CINXE.COM

Search results for: prosthetics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: prosthetics</title> <meta name="description" content="Search results for: prosthetics"> <meta name="keywords" content="prosthetics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="prosthetics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="prosthetics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: prosthetics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> The Experience of the Prosthetics Program in Palestine Arab American University as Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Dawabsheh">Ahmad Dawabsheh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prosthetics program is an international program, found in honorable respectable universities. This program like other programs was found to serve several reasons, The most important reason is humanity, humanity free of conflict, religion, race, or war, but rather focuses on the humanitarian issue. This is what encouraged me to study this topic to help people, especially the poor in the world. The researcher will distribute a questionnaire to the faculty members and students of the department to measure the knowledge and importance of this program from the practical and theoretical sides of the local community. The researcher used the analytical method to study the subject. The research will attempt to answer the questions: What is the student's knowledge of this program? How important is this program to society?. The research aims to know the Palestinian society's need for this program. The research also aims to know the extent of students' knowledge of recent developments and new innovations in prosthetics around the world. What does the university offer to students in addition to theoretical courses? <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prosthetics" title="prosthetics">prosthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=Arab%20American%20University" title=" Arab American University"> Arab American University</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20method" title=" analytical method"> analytical method</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnair" title=" questionnair"> questionnair</a> </p> <a href="https://publications.waset.org/abstracts/148261/the-experience-of-the-prosthetics-program-in-palestine-arab-american-university-as-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Teaching Prosthetic and Orthotics in Palestine: Between Reality and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Dawabsheh">Ahmad Dawabsheh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The science of prosthetics is a renewable science that serves all humanity, regardless of gender, religion and race, and its causes are many: wars, conflicts, traffic accidents, and others. The researcher believes that there are challenges facing the specialization, including that society views a negative view of the amputee, especially if it is a female. This research aims to focus on the reality of teaching prosthetics in Palestine, especially in the Arab American University, as it is the only major. As well as the challenges facing this major: financial, human, academic, laboratories, and others. The researcher used the descriptive and analytical approach, which is the closest approach to studying the subject. The researcher believes that there is a failure on the part of the state and the Ministry of Health in this matter. In addition to the lack of societal culture, as well as the large quantities of prosthetic fittings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prothetics" title="prothetics">prothetics</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotics" title=" orthotics"> orthotics</a>, <a href="https://publications.waset.org/abstracts/search?q=Arab%20American%20University" title=" Arab American University"> Arab American University</a>, <a href="https://publications.waset.org/abstracts/search?q=Palestine" title=" Palestine"> Palestine</a> </p> <a href="https://publications.waset.org/abstracts/149071/teaching-prosthetic-and-orthotics-in-palestine-between-reality-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linghui%20Meng">Linghui Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Atlas"> James Atlas</a>, <a href="https://publications.waset.org/abstracts/search?q=Deborah%20Munro"> Deborah Munro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthetic%20control" title=" prosthetic control"> prosthetic control</a>, <a href="https://publications.waset.org/abstracts/search?q=electromyographic%20prosthetics" title=" electromyographic prosthetics"> electromyographic prosthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20gesture%20classification" title=" hand gesture classification"> hand gesture classification</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20neural%20networks" title=" computational neural networks"> computational neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=TSFE" title=" TSFE"> TSFE</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20feature%20extraction" title=" time series feature extraction"> time series feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20count" title=" channel count"> channel count</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=ninapro" title=" ninapro"> ninapro</a>, <a href="https://publications.waset.org/abstracts/search?q=classifiers" title=" classifiers"> classifiers</a> </p> <a href="https://publications.waset.org/abstracts/193326/preliminary-study-of-hand-gesture-classification-in-upper-limb-prosthetics-using-machine-learning-with-emg-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Assistive Technologies and the &#039;Myth&#039; of Independent Living: A Sociological Understanding of Assistive Technologies for Locomotor Disabled in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavani%20K.%20Sree">Pavani K. Sree</a>, <a href="https://publications.waset.org/abstracts/search?q=Ragahava%20Reddy%20Chandri"> Ragahava Reddy Chandri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Independent living and living with dignity have been the hallmarks of the movement of the persons with disabilities across the globe against the oppression perpetuated by society in the form of social and physical structural barriers. Advancements in assistive technologies have been providing a new lease of life to persons with disabilities. However, access to these technologies is marred by the issues of affordability and availability. Poor from the developing countries find it difficult to make independent living or live with dignity because of lack of access and inability to afford the advance technologies. Class and gender appear to be key factors influencing the access to modern assistive technologies. The present paper attempts to understand the dynamics of class and gender in accessing advanced technologies in the Indian context. Based on an empirical study in which data were collected from persons with locomotor disabilities and service providers, the paper finds that the advance technologies are expensive and inaccessible to all persons with disabilities. The paper also finds that men with disabilities are prioritized by the members of the family for the use of advance technologies while women with disabilities are forced to live with not so advanced technologies. The paper finds that the state institutions working in the field of prosthetics and assistive technologies fail to deliver to the requirements of the poor. It was found that because of lack of facilities at the state institutions the cost of prosthetics, in the case of orthopedically challenged, is expensive and unaffordable for the poor. It was found that while rich male access the private services the poor women depend on the state institutions. It may be said that the social, cultural stereotypes extend not only to the state organizations but also to the use of prosthetics. Thus the notions of independent living and living with dignity in third world countries context are still elusive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessibility" title="accessibility">accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=assistive%20technology" title=" assistive technology"> assistive technology</a>, <a href="https://publications.waset.org/abstracts/search?q=class" title=" class"> class</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=state" title=" state"> state</a> </p> <a href="https://publications.waset.org/abstracts/63708/assistive-technologies-and-the-myth-of-independent-living-a-sociological-understanding-of-assistive-technologies-for-locomotor-disabled-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> 3D Medical Printing the Key Component in Future of Medical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Asgharpour">Zahra Asgharpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Renteria"> Eric Renteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20De%20Boodt"> Sebastian De Boodt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a growing trend towards personalization of medical care, as evidenced by the emphasis on outcomes based medicine, the latest developments in CT and MR imaging and personalized treatment in a variety of surgical disciplines. 3D Printing has been introduced and applied in the medical field since 2000. The first applications were in the field of dental implants and custom prosthetics. According to recent publications, 3D printing in the medical field has been used in a wide range of applications which can be organized into several categories including implants, prosthetics, anatomical models and tissue bioprinting. Some of these categories are still in their infancy stage of the concept of proof while others are in application phase such as the design and manufacturing of customized implants and prosthesis. The approach of 3D printing in this category has been successfully used in the health care sector to make both standard and complex implants within a reasonable amount of time. In this study, some of the clinical applications of 3D printing in design and manufacturing of a patient-specific hip implant would be explained. In cases where patients have complex bone geometries or are undergoing a complex revision on hip replacement, the traditional surgical methods are not efficient, and hence these patients require patient-specific approaches. There are major advantages in using this new technology for medical applications, however, in order to get this technology widely accepted in medical device industry, there is a need for gaining more acceptance from the medical device regulatory offices. This is a challenge that is moving onward and will help the technology find its way at the end as an accepted manufacturing method for medical device industry in an international scale. The discussion will conclude with some examples describing the future directions of 3D Medical Printing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT%2FMRI" title="CT/MRI">CT/MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20devices" title=" medical devices"> medical devices</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20specific%20implants" title=" patient specific implants"> patient specific implants</a> </p> <a href="https://publications.waset.org/abstracts/56645/3d-medical-printing-the-key-component-in-future-of-medical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Qualitative Needs Assessment for Development of a Smart Thumb Prosthetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syena%20Moltaji">Syena Moltaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Posa"> Stephanie Posa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sander%20Hitzig"> Sander Hitzig</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanda%20Mayo"> Amanda Mayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Heather%20Baltzer"> Heather Baltzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: To critically assess deficits following thumb amputation and delineate elements of an ideal thumb prosthesis from the end-user perspective. Methods: This was a qualitative study based on grounded theory. End-user stakeholder groups of thumb amputees and prosthetists were interviewed. Transcripts were reviewed whole first for familiarity. Data coding was then performed by two individual authors. Coded units were grouped by similarity and reviewed to reach a consensus. Codes were then analyzed for emergent themes by each author. A consensus meeting was held with all authors to finalize themes. Results: Three patients with traumatic thumb amputation and eight prosthetists were interviewed. Seven themes emerged. First was the significant impact of losing a thumb, in which codes of functional impact, mental impact, and occupational impact were included. The second theme was the unique nature of each thumb amputee, including goals, readiness for prosthesis, nature of the injury, and insurance. The third emergent theme was cost, surrounding government funding, insurability, and prosthetic pricing. The fourth theme was patient frustration, which included mismatches of prosthetic expectations and realities, activity limitations, and causes of devices abandonment. Themes five and six surrounded the strengths and weaknesses of current prosthetics, respectively. Theme seven was the ideal design for a thumb prosthetic, including abilities, suspension, and materials. Conclusions: Representative data from stakeholders mapped the current status of thumb prosthetics. Preferences for an ideal thumb prosthetic emerged, with suggestions for a simple, durable design. The ability to oppose, grasp and sense pressure was reported as functional priorities. Feasible cost and easy fitting emerged as systemic objectives. This data will be utilized in the development of a sensate thumb prosthetic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20thumb" title="smart thumb">smart thumb</a>, <a href="https://publications.waset.org/abstracts/search?q=thumb%20prosthetic" title=" thumb prosthetic"> thumb prosthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=sensate%20prosthetic" title=" sensate prosthetic"> sensate prosthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=amputation" title=" amputation"> amputation</a> </p> <a href="https://publications.waset.org/abstracts/148325/qualitative-needs-assessment-for-development-of-a-smart-thumb-prosthetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Prosthesis Design for Bilateral Hip Disarticulation Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Plaza">Mauricio Plaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Willian%20Aperador"> Willian Aperador</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hip disarticulation is an amputation through the hip joint capsule, removing the entire lower extremity, with a closure of the remaining musculature over the exposed acetabulum. Tumors of the distal and proximal femur were treated by total femur resection; a hip disarticulation sometimes is a performance for massive trauma with crush injuries to the lower extremity. This article discusses the design a system for rehabilitation of a patient with bilateral hip disarticulations. The prosthetics designed allowed the patient to do natural gait suspended between parallel articulate crutches with the body weight support between the crutches. The care of this patient was a challenge due to bilateral amputations at such a high level and the special needs of a patient mobility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amputation" title="amputation">amputation</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthesis" title=" prosthesis"> prosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=hemipelvectomy" title=" hemipelvectomy "> hemipelvectomy </a> </p> <a href="https://publications.waset.org/abstracts/6854/prosthesis-design-for-bilateral-hip-disarticulation-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> The Bloom of 3D Printing in the Health Care Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mihika%20Shivkumar">Mihika Shivkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Kumar"> Krishna Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Perisamy"> C. Perisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D printing is a method of manufacturing wherein materials, such as plastic or metal, are deposited in layers one on top of the other to produce a three dimensional object. 3D printing is most commonly associated with creating engineering prototypes. However, its applications in the field of human health care have been frequently disregarded. Medical applications for 3D printing are expanding rapidly and are envisaged to revolutionize health care. Medical applications for 3D printing, both present and its potential, can be categorized broadly, including: creation of customized prosthetics tissue and organ fabrication; creation of implants, and anatomical models and pharmaceutical research regarding drug dosage forms. This piece breaks down bioprinting in the healthcare sector. It focuses on the better subtle elements of every particular point, including how 3D printing functions in the present, its impediments, and future applications in the health care sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-printing" title="bio-printing">bio-printing</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype" title=" prototype"> prototype</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=organ%20regeneration" title=" organ regeneration"> organ regeneration</a> </p> <a href="https://publications.waset.org/abstracts/44541/the-bloom-of-3d-printing-in-the-health-care-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Effects of Prosthetic Leg Stiffness on Gait, Comfort, and Satisfaction: A Review of Mechanical Engineering Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20Fatehi">Kourosh Fatehi</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloofar%20Hanafi"> Niloofar Hanafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the challenges in providing optimal prosthetic legs for lower limb amputees is to select the appropriate foot stiffness that suits their individual needs and preferences. Foot stiffness affects various aspects of walking, such as stability, comfort, and energy expenditure. However, the current prescription process is largely based on trial-and-error, manufacturer recommendations, or clinician judgment, which may not reflect the prosthesis user’s subjective experience or psychophysical sensitivity. Therefore, there is a need for more scientific and technological tools to measure and understand how prosthesis users perceive and prefer different foot stiffness levels, and how this preference relates to clinical outcomes. This review covers how to measure and design lower leg prostheses based on user preference and foot stiffness. It also explores how these factors affect walking outcomes and quality of life, and identifies the current challenges and gaps in this field from a mechanical engineering standpoint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perception" title="perception">perception</a>, <a href="https://publications.waset.org/abstracts/search?q=preference" title=" preference"> preference</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthetics" title=" prosthetics"> prosthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/171957/the-effects-of-prosthetic-leg-stiffness-on-gait-comfort-and-satisfaction-a-review-of-mechanical-engineering-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Modeling and Analysis of a Cycling Prosthetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Tolentino">John Tolentino</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Seok%20Park"> Yong Seok Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are currently many people living with limb loss in the USA. The main causes for amputation can range from vascular disease, to trauma, or cancer. This number is expected increase over the next decade. Many patients have a single prosthetic for the first year but end up getting a second one to accommodate their changing physique. Afterwards, the prosthesis gets replaced every three to five years depending on how often it is used. This could cost the patient up to $500,000 throughout their lifetime. Complications do not end there, however. Due to the absence of nerves, it becomes more difficult to traverse terrain with a prosthetic. Moving on an incline or decline becomes difficult, thus curbs and stairs can be a challenge. Certain physical activities, such as cycling, could be even more strenuous. It will need to be relearned to accommodate for the change in weight, center of gravity, and transfer of energy from the leg to the pedal. The purpose of this research project is to develop a new, alternate below-knee cycling prosthetic using Dieter &amp; Schmidt&rsquo;s design process approach. It will be subjected to fatigue analysis under dynamic loading to observe the limitations as well as the strengths and weaknesses of the prosthetic. Benchmark comparisons will be made between existing prosthetics and the proposed one, examining the benefits and disadvantages. The resulting prosthetic will be 3D printed using acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) plastic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20Printing" title="3D Printing">3D Printing</a>, <a href="https://publications.waset.org/abstracts/search?q=Cycling" title=" Cycling"> Cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=Prosthetic%20design" title=" Prosthetic design"> Prosthetic design</a>, <a href="https://publications.waset.org/abstracts/search?q=Synthetic%20design." title=" Synthetic design."> Synthetic design.</a> </p> <a href="https://publications.waset.org/abstracts/123679/modeling-and-analysis-of-a-cycling-prosthetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Exploring the Biocompatibility and Performance of Metals and Ceramics as Biomaterials, A Comprehensive Study for Advanced Medical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ala%20Abobakr%20Abdulhafidh%20Al-Dubai">Ala Abobakr Abdulhafidh Al-Dubai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomaterials, specifically metals and ceramics, are indispensable components in the realm of medical science, shaping the landscape of implantology and prosthetics. This study delves into the intricate interplay between these materials and biological systems, aiming to scrutinize their suitability, performance, and biocompatibility. Employing a multi-faceted approach, a range of methodologies were meticulously employed to comprehensively characterize these biomaterials. Advanced material characterization techniques were paramount in this research, with scanning electron microscopy providing intricate insights into surface morphology, and X-ray diffraction unraveling the crystalline structures. These analyses were complemented by in vitro assessments, which gauged the biological response of cells to metals and ceramics, shedding light on their potential applications within the human body. A key facet of our investigation involved a comparative study, evaluating the corrosion resistance and osseointegration potential of both metals and ceramics. Through a series of experiments, we sought to understand how these biomaterials interacted with physiological environments, paving the way for informed decisions in medical applications <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metals" title="metals">metals</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramics" title=" ceramics"> ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title=" biocompatibility"> biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=osseointegration" title=" osseointegration"> osseointegration</a> </p> <a href="https://publications.waset.org/abstracts/182324/exploring-the-biocompatibility-and-performance-of-metals-and-ceramics-as-biomaterials-a-comprehensive-study-for-advanced-medical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christina%20Adly">Christina Adly</a>, <a href="https://publications.waset.org/abstracts/search?q=Meena%20Abdelmeseeh"> Meena Abdelmeseeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20Basha"> Tamer Basha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hand%20movement%20recognition" title="hand movement recognition">hand movement recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20neural%20network" title=" recurrent neural network"> recurrent neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=movement%20error%20rate" title=" movement error rate"> movement error rate</a>, <a href="https://publications.waset.org/abstracts/search?q=intrasubject%20evaluation" title=" intrasubject evaluation"> intrasubject evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=intersubject%20evaluation" title=" intersubject evaluation"> intersubject evaluation</a> </p> <a href="https://publications.waset.org/abstracts/149564/multichannel-surface-electromyography-trajectories-for-hand-movement-recognition-using-intrasubject-and-intersubject-evaluations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Siva%20Rama%20Krishna">L. Siva Rama Krishna</a>, <a href="https://publications.waset.org/abstracts/search?q=Sriram%20Venkatesh"> Sriram Venkatesh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sastish%20Kumar"> M. Sastish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Uma%20Maheswara%20Chary"> M. Uma Maheswara Chary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title="rapid prototyping">rapid prototyping</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20sintering" title=" selective laser sintering"> selective laser sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=cranial%20defect" title=" cranial defect"> cranial defect</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20error" title=" dimensional error"> dimensional error</a> </p> <a href="https://publications.waset.org/abstracts/3068/a-comparative-study-on-the-dimensional-error-of-3d-cad-model-and-sls-rp-model-for-reconstruction-of-cranial-defect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> UV Functionalised Short Implants as an Alternative to Avoid Crestal Sinus Lift Procedure: Controlled Case Series</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naira%20Ghambaryan">Naira Ghambaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gagik%20Hakobyan"> Gagik Hakobyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose:The study was to evaluate the survival rate of short implants (5-6 mm) functionalized with UV radiation placed in the posterior segments of the atrophied maxilla. Materials and Methods:The study included 47 patients with unilateral/bilateral missing teeth and vertical atrophy of the posterior maxillary area. A total of 64 short UV-functionalized implants and 62 standard implants over 10 mm in length were placed in patients. The clinical indices included the following parameters: ISQБ MBL, OHIP-G scale. Results: For short implants, the median ISQ at placement was 62.2 for primary stability, and the median ISQ at 5 months was 69.6 ISQ. For standart implant, the mean ISQ at placement was 64.3 ISQ, and ISQ after 5 months was 71.6 ISQ. Аfter 6 months mean MBL short implants 0.87 mm, after 1 year, 1.13 mm, after 5 year was 1.48 mm. Аfter 6 months, mean MBL standard implants 0.84 mm, after 1 year, 1.24 mm, after 5 year was 1.58 mm. Mean OHIP-G scores -patients satisfaction with the implant at 4.8 ± 0.3, satisfaction with the operation 4.6 ± 0.4; satisfaction with prosthetics 4.7 ± 0.5. Cumulative 5-year short implants rates was 96.7%, standard implants was 97.4%, and prosthesis cumulative survival rate was 97.2%. Conclusions: Short implants with ultraviolet functionalization for prosthetic rehabilitation of the posterior resorbed maxilla region is a reliable, reasonable alternative to sinus lift, demonstrating fewer complications, satisfactory survival of a 5-year follow-up period, and reducing the number of additional surgical interventions and postoperative complications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=short%20implant" title="short implant">short implant</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20functionalization" title=" ultraviolet functionalization"> ultraviolet functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=atrophic%20posterior%20maxilla" title=" atrophic posterior maxilla"> atrophic posterior maxilla</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthodontic%20rehabilitation" title=" prosthodontic rehabilitation"> prosthodontic rehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/166730/uv-functionalised-short-implants-as-an-alternative-to-avoid-crestal-sinus-lift-procedure-controlled-case-series" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Evaluation of Residual Stresses in Human Face as a Function of Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Askari">M. A. Askari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Nazari"> M. A. Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Perrier"> P. Perrier</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Payan"> Y. Payan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ&rsquo;s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20tissue" title=" soft tissue"> soft tissue</a> </p> <a href="https://publications.waset.org/abstracts/42023/evaluation-of-residual-stresses-in-human-face-as-a-function-of-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Computation of Residual Stresses in Human Face Due to Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Askari">M. A. Askari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Nazari"> M. A. Nazari</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Perrier"> P. Perrier</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Payan"> Y. Payan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of the living tissues to the mechanical loads is necessary for a wide range of developing fields such as, designing of prosthetics and optimized surgery operations. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically growth and remodeling is one of the main sources. Extracting body organs from medical imaging, does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is the gravity since an organ grows under its influence from its birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. In this paper, we have implemented a computational framework based on fixed-point iteration to determine the residual stresses due to growth. Using nonlinear continuum mechanics and the concept of fictitious configuration we find the unknown stress-free reference configuration which is necessary for mechanical analysis. To illustrate the method, we apply it to a finite element model of healthy human face whose geometry has been extracted from medical images. We have computed the distribution of residual stress in facial tissues, which can overcome the effect of gravity and cause that tissues remain firm. Tissue wrinkles caused by aging could be a consequence of decreasing residual stress and not counteracting the gravity. Considering these stresses has important application in maxillofacial surgery. It helps the surgeons to predict the changes after surgical operations and their consequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth" title="growth">growth</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20tissue" title=" soft tissue"> soft tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method "> finite element method </a> </p> <a href="https://publications.waset.org/abstracts/37091/computation-of-residual-stresses-in-human-face-due-to-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Effect of Implant Design on the Height of Inter-Implant Bone Crest: A 10-Year Retrospective Study of the Astra Tech Implant and Branemark Implant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daeung%20Jung">Daeung Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In case of patients with missing teeth, multiple implant restoration has been widely used and is inevitable. To increase its survival rate, it is important to understand the influence of different implant designs on inter-implant crestal bone resorption. There are several implant systems designed to minimize loss of crestal bone, and the Astra Tech and Brånemark Implant are two of them. Aim/Hypothesis: The aim of this 10-year study was to compare the height of inter-implant bone crest in two implant systems; the Astra Tech and the Brånemark implant system. Material and Methods: In this retrospective study, 40 consecutively treated patients were utilized; 23 patients with 30 sites for Astra Tech system and 17 patients with 20 sites for Brånemark system. The implant restoration was comprised of splinted crown in partially edentulous patients. Radiographs were taken immediately after 1st surgery, at impression making, at prosthetics setting, and annually after loading. Lateral distance from implant to bone crest, inter-implant distance was gauged, and crestal bone height was measured from the implant shoulder to the first bone contact. Calibrations were performed with known length of thread pitch distance for vertical measurement, and known diameter of abutment or fixture for horizontal measurement using ImageJ. Results: After 10 years, patients treated with Astra Tech implant system demonstrated less inter-implant crestal bone resorption when implants had a distance of 3mm or less between them. In cases of implants that had a greater than 3 mm distance between them, however, there appeared to be no statistically significant difference in crestal bone loss between two systems. Conclusion and clinical implications: In the situation of partially edentulous patients planning to have more than two implants, the inter-implant distance is one of the most important factors to be considered. If it is impossible to make sure of having sufficient inter-implant distance, the implants with less micro gap in the fixture-abutment junction, less traumatic 2nd surgery approach, and the adequate surface topography would be choice of appropriate options to minimize inter-implant crestal bone resorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=implant%20design" title="implant design">implant design</a>, <a href="https://publications.waset.org/abstracts/search?q=crestal%20bone%20loss" title=" crestal bone loss"> crestal bone loss</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-implant%20distance" title=" inter-implant distance"> inter-implant distance</a>, <a href="https://publications.waset.org/abstracts/search?q=10-year%20retrospective%20study" title=" 10-year retrospective study"> 10-year retrospective study</a> </p> <a href="https://publications.waset.org/abstracts/94213/the-effect-of-implant-design-on-the-height-of-inter-implant-bone-crest-a-10-year-retrospective-study-of-the-astra-tech-implant-and-branemark-implant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Using Serious Games to Integrate the Potential of Mass Customization into the Fuzzy Front-End of New Product Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20N.%20O%27Sullivan">Michael N. O&#039;Sullivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Con%20Sheahan"> Con Sheahan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mass customization is the idea of offering custom products or services to satisfy the needs of each individual customer while maintaining the efficiency of mass production. Technologies like 3D printing and artificial intelligence have many start-ups hoping to capitalize on this dream of creating personalized products at an affordable price, and well established companies scrambling to innovate and maintain their market share. However, the majority of them are failing as they struggle to understand one key question – where does customization make sense? Customization and personalization only make sense where the value of the perceived benefit outweighs the cost to implement it. In other words, will people pay for it? Looking at the Kano Model makes it clear that it depends on the product. In products where customization is an inherent need, like prosthetics, mass customization technologies can be highly beneficial. However, for products that already sell as a standard, like headphones, offering customization is likely only an added bonus, and so the product development team must figure out if the customers’ perception of the added value of this feature will outweigh its premium price tag. This can be done through the use of a ‘serious game,’ whereby potential customers are given a limited budget to collaboratively buy and bid on potential features of the product before it is developed. If the group choose to buy customization over other features, then the product development team should implement it into their design. If not, the team should prioritize the features on which the customers have spent their budget. The level of customization purchased can also be translated to an appropriate production method, for example, the most expensive type of customization would likely be free-form design and could be achieved through digital fabrication, while a lower level could be achieved through short batch production. Twenty-five teams of final year students from design, engineering, construction and technology tested this methodology when bringing a product from concept through to production specification, and found that it allowed them to confidently decide what level of customization, if any, would be worth offering for their product, and what would be the best method of producing it. They also found that the discussion and negotiations between players during the game led to invaluable insights, and often decided to play a second game where they offered customers the option to buy the various customization ideas that had been discussed during the first game. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kano%20model" title="Kano model">Kano model</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20customization" title=" mass customization"> mass customization</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20product%20development" title=" new product development"> new product development</a>, <a href="https://publications.waset.org/abstracts/search?q=serious%20game" title=" serious game"> serious game</a> </p> <a href="https://publications.waset.org/abstracts/101598/using-serious-games-to-integrate-the-potential-of-mass-customization-into-the-fuzzy-front-end-of-new-product-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Estimation of Forces Applied to Forearm Using EMG Signal Features to Control of Powered Human Arm Prostheses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faruk%20Ortes">Faruk Ortes</a>, <a href="https://publications.waset.org/abstracts/search?q=Derya%20Karabulut"> Derya Karabulut</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunus%20Ziya%20Arslan"> Yunus Ziya Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Myoelectric features gathering from musculature environment are considered on a preferential basis to perceive muscle activation and control human arm prostheses according to recent experimental researches. EMG (electromyography) signal based human arm prostheses have shown a promising performance in terms of providing basic functional requirements of motions for the amputated people in recent years. However, these assistive devices for neurorehabilitation still have important limitations in enabling amputated people to perform rather sophisticated or functional movements. Surface electromyogram (EMG) is used as the control signal to command such devices. This kind of control consists of activating a motion in prosthetic arm using muscle activation for the same particular motion. Extraction of clear and certain neural information from EMG signals plays a major role especially in fine control of hand prosthesis movements. Many signal processing methods have been utilized for feature extraction from EMG signals. The specific objective of this study was to compare widely used time domain features of EMG signal including integrated EMG(IEMG), root mean square (RMS) and waveform length(WL) for prediction of externally applied forces to human hands. Obtained features were classified using artificial neural networks (ANN) to predict the forces. EMG signals supplied to process were recorded during only type of muscle contraction which is isometric and isotonic one. Experiments were performed by three healthy subjects who are right-handed and in a range of 25-35 year-old aging. EMG signals were collected from muscles of the proximal part of the upper body consisting of: biceps brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained from the ANN were statistically analyzed and merits and pitfalls of the extracted features were discussed with detail. The obtained results are anticipated to contribute classification process of EMG signal and motion control of powered human arm prosthetics control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assistive%20devices%20for%20neurorehabilitation" title="assistive devices for neurorehabilitation">assistive devices for neurorehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=electromyography" title=" electromyography"> electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20estimation" title=" force estimation"> force estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20arm%20prosthesis" title=" human arm prosthesis"> human arm prosthesis</a> </p> <a href="https://publications.waset.org/abstracts/38181/estimation-of-forces-applied-to-forearm-using-emg-signal-features-to-control-of-powered-human-arm-prostheses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Effects of Adding Vibrotactile Feedback to Upper Limb Performance during Dual-Tasking and Response to Misleading Visual Feedback</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sigal%20Portnoy">Sigal Portnoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Friedman"> Jason Friedman</a>, <a href="https://publications.waset.org/abstracts/search?q=Eitan%20Raveh"> Eitan Raveh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Sensory substitution is possible due to the capacity of our brain to adapt to information transmitted by a synthetic receptor via an alternative sensory system. Practical sensory substitution systems are being developed in order to increase the functionality of individuals with sensory loss, e.g. amputees. For upper limb prosthetic-users the loss of tactile feedback compels them to allocate visual attention to their prosthesis. The effect of adding vibrotactile feedback (VTF) to the applied force has been studied, however its effect on the allocation if visual attention during dual-tasking and the response during misleading visual feedback have not been studied. We hypothesized that VTF will improve the performance and reduce visual attention during dual-task assignments in healthy individuals using a robotic hand and improve the performance in a standardized functional test, despite the presence of misleading visual feedback. Methods: For the dual-task paradigm, twenty healthy subjects were instructed to toggle two keyboard arrow keys with the left hand to retain a moving virtual car on a road on a screen. During the game, instructions for various activities, e.g. mix the sugar in the glass with a spoon, appeared on the screen. The subject performed these tasks with a robotic hand, attached to the right hand. The robotic hand was controlled by the activity of the flexors and extensors of the right wrist, recorded using surface EMG electrodes. Pressure sensors were attached at the tips of the robotic hand and induced VTF using vibrotactile actuators attached to the right arm of the subject. An eye-tracking system tracked to visual attention of the subject during the trials. The trials were repeated twice, with and without the VTF. Additionally, the subjects performed the modified box and blocks, hidden from eyesight, in a motion laboratory. A virtual presentation of a misleading visual feedback was be presented on a screen so that twice during the trial, the virtual block fell while the physical block was still held by the subject. Results: This is an ongoing study, which current results are detailed below. We are continuing these trials with transradial myoelectric prosthesis-users. In the healthy group, the VTF did not reduce the visual attention or improve performance during dual-tasking for the tasks that were typed transfer-to-target, e.g. place the eraser on the shelf. An improvement was observed for other tasks. For example, the average±standard deviation of time to complete the sugar-mixing task was 13.7±17.2s and 19.3±9.1s with and without the VTF, respectively. Also, the number of gaze shifts from the screen to the hand during this task were 15.5±23.7 and 20.0±11.6, with and without the VTF, respectively. The response of the subjects to the misleading visual feedback did not differ between the two conditions, i.e. with and without VTF. Conclusions: Our interim results suggest that the performance of certain activities of daily living may be improved by VTF. The substitution of visual sensory input by tactile feedback might require a long training period so that brain plasticity can occur and allow adaptation to the new condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prosthetics" title="prosthetics">prosthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20substitution" title=" sensory substitution"> sensory substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20limb%20amputation" title=" upper limb amputation"> upper limb amputation</a> </p> <a href="https://publications.waset.org/abstracts/47931/the-effects-of-adding-vibrotactile-feedback-to-upper-limb-performance-during-dual-tasking-and-response-to-misleading-visual-feedback" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10