CINXE.COM
Search results for: off-axis tensile test
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: off-axis tensile test</title> <meta name="description" content="Search results for: off-axis tensile test"> <meta name="keywords" content="off-axis tensile test"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="off-axis tensile test" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="off-axis tensile test"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9982</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: off-axis tensile test</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9982</span> Comparison of Direct and Indirect Tensile Strength of Brittle Materials and Accurate Estimate of Tensile Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Etezadi">M. Etezadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fahimifar"> A. Fahimifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many geotechnical designs in rocks and rock masses, tensile strength of rock and rock mass is needed. The difficulties associated with performing a direct uniaxial tensile test on a rock specimen have led to a number of indirect methods for assessing the tensile strength that in the meantime the Brazilian test is more popular. Brazilian test is widely applied in rock engineering because specimens are easy to prepare, the test is easy to conduct and uniaxial compression test machines are quite common. This study compares experimental results of direct and Brazilian tensile tests carried out on two rock types and three concrete types using 39 cylindrical and 28 disc specimens. The tests are performed using Servo-Control device. The relationship between direct and indirect tensile strength of specimens is extracted using linear regression. In the following, tensile strength of direct and indirect test is evaluated using finite element analysis. The results are analyzed and effective factors on results are studied. According to the experimental results Brazilian test is shown higher tensile strength than direct test. Because of decreasing the contact surface of grains and increasing the uniformity in concrete specimens with fine aggregate (largest grain size= 6mm), higher tensile strength in direct test is shown. The experimental and numerical results of tensile strength are compared and empirical relationship witch is obtained from experimental tests is validated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title="tensile strength">tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=brittle%20materials" title=" brittle materials"> brittle materials</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20and%20indirect%20tensile%20test" title=" direct and indirect tensile test"> direct and indirect tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling "> numerical modeling </a> </p> <a href="https://publications.waset.org/abstracts/36005/comparison-of-direct-and-indirect-tensile-strength-of-brittle-materials-and-accurate-estimate-of-tensile-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9981</span> Estimation of Tensile Strength for Granitic Rocks by Using Discrete Element Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliakbar%20Golshani">Aliakbar Golshani</a>, <a href="https://publications.waset.org/abstracts/search?q=Armin%20Ramezanzad"> Armin Ramezanzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tensile strength which is an important parameter of the rock for engineering applications is difficult to measure directly through physical experiment (i.e. uniaxial tensile test). Therefore, indirect experimental methods such as Brazilian test have been taken into consideration and some relations have been proposed in order to obtain the tensile strength for rocks indirectly. In this research, to calculate numerically the tensile strength for granitic rocks, Particle Flow Code in three-dimension (PFC3D) software were used. First, uniaxial compression tests were simulated and the tensile strength was determined for Inada granite (from a quarry in Kasama, Ibaraki, Japan). Then, by simulating Brazilian test condition for Inada granite, the tensile strength was indirectly calculated again. Results show that the tensile strength calculated numerically agrees well with the experimental results obtained from uniaxial tensile tests on Inada granite samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20flow%20code" title=" particle flow code"> particle flow code</a>, <a href="https://publications.waset.org/abstracts/search?q=PFC" title=" PFC"> PFC</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Brazilian%20Test" title=" Brazilian Test"> Brazilian Test</a> </p> <a href="https://publications.waset.org/abstracts/108663/estimation-of-tensile-strength-for-granitic-rocks-by-using-discrete-element-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9980</span> Effect of Saturation and Deformation Rate on Split Tensile Strength for Various Sedimentary Rocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Soni">D. K. Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study of engineering properties of stones, i.e. compressive strength, tensile strength, modulus of elasticity, density, hardness were carried out to explore the possibility of optimum utilization of stone. The laboratory test results on equally dimensioned discs of the stone show a considerable variation in computed split tensile strength with varied rates of deformation. Hence, the effect of strain rate on the tensile strength of a sand stone and lime stone under wet and dry conditions has been studied experimentally using the split tensile strength test technique. It has been observed that the tensile strength of these stone is very much dependent on the rate of deformation particularly in a dry state. On saturation the value of split tensile strength reduced considerably depending upon the structure of rock and amount of water absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sedimentary%20rocks" title="sedimentary rocks">sedimentary rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20tensile%20test" title=" split tensile test"> split tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20rate" title=" deformation rate"> deformation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20rate" title=" saturation rate"> saturation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20stone" title=" sand stone"> sand stone</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20stone" title=" lime stone"> lime stone</a> </p> <a href="https://publications.waset.org/abstracts/7251/effect-of-saturation-and-deformation-rate-on-split-tensile-strength-for-various-sedimentary-rocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9979</span> Investigation of the Effects of Processing Parameters on Pla Based 3D Printed Tensile Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saifullah%20Karimullah">Saifullah Karimullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing techniques are becoming more common with the latest technological advancements. It is composed to bring a revolution in the way products are designed, planned, manufactured, and distributed to end users. Fused deposition modeling (FDM) based 3D printing is one of those promising aspects that have revolutionized the prototyping processes. The purpose of this design and study project is to design a customized laboratory-scale FDM-based 3D printer from locally available sources. The primary goal is to design and fabricate the FDM-based 3D printer. After the fabrication, a tensile test specimen would be designed in Solid Works or [Creo computer-aided design (CAD)] software. A .stl file is generated of the tensile test specimen through slicing software and the G-codes are inserted via a computer for the test specimen to be printed. Different parameters were under studies like printing speed, layer thickness and infill density of the printed object. Some parameters were kept constant such as temperature, extrusion rate, raster orientation etc. Different tensile test specimens were printed for a different sets of parameters of the FDM-based 3d printer. The tensile test specimen were subjected to tensile tests using a universal testing machine (UTM). Design Expert software has been used for analyses, So Different results were obtained from the different tensile test specimens. The best, average and worst specimen were also observed under a compound microscope to investigate the layer bonding in between. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing%20techniques" title="additive manufacturing techniques">additive manufacturing techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%20software" title=" CAD software"> CAD software</a>, <a href="https://publications.waset.org/abstracts/search?q=UTM%20machine" title=" UTM machine"> UTM machine</a> </p> <a href="https://publications.waset.org/abstracts/158329/investigation-of-the-effects-of-processing-parameters-on-pla-based-3d-printed-tensile-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9978</span> Waterproofing Agent in Concrete for Tensile Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Azani%20Yahya">Muhamad Azani Yahya</a>, <a href="https://publications.waset.org/abstracts/search?q=Umi%20Nadiah%20Nor%20Ali"> Umi Nadiah Nor Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alias%20Yusof"> Mohammed Alias Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Norazman%20Mohamad%20Nor"> Norazman Mohamad Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikneswaran%20Munikanan"> Vikneswaran Munikanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20tensile%20concrete" title="high tensile concrete">high tensile concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=waterproofing%20agent" title=" waterproofing agent"> waterproofing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/58331/waterproofing-agent-in-concrete-for-tensile-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9977</span> Study of Bolt Inclination in a Composite Single Bolted Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faci%20Youcef">Faci Youcef</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mebtouche"> Ahmed Mebtouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Djillali%20Allou"> Djillali Allou</a>, <a href="https://publications.waset.org/abstracts/search?q=Maalem%20Badredine"> Maalem Badredine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during the load. Digital image correlation techniques permit the obtaining of the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=inclination" title=" inclination"> inclination</a>, <a href="https://publications.waset.org/abstracts/search?q=analyzed" title=" analyzed"> analyzed</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/182410/study-of-bolt-inclination-in-a-composite-single-bolted-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9976</span> Measurement of the Dynamic Modulus of Elasticity of Cylindrical Concrete Specimens Used for the Cyclic Indirect Tensile Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20G.%20Bolz">Paul G. Bolz</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20G.%20Lindner"> Paul G. Lindner</a>, <a href="https://publications.waset.org/abstracts/search?q=Frohmut%20Wellner"> Frohmut Wellner</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Schulze"> Christian Schulze</a>, <a href="https://publications.waset.org/abstracts/search?q=Joern%20Huebelt"> Joern Huebelt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete, as a result of its use as a construction material, is not only subject to static loads but is also exposed to variables, time-variant, and oscillating stresses. In order to ensure the suitability of construction materials for resisting these cyclic stresses, different test methods are used for the systematic fatiguing of specimens, like the cyclic indirect tensile test. A procedure is presented that allows the estimation of the degradation of cylindrical concrete specimens during the cyclic indirect tensile test by measuring the dynamic modulus of elasticity in different states of the specimens’ fatigue process. Two methods are used in addition to the cyclic indirect tensile test in order to examine the dynamic modulus of elasticity of cylindrical concrete specimens. One of the methods is based on the analysis of eigenfrequencies, whilst the other one uses ultrasonic pulse measurements to estimate the material properties. A comparison between the dynamic moduli obtained using the three methods that operate in different frequency ranges shows good agreement. The concrete specimens’ fatigue process can therefore be monitored effectively and reliably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20indirect%20tensile%20test" title=" cyclic indirect tensile test"> cyclic indirect tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modulus%20of%20elasticity" title=" dynamic modulus of elasticity"> dynamic modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenfrequency" title=" eigenfrequency"> eigenfrequency</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%E2%80%99s%20modulus" title=" Young’s modulus"> Young’s modulus</a> </p> <a href="https://publications.waset.org/abstracts/133563/measurement-of-the-dynamic-modulus-of-elasticity-of-cylindrical-concrete-specimens-used-for-the-cyclic-indirect-tensile-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9975</span> An Experimental Study of Bolt Inclination in a Composite Single Bolted Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youcef%20Faci">Youcef Faci</a>, <a href="https://publications.waset.org/abstracts/search?q=Djillali%20Allou"> Djillali Allou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mebtouche"> Ahmed Mebtouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Badredine%20Maalem"> Badredine Maalem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during load. Digital image correlation techniques permit to obtain the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=bolt%20inclination%20angle" title=" bolt inclination angle"> bolt inclination angle</a>, <a href="https://publications.waset.org/abstracts/search?q=joint" title=" joint"> joint</a> </p> <a href="https://publications.waset.org/abstracts/182322/an-experimental-study-of-bolt-inclination-in-a-composite-single-bolted-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9974</span> Experimental Investigations on the Mechanical properties of Spiny (Kawayan Tinik) Bamboo Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Doreen%20E.%20Candelaria">Ma. Doreen E. Candelaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Louise%20Margaret%20A.%20Ramos"> Ma. Louise Margaret A. Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Dr.%20Jaime%20Y.%20Hernandez"> Dr. Jaime Y. Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr"> Jr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bamboo has been introduced as a possible alternative to some construction materials nowadays. Its potential use in the field of engineering, however, is still not widely practiced due to insufficient engineering knowledge on the material’s properties and characteristics. Although there are researches and studies proving its advantages, it is still not enough to say that bamboo can sustain and provide the strength and capacity required of common structures. In line with this, a more detailed analysis was made to observe the layered structure of the bamboo, particularly the species of Kawayan Tinik. It is the main intent of this research to provide the necessary experiments to determine the tensile strength of dried bamboo samples. The test includes tensile strength parallel to fibers with samples taken at internodes only. Throughout the experiment, methods suggested by the International Organization for Standardization (ISO) were followed. The specimens were tested using 3366 INSTRON Universal Testing Machine, with a rate of loading set to 0.6 mm/min. It was then observed from the results of these experiments that dried bamboo samples recorded high layered tensile strengths, as high as 600 MPa. Likewise, along the culm’s length and across its cross section, higher tensile strength were observed at the top part and at its outer layers. Overall, the top part recorded the highest tensile strength per layer, with its outer layers having tensile strength as high as 600 MPa. The recorded tensile strength of its middle and inner layers, on the other hand, were approximately 450 MPa and 180 MPa, respectively. From this variation in tensile strength across the cross section, it may be concluded that an increase in tensile strength may be observed towards the outer periphery of the bamboo. With these preliminary investigations on the layered tensile strength of bamboo, it is highly recommended to conduct experimental investigations on the layered compressive strength properties as well. It is also suggested to conduct investigations evaluating perpendicular layered tensile strength of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20strength" title="bamboo strength">bamboo strength</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20strength%20tests" title=" layered strength tests"> layered strength tests</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20test" title=" strength test"> strength test</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test "> tensile test </a> </p> <a href="https://publications.waset.org/abstracts/24458/experimental-investigations-on-the-mechanical-properties-of-spiny-kawayan-tinik-bamboo-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9973</span> Influence of Magnetized Water on the Split Tensile Strength of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justine%20Cyril%20E.%20Nunag">Justine Cyril E. Nunag</a>, <a href="https://publications.waset.org/abstracts/search?q=Nestor%20B.%20Sabado%20Jr."> Nestor B. Sabado Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jienne%20Chester%20M.%20Tolosa"> Jienne Chester M. Tolosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness%20property" title="hardness property">hardness property</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20water" title=" magnetic water"> magnetic water</a>, <a href="https://publications.waset.org/abstracts/search?q=quick-setting%20admixture" title=" quick-setting admixture"> quick-setting admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20tensile%20strength" title=" split tensile strength"> split tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20testing%20machine" title=" universal testing machine"> universal testing machine</a> </p> <a href="https://publications.waset.org/abstracts/146441/influence-of-magnetized-water-on-the-split-tensile-strength-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9972</span> The Effects of Microstructure of Directionally Solidified Al-Si-Fe Alloys on Micro Hardness, Tensile Strength, and Electrical Resistivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sevda%20Engin">Sevda Engin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugur%20Buyuk"> Ugur Buyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Necmettin%20Marasli"> Necmettin Marasli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Directional solidification of eutectic alloys attracts considerable attention because of microhardness, tensile strength, and electrical resistivity influenced by eutectic structures. In this research, we examined processing of Al–Si–Fe (Al–11.7wt.%Si–1wt.%Fe) eutectic by directional solidification. The alloy was prepared by vacuum furnace and directionally solidified in Bridgman-type equipment. During the directional solidification process, the growth rates utilized varied from 8.25 m/s to 164.80 m/s. The Al–Si–Fe system showed an eutectic transformation, which resulted in the matrix Al, Si and Al5SiFe plate phases. The eutectic spacing between (λ_Si-λ_Si, λ_(Al_5 SiFe)-λ_(Al_5 SiFe)) was measured. Additionally, the microhardness, tensile strength, and electrical resistivity of the alloy were determined using directionally solidified samples. The effects of growth rates on microhardness, tensile strength, and electrical resistivity for directionally solidified Al–Si–Fe eutectic alloy were investigated, and the relationships between them were experimentally obtained. It was found that the microhardness, tensile strength, and electrical resistivity were affected by both eutectic spacing and the solidification parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=directional%20solidification" title="directional solidification">directional solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title=" aluminum alloy"> aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20test" title=" hardness test"> hardness test</a> </p> <a href="https://publications.waset.org/abstracts/45109/the-effects-of-microstructure-of-directionally-solidified-al-si-fe-alloys-on-micro-hardness-tensile-strength-and-electrical-resistivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9971</span> Mechanical Characterization of Porcine Skin with the Finite Element Method Based Inverse Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Remache">Djamel Remache</a>, <a href="https://publications.waset.org/abstracts/search?q=Serge%20Dos%20Santos"> Serge Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Cliez"> Michael Cliez</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Gratton"> Michel Gratton</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Chabrand"> Patrick Chabrand</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marie%20Rossi"> Jean-Marie Rossi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Louis%20Milan"> Jean-Louis Milan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skin tissue is an inhomogeneous and anisotropic material. Uniaxial tensile testing is one of the primary testing techniques for the mechanical characterization of skin at large scales. In order to predict the mechanical behavior of materials, the direct or inverse analytical approaches are often used. However, in case of an inhomogeneous and anisotropic material as skin tissue, analytical approaches are not able to provide solutions. The numerical simulation is thus necessary. In this work, the uniaxial tensile test and the FEM (finite element method) based inverse method were used to identify the anisotropic mechanical properties of porcine skin tissue. The uniaxial tensile experiments were performed using Instron 8800 tensile machine®. The uniaxial tensile test was simulated with FEM, and then the inverse optimization approach (or the inverse calibration) was used for the identification of mechanical properties of the samples. Experimentally results were compared to finite element solutions. The results showed that the finite element model predictions of the mechanical behavior of the tested skin samples were well correlated with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20skin%20tissue%20behavior" title="mechanical skin tissue behavior">mechanical skin tissue behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20tensile%20test" title=" uniaxial tensile test"> uniaxial tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20optimization%20approach" title=" inverse optimization approach"> inverse optimization approach</a> </p> <a href="https://publications.waset.org/abstracts/65920/mechanical-characterization-of-porcine-skin-with-the-finite-element-method-based-inverse-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9970</span> Tensile Strength of Asphalt Concrete Due to Moisture Conditioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Islam">R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiqul%20A.%20Tarefder"> Rafiqul A. Tarefder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effect of moisture conditioning on the Indirect Tensile Strength (ITS) of asphalt concrete. As a first step, cylindrical samples of 100 mm diameter and 50 mm thick were prepared using a Superpave gyratory compactor. Next, the samples were conditioned using Moisture Induced Susceptibility Test (MIST) device at different numbers of moisture conditioning cycles. In the MIST device, samples are subjected water pressure through the sample pores cyclically. The MIST conditioned samples were tested for ITS. Results show that the ITS does not change significantly with MIST conditioning at the specific pressure and cycles adopted in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete" title="asphalt concrete">asphalt concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20test" title=" laboratory test"> laboratory test</a> </p> <a href="https://publications.waset.org/abstracts/12183/tensile-strength-of-asphalt-concrete-due-to-moisture-conditioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9969</span> Investigation of the Fading Time Effects on Microstructure and Mechanical Properties in Vermicular Cast Iron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ekici">Mehmet Ekici</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the fading time affecting the mechanical properties and microstructures of vermicular cast iron were studied. Pig iron and steel scrap weighing about 12 kg were charged into the high-frequency induction furnace crucible and completely melted for production of vermicular cast iron. The slag was skimmed using a common flux. After fading time was set at 1. 3 and 5 minutes. In this way, three vermicular cast iron was produced that same composition but different phase structures. The microstructure of specimens was investigated, and uni-axial tensile test and the Charpy impact test were performed, and their micro-hardness measurements were done in order to characterize the mechanical behaviours of vermicular cast iron. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vermicular%20cast%20iron" title="vermicular cast iron">vermicular cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=fading%20time" title=" fading time"> fading time</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test%20and%20impact%20test" title=" tensile test and impact test"> tensile test and impact test</a> </p> <a href="https://publications.waset.org/abstracts/61560/investigation-of-the-fading-time-effects-on-microstructure-and-mechanical-properties-in-vermicular-cast-iron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9968</span> Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Abachi">P. Abachi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20W.%20Coyle"> T. W. Coyle</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Musavi%20Gharavi"> P. S. Musavi Gharavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four<strong>-</strong>point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20strength" title="bonding strength">bonding strength</a>, <a href="https://publications.waset.org/abstracts/search?q=four-point%20bend%20test" title=" four-point bend test"> four-point bend test</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20fracture%20toughness" title=" interfacial fracture toughness"> interfacial fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20chevron-notched%20short-bar%20specimen" title=" modified chevron-notched short-bar specimen"> modified chevron-notched short-bar specimen</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20sprayed%20coating" title=" plasma sprayed coating"> plasma sprayed coating</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20adhesion%20test" title=" tensile adhesion test"> tensile adhesion test</a> </p> <a href="https://publications.waset.org/abstracts/46136/plasma-spraying-of-316-stainless-steel-on-aluminum-and-investigation-of-coatsubstrate-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9967</span> Study the Impact of Welding Poles Type on the Tensile Strength Steel of Low Alloys and High Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmagid%20A.%20Khattabi">Abdulmagid A. Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Fatah%20M.%20Emhamed"> Abdul Fatah M. Emhamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steel alloy Introduced after becoming carbon-steel does not meet the requirements of engineering industry; and it cannot be obtained tensile strength from carbon-steel higher than (700MPa), the low alloy steel enters in a lot of heavy engineering equipment parts, molds, agricultural equipment and other industry. In addition, that may be exposed to in-service failure, which may require returned to work, to do the repairs or maintenance by one of the welding methods available. The ability of steel weld determined through palpation of the cracks, which can reduce by many ways. These ways are often expensive and difficult to implement, perhaps the control to choose the type of electrode welding user is one of the easiest and least expensive applications. It has been welding the steel low alloys high resistance by manual metal arc (MMA), and by using a set of welding electrodes which varying in chemical composition and in their prices as well and test their effect on tensile strength. Results showed that using the poles of welding, which have a high proportion of iron powder and low hydrogen. The Tensile resistance is (484MPa) and the weld joint efficiency was (56.9%), but when (OK 47.04) electrode was used the tensile strength increased to (720MPa) and the weld joint efficiency to (84.7%). Using the cheapest electrode (OK 45.00) the weld joint efficiency did not exceed (24.2%), but when using the most expensive electrode (OK 91.28) the weld joint efficiency is (38.1%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20low%20alloys%20high%20resistance" title="steel low alloys high resistance">steel low alloys high resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodes%20welding" title=" electrodes welding"> electrodes welding</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a> </p> <a href="https://publications.waset.org/abstracts/43686/study-the-impact-of-welding-poles-type-on-the-tensile-strength-steel-of-low-alloys-and-high-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9966</span> Adherence Induced Formwork Removal in Small-Scale Pull-Off Tensile Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Spitz">Nicolas Spitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Coniglio"> Nicolas Coniglio</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%20Mansori"> Mohamed El Mansori</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Montagne"> Alex Montagne</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabeur%20Mezghani"> Sabeur Mezghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays buildings' construction is performed by pouring concrete into molds referred to as formworks that are usually prefabricated metallic modules. Defects such as stripping may possibly form during the removal of the formwork if the interfacial bonding between the concrete and the formwork is high. A new pull-off tensile test was developed in our laboratory to simulate small-scale formwork removals. The concrete-to-formwork adherence force was measured on bare and coated formworks with different surface signatures. The used concrete was a mixture largely used on building sites and contains CEM I Portland cement and calcareous filler. The concrete surface appearance and the type of failures at the concrete-formwork interface have been investigated. The originality of this near-to-surface test was to compare the laboratory-measured adherence forces to the on-site observations. Based upon the small-scale laboratory test results, functional formwork specifications with low adherence to concrete was proposed in terms of superficial signature characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-formwork%20adherence" title="concrete-formwork adherence">concrete-formwork adherence</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20bonding" title=" interfacial bonding"> interfacial bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20formwork%20functionality" title=" skin formwork functionality"> skin formwork functionality</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20pull-off%20tensile%20test" title=" small-scale pull-off tensile test"> small-scale pull-off tensile test</a> </p> <a href="https://publications.waset.org/abstracts/81360/adherence-induced-formwork-removal-in-small-scale-pull-off-tensile-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9965</span> Comparison of Mechanical Property of UNS C12200Joints Brazed by (Cu&Ag) Based Filler Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Elhatmi">Ali Elhatmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Elshbo"> Mustafa Elshbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussin%20Alosta"> Hussin Alosta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the coper tube witch used in medical applications was brazed by Copper, Zink and Silver alloys, using BCuP2, RBCuZnAl and BAg2 filler metals. The sample of the medical tubes was chemically analyzed and the result matches the British standard. Tensile and hardness tests were carried out for brazed joints, and the tensile test results show that the BCuP2 has the hardest and the filler metal RBCuZnAl has the highest tensile strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=welding" title="welding">welding</a>, <a href="https://publications.waset.org/abstracts/search?q=Brazing" title=" Brazing"> Brazing</a>, <a href="https://publications.waset.org/abstracts/search?q=Copper%20tubes" title=" Copper tubes"> Copper tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=Joints" title=" Joints"> Joints</a> </p> <a href="https://publications.waset.org/abstracts/92026/comparison-of-mechanical-property-of-uns-c12200joints-brazed-by-cuag-based-filler-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9964</span> Experimental Study on the Effect of Water-Cement Ratio and Replacement Ratio to the Capacity of the Recycled Aggregate Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Fu">Feng Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Karli"> Maria Karli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, experimental studies were carried out to investigate the behaviour of recycled aggregate concrete (RAC). A number of compressive tests, tensile splitting tests, as well as impact tests were conducted. In the tests, different recycled aggregate replacement ratio, different mix design and different water to cement ratio have been chosen in the investigation. The behavior of the RAC concrete was investigated in detail. The results of the tests show that the water-cement ratio plays an important role in the strength of the concrete and RAC concrete exhibit sufficient strength in comparison to the normal aggregate concrete; the relevant design recommendations are also made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate%20concrete" title="recycled aggregate concrete">recycled aggregate concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20test" title=" compressive test"> compressive test</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20splitting%20test" title=" tensile splitting test"> tensile splitting test</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength%20test" title=" flexural strength test"> flexural strength test</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20test" title=" impact test"> impact test</a> </p> <a href="https://publications.waset.org/abstracts/71770/experimental-study-on-the-effect-of-water-cement-ratio-and-replacement-ratio-to-the-capacity-of-the-recycled-aggregate-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9963</span> Simulation and Experimental Study on Tensile Force Measurement of PS Tendons Using an Embedded EM Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ByoungJoon%20Yu">ByoungJoon Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junkyeong%20Kim"> Junkyeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tensile force estimation PS tendons is in great demand on monitoring the structural health condition of PSC girder bridges. Measuring the tensile force of the PS tendons inside the PSC girder using conventional methods is hard due to its location. In this paper, an embedded EM sensor based tensile force estimation of PS tendon was carried out by measuring the permeability of the PS tendons in PSC girder. The permeability is changed due to the induced tensile force by the magneto-elastic effect and the effect then lead to the gradient change of the B-H curve. An experiment was performed to obtain the signals from the EM sensor using three down-scaled PSC girder models. The permeability of PS tendons was proportionally decreased according to the increase of the tensile forces. To verify the experiment results, a simulation of tensile force estimation will be conducted in further study. Consequently, it is expected that both the experiment results and the simulation results increase the accuracy of the tensile force estimation, and then it could be one of the solutions for evaluating the performance of PSC girder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20force%20estimation" title="tensile force estimation">tensile force estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20EM%20sensor" title=" embedded EM sensor"> embedded EM sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=PSC%20girder" title=" PSC girder"> PSC girder</a>, <a href="https://publications.waset.org/abstracts/search?q=EM%20sensor%20simulation" title=" EM sensor simulation"> EM sensor simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20section%20loss" title=" cross section loss"> cross section loss</a> </p> <a href="https://publications.waset.org/abstracts/57263/simulation-and-experimental-study-on-tensile-force-measurement-of-ps-tendons-using-an-embedded-em-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9962</span> Effect of Confinement on Flexural Tensile Strength of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmed">M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Mallick"> Javed Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abul%20Hasan"> Mohammad Abul Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flexural tensile strength of concrete is an important parameter for determining cracking behavior of concrete structure and to compute deflection under flexure. Many factors have been shown to influence the flexural tensile strength, particularly the level of concrete strength, size of member, age of concrete and confinement to flexure member etc. Empirical equations have been suggested to relate the flexural tensile strength and compressive strength. Limited literature is available for relationship between flexural tensile strength and compressive strength giving consideration to the factors affecting the flexural tensile strength specially the concrete confinement factor. The concrete member such as slabs, beams and columns critical locations are under confinement effects. The paper presents the experimental study to predict the flexural tensile strength and compressive strength empirical relations using statistical procedures considering the effect of confinement and age of concrete for wide range of concrete strength (from 35 to about 100 MPa). It is concluded from study that due consideration of confinement should be given in deriving the flexural tensile strength and compressive strength proportionality equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20tensile%20strength" title=" flexural tensile strength"> flexural tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rupture" title=" modulus of rupture"> modulus of rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20procedures" title=" statistical procedures"> statistical procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20confinement" title=" concrete confinement"> concrete confinement</a> </p> <a href="https://publications.waset.org/abstracts/2078/effect-of-confinement-on-flexural-tensile-strength-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9961</span> Tensile Force Estimation for Real-Size Pre-Stressed Concrete Girder using Embedded Elasto-Magnetic Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junkyeong%20Kim">Junkyeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jooyoung%20Park"> Jooyoung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoqi%20Zhang"> Aoqi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tensile force of Pre-Stressed Concrete (PSC) girder is the most important factor for evaluating the performance of PSC girder bridges. To measure the tensile force of PSC girder, several NDT methods were studied. However, conventional NDT method cannot be applied to the real-size PSC girder because the PS tendons could not be approached. To measure the tensile force of real-size PSC girder, this study proposed embedded EM sensor based tensile force estimation method. The embedded EM sensor could be installed inside of PSC girder as a sheath joint before the concrete casting. After curing process, the PS tendons were installed, and the tensile force was induced step by step using hydraulic jacking machine. The B-H loop was measured using embedded EM sensor at each tensile force steps and to compare with actual tensile force, the load cell was installed at each end of girder. The magnetization energy loss, that is the closed area of B-H loop, was decreased according to the increase of tensile force with regular pattern. Thus, the tensile force could be estimated by the tracking the change of magnetization energy loss of PS tendons. Through the experimental result, the proposed method can be used to estimate the tensile force of the in-situ real-size PSC girder bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tensile%20force%20estimation" title="tensile force estimation">tensile force estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20EM%20sensor" title=" embedded EM sensor"> embedded EM sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization%20energy%20loss" title=" magnetization energy loss"> magnetization energy loss</a>, <a href="https://publications.waset.org/abstracts/search?q=PSC%20girder" title=" PSC girder"> PSC girder</a> </p> <a href="https://publications.waset.org/abstracts/57237/tensile-force-estimation-for-real-size-pre-stressed-concrete-girder-using-embedded-elasto-magnetic-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9960</span> Experimental Investigation on the Behavior of Steel Fibers Reinforced Concrete under Impact Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Fu">Feng Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Bazgir"> Ahmad Bazgir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to investigate and examine the structural behaviour of steel fibre reinforced concrete slabs when subjected to impact loading using drop weight method. A number of compressive tests, tensile splitting tests, as well as impact tests were conducted. The experimental work consists of testing both conventional reinforced slabs and SFRC slabs. Parameters to be considered for carrying out the test will consist of the volume fraction of steel fibre, type of steel fibres, drop weight height and number of blows. Energy absorption of slabs under impact loading and failure modes were examined in-depth and compared with conventional reinforced concrete slab are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20fibre%20reinforce%20concrete" title="steel fibre reinforce concrete">steel fibre reinforce concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20test" title=" compressive test"> compressive test</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20splitting%20test" title=" tensile splitting test"> tensile splitting test</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20test" title=" impact test"> impact test</a> </p> <a href="https://publications.waset.org/abstracts/50930/experimental-investigation-on-the-behavior-of-steel-fibers-reinforced-concrete-under-impact-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9959</span> Influence of Modified and Unmodified Cow Bone on the Mechanical Properties of Reinforced Polyester Composites for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20O.%20Oladele">I. O. Oladele</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Omotoyinbo"> J. A. Omotoyinbo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Okoro"> A. M. Okoro</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Okikiola"> A. G. Okikiola</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Olajide"> J. L. Olajide</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work was carried out to investigate comparatively the effects of modified and unmodified cow bone particles on the mechanical properties of polyester matrix composites in order to investigate the suitability of the materials as biomaterial. Cow bones were procured from an abattoir, sun dried for 4 weeks and crushed. The crushed bones were divided into two, where one part was turned to ash while the other part was pulverized with laboratory ball mill before the two grades were sieved using 75 µm sieve size. Bone ash and bone particle reinforced tensile and flexural composite samples were developed from pre-determined proportions of 2, 4, 6, and 8 %. The samples after curing were stripped from the moulds and were allowed to further cure for 3 weeks before tensile and flexural tests were performed on them. The tensile test result showed that, 8 wt % bone particle reinforced polyester composites has higher tensile properties except for modulus of elasticity where 8 wt % bone ash particle reinforced composites has higher value while for flexural test, bone ash particle reinforced composites demonstrate the best flexural properties. The results show that these materials are structurally compatible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical" title="biomedical">biomedical</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20bone" title=" cow bone"> cow bone</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement" title=" reinforcement"> reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/47045/influence-of-modified-and-unmodified-cow-bone-on-the-mechanical-properties-of-reinforced-polyester-composites-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9958</span> Effect of Welding Parameters on Mechanical and Microstructural Properties of Aluminum Alloys Produced by Friction Stir Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Aghapouramin">Khalil Aghapouramin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present work is to investigate the mechanical and microstructural properties of dissimilar and similar aluminum alloys welded by Friction Stir Welding (FSW). The specimens investigated by applying different welding speed and rotary speed. Typically, mechanical properties of the joints performed through tensile test fatigue test and microhardness (HV) at room temperature. Fatigue test investigated by using electromechanical testing machine under constant loading control with similar since wave loading. The Maximum stress versus minimum got the range between 0.1 to 0.3 in the research. Based upon welding parameters by optical observation and scanning electron microscopy microstructural properties fulfilled with a cross section of welds, in addition, SEM observations were made of the fracture surfaces <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20and%20tensile%20test" title=" fatigue and tensile test"> fatigue and tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20alloys" title=" Al alloys"> Al alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructural%20behavior" title=" microstructural behavior"> microstructural behavior</a> </p> <a href="https://publications.waset.org/abstracts/46237/effect-of-welding-parameters-on-mechanical-and-microstructural-properties-of-aluminum-alloys-produced-by-friction-stir-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9957</span> Analyses of Uniaxial and Biaxial Flexure Tests Used in Ceramic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barry%20Hojjatie">Barry Hojjatie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uniaxial (e.g., three-point bending) and biaxial flexure tests are used frequently for determining the strength of ceramics. It is generally believed that the biaxial test has an advantage as compared to uniaxial test because it produces a state of pure tension on the lower surface of the specimen and the maximum tensile stress, which is usually responsible for crack initiation and failure is unaffected by the edge condition. However, inconsistent strength values have been reported for the same material and testing conditions. The objective of this study was to analyze the strength of dental porcelain materials using the two different test methods and evaluate the main contributions to variability in biaxial testing and to analyze the relative influence of variables such as specimen geometric conditions and loading conditions on calculated strength of porcelain subjected to biaxial testing. Porcelain disks (16 mm dia x 2 mm thick) were subjected to biaxial flexure (pin-on-three-ball), and flexure strength values were calculated. A 3-D finite element model was developed to simulate various biaxial flexure test conditions. Stresses were analyzed for ceramic thickness in the range of 1.0-3.0 mm. For a 2-mm-thick disk subjected to a point load of 200 N, the maximum tensile stress at the lower surface was 180 MPa. This stress decreased to 95, 77, 68, and 59 MPa for the radius of the load values of 0.15, 0.3, 0.6, and 1.0 mm, respectively. Tensile stresses which developed at the top surface near the site of loading were small for the radius of the load ≥ 0.6 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramis" title="ceramis">ceramis</a>, <a href="https://publications.waset.org/abstracts/search?q=biaxial" title=" biaxial"> biaxial</a>, <a href="https://publications.waset.org/abstracts/search?q=flexure%20test" title=" flexure test"> flexure test</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial" title=" uniaxial"> uniaxial</a> </p> <a href="https://publications.waset.org/abstracts/106029/analyses-of-uniaxial-and-biaxial-flexure-tests-used-in-ceramic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9956</span> Evaluation of Mechanical Behavior of Gas Turbine Blade at High Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Uk%20Wee">Sung-Uk Wee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Min%20Lee"> Jeong-Min Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas turbine blade is important part of power plant, so it is necessary to evaluate gas turbine reliability. For better heat efficiency, inlet temperature of gas turbine has been elevated more and more so gas turbine blade is exposed to high-temperature environment. Then, higher inlet temperature affects mechanical behavior of the gas turbine blade, so it is necessary that evaluation of mechanical property of gas turbine blade at high-temperature environment. In this study, tensile test and fatigue test were performed at various high temperature, and fatigue life was predicted by Coffin-Manson equation at each temperature. The experimental results showed that gas turbine blade has a lower elastic modulus and shorter fatigue life at higher temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20blade" title="gas turbine blade">gas turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain" title=" stress-strain"> stress-strain</a> </p> <a href="https://publications.waset.org/abstracts/52129/evaluation-of-mechanical-behavior-of-gas-turbine-blade-at-high-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9955</span> Laser Micro-Welding of an Isomorphous System with Different Geometries: An Investigation on the Mechanical Properties and Microstructure of the Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Amne%20Elahi">Mahdi Amne Elahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcus%20Koch"> Marcus Koch</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Plapper"> Peter Plapper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the demand of miniaturizing in automotive industry, the application of laser welding is quite promising. The current study focused on laser micro-welding of CuSn6 bronze and nickel wire for a miniature electromechanical hybrid component. Due to the advantages of laser welding, the welding can be tailored specifically for the requirements of the part. Scanning electron and optical microscopy were implemented to study the microstructure and tensile-shear test was selected to represent the mechanical properties. Different welding sides, beam oscillations, and speeds have been investigated to optimize the tensile-shear load and microstructure. The results show that the mechanical properties and microstructure of the joint is highly under the influence of the mentioned parameters. Due to the lack of intermetallic compounds, the soundness of the joint is achievable by manipulating the geometry of the weld seam and minimize weld defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bronze" title="bronze">bronze</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20micro-welding" title=" laser micro-welding"> laser micro-welding</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20shear%20test" title=" tensile shear test"> tensile shear test</a> </p> <a href="https://publications.waset.org/abstracts/103859/laser-micro-welding-of-an-isomorphous-system-with-different-geometries-an-investigation-on-the-mechanical-properties-and-microstructure-of-the-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9954</span> Effect of Welding Processes on Tensile Behavior of Aluminum Alloy Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20Sharma">Chaitanya Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Upadhyay"> Vikas Upadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tripathi"> A. Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction stir welding and tungsten inert gas welding techniques were employed to weld armor grade aluminum alloy to investigate the effect of welding processes on tensile behavior of weld joints. Tensile tests, Vicker microhardness tests and optical microscopy were performed on developed weld joints and base metal. Welding process influenced tensile behavior and microstructure of weld joints. Friction stir welded joints showed tensile behavior better than tungsten inert gas weld joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20locations" title=" fracture locations"> fracture locations</a> </p> <a href="https://publications.waset.org/abstracts/40159/effect-of-welding-processes-on-tensile-behavior-of-aluminum-alloy-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9953</span> Ag-Cu and Bi-Cd Eutectics Ribbons under Superplastic Tensile Test Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Ochoa">Edgar Ochoa</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Torres-Villasenor"> G. Torres-Villasenor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superplastic deformation is shown by materials with a fine grain size, usually less than 10 μm, when they are deformed within the strain rate range 10-5 10-1 s-1 at temperatures greater than 0.5Tm, where Tm is the melting point in Kelvin. According to the constitutive equation for superplastic flow, refinement of the grain size would be expected to increase the optimum strain rate and decrease the temperature required for superplastic flow. Ribbons of eutectic Ag-Cu and Bi-Cd alloys were manufactured by using a single roller melt-spinning technique to obtain a fine grain structure for later test in superplastic regime. The eutectics ribbons were examined by scanning electron microscopy and X-Ray diffraction, and the grain size was determined using the image analysis software ImageJ. The average grain size was less than 1 μm. Tensile tests were carried out from 10-4 to 10-1 s-1, at room temperature, to evaluate the superplastic behavior. The largest deformation was shown by the Bi-Cd eutectic ribbons, Ɛ=140 %, despite that these ribbons have a hexagonal unit cell. On the other hand, Ag-Cu eutectic ribbons have a minor grain size and cube unit cell, however they showed a lower deformation in tensile test under the same conditions than Bi-Cd ribbons. This is because the Ag-Cu grew in a strong cube-cube orientation relationship. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eutectic%20ribbon" title="eutectic ribbon">eutectic ribbon</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20grain" title=" fine grain"> fine grain</a>, <a href="https://publications.waset.org/abstracts/search?q=superplastic%20deformation" title=" superplastic deformation"> superplastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=cube-cube%20orientation" title=" cube-cube orientation"> cube-cube orientation</a> </p> <a href="https://publications.waset.org/abstracts/96469/ag-cu-and-bi-cd-eutectics-ribbons-under-superplastic-tensile-test-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test&page=332">332</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test&page=333">333</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=off-axis%20tensile%20test&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>