability of an outcome: high vs. low) together. Series of experiments were conducted, and there were two phases in each experiment. In phase 1, participants were required to learn to associate specific face stimuli with a high or low probability of winning or losing points. In the second phase, these conditioned stimuli then served as a distractor or prime in a speeded letter search task. Faces with high versus low outcome probability, regardless of valence, slowed the search for targets (specifically the left visual field target) and suggesting that the costs to performance on non-emotional cognitive tasks were only driven by motivational salience (high vs. loss) associated with the stimuli rather than the valence (gain vs. loss). It also suggests that the processing of motivationally salient stimuli is right-hemisphere biased. Together, results of these studies strengthen the notion that our visual attention system is more sensitive to affected by motivational saliency rather than valence, which termed here as motivational-driven attentional capture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attention" title="attention">attention</a>, <a href="https://publications.waset.org/abstracts/search?q=distractors" title=" distractors"> distractors</a>, <a href="https://publications.waset.org/abstracts/search?q=motivational%20salience" title=" motivational salience"> motivational salience</a>, <a href="https://publications.waset.org/abstracts/search?q=valence" title=" valence"> valence</a> </p> <a href="https://publications.waset.org/abstracts/100657/high-motivational-salient-face-distractors-slowed-target-detection-evidence-from-behavioral-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">310</span> Effect of Phonological Complexity in Children with Specific Language Impairment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irfana%20M.">Irfana M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyandi%20Kabasi"> Priyandi Kabasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children with specific language impairment (SLI) have difficulty acquiring and using language despite having all the requirements of cognitive skills to support language acquisition. These children have normal non-verbal intelligence, hearing, and oral-motor skills, with no history of social/emotional problems or significant neurological impairment. Nevertheless, their language acquisition lags behind their peers. Phonological complexity can be considered to be the major factor that causes the inaccurate production of speech in this population. However, the implementation of various ranges of complex phonological stimuli in the treatment session of SLI should be followed for a better prognosis of speech accuracy. Hence there is a need to study the levels of phonological complexity. The present study consisted of 7 individuals who were diagnosed with SLI and 10 developmentally normal children. All of them were Hindi speakers with both genders and their age ranged from 4 to 5 years. There were 4 sets of stimuli; among them were minimal contrast vs maximal contrast nonwords, minimal coarticulation vs maximal coarticulation nonwords, minimal contrast vs maximal contrast words and minimal coarticulation vs maximal coarticulation words. Each set contained 10 stimuli and participants were asked to repeat each stimulus. Results showed that production of maximal contrast was significantly accurate, followed by minimal coarticulation, minimal contrast and maximal coarticulation. A similar trend was shown for both word and non-word categories of stimuli. The phonological complexity effect was evident in the study for each participant group. Moreover, present study findings can be implemented for the management of SLI, specifically for the selection of stimuli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarticulation" title="coarticulation">coarticulation</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20contrast" title=" minimal contrast"> minimal contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=phonological%20complexity" title=" phonological complexity"> phonological complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20language%20impairment" title=" specific language impairment"> specific language impairment</a> </p> <a href="https://publications.waset.org/abstracts/146147/effect-of-phonological-complexity-in-children-with-specific-language-impairment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">309</span> Assessing the Impact of Additional Information during Motor Preparation in Lane Change Task</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikita%20Rajendra%20Sharma">Nikita Rajendra Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Jai%20Prakash%20Kushvah"> Jai Prakash Kushvah</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerhard%20Rinkenauer"> Gerhard Rinkenauer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Driving a car is a discrete aiming movement in which drivers aim at successful extraction of relevant information and elimination of potentially distracting one. It is the motor preparation which enables one to react to certain stimuli onsite by allowing perceptual process for optimal adjustment. Drivers prepare their responses according to the available resources of advanced and ongoing information to drive efficiently. It requires constant programming and reprogramming of the motor system. The reaction time (RT) is shorter when a response signal is preceded by a warning signal. The reason behind this reduced time in responding to targets is that the warning signal causes the participant to prepare for the upcoming response by updating the motor program before the execution. While performing the primary task of changing lanes while driving, the simultaneous occurrence of additional information during the presentation of cues (congruent or incongruent with respect to target cue) might impact the motor preparation and execution. The presence of additional information (other than warning or response signal) between warning signal and imperative stimulus influences human motor preparation to a reasonable extent. The present study was aimed to assess the impact of congruent and incongruent additional information (with respect to imperative stimulus) on driving performance (reaction time, steering wheel amplitude, and steering wheel duration) during a lane change task. implementing movement pre-cueing paradigm. 22 young valid car-drivers (Mage = 24.1+/- 3.21 years, M = 10, F = 12, age-range 21-33 years) participated in the study. The study revealed that additional information influenced the overall driving performance as potential distractors and relevant information. Findings suggest that the events of additional information relatively influenced the reaction time and steering wheel angle as potential distractor or irrelevant information. Participants took longer to respond, and higher steering wheel angles were reported for targets coupled with additional information in comparison with warning signs preceded by potential distractors and the participants' response time was more for a higher number of lanes (2 Lanes > 1 Lane). The same additional information appearing interchangeably at warning signals and targets worked as relevant information facilitating the motor programming in the trails where they were congruent with the direction of lane change direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additional%20information" title="additional information">additional information</a>, <a href="https://publications.waset.org/abstracts/search?q=lane%20change%20task" title=" lane change task"> lane change task</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20preparation" title=" motor preparation"> motor preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=movement%20pre-cueing" title=" movement pre-cueing"> movement pre-cueing</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20time" title=" reaction time"> reaction time</a>, <a href="https://publications.waset.org/abstracts/search?q=steering%20wheel%20amplitude" title=" steering wheel amplitude"> steering wheel amplitude</a> </p> <a href="https://publications.waset.org/abstracts/142423/assessing-the-impact-of-additional-information-during-motor-preparation-in-lane-change-task" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">308</span> Influence of Auditory Visual Information in Speech Perception in Children with Normal Hearing and Cochlear Implant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin">Sachin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shantanu%20Arya"> Shantanu Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunjan%20Mehta"> Gunjan Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shamim%20Ansari"> Md. Shamim Ansari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cross-modal influence of visual information on speech perception can be illustrated by the McGurk effect which is an illusion of hearing of syllable /ta/ when a listener listens one syllable, e.g.: /pa/ while watching a synchronized video recording of syllable, /ka/. The McGurk effect is an excellent tool to investigate multisensory integration in speech perception in both normal hearing and hearing impaired populations. As the visual cue is unaffected by noise, individuals with hearing impairment rely more than normal listeners on the visual cues.However, when non congruent visual and auditory cues are processed together, audiovisual interaction seems to occur differently in normal and persons with hearing impairment. Therefore, this study aims to observe the audiovisual interaction in speech perception in Cochlear Implant users compares the same with normal hearing children. Auditory stimuli was routed through calibrated Clinical audiometer in sound field condition, and visual stimuli were presented on laptop screen placed at a distance of 1m at 0 degree azimuth. Out of 4 presentations, if 3 responses were a fusion, then McGurk effect was considered to be present. The congruent audiovisual stimuli /pa/ /pa/ and /ka/ /ka/ were perceived correctly as ‘‘pa’’ and ‘‘ka,’’ respectively by both the groups. For the non- congruent stimuli /da/ /pa/, 23 children out of 35 with normal hearing and 9 children out of 35 with cochlear implant had a fusion of sounds i.e. McGurk effect was present. For the non-congruent stimulus /pa/ /ka/, 25 children out of 35 with normal hearing and 8 children out of 35 with cochlear implant had fusion of sounds.The children who used cochlear implants for less than three years did not exhibit fusion of sound i.e. McGurk effect was absent in this group of children. To conclude, the results demonstrate that consistent fusion of visual with auditory information for speech perception is shaped by experience with bimodal spoken language during early life. When auditory experience with speech is mediated by cochlear implant, the likelihood of acquiring bimodal fusion is increased and it greatly depends on the age of implantation. All the above results strongly support the need for screening children for hearing capabilities and providing cochlear implants and aural rehabilitation as early as possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cochlear%20implant" title="cochlear implant">cochlear implant</a>, <a href="https://publications.waset.org/abstracts/search?q=congruent%20stimuli" title=" congruent stimuli"> congruent stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=mcgurk%20effect" title=" mcgurk effect"> mcgurk effect</a>, <a href="https://publications.waset.org/abstracts/search?q=non-congruent%20stimuli" title=" non-congruent stimuli"> non-congruent stimuli</a> </p> <a href="https://publications.waset.org/abstracts/52237/influence-of-auditory-visual-information-in-speech-perception-in-children-with-normal-hearing-and-cochlear-implant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">307</span> Functional and Stimuli Implementation and Verification of Programmable Peripheral Interface (PPI) Protocol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Joshi">N. N. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Singh"> G. K. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present the stimuli implementation and verification of a Programmable Peripheral Interface (PPI) 8255. It involves a designing and verification of configurable intellectual property (IP) module of PPI protocol using Verilog HDL for implementation part and System Verilog for verification. The overview of the PPI-8255 presented then the design specification implemented for the work following the functional description and pin configuration of PPI-8255. The coverage report of design shows that our design and verification environment covered 100% functionality in accordance with the design specification generated by the Questa Sim 10.0b. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Programmable%20Peripheral%20Interface%20%28PPI%29" title="Programmable Peripheral Interface (PPI)">Programmable Peripheral Interface (PPI)</a>, <a href="https://publications.waset.org/abstracts/search?q=verilog%20HDL" title=" verilog HDL"> verilog HDL</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20verilog" title=" system verilog"> system verilog</a>, <a href="https://publications.waset.org/abstracts/search?q=questa%20sim" title=" questa sim "> questa sim </a> </p> <a href="https://publications.waset.org/abstracts/21194/functional-and-stimuli-implementation-and-verification-of-programmable-peripheral-interface-ppi-protocol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">306</span> Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrienne%20Kline">Adrienne Kline</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaydip%20Desai"> Jaydip Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain-machine%20interface" title="brain-machine interface">brain-machine interface</a>, <a href="https://publications.waset.org/abstracts/search?q=EEGLAB" title=" EEGLAB"> EEGLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=emotiv%20EEG%20neuroheadset" title=" emotiv EEG neuroheadset"> emotiv EEG neuroheadset</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenViBE" title=" OpenViBE"> OpenViBE</a>, <a href="https://publications.waset.org/abstracts/search?q=simulink" title=" simulink"> simulink</a> </p> <a href="https://publications.waset.org/abstracts/28333/noninvasive-brain-machine-interface-to-control-both-mecha-te-robotic-hands-using-emotiv-eeg-neuroheadset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">305</span> Human Vibrotactile Discrimination Thresholds for Simultaneous and Sequential Stimuli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Maj">Joanna Maj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Body machine interfaces (BMIs) afford users a non-invasive way coordinate movement. Vibrotactile stimulation has been incorporated into BMIs to allow feedback in real-time and guide movement control to benefit patients with cognitive deficits, such as stroke survivors. To advance research in this area, we examined vibrational discrimination thresholds at four body locations to determine suitable application sites for future multi-channel BMIs using vibration cues to guide movement planning and control. Twelve healthy adults had a pair of small vibrators (tactors) affixed to the skin at each location: forearm, shoulders, torso, and knee. A "standard" stimulus (186 Hz; 750 ms) and "probe" stimuli (11 levels ranging from 100 Hz to 235 Hz; 750 ms) were delivered. Probe and test stimulus pairs could occur sequentially or simultaneously (timing). Participants verbally indicated which stimulus felt more intense. Stimulus order was counterbalanced across tactors and body locations. Probabilities that probe stimuli felt more intense than the standard stimulus were computed and fit with a cumulative Gaussian function; the discrimination threshold was defined as one standard deviation of the underlying distribution. Threshold magnitudes depended on stimulus timing and location. Discrimination thresholds were better for stimuli applied sequentially vs. simultaneously at the torso as well as the knee. Thresholds were small (better) and relatively insensitive to timing differences for vibrations applied at the shoulder. BMI applications requiring multiple channels of simultaneous vibrotactile stimulation should therefore consider the shoulder as a deployment site for a vibrotactile BMI interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromyography" title="electromyography">electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=electromyogram" title=" electromyogram"> electromyogram</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20disorders" title=" neuromuscular disorders"> neuromuscular disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20instrumentation" title=" biomedical instrumentation"> biomedical instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=controls%20engineering" title=" controls engineering"> controls engineering</a> </p> <a href="https://publications.waset.org/abstracts/156951/human-vibrotactile-discrimination-thresholds-for-simultaneous-and-sequential-stimuli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">304</span> Perception of Tactile Stimuli in Children with Autism Spectrum Disorder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kseniya%20Gladun">Kseniya Gladun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tactile stimulation of a dorsal side of the wrist can have a strong impact on our attitude toward physical objects such as pleasant and unpleasant impact. This study explored different aspects of tactile perception to investigate atypical touch sensitivity in children with autism spectrum disorder (ASD). This study included 40 children with ASD and 40 healthy children aged 5 to 9 years. We recorded rsEEG (sampling rate of 250 Hz) during 20 min using EEG amplifier “Encephalan” (Medicom MTD, Taganrog, Russian Federation) with 19 AgCl electrodes placed according to the International 10–20 System. The electrodes placed on the left, and right mastoids served as joint references under unipolar montage. The registration of EEG v19 assignments was carried out: frontal (Fp1-Fp2; F3-F4), temporal anterior (T3-T4), temporal posterior (T5-T6), parietal (P3-P4), occipital (O1-O2). Subjects were passively touched by 4 types of tactile stimuli on the left wrist. Our stimuli were presented with a velocity of about 3–5 cm per sec. The stimuli materials and procedure were chosen for being the most "pleasant," "rough," "prickly" and "recognizable". Type of tactile stimulation: Soft cosmetic brush - "pleasant" , Rough shoe brush - "rough", Wartenberg pin wheel roller - "prickly", and the cognitive tactile stimulation included letters by finger (most of the patient’s name ) "recognizable". To designate the moments of the stimuli onset-offset, we marked the moment when the moment of the touch began and ended; the stimulation was manual, and synchronization was not precise enough for event-related measures. EEG epochs were cleaned from eye movements by ICA-based algorithm in EEGLAB plugin for MatLab 7.11.0 (Mathwork Inc.). Muscle artifacts were cut out by manual data inspection. The response to tactile stimuli was significantly different in the group of children with ASD and healthy children, which was also depended on type of tactile stimuli and the severity of ASD. Amplitude of Alpha rhythm increased in parietal region to response for only pleasant stimulus, for another type of stimulus ("rough," "thorny", "recognizable") distinction of amplitude was not observed. Correlation dimension D2 was higher in healthy children compared to children with ASD (main effect ANOVA). In ASD group D2 was lower for pleasant and unpleasant compared to the background in the right parietal area. Hilbert transform changes in the frequency of the theta rhythm found only for a rough tactile stimulation compared with healthy participants only in the right parietal area. Children with autism spectrum disorders and healthy children were responded to tactile stimulation differently with specific frequency distribution alpha and theta band in the right parietal area. Thus, our data supports the hypothesis that rsEEG may serve as a sensitive index of altered neural activity caused by ASD. Children with autism have difficulty in distinguishing the emotional stimuli ("pleasant," "rough," "prickly" and "recognizable"). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism" title="autism">autism</a>, <a href="https://publications.waset.org/abstracts/search?q=tactile%20stimulation" title=" tactile stimulation"> tactile stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilbert%20transform" title=" Hilbert transform"> Hilbert transform</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatric%20electroencephalography" title=" pediatric electroencephalography"> pediatric electroencephalography</a> </p> <a href="https://publications.waset.org/abstracts/64445/perception-of-tactile-stimuli-in-children-with-autism-spectrum-disorder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">303</span> Top-Down Influences to Multistable Perception: Evidence from Temporal Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daria%20N.%20Podvigina">Daria N. Podvigina</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20V.%20Chernigovskaya"> Tatiana V. Chernigovskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the temporal characteristics of bistable perception of the stimuli of two types: one involves alterations in a perceived depth and another one has an ambiguous content. We used the Necker lattice and lines of shadowed circles ambiguously perceived either as spheres or holes as stimuli of the first type. The Winson figure (the Eskimo/Indian picture) was a stimulus of the second type. We have analyzed how often the reversals occurred (reversal rate) and for how long each of the two interpretations, or percepts, was observed during one presentation (stability durations). For all three ambiguous images the reversal rate and the stability durations had similar values, which provide another evidence for a significant role of top-down processes in multistable perception. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multistable%20perception" title="multistable perception">multistable perception</a>, <a href="https://publications.waset.org/abstracts/search?q=perceived%20depth" title=" perceived depth"> perceived depth</a>, <a href="https://publications.waset.org/abstracts/search?q=reversal%20rate" title=" reversal rate"> reversal rate</a>, <a href="https://publications.waset.org/abstracts/search?q=top-down%20processes" title=" top-down processes"> top-down processes</a> </p> <a href="https://publications.waset.org/abstracts/32208/top-down-influences-to-multistable-perception-evidence-from-temporal-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">302</span> Valence Effects on Episodic Memory Retrieval Following Exposure to Arousing Stimuli in Young and Old Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marianna%20Constantinou">Marianna Constantinou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Burianova"> Hana Burianova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ala%20Yankouskaya"> Ala Yankouskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Episodic memory retrieval benefits from arousal, with better performance linked to arousing to-be-remembered information. However, the enduring impact of arousal on subsequent memory processes, particularly for non-arousing stimuli, remains unclear. This functional Magnetic Resonance Imaging (fMRI) study examined the effects of arousal on episodic memory processes in young and old adults, focusing on memory of neutral information following arousal exposure. Neural activity was assessed at three distinct timepoints: during exposure to arousing and non-arousing stimuli, memory consolidation (with or without arousing stimulus exposure), and during memory retrieval (with or without arousing stimulus exposure). Behavioural results show that across both age groups, participants performed worse when retrieving episodic memories about a video preceded by a highly arousing negative image. Our fMRI findings reveal three key findings: i) the extension of the influence of negative arousal beyond encoding; ii) the presence of this influence in both young and old adults; iii) and the differential treatment of positive arousal between these age groups. Our findings emphasise valence-specific effects on memory processes and support the enduring impact of negative arousal. We further propose an age-related alteration in the old adult brain in differentiating between positive and negative arousal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=episodic%20memory" title="episodic memory">episodic memory</a>, <a href="https://publications.waset.org/abstracts/search?q=ageing" title=" ageing"> ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=fmri" title=" fmri"> fmri</a>, <a href="https://publications.waset.org/abstracts/search?q=arousal" title=" arousal"> arousal</a>, <a href="https://publications.waset.org/abstracts/search?q=valence" title=" valence"> valence</a> </p> <a href="https://publications.waset.org/abstracts/178934/valence-effects-on-episodic-memory-retrieval-following-exposure-to-arousing-stimuli-in-young-and-old-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=incongruent%20stimuli&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10