CINXE.COM

Search results for: Fenugreek

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Fenugreek</title> <meta name="description" content="Search results for: Fenugreek"> <meta name="keywords" content="Fenugreek"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Fenugreek" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Fenugreek"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Fenugreek</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Effect of Fenugreek Seed with Aerobic Exercise Training on Insulin Resistance in Women with Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nasiri">M. Nasiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Considering the hypoglisimic ad hipolipidimic effect of the fenugreek seed and aerobic exercise training, this study was conducted to evaluate the effect of fenugreek and aerobic exercise training on insulin resistance in women with type 2 diabetes. Methodology: 32 patients with type II diabetes were selected and randomly divided into four groups: control, fenugreek, training and fenugreek - training. Fenugreek groups used 10 grams of fenugreek seeds daily for eight weeks on two occasions before noon and evening meal. Training of groups is also performed a regular program of aerobic exercise 65-55% of maximum heart rate (4 days per week).Two days before and after the training period, blood samples were taken from their brachial veins in a fasting state (12 hours prior to the test) in a sitting position. The data was analyzed used of t-independent and ANOVA at a significance level of α < 0.05. Results: Intra-group changes in all experimental groups showed that significant decrease insulin resistance, and the difference between groups showed significant difference between the groups of fenugreek - training than other groups there. Conclusions: According to the research findings to fenugreek combined with aerobic exercise more beneficial effect on the inhibition of insulin resistance in women with diabetes are recommended to them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fenugreek" title="fenugreek">fenugreek</a>, <a href="https://publications.waset.org/abstracts/search?q=training" title=" training"> training</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a> </p> <a href="https://publications.waset.org/abstracts/35847/effect-of-fenugreek-seed-with-aerobic-exercise-training-on-insulin-resistance-in-women-with-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Microbial Assessment of Fenugreek Paste during Storage and Antimicrobial Effect of Greek Clover, Trigonella foenum-graecum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zerrin%20Erginkaya">Zerrin Erginkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6zde%20Konuray"> Gözde Konuray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, antimicrobial effect of Greek clover was determined with usage of MIC (minimum inhibition concentration) and agar diffusion method. Moreover, pH, water activity and microbial change were determined during storage of fenugreek paste. At first part of our study, microbial load of spices was evaluated. Two different fenugreek pastes were produced with mixing of Greek clover, spices, garlic and water. Fenugreek pastes were stored at 4 &deg;C. At the second part, antimicrobial effect of Greek clover was determined on <em>Escherichia coli</em>, <em>Staphylococcus aureus</em>, <em>Bacillus subtilis</em>, <em>Debaryomyces hansenii</em>, <em>Aspergillus parasiticus</em>, <em>Candida rugosa</em>, <em>Mucor </em>spp., when the concentrations of Greek clover were 8%, 12% and 16%. According to the results obtained, mould growth was determined at 15<sup>th</sup> and 30<sup>th</sup> days of storage in first and second fenugreek samples, respectively. Greek clover showed only antifungal effect on <em>Aspergillus parasiticus</em> at previously mentioned concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=fenugreek" title=" fenugreek"> fenugreek</a>, <a href="https://publications.waset.org/abstracts/search?q=Greek%20clover" title=" Greek clover"> Greek clover</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20inhibition%20concentration" title=" minimum inhibition concentration"> minimum inhibition concentration</a> </p> <a href="https://publications.waset.org/abstracts/61308/microbial-assessment-of-fenugreek-paste-during-storage-and-antimicrobial-effect-of-greek-clover-trigonella-foenum-graecum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Effects of Fenugreek Seed Extract on in vitro Maturation and Subsequent Development of Sheep Oocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20A.%20H.%20Barakat">Ibrahim A. H. Barakat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20R.%20Al-Himaidi"> Ahmed R. Al-Himaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was conducted to determine the role and optimum concentration of fenugreek seed extract during in-vitro maturation on in-vitro maturation and developmental competence of Neaimi sheep oocytes following in-vitro fertilization. The Cumulus Oocyte Complexes (COCs) collected from sheep slaughterhouse ovaries were randomly divided into three groups, and they were matured for 24 hrs. in maturation medium containing fenugreek seed extract (0, 1 and 10 µg ml-1). Oocytes of a control group were matured in a medium containing 1 µg ml-1 estradiol 17β. After maturation, half of oocytes were fixed and stained for evaluation of nuclear maturation. The rest of oocytes were fertilized in vitro with fresh semen, then cultured for 9 days for the assessment of the developmental capacity of the oocytes. The results showed that the mean values of oocytes with expanded cumulus cells percentage were not significantly different among all groups (P < 0.05). But nuclear maturation rate of oocytes matured with 10 µg ml-1 fenugreek seed extract was significantly higher than that of the control group. The maturation rate and development to morula and blastocyst stage for oocytes matured at 10 µg ml-1 fenugreek seed extract was significantly higher than those matured at 1µg ml-1 of fenugreek seed extract and the control group. In conclusion, better maturation and developmental capacity rate to morula and blastocyst stage were obtained by the addition of 10 µg ml-1 fenugreek seed extract to maturation medium than addition of 1 µg ml-1 estradiol-17β (P < 0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fenugreek%20seed%20extract" title="fenugreek seed extract">fenugreek seed extract</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20maturation" title=" in vitro maturation"> in vitro maturation</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20oocytes" title=" sheep oocytes"> sheep oocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20fertilization" title=" in vitro fertilization"> in vitro fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=embryo%20development" title=" embryo development"> embryo development</a> </p> <a href="https://publications.waset.org/abstracts/3185/effects-of-fenugreek-seed-extract-on-in-vitro-maturation-and-subsequent-development-of-sheep-oocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Protective Effect of Germinated Fenugreek Seeds on Keratoachantoma Cancer Skin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Sokar">Zahra Sokar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Oufquir"> Sara Oufquir</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Eddafali"> Brahim Eddafali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahman%20Chait"> Abderrahman Chait</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fenugreek is one of the oldest plants used in traditional herbal medicine. Several studies have demonstrated the anticancer effects of seeds by inhibiting the proliferation, angiogenesis, invasion and metastasis of various cancers. While there is plenty of research demonstrating the antineoplastic effects of dormant seeds, little is known about the potential of sprouts in fighting cancer. Therefore, we propose to study the chemoprotective effect of germinating fenugreek seeds on keratoacanthoma skin cancer induced by cutaneous exposure to DMA/Croton oil in mice. The results obtained show that oral administration of 250 and 500 mg/kg aqueous sprout seed extract reduces the incidence, rate, volume, and tumor weight in a very significant manner. Histological examination revealed that mice treated with 250 mg/kg showed strong inhibition of squamous cell carcinoma formation with thickening of the epithelial layer and mild acanthosis and hyperkeratosis. A dose of 500 mg/kg prevented invasion and the occurrence of hyperkeratosis. Fenugreek sprouts appear to be a promising natural product for preventing keratoacanthoma skin cancer. Nevertheless, further studies in the same field need to be developed to evaluate the antineoplastic potential of germinated seeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticancer" title="anticancer">anticancer</a>, <a href="https://publications.waset.org/abstracts/search?q=fenugreek" title=" fenugreek"> fenugreek</a>, <a href="https://publications.waset.org/abstracts/search?q=keratoacanthoma" title=" keratoacanthoma"> keratoacanthoma</a>, <a href="https://publications.waset.org/abstracts/search?q=sprouts" title=" sprouts"> sprouts</a> </p> <a href="https://publications.waset.org/abstracts/172016/protective-effect-of-germinated-fenugreek-seeds-on-keratoachantoma-cancer-skin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Extraction, Isolation and Comparative Phtochemical Study of Aegle Marmelos, Calendula Officinalis and Fenugreek</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Rajan">Nitin Rajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kashif%20Shakeel"> Kashif Shakeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Tiwari"> Shashank Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shachan%20Sagar"> Shachan Sagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: - Aegle Marmelos (Bael) leaf extract is taken twice daily to treat ophthalmia, ulcers, and intestinal worms, among other ailments. Poultice made from bael leaf is used in the treatment of eye conditions. The leaf juice has a variety of therapeutic applications, with the most notable being the treatment of diabetes. Fenugreek is used to cure red spots around the eyes, as well as to soften the throat and chest and to give relief from coughing. The use of this plant in the form of infusion, powder, pomade, and decoction has been extremely popular in Iranian traditional medicine. The plant may be used to wash one's vaginal linings. This plant is used as an emollient in the lack of appetite, treatment of pellagra, and gastrointestinal problems, as well as a general tonic. Calendula officinalis leaves are used to treat varicose veins on the outside of the body by infusing them. In Europe, the leaves are diaphoretic and resolvent in nature, while the blooms are employed as an emmenagogue and antispasmodic stimulant in Canada and the United States. The flowers were decocted and served as a posset drink when smallpox and measles were common in England, and the fresh juice was used to treat jaundice. Objective: - This study is done to compare the physicochemical parameter of the alcoholic extract of the leaves of Aegle Marmelos, Calendula Officinalis, and Fenugreek. Materials and Methods: Extraction and Isolation of Aegle Marmelos, Calendula Officinalis, Fenugreek, were done. Preliminary phytochemical study for alkaloids, cardiac glycosides, flavonoids, glycosides, phenols, resins, saponins, steroids, tannins, terpenoids of the extract was done individual by using the standard procedure. Result: - The phytochemical screening of Aegle Marmelos, Calendula Officinalis, and Fenugreek shows the presence of alkaloids, carbohydrates, total phenolics, total flavonoids, tannins, saponins gum. Conclusion: - In this study, we have found that crude aqueous and organic solvent extracts of Aegle Marmelos, Calendula Officinalis, and Fenugreek leaves contain some important bioactive compounds and it justifies their use in the traditional medicines for the treatment of different diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aegle%20Marmelos" title="Aegle Marmelos">Aegle Marmelos</a>, <a href="https://publications.waset.org/abstracts/search?q=Calendula%20Officinalis" title=" Calendula Officinalis"> Calendula Officinalis</a>, <a href="https://publications.waset.org/abstracts/search?q=Fenugreek" title=" Fenugreek"> Fenugreek</a>, <a href="https://publications.waset.org/abstracts/search?q=physiochemical%20parameter" title=" physiochemical parameter"> physiochemical parameter</a> </p> <a href="https://publications.waset.org/abstracts/143218/extraction-isolation-and-comparative-phtochemical-study-of-aegle-marmelos-calendula-officinalis-and-fenugreek" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> The Effects of Different Sowing Times on Seed Yield and Quality of Fenugreek (Trigonella foenum graecum L.) in East Mediterranean Region of Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lale%20Efe">Lale Efe</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Gokce"> Zeynep Gokce</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study carried out in 2013-14 growing season in East Mediterranean Region of Turkey, it was aimed to investigate the effects of different sowing times on the seed yield and quality of fenugreek (Trigonella foenum graceum L.). Three fenugreek genotypes (Gürarslan, Candidate Line-1 and Genotype-1) were sown on 13.11.2013 and 07.03.2014 according to factorial randomized block design with 3 replications. Plant height (cm), branch number per plant, first pod height (cm), pod length (mm), seed number per pod (g), seed yield per plant (g), seed yield per decar (kg), thousand seed weight (g), mucilage rate (%), seed protein ratio (%), seed oil ratio (%), oleic acid (%), linoleic acid (%), palmitic acid (%) and stearic acid (%) were investigated. Among genotypes, while the highest seed yield per plant was obtained from Genotype-1 (5 g/plant), the lowest seed yield per plant was obtained from cv. Gürarslan (3.4 g/plant). According to genotype x sowing date interactions, it can be said that the highest seed yield per plant was taken in autumn sowing from Genotype-1 (6.6 g/plant) and the lowest seed yield per plant was taken in spring sowing from cv. Gürarslan (2.9 g/plant). Genotype-1 had the highest linoleic acid ratio (41.6 %). Cv. Gürarslan and Candidate Line-1 had the highest oleic acid ratio (respectively 17.8 % and 17.6%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fenugreek" title="fenugreek">fenugreek</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20yield%20and%20quality" title=" seed yield and quality"> seed yield and quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sowing%20times" title=" sowing times"> sowing times</a>, <a href="https://publications.waset.org/abstracts/search?q=Trigonella%20foenum%20graecum%20L." title=" Trigonella foenum graecum L. "> Trigonella foenum graecum L. </a> </p> <a href="https://publications.waset.org/abstracts/75917/the-effects-of-different-sowing-times-on-seed-yield-and-quality-of-fenugreek-trigonella-foenum-graecum-l-in-east-mediterranean-region-of-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Determination of Nutritional Value and Steroidal Saponin of Fenugreek Genotypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Singh">Anita Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Richa%20Naula"> Richa Naula</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Raghav"> Manoj Raghav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nutrient rich and high-yielding varieties of fenugreek can be developed by using genotypes which are naturally high in nutrients. Gene banks harbour scanty germplasm collection of Trigonella spp. and a very little background information about its genetic diversity. The extent of genetic diversity in a specific breeding population depends upon the genotype included in it. The present investigation aims at the estimation of macronutrient (phosphorus by spectrophotometer and potassium by flame photometer), micronutrients, namely, iron, zinc, manganese, and copper from seeds of fenugreek genotypes using atomic absorption spectrophotometer, protein by Rapid N Cube Analyser and Steroidal Saponins. Twenty-eight genotypes of fenugreek along with two standard checks, namely, Pant Ragini and Pusa Early Bunching were collected from different parts of India, and nutrient contents of each genotype were determined at G. B. P. U. A. & T. Laboratory, Pantnagar. Highest potassium content was observed in PFG-35 (1207 mg/100g). PFG-37 and PFG-20 were richest in phosphorus, iron and manganese content among all the genotypes. The lowest zinc content was found in PFG-26 (1.19 mg/100g), while the maximum zinc content was found in PFG- 28 (4.43 mg/100g). The highest content of copper was found in PFG-26 (1.97 mg/100g). PFG-39 has the highest protein content (29.60 %). Significant differences were observed in the steroidal saponin among the genotypes. Saponin content ranged from 0.38 g/100g to 1.31 g/100g. Steroidal Saponins content was found the maximum in PFG-36 (1.31 g/100g) followed by PFG-17 (1.28 g/100g). Therefore, the genotypes which are rich in nutrient and oil content can be used for plant biofortification, dietary supplements, and herbal products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genotypes" title="genotypes">genotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=macronutrients" title=" macronutrients"> macronutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=micronutrient" title=" micronutrient"> micronutrient</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=seeds" title=" seeds"> seeds</a> </p> <a href="https://publications.waset.org/abstracts/68741/determination-of-nutritional-value-and-steroidal-saponin-of-fenugreek-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Variability Parameters for Growth and Yield Characters in Fenugreek, Trigonella spp. Genotypes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Singh">Anita Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Richa%20Naula"> Richa Naula</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Raghav"> Manoj Raghav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India is a leading producer and consumer of fenugreek for its culinary uses and medicinal application. In India, most of the people are of vegetarian class. In such a situation, a leafy vegetable, such as fenugreek is of chief concern due to its high nutritional property, medicinal values and industrial uses. One of the most important factors restricting their large scale production and development of superior varieties is that very scanty knowledge about their genetic diversity, inter and intraspecific variability and genetic relationship among the species. Improvement of the crop depends upon the magnitude of genetic variability for economic characters. Therefore, the present research work was carried out to analyse the variability parameters for growth and yield character in twenty-eight fenugreek genotypes along with two standard checks Pant Ragini and Pusa Early Bunching. The experiment was laid out in Randomized Block Design with three replication during rabi season 2015-2016 at Pantnagar Centre for Plant Genetic Resources, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand. The analysis of variance revealed highly significant differences among all the genotypes for all traits. High genotypic and phenotypic coefficient variation were observed for characters, namely the number of primary branches per plant, number of leaves at 30, 45 and 60 DAS, green leaf yield per plant, green leaf yield q/ha . The genetic advance recorded highest in green leaf yield q/ha (33.93) followed by green leaf yield per plant (21.20g). Highest percent of heritability were shown by 1000 seed weight (99.12%) followed by the number of primary branches per plant (97.18%). Green leaf yield q/ha showed high heritability and high genetic advance. These superior genotypes can be further used in crop improvement programs of fenugreek. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20advance" title="genetic advance">genetic advance</a>, <a href="https://publications.waset.org/abstracts/search?q=genotypic%20coefficient%20variation" title=" genotypic coefficient variation"> genotypic coefficient variation</a>, <a href="https://publications.waset.org/abstracts/search?q=heritability" title=" heritability"> heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotypic%20coefficient%20variation" title=" phenotypic coefficient variation "> phenotypic coefficient variation </a> </p> <a href="https://publications.waset.org/abstracts/68953/variability-parameters-for-growth-and-yield-characters-in-fenugreek-trigonella-spp-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Phytoextraction of Heavy Metals in a Contaminated Site in Assam, India Using Indian Pennywort and Fenugreek: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinumani%20Choudhury">Chinumani Choudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal contamination is an alarming problem, which poses a serious risk to human health and the surrounding geology. Soils get contaminated with heavy metals due to the un-regularized industrial discharge of the toxic metal-rich effluents. Under such a condition, the remediation of the contaminated sites becomes imperative for a sustainable, safe, and healthy environment. Phytoextraction, which involves the removal of heavy metals from the soil through root absorption and uptake, is a viable remediation technique, which ensures extraction of the toxic inorganic compound available in the soil even at low concentrations. The soil present in the Silghat Region of Assam, India, is mostly contaminated with Zinc (Zn) and Lead (Pb), having concentrations as high as to cause a serious environmental problem if proper measures are not taken. In the present study, an extensive experimental study was carried out to understand the effectiveness of two commonly planted trees in Assam, namely, i) Indian Pennywort and ii) Fenugreek, in the removal of heavy metals from the contaminated soil. The basic characterization of the soil in the contaminated site of the Silghat region was performed and the field concentration of Zn and Pb was recorded. Various long-term laboratory pot tests were carried out by sowing the seeds of Indian Pennywort and Fenugreek in a soil, which was spiked, with a very high dosage of Zn and Pb. The tests were carried out for different concentration of a particular heavy metal and the individual effectiveness in the absorption of the heavy metal by the plants were studied. The concentration of the soil was monitored regularly to assess the rate of depletion and the simultaneous uptake of the heavy metal from the soil to the plant. The amount of heavy metal uptake by the plant was also quantified by analyzing the plant sample at the end of the testing period. Finally, the study throws light on the applicability of the studied plants in the field for effective remediation of the contaminated sites of Assam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title="phytoextraction">phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-metals" title=" heavy-metals"> heavy-metals</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20pennywort" title=" Indian pennywort"> Indian pennywort</a>, <a href="https://publications.waset.org/abstracts/search?q=fenugreek" title=" fenugreek"> fenugreek</a> </p> <a href="https://publications.waset.org/abstracts/127760/phytoextraction-of-heavy-metals-in-a-contaminated-site-in-assam-india-using-indian-pennywort-and-fenugreek-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> The Effect of 6 Weeks Endurance Swimming Training on Blood Glucose and Cardiac Tissue Antioxidants in Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kh.%20Dehkordi">Kh. Dehkordi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sharifi%20Gholam"> R. Sharifi Gholam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Arshadi"> S. Arshadi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Oxidative stress is produced under diabetic conditions and possibly causes various forms of tissue damage inpatients with diabetes. Antioxidants defend against the harmful effect of free radicals, which are associated with heart disease, cancer, arthritis, aging and many other diseases1). Antioxidants are very stable molecules capable of neutralizing free radicals by donating an electron to them.The aim of this study was to examine the effect of swimming training, fenugreek seed extract and glibenclamide on plasma glucose and cardiac antioxidants activity in diabetic rats. Design: For this purpose, fifty male wistar rats were divided into five groups, two groups of control rats (diabetic control [DC] and healthy control [HC]), one group of endurance swimming training (EST), one group of fenugreek seed extract highdose (F1, 1.74 g/kg b.w), one group of fenugreek seed extract middle dose (F2, 0.87 g/kg b.w), one group of glibenclamide (G, 0.5 mg/kg b.w). Materials and Methods: Diabetes induced by streptozotocine (STZ), data was analyzed using the one-way ANOVA followed by a Tukey test. Significance level was 0.05. Results: All of the groups' exception of HC showed significant decrease in body weight (P < 0.05), but the diabetic control and swimming training group exhibited a more decrease. All of the groups have shown a significant decrease in plasma glucose than DC group (P < 0.05) but this reduction was more in G group than DC no HC group. S, G and HC groups have shown significant increase in cardiac antioxidant than DC group (P < 0.05) but there wasn't significant difference in other groups (P > 0.05). Conclusion: The present results indicate that regular swimming training lead to decrease in plasma glucose and enhanced cardiac antioxidants in diabetic rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swimming" title="swimming">swimming</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac" title=" cardiac"> cardiac</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title=" antioxidants"> antioxidants</a> </p> <a href="https://publications.waset.org/abstracts/34943/the-effect-of-6-weeks-endurance-swimming-training-on-blood-glucose-and-cardiac-tissue-antioxidants-in-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Potency Interaction using Simvastatin and Herbs Cholesterol Lowering Agent, Prevention of Unwanted Effect in Combination Hyperlipidemia Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agung%20A.%20Ginanjar">Agung A. Ginanjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilitasari"> Lilitasari</a>, <a href="https://publications.waset.org/abstracts/search?q=Indra%20Prasetya"> Indra Prasetya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizal%20R.%20Hanif"> Rizal R. Hanif</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusrina%20Rismandini"> Yusrina Rismandini</a>, <a href="https://publications.waset.org/abstracts/search?q=Atina%20Hussaana"> Atina Hussaana</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurita%20P.%20Sari"> Nurita P. Sari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyperlipidemia is an increase of lipids and cholesterol in the blood that causes the formation of atherosklerosis. The recent pharmacological therapy nowadays is statin. Many Indonesian people use of medicinal plants. There are several medical plants that people always use to cure hyperlipidemia such as bulbs onion sabrang, areca nuts, and seed of fenugreek. Most people often use a combination therapy of conventional medicine and herbs to achieve the desired therapeutic effect of combination therapy. The use of combination therapy might cause the interaction of pharmacodynamic from those medicines so that it influences the pharmacological effect of one of medicine. The aim of this study is to know the interaction of simvastatin and a cholesterol-lowering herb seen in rats pharmacodynamic simvastatin phase. This research used post-test only controlled group design. Analysis of statistical data normality and homogenity were tested by Kolmogorov Smirnov. The ANOVA test is used when the data is obtained homogeneous but if it is found that the data are not homogeneous then kruskal-wallis test is used. Normal (63.196 mg/dl), negative (70.604 mg/dl), positive (62.512 mg/dl), areca nuts (56.564 mg/dl), fenugreek seed (47.538 ,g/dl), onion sabrang (62.312 mg/dl). The results prove that the combination of herbs and simvastatin did not have a significant difference (P>0,05). The conclusion of this study is that the combination of simvastatin and a cholesterol-lowering herb can cause some pharmacodynamic interactions such as a synergistic effect, antagonist, and a powerful additive, so that combination therapy is not more effective than single simvastatin therapy. The use of the combination therapy is not given in the same time. It would be better if there are some period of time when the combination therapy is applied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=onion%20bulb%20sabrang" title="onion bulb sabrang">onion bulb sabrang</a>, <a href="https://publications.waset.org/abstracts/search?q=areca%20nuts" title=" areca nuts"> areca nuts</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20of%20fenugreek" title=" seed of fenugreek"> seed of fenugreek</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20medicine" title=" interaction medicine"> interaction medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperlipidemia" title=" hyperlipidemia"> hyperlipidemia</a> </p> <a href="https://publications.waset.org/abstracts/33387/potency-interaction-using-simvastatin-and-herbs-cholesterol-lowering-agent-prevention-of-unwanted-effect-in-combination-hyperlipidemia-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Gamma Irradiated Sodium Alginate and Phosphorus Fertilizer Enhances Seed Trigonelline Content, Biochemical Parameters and Yield Attributes of Fenugreek (Trigonella foenum-graecum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Ahmad%20Dar">Tariq Ahmad Dar</a>, <a href="https://publications.waset.org/abstracts/search?q=Moinuddin"> Moinuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Masroor%20A.%20Khan"> M. Masroor A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is considerable need in enhancing the content and yield of active constituents of medicinal plants keeping in view their massive demand worldwide. Different strategies have been employed to enhance the active constituents of medicinal plants and the use of phytohormones has been proved effective in this regard. Gamma-irradiated Sodium alginate (ISA) is known to elicit an array of plant defense responses and biological activities in plants. Considering the medicinal importance, a pot experiment was conducted to explore the effect of ISA and phosphorus on growth, yield and quality of fenugreek (Trigonella foenum-graecum L.). ISA spray treatments (0, 40, 80 and 120 mg L-1) were applied alone and in combination with 40 kg P ha-1 (P40). Crop performance was assessed in terms of plant growth characteristics, physiological attributes, seed yield and the content of seed trigonelline. Of the ten-treatments, P40 + 80 mg L−1 of ISA proved the best. The results showed that foliar spray of ISA alone or in combination with P40 augmented the plant vegetative growth, enzymatic activities, trigonelline content, trigonelline yield and economic yield of fenugreek. Application of 80 mg L−1 of ISA applied with P40 gave the best results for almost all the parameters studied compared to control or to 80 mg L−1 of ISA applied alone. This treatment increased the total content of chlorophyll, carotenoids, leaf -N, -P and -K and trigonelline compared to the control by 24.85 and 27.40%, 15 and 23.52%, 18.70 and 16.84%, 15.88 and 18.92%, 12 and 14.44%, at 60 and 90 DAS respectively. The combined application of 80 mg L−1 of ISA along with P40 resulted in the maximum increase in seed yield, trigonelline content and trigonelline yield by146, 34 and 232.41%, respectively, over the control. Gel permeation chromatography revealed the formation of low molecular weight fractions in ISA samples, containing even less than 20,000 molecular weight oligomers, which might be responsible for plant growth promotion in this study. Trigonelline content was determined by reverse phase high performance liquid chromatography (HPLC) with C-18 column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma-irradiated%20sodium%20alginate" title="gamma-irradiated sodium alginate">gamma-irradiated sodium alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20permeation%20chromatography" title=" gel permeation chromatography"> gel permeation chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=trigonelline%20content" title=" trigonelline content"> trigonelline content</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/11852/gamma-irradiated-sodium-alginate-and-phosphorus-fertilizer-enhances-seed-trigonelline-content-biochemical-parameters-and-yield-attributes-of-fenugreek-trigonella-foenum-graecum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Comparative Study on Productivity, Chemical Composition and Yield Quality of Some Alternative Crops in Romanian Organic Farming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Toader">Maria Toader</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20Valentin%20Roman"> Gheorghe Valentin Roman</a>, <a href="https://publications.waset.org/abstracts/search?q=Alina%20Maria%20Ionescu"> Alina Maria Ionescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crops diversity and maintaining and enhancing the fertility of agricultural lands are basic principles of organic farming. With a wider range of crops in agroecosystem can improve the ability to control weeds, pests and diseases, and the performance of crops rotation and food safety. In this sense, the main objective of the research was to study the productivity and chemical composition of some alternative crops and their adaptability to soil and climatic conditions of the agricultural area in Southern Romania and to cultivation in the organic farming system. The alternative crops were: lentil (7 genotypes); five species of grain legumes (5 genotypes); four species of oil crops (5 genotypes). The seed production was, on average: 1343 kg/ha of lentil; 2500 kg/ha of field beans; 2400 kg/ha of chick peas and blackeyed peas; more than 2000 kg/ha of atzuki beans, over 1250 kg/ha of fenugreek; 2200 kg/ha of safflower; 570 kg/ha of oil pumpkin; 2150 kg/ha of oil flax; 1518 kg/ha of camelina. Regarding chemical composition, lentil seeds contained: 22.18% proteins, 3.03% lipids, 33.29% glucides, 4.00% minerals, and 259.97 kcal energy values. For field beans: 21.50% proteins, 4.40% lipids, 63.90% glucides, 5.85% minerals, 395.36 kcal energetic value. For chick peas: 21.23% proteins, 4.55% lipids, 53.00% glucides, 3.67% minerals, 348.22 kcal energetic value. For blackeyed peas: 23.30% proteins, 2.10% lipids, 68.10% glucides, 3.93% minerals, 350.14 kcal energetic value. For adzuki beans: 21.90% proteins, 2.60% lipids, 69.30% glucides, 4.10% minerals, 402.48 kcal energetic value. For fenugreek: 21.30% proteins, 4.65% lipids, 63.83% glucides, 5.69% minerals, 396.54 kcal energetic value. For safflower: 12.60% proteins, 28.37% lipids, 46.41% glucides, 3.60% minerals, 505.78 kcal energetic value. For camelina: 20.29% proteins, 31.68% lipids, 36.28% glucides, 4.29% minerals, 526.63 kcal energetic value. For oil pumpkin: 29.50% proteins, 36.92% lipids, 18.50% glucides, 5.41% minerals, 540.15 kcal energetic value. For oil flax: 22.56% proteins, 34.10% lipids, 27.73% glucides, 5.25% minerals, 558.45 kcal energetic value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptability" title="adaptability">adaptability</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20crops" title=" alternative crops"> alternative crops</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title=" chemical composition"> chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20farming%20productivity" title=" organic farming productivity"> organic farming productivity</a> </p> <a href="https://publications.waset.org/abstracts/28059/comparative-study-on-productivity-chemical-composition-and-yield-quality-of-some-alternative-crops-in-romanian-organic-farming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Epigenetic Modifying Potential of Dietary Spices: Link to Cure Complex Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeena%20Gupta">Jeena Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the today’s world of pharmaceutical products, one should not forget the healing properties of inexpensive food materials especially spices. They are known to possess hidden pharmaceutical ingredients, imparting them the qualities of being anti-microbial, anti-oxidant, anti-inflammatory and anti-carcinogenic. Further aberrant epigenetic regulatory mechanisms like DNA methylation, histone modifications or altered microRNA expression patterns, which regulates gene expression without changing DNA sequence, contribute significantly in the development of various diseases. Changing lifestyles and diets exert their effect by influencing these epigenetic mechanisms which are thus the target of dietary phytochemicals. Bioactive components of plants have been in use since ages but their potential to reverse epigenetic alterations and prevention against diseases is yet to be explored. Spices being rich repositories of many bioactive constituents are responsible for providing them unique aroma and taste. Some spices like curcuma and garlic have been well evaluated for their epigenetic regulatory potential, but for others, it is largely unknown. We have evaluated the biological activity of phyto-active components of Fennel, Cardamom and Fenugreek by in silico molecular modeling, in vitro and in vivo studies. Ligand-based similarity studies were conducted to identify structurally similar compounds to understand their biological phenomenon. The database searching has been done by using Fenchone from fennel, Sabinene from cardamom and protodioscin from fenugreek as a query molecule in the different small molecule databases. Moreover, the results of the database searching exhibited that these compounds are having potential binding with the different targets found in the Protein Data Bank. Further in addition to being epigenetic modifiers, in vitro study had demonstrated the antimicrobial, antifungal, antioxidant and cytotoxicity protective effects of Fenchone, Sabinene and Protodioscin. To best of our knowledge, such type of studies facilitate the target fishing as well as making the roadmap in drug design and discovery process for identification of novel therapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epigenetics" title="epigenetics">epigenetics</a>, <a href="https://publications.waset.org/abstracts/search?q=spices" title=" spices"> spices</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=fenchone" title=" fenchone"> fenchone</a> </p> <a href="https://publications.waset.org/abstracts/74609/epigenetic-modifying-potential-of-dietary-spices-link-to-cure-complex-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Antiglycemic Activity of Raw Plant Materials as Potential Components of Functional Food</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Flaczyk">Ewa Flaczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Przeor"> Monika Przeor</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Kobus-Cisowska"> Joanna Kobus-Cisowska</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B3zef%20Korczak"> Józef Korczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper was to collect the information concerning the most popular raw plant materials of antidiabetic activity, in a context of functional food developing production. The elaboration discusses morphological elements possible for an application in functional food production of the plants such as: common bean, ginger, Ceylon cinnamon, white mulberry, fenugreek, French lilac, ginseng, jambolão, and bitter melon. An activity of bioactive substances contained in these raw plant materials was presented, pointing their antiglycemic and also hypocholesterolemic, antiarthritic, antirheumatic, antibacterial, and antiviral activity in the studies on humans and animals. Also the genesis of functional food definition was presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiglycemic%20activity" title="antiglycemic activity">antiglycemic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20plant%20materials" title=" raw plant materials"> raw plant materials</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20food" title=" functional food"> functional food</a>, <a href="https://publications.waset.org/abstracts/search?q=food" title=" food"> food</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20sciences" title=" nutritional sciences"> nutritional sciences</a> </p> <a href="https://publications.waset.org/abstracts/4153/antiglycemic-activity-of-raw-plant-materials-as-potential-components-of-functional-food" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Trigonelline: A Promising Compound for The Treatment of Alzheimer&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mai%20M.%20Farid">Mai M. Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ximeng%20Yang"> Ximeng Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoharu%20Kuboyama"> Tomoharu Kuboyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Chihiro%20Tohda"> Chihiro Tohda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trigonelline is a major alkaloid component derived from Trigonella foenum-graecum L. (fenugreek) and has been reported before as a potential neuroprotective agent, especially in Alzheimer’s disease (AD). However, the previous data were unclear and used model mice were not well established. In the present study, the effect of trigonelline on memory function was investigated in Alzheimer’s disease transgenic model mouse, 5XFAD which overexpresses the mutated APP and PS1 genes. Oral administration of trigonelline for 14 days significantly enhanced object recognition and object location memories. Plasma and cerebral cortex were isolated at 30 min, 1h, 3h, and 6 h after oral administration of trigonelline. LC-MS/MS analysis indicated that trigonelline was detected in both plasma and cortex from 30 min after, suggesting good penetration of trigonelline into the brain. In addition, trigonelline significantly ameliorated axonal and dendrite atrophy in Amyloid β-treated cortical neurons. These results suggest that trigonelline could be a promising therapeutic candidate for AD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alzheimer%E2%80%99s%20disease" title="alzheimer’s disease">alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=cortical%20neurons" title=" cortical neurons"> cortical neurons</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS%2FMS%20analysis" title=" LC-MS/MS analysis"> LC-MS/MS analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=trigonelline" title=" trigonelline"> trigonelline</a> </p> <a href="https://publications.waset.org/abstracts/116264/trigonelline-a-promising-compound-for-the-treatment-of-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Trigonella foenum-graecum Seeds Extract as Therapeutic Candidate for Treatment of Alzheimer&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mai%20M.%20Farid">Mai M. Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ximeng%20Yang"> Ximeng Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoharu%20Kuboyama"> Tomoharu Kuboyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuna%20Inada"> Yuna Inada</a>, <a href="https://publications.waset.org/abstracts/search?q=Chihiro%20Tohda"> Chihiro Tohda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intro: Trigonella foenum-graecum (Fenugreek), from Fabaceae family is a well-known plant traditionally used as food and medicine. Many pharmacological effects of Trigonella foenum- graecum seeds extract (TF extract) were evaluated such as anti-diabetic, anti-tumor and anti-dementia effects using in vivo models. Regarding the anti-dementia effects of TF extract, diabetic rats, aluminum chloride-induced amnesia rats and scopolamine-injected mice were used previously for evaluation, which are not well established as Alzheimer’s disease models. In addition, those previous studies, active constituents in TF extract for memory function were not identified. Method: This study aimed to clarify the effect of TF extract on Alzheimer’s disease model, 5XFAD mouse that overexpresses mutated APP and PS1 genes and determine the major active constituent in the brain after oral intake of TF extract. Results: Trigonelline was detected in the cerebral cortex of 5XFAD mice after 24 hours of oral administration of TF extract by LC-MS/MS. Oral administration of TF extract for 17 days improved object location memory in 5XFAD mice. Conclusion: These results suggest that TF extract and its active constituents could be an expected therapeutic candidate for Alzheimer’s disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s%20disease" title="Alzheimer&#039;s disease">Alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS%2FMS" title=" LC-MS/MS"> LC-MS/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20recovery" title=" memory recovery"> memory recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=Trigonella%20foenum-graecum%20Seeds" title=" Trigonella foenum-graecum Seeds"> Trigonella foenum-graecum Seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=5XFAD%20mice" title=" 5XFAD mice"> 5XFAD mice</a> </p> <a href="https://publications.waset.org/abstracts/131399/trigonella-foenum-graecum-seeds-extract-as-therapeutic-candidate-for-treatment-of-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Using Medicinal Herbs in Designing Green Roofs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Javad%20Shakouri">Mohamad Javad Shakouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Behshad%20Riahipour"> Behshad Riahipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the use of medicinal herbs in architecture and green space has a significant effect on the process of calming human and increases the reliability coefficient of design and design flexibility. The current research was conducted with the aim to design green roof and investigate the effect of medicinal herbs such as cress, leek, fenugreek, beet, sweet fennel, green basil, purple basil, and purslane on reducing the number of environmental pollutants (copper, zinc, and cadmium). Finally, the weight of the dry plant and the concentration of elements zinc, lead, and cadmium in the herbs was measured. According to the results, the maximum dry weight (88.10 and 73.79 g) was obtained in beet and purslane respectively and the minimum dry weight (24.12 and 25.21) was obtained in purple basil, and green basil respectively. The maximum amount of element zinc (235 and 213 mg/kg) and the maximum amount of lead (143 mg/kg) were seen in sweet fennel and purple basil. In addition, the maximum amount of cadmium (13 mg/kg) was seen in sweet fennel and purple basil and the minimum amount of lead and cadmium (78 and 7 mg/kg) was seen in green basil, and the minimum amount of zinc (110 mg/kg) was seen in leek. On the other hand, the absorption amount of element lead in the herbs beet and purslane was the same and both absorbed 123 mg/kg lead. Environmentally, if green roofs are implemented extensively and in wide dimensions in urban spaces, they will purify and reduce pollution significantly by absorbing carbon dioxide and producing oxygen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicinal%20herbs" title="medicinal herbs">medicinal herbs</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20space" title=" green space"> green space</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title=" green roof"> green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20basil" title=" green basil"> green basil</a> </p> <a href="https://publications.waset.org/abstracts/96751/using-medicinal-herbs-in-designing-green-roofs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Comparative Scanning Electron Microscopic Observations of Anthelminthic Effect of Trigonella foenum-graecum on Paramphistomum cervi in Buffalo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Roat">Kiran Roat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhanupriya%20Sanger"> Bhanupriya Sanger</a>, <a href="https://publications.waset.org/abstracts/search?q=Gayatri%20Swarnakar"> Gayatri Swarnakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amphistomiasis disease is the main health problem throughout of the world and responsible for great economic losses to cattle industries, mostly to poor cattle farmers in developing countries. Among the rumen parasites, the Paramphistomum cervi were collected from the rumen of freshly slaughtered buffalo for the further treatment process. Trigonella foenum-graecum is commonly known as methi and fenugreek and their seeds are known for their therapeutic value. The present study was considered to evaluate in vitro efficacy of aqueous extract of Trigonella foenum-graecum on P. cervi. 130 mg/ml concentration of aqueous extract shows total mortality of P. cervi at 5 hours. The ultrastructural surface topography of untreated animal was compared with a treated animal by scanning electron microscope (SEM). The body of untreated P. cervi in conical shape, tegumental surface is highly ridged with transverse folds and present abundance number of papillaes. Observations demonstrated that the body of treated P. cervi become shrunken & elongated. Treated parasite shows the deep breakage in tegument and the disappearance of tegumental folds & papillae. Severe blebs formations have been found. Above findings, it can be concluded that the seeds of Trigonella foenum-graecum can be used as an anthelminthic agent to eliminate P. cervi from the body of buffalo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paramphistomum%20cervi" title="Paramphistomum cervi">Paramphistomum cervi</a>, <a href="https://publications.waset.org/abstracts/search?q=Trigonella%20foenum-graecum" title=" Trigonella foenum-graecum"> Trigonella foenum-graecum</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=buffalo" title=" buffalo"> buffalo</a> </p> <a href="https://publications.waset.org/abstracts/57215/comparative-scanning-electron-microscopic-observations-of-anthelminthic-effect-of-trigonella-foenum-graecum-on-paramphistomum-cervi-in-buffalo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Shahi">N. C. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupama%20Singh"> Anupama Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kate"> E. Kate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=overall%20efficiency" title="overall efficiency">overall efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20tunnel%20dryer" title=" solar tunnel dryer"> solar tunnel dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20heat%20consumption" title=" specific heat consumption"> specific heat consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20drying" title=" sun drying"> sun drying</a> </p> <a href="https://publications.waset.org/abstracts/35430/development-of-solar-poly-house-tunnel-dryer-std-for-medicinal-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10