CINXE.COM
A novel approach to nonlinear fractional volterra integral equations | Acta Polytechnica
<!DOCTYPE html> <html lang="en" xml:lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title> A novel approach to nonlinear fractional volterra integral equations | Acta Polytechnica </title> <link rel="icon" href="https://ojs.cvut.cz/ojs/public/journals/2/favicon_en_US.ico"> <meta name="generator" content="Open Journal Systems 3.4.0.5"> <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" /> <meta name="DC.Creator.PersonalName" content="Mohammed Abdulshareef Hussein"/> <meta name="DC.Creator.PersonalName" content="Hassan Kamil Jassim"/> <meta name="DC.Date.created" scheme="ISO8601" content="2024-11-11"/> <meta name="DC.Date.dateSubmitted" scheme="ISO8601" content="2023-11-01"/> <meta name="DC.Date.issued" scheme="ISO8601" content="2024-11-11"/> <meta name="DC.Date.modified" scheme="ISO8601" content="2024-11-11"/> <meta name="DC.Description" xml:lang="en" content="Nonlinear Fractional Volterra integral equations (FVIEs) of the first kind present challenges due to their intricate nature, combining fractional calculus and integral equations. In this research paper, we introduce a novel method for solving such equations using Leibniz integral rules. Our study focuses on a thorough analysis and application of the proposed algorithm to solve fractional Volterra integral equations. By using Leibniz integral rules, we offer a fresh perspective on handling these equations, shedding light on their fundamental properties and behaviours. As a result of this study, we anticipate contributing distinctively to the broader development of analytical tools and techniques. By bridging the gap between fractional calculus and integral equations, our approach not only offers a valuable computational methodology but also paves the way for new insights into the application domains in which such equations arise."/> <meta name="DC.Format" scheme="IMT" content="application/pdf"/> <meta name="DC.Identifier" content="9438"/> <meta name="DC.Identifier.pageNumber" content="414–419"/> <meta name="DC.Identifier.DOI" content="10.14311/AP.2024.64.0414"/> <meta name="DC.Identifier.URI" content="https://ojs.cvut.cz/ojs/index.php/ap/article/view/9438"/> <meta name="DC.Language" scheme="ISO639-1" content="en"/> <meta name="DC.Rights" content="Copyright (c) 2024 Mohammed Abdulshareef Hussein, Hassan Kamil Jassim"/> <meta name="DC.Rights" content="https://creativecommons.org/licenses/by/4.0"/> <meta name="DC.Source" content="Acta Polytechnica"/> <meta name="DC.Source.ISSN" content="1805-2363"/> <meta name="DC.Source.Issue" content="5"/> <meta name="DC.Source.Volume" content="64"/> <meta name="DC.Source.URI" content="https://ojs.cvut.cz/ojs/index.php/ap"/> <meta name="DC.Subject" xml:lang="en" content="integral equations"/> <meta name="DC.Subject" xml:lang="en" content="fractional calculus"/> <meta name="DC.Subject" xml:lang="en" content="Leibniz integral rule"/> <meta name="DC.Subject" xml:lang="en" content="Mitteg-Leffler function"/> <meta name="DC.Subject" xml:lang="en" content="Caputo fractional operator"/> <meta name="DC.Subject" xml:lang="en" content="Riemann-Liouville fractional operator"/> <meta name="DC.Title" content="A novel approach to nonlinear fractional volterra integral equations"/> <meta name="DC.Type" content="Text.Serial.Journal"/> <meta name="DC.Type.articleType" content="Articles"/> <meta name="gs_meta_revision" content="1.1"/> <meta name="citation_journal_title" content="Acta Polytechnica"/> <meta name="citation_journal_abbrev" content="Acta Polytech"/> <meta name="citation_issn" content="1805-2363"/> <meta name="citation_author" content="Mohammed Abdulshareef Hussein"/> <meta name="citation_author_institution" content="Al-Ayen Iraqi University, Scientific Research Center, 64001 Nasiriyah, Iraq; Ministry of Education, Education Directorate of Thi-Qar, 64001 Nasiriyah, Iraq"/> <meta name="citation_author" content="Hassan Kamil Jassim"/> <meta name="citation_author_institution" content="University of Thi-Qar, College of Education for Pure Science, Department of Mathematics, 64001 Thi-Qar, Iraq"/> <meta name="citation_title" content="A novel approach to nonlinear fractional volterra integral equations"/> <meta name="citation_language" content="en"/> <meta name="citation_date" content="2024/11/11"/> <meta name="citation_volume" content="64"/> <meta name="citation_issue" content="5"/> <meta name="citation_firstpage" content="414"/> <meta name="citation_lastpage" content="419"/> <meta name="citation_doi" content="10.14311/AP.2024.64.0414"/> <meta name="citation_abstract_html_url" content="https://ojs.cvut.cz/ojs/index.php/ap/article/view/9438"/> <meta name="citation_abstract" xml:lang="en" content="Nonlinear Fractional Volterra integral equations (FVIEs) of the first kind present challenges due to their intricate nature, combining fractional calculus and integral equations. In this research paper, we introduce a novel method for solving such equations using Leibniz integral rules. Our study focuses on a thorough analysis and application of the proposed algorithm to solve fractional Volterra integral equations. By using Leibniz integral rules, we offer a fresh perspective on handling these equations, shedding light on their fundamental properties and behaviours. As a result of this study, we anticipate contributing distinctively to the broader development of analytical tools and techniques. By bridging the gap between fractional calculus and integral equations, our approach not only offers a valuable computational methodology but also paves the way for new insights into the application domains in which such equations arise."/> <meta name="citation_keywords" xml:lang="en" content="integral equations"/> <meta name="citation_keywords" xml:lang="en" content="fractional calculus"/> <meta name="citation_keywords" xml:lang="en" content="Leibniz integral rule"/> <meta name="citation_keywords" xml:lang="en" content="Mitteg-Leffler function"/> <meta name="citation_keywords" xml:lang="en" content="Caputo fractional operator"/> <meta name="citation_keywords" xml:lang="en" content="Riemann-Liouville fractional operator"/> <meta name="citation_pdf_url" content="https://ojs.cvut.cz/ojs/index.php/ap/article/download/9438/7233"/> <meta name="citation_reference" content="M. Belmekki, M. Benchohra. Existence results for fractional order semilinear functional differential equations with nondense domain. Nonlinear Analysis: Theory, Methods & Applications 72(2):925–932, 2010. https://doi.org/10.1016/j.na.2009.07.034"/> <meta name="citation_reference" content="H. K. Jassim, M. A. Hussein. A new approach for solving nonlinear fractional ordinary differential equations. Mathematics 11(7):1565, 2023. https://doi.org/10.3390/math11071565"/> <meta name="citation_reference" content="M. A. Hussein, H. K. Jassim. Analysis of fractional differential equations with Antagana-Baleanu fractional operator. Progress in Fractional Differentiation and Applications 9(4):681–686, 2023. https://doi.org/10.18576/pfda/090411"/> <meta name="citation_reference" content="M. Higazy, S. Aggarwal, T. A. Nofal. Sawi decomposition method for Volterra integral equation with application. Journal of Mathematics 2020(1):6687134, 2020. https://doi.org/10.1155/2020/6687134"/> <meta name="citation_reference" content="S. Jahanshahi, E. Babolian, D. F. M. Torres, A. Vahidi. Solving Abel integral equations of first kind via fractional calculus. Journal of King Saud University – Science 27(2):161–167, 2015. https://doi.org/10.1016/j.jksus.2014.09.004"/> <meta name="citation_reference" content="G. Pellicane, L. L. Lee, C. Caccamo. Integral-equation theories of fluid phase equilibria in simple fluids. Fluid Phase Equilibria 521:112665, 2020. https://doi.org/10.1016/j.fluid.2020.112665"/> <meta name="citation_reference" content="M. A. Hussein, H. K. Jassim, A. K. Jassim. An innovative iterative approach to solving Volterra integral equations of second kind. Acta Polytechnica 64(2):87–102, 2024. https://doi.org/10.14311/AP.2024.64.0087"/> <meta name="citation_reference" content="H. Mottaghi Golshan. Numerical solution of nonlinear m-dimensional Fredholm integral equations using iterative Newton-Cotes rules. Journal of Computational and Applied Mathematics 448:115917, 2024. https://doi.org/10.1016/j.cam.2024.115917"/> <meta name="citation_reference" content="M. A. Hussein. The approximate solutions of fractional differential equations with Antagana-Baleanu fractional operator. Mathematics and Computational Sciences 3(3):29–39, 2022. https://doi.org/10.30511/MCS.2022.560414.1077"/> <meta name="citation_reference" content="H. K. Jassim, M. A. S. Hussain. On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator. Journal of Mathematics and Computer Science 23(1):58–66, 2021. https://doi.org/10.22436/jmcs.023.01.06"/> <meta name="citation_reference" content="R. Katani, S. Mckee. A hybrid Legendre block-pulse method for mixed Volterra-Fredholm integral equations. Journal of Computational and Applied Mathematics 376:112867, 2020. https://doi.org/10.1016/j.cam.2020.112867"/> <meta name="citation_reference" content="H. K. Jassim, M. A. Hussein. A novel formulation of the fractional derivative with the order α ≥ 0 and without the singular kernel. Mathematics 10(21):4123, 2022. https://doi.org/10.3390/math10214123"/> <meta name="citation_reference" content="J. Wu, Y. Zhou, C. Hang. A singularity free and derivative free approach for Abel integral equation in analyzing the laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 167:105791, 2020. https://doi.org/10.1016/j.sab.2020.105791"/> <meta name="citation_reference" content="M. A. Hussein. Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator. Baghdad Science Journal 21(3):1044–1054, 2024. https://doi.org/10.21123/bsj.2023.7310"/> <meta name="citation_reference" content="S. Aggarwal, N. Sharma. Laplace transform for the solution of first kind linear Volterra integral equation. Journal of Advanced Research in Applied Mathematics and Statistics 4(3&4):16–23, 2019."/> <meta name="citation_reference" content="S. Aggarwal, R. Kumar, J. Chandel. Solution of linear Volterra integral equation of second kind via Rishi transform. Journal of Scientific Research 15(1):111–119, 2023. https://doi.org/10.3329/jsr.v15i1.60337"/> <meta name="citation_reference" content="K. Sayevand, J. Tenreiro Machado, D. Baleanu. A new glance on the Leibniz rule for fractional derivatives. Communications in Nonlinear Science and Numerical Simulation 62:244–249, 2018. https://doi.org/10.1016/j.cnsns.2018.02.037"/> <meta name="citation_reference" content="S. Douglas, L. Grafakos. Norm estimates for the fractional derivative of multiple factors. Journal of Mathematical Analysis and Applications 537(2):128409, 2024. https://doi.org/10.1016/j.jmaa.2024.128409"/> <meta name="citation_reference" content="S. Aggarwal, R. Kumar, J. Chandel. Exact solution of non-linear Volterra integral equation of first kind using Rishi transform. Bulletin of Pure & Applied Sciences – Mathematics and Statistics 41(2):159–166, 2022. https://doi.org/10.5958/2320-3226.2022.00022.4."/> <meta name="citation_reference" content="E. Artin. The gamma function. Courier Dover Publications, USA, 2015. ISBN 978-0-486-80300-5."/> <meta name="citation_reference" content="A. K. Shukla, J. C. Prajapati. On a generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications 336(2):797–811, 2007. https://doi.org/10.1016/j.jmaa.2007.03.018"/> <meta name="citation_reference" content="D. Pang, W. Jiang, A. U. Niazi. Fractional derivatives of the generalized Mittag-Leffler functions. Advances in Difference Equations 2018:415, 2018. https://doi.org/10.1186/s13662-018-1855-9"/> <meta name="citation_reference" content="C. Li, D. Qian, Y. Chen. On Riemann-Liouville and Caputo derivatives. Discrete Dynamics in Nature and Society 2011(1):562494, 2011. https://doi.org/10.1155/2011/562494"/> <meta name="citation_reference" content="H. Flanders. Differentiation under the integral sign. The American Mathematical Monthly 80(6):615–627, 1973. https://doi.org/10.1080/00029890.1973.11993339"/> <meta name="citation_reference" content="I. T. Huseynov, A. Ahmadova, N. I. Mahmudov. Fractional Leibniz integral rules for Riemann-Liouville and Caputo fractional derivatives and their applications, 2020. [2024-04-26]. https://doi.org/10.48550/arXiv.2012.11360"/> <meta name="citation_reference" content="R. Kress. Linear integral equations, vol. 82. Springer, 1989."/> <meta name="citation_reference" content="A.-M. Wazwaz. Linear and nonlinear integral equations. Springer Berlin, Germany, 2011. https://doi.org/10.1007/978-3-642-21449-3"/> <meta name="citation_reference" content="J. Talab Abdullah, B. Sweedan Naseer, B. Taha Abdllrazak. Numerical solutions of Abel integral equations via Touchard and Laguerre polynomials. International Journal of Nonlinear Analysis and Applications 12(2):1599–1609, 2021. https://doi.org/10.22075/ijnaa.2021.5290"/> <link rel="stylesheet" href="https://ojs.cvut.cz/ojs/index.php/ap/$$$call$$$/page/page/css?name=stylesheet" type="text/css" /><link rel="stylesheet" href="https://ojs.cvut.cz/ojs/index.php/ap/$$$call$$$/page/page/css?name=font" type="text/css" /><link rel="stylesheet" href="https://ojs.cvut.cz/ojs/lib/pkp/styles/fontawesome/fontawesome.css?v=3.4.0.5" type="text/css" /><link rel="stylesheet" href="https://ojs.cvut.cz/ojs/plugins/generic/orcidProfile/css/orcidProfile.css?v=3.4.0.5" type="text/css" /><link rel="stylesheet" href="https://ojs.cvut.cz/ojs/public/site/styleSheet.css?v=3.4.0.5" type="text/css" /><link rel="stylesheet" href="https://ojs.cvut.cz/ojs/public/journals/2/styleSheet.css?d=2020-09-16+08%3A03%3A39" type="text/css" /><link rel="stylesheet" href="https://ojs.cvut.cz/ojs/plugins/generic/citationStyleLanguage/css/citationStyleLanguagePlugin.css?v=3.4.0.5" type="text/css" /> </head> <body class="pkp_page_article pkp_op_view has_site_logo" dir="ltr"> <div class="pkp_structure_page"> <header class="pkp_structure_head" id="headerNavigationContainer" role="banner"> <nav class="cmp_skip_to_content" aria-label="Jump to content links"> <a href="#pkp_content_main">Skip to main content</a> <a href="#siteNav">Skip to main navigation menu</a> <a href="#pkp_content_footer">Skip to site footer</a> </nav> <div class="pkp_head_wrapper"> <div class="pkp_site_name_wrapper"> <button class="pkp_site_nav_toggle"> <span>Open Menu</span> </button> <div class="pkp_site_name"> <a href=" https://ojs.cvut.cz/ojs/index.php/ap/index " class="is_img"> <img src="https://ojs.cvut.cz/ojs/public/journals/2/pageHeaderLogoImage_en_US.jpg" width="4252" height="461" /> </a> </div> </div> <nav class="pkp_site_nav_menu" aria-label="Site Navigation"> <a id="siteNav"></a> <div class="pkp_navigation_primary_row"> <div class="pkp_navigation_primary_wrapper"> <ul id="navigationPrimary" class="pkp_navigation_primary pkp_nav_list"> <li class=""> <a href="https://ojs.cvut.cz/ojs/index.php/ap"> Home </a> </li> <li class=""> <a href="https://ojs.cvut.cz/ojs/index.php/ap/issue/current"> Current </a> </li> <li class=""> <a href="https://ojs.cvut.cz/ojs/index.php/ap/issue/archive"> Archives </a> </li> <li class=""> <a href="https://ojs.cvut.cz/ojs/index.php/ap/announcement"> Announcements </a> </li> <li class=""> <a href="https://ojs.cvut.cz/ojs/index.php/ap/about"> About </a> <ul> <li class=""> <a href="https://ojs.cvut.cz/ojs/index.php/ap/about"> About the Journal </a> </li> <li class=""> <a href="https://ojs.cvut.cz/ojs/index.php/ap/about/submissions"> Submissions </a> </li> <li class=""> <a href="https://ojs.cvut.cz/ojs/index.php/ap/about/editorialTeam"> Editorial Team </a> </li> <li class=""> <a href="https://ojs.cvut.cz/ojs/index.php/ap/about/editorialPolicies"> Editorial Policies </a> </li> <li class=""> <a href="https://ojs.cvut.cz/ojs/index.php/ap/about/contact"> Contact </a> </li> </ul> </li> </ul> <div class="pkp_navigation_search_wrapper"> <a href="https://ojs.cvut.cz/ojs/index.php/ap/search" class="pkp_search pkp_search_desktop"> <span class="fa fa-search" aria-hidden="true"></span> Search </a> </div> </div> </div> <div class="pkp_navigation_user_wrapper" id="navigationUserWrapper"> <ul id="navigationUser" class="pkp_navigation_user pkp_nav_list"> <li class="profile"> <a href="https://ojs.cvut.cz/ojs/index.php/ap/user/register"> Register </a> </li> <li class="profile"> <a href="https://ojs.cvut.cz/ojs/index.php/ap/login"> Login </a> </li> </ul> </div> </nav> </div><!-- .pkp_head_wrapper --> </header><!-- .pkp_structure_head --> <div class="pkp_structure_content has_sidebar"> <div class="pkp_structure_main" role="main"> <a id="pkp_content_main"></a> <div class="page page_article"> <nav class="cmp_breadcrumbs" role="navigation" aria-label="You are here:"> <ol> <li> <a href="https://ojs.cvut.cz/ojs/index.php/ap/index"> Home </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.cvut.cz/ojs/index.php/ap/issue/archive"> Archives </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.cvut.cz/ojs/index.php/ap/issue/view/900"> Vol. 64 No. 5 (2024) </a> <span class="separator">/</span> </li> <li class="current" aria-current="page"> <span aria-current="page"> Articles </span> </li> </ol> </nav> <article class="obj_article_details"> <h1 class="page_title"> A novel approach to nonlinear fractional volterra integral equations </h1> <div class="row"> <div class="main_entry"> <section class="item authors"> <h2 class="pkp_screen_reader">Authors</h2> <ul class="authors"> <li> <span class="name"> Mohammed Abdulshareef Hussein </span> <span class="affiliation"> Al-Ayen Iraqi University, Scientific Research Center, 64001 Nasiriyah, Iraq; Ministry of Education, Education Directorate of Thi-Qar, 64001 Nasiriyah, Iraq </span> </li> <li> <span class="name"> Hassan Kamil Jassim </span> <span class="affiliation"> University of Thi-Qar, College of Education for Pure Science, Department of Mathematics, 64001 Thi-Qar, Iraq </span> </li> </ul> </section> <section class="item doi"> <h2 class="label"> DOI: </h2> <span class="value"> <a href="https://doi.org/10.14311/AP.2024.64.0414"> https://doi.org/10.14311/AP.2024.64.0414 </a> </span> </section> <section class="item keywords"> <h2 class="label"> Keywords: </h2> <span class="value"> integral equations, fractional calculus, Leibniz integral rule, Mitteg-Leffler function, Caputo fractional operator, Riemann-Liouville fractional operator </span> </section> <section class="item abstract"> <h2 class="label">Abstract</h2> <p>Nonlinear Fractional Volterra integral equations (FVIEs) of the first kind present challenges due to their intricate nature, combining fractional calculus and integral equations. In this research paper, we introduce a novel method for solving such equations using Leibniz integral rules. Our study focuses on a thorough analysis and application of the proposed algorithm to solve fractional Volterra integral equations. By using Leibniz integral rules, we offer a fresh perspective on handling these equations, shedding light on their fundamental properties and behaviours. As a result of this study, we anticipate contributing distinctively to the broader development of analytical tools and techniques. By bridging the gap between fractional calculus and integral equations, our approach not only offers a valuable computational methodology but also paves the way for new insights into the application domains in which such equations arise.</p> </section> <section class="item downloads_chart"> <h2 class="label"> Downloads </h2> <div class="value"> <canvas class="usageStatsGraph" data-object-type="Submission" data-object-id="9438"></canvas> <div class="usageStatsUnavailable" data-object-type="Submission" data-object-id="9438"> Download data is not yet available. </div> </div> </section> <section class="item references"> <h2 class="label"> References </h2> <div class="value"> <p>M. Belmekki, M. Benchohra. Existence results for fractional order semilinear functional differential equations with nondense domain. Nonlinear Analysis: Theory, Methods & Applications 72(2):925–932, 2010. <a href="https://doi.org/10.1016/j.na.2009.07.034">https://doi.org/10.1016/j.na.2009.07.034</a> </p> <p>H. K. Jassim, M. A. Hussein. A new approach for solving nonlinear fractional ordinary differential equations. Mathematics 11(7):1565, 2023. <a href="https://doi.org/10.3390/math11071565">https://doi.org/10.3390/math11071565</a> </p> <p>M. A. Hussein, H. K. Jassim. Analysis of fractional differential equations with Antagana-Baleanu fractional operator. Progress in Fractional Differentiation and Applications 9(4):681–686, 2023. <a href="https://doi.org/10.18576/pfda/090411">https://doi.org/10.18576/pfda/090411</a> </p> <p>M. Higazy, S. Aggarwal, T. A. Nofal. Sawi decomposition method for Volterra integral equation with application. Journal of Mathematics 2020(1):6687134, 2020. <a href="https://doi.org/10.1155/2020/6687134">https://doi.org/10.1155/2020/6687134</a> </p> <p>S. Jahanshahi, E. Babolian, D. F. M. Torres, A. Vahidi. Solving Abel integral equations of first kind via fractional calculus. Journal of King Saud University – Science 27(2):161–167, 2015. <a href="https://doi.org/10.1016/j.jksus.2014.09.004">https://doi.org/10.1016/j.jksus.2014.09.004</a> </p> <p>G. Pellicane, L. L. Lee, C. Caccamo. Integral-equation theories of fluid phase equilibria in simple fluids. Fluid Phase Equilibria 521:112665, 2020. <a href="https://doi.org/10.1016/j.fluid.2020.112665">https://doi.org/10.1016/j.fluid.2020.112665</a> </p> <p>M. A. Hussein, H. K. Jassim, A. K. Jassim. An innovative iterative approach to solving Volterra integral equations of second kind. Acta Polytechnica 64(2):87–102, 2024. <a href="https://doi.org/10.14311/AP.2024.64.0087">https://doi.org/10.14311/AP.2024.64.0087</a> </p> <p>H. Mottaghi Golshan. Numerical solution of nonlinear m-dimensional Fredholm integral equations using iterative Newton-Cotes rules. Journal of Computational and Applied Mathematics 448:115917, 2024. <a href="https://doi.org/10.1016/j.cam.2024.115917">https://doi.org/10.1016/j.cam.2024.115917</a> </p> <p>M. A. Hussein. The approximate solutions of fractional differential equations with Antagana-Baleanu fractional operator. Mathematics and Computational Sciences 3(3):29–39, 2022. <a href="https://doi.org/10.30511/MCS.2022.560414.1077">https://doi.org/10.30511/MCS.2022.560414.1077</a> </p> <p>H. K. Jassim, M. A. S. Hussain. On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator. Journal of Mathematics and Computer Science 23(1):58–66, 2021. <a href="https://doi.org/10.22436/jmcs.023.01.06">https://doi.org/10.22436/jmcs.023.01.06</a> </p> <p>R. Katani, S. Mckee. A hybrid Legendre block-pulse method for mixed Volterra-Fredholm integral equations. Journal of Computational and Applied Mathematics 376:112867, 2020. <a href="https://doi.org/10.1016/j.cam.2020.112867">https://doi.org/10.1016/j.cam.2020.112867</a> </p> <p>H. K. Jassim, M. A. Hussein. A novel formulation of the fractional derivative with the order α ≥ 0 and without the singular kernel. Mathematics 10(21):4123, 2022. <a href="https://doi.org/10.3390/math10214123">https://doi.org/10.3390/math10214123</a> </p> <p>J. Wu, Y. Zhou, C. Hang. A singularity free and derivative free approach for Abel integral equation in analyzing the laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 167:105791, 2020. <a href="https://doi.org/10.1016/j.sab.2020.105791">https://doi.org/10.1016/j.sab.2020.105791</a> </p> <p>M. A. Hussein. Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator. Baghdad Science Journal 21(3):1044–1054, 2024. <a href="https://doi.org/10.21123/bsj.2023.7310">https://doi.org/10.21123/bsj.2023.7310</a> </p> <p>S. Aggarwal, N. Sharma. Laplace transform for the solution of first kind linear Volterra integral equation. Journal of Advanced Research in Applied Mathematics and Statistics 4(3&4):16–23, 2019. </p> <p>S. Aggarwal, R. Kumar, J. Chandel. Solution of linear Volterra integral equation of second kind via Rishi transform. Journal of Scientific Research 15(1):111–119, 2023. <a href="https://doi.org/10.3329/jsr.v15i1.60337">https://doi.org/10.3329/jsr.v15i1.60337</a> </p> <p>K. Sayevand, J. Tenreiro Machado, D. Baleanu. A new glance on the Leibniz rule for fractional derivatives. Communications in Nonlinear Science and Numerical Simulation 62:244–249, 2018. <a href="https://doi.org/10.1016/j.cnsns.2018.02.037">https://doi.org/10.1016/j.cnsns.2018.02.037</a> </p> <p>S. Douglas, L. Grafakos. Norm estimates for the fractional derivative of multiple factors. Journal of Mathematical Analysis and Applications 537(2):128409, 2024. <a href="https://doi.org/10.1016/j.jmaa.2024.128409">https://doi.org/10.1016/j.jmaa.2024.128409</a> </p> <p>S. Aggarwal, R. Kumar, J. Chandel. Exact solution of non-linear Volterra integral equation of first kind using Rishi transform. Bulletin of Pure & Applied Sciences – Mathematics and Statistics 41(2):159–166, 2022. <a href="https://doi.org/10.5958/2320-3226.2022.00022.4">https://doi.org/10.5958/2320-3226.2022.00022.4</a>. </p> <p>E. Artin. The gamma function. Courier Dover Publications, USA, 2015. ISBN 978-0-486-80300-5. </p> <p>A. K. Shukla, J. C. Prajapati. On a generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications 336(2):797–811, 2007. <a href="https://doi.org/10.1016/j.jmaa.2007.03.018">https://doi.org/10.1016/j.jmaa.2007.03.018</a> </p> <p>D. Pang, W. Jiang, A. U. Niazi. Fractional derivatives of the generalized Mittag-Leffler functions. Advances in Difference Equations 2018:415, 2018. <a href="https://doi.org/10.1186/s13662-018-1855-9">https://doi.org/10.1186/s13662-018-1855-9</a> </p> <p>C. Li, D. Qian, Y. Chen. On Riemann-Liouville and Caputo derivatives. Discrete Dynamics in Nature and Society 2011(1):562494, 2011. <a href="https://doi.org/10.1155/2011/562494">https://doi.org/10.1155/2011/562494</a> </p> <p>H. Flanders. Differentiation under the integral sign. The American Mathematical Monthly 80(6):615–627, 1973. <a href="https://doi.org/10.1080/00029890.1973.11993339">https://doi.org/10.1080/00029890.1973.11993339</a> </p> <p>I. T. Huseynov, A. Ahmadova, N. I. Mahmudov. Fractional Leibniz integral rules for Riemann-Liouville and Caputo fractional derivatives and their applications, 2020. [2024-04-26]. <a href="https://doi.org/10.48550/arXiv.2012.11360">https://doi.org/10.48550/arXiv.2012.11360</a> </p> <p>R. Kress. Linear integral equations, vol. 82. Springer, 1989. </p> <p>A.-M. Wazwaz. Linear and nonlinear integral equations. Springer Berlin, Germany, 2011. <a href="https://doi.org/10.1007/978-3-642-21449-3">https://doi.org/10.1007/978-3-642-21449-3</a> </p> <p>J. Talab Abdullah, B. Sweedan Naseer, B. Taha Abdllrazak. Numerical solutions of Abel integral equations via Touchard and Laguerre polynomials. International Journal of Nonlinear Analysis and Applications 12(2):1599–1609, 2021. <a href="https://doi.org/10.22075/ijnaa.2021.5290">https://doi.org/10.22075/ijnaa.2021.5290</a> </p> </div> </section> </div><!-- .main_entry --> <div class="entry_details"> <div class="item galleys"> <h2 class="pkp_screen_reader"> Downloads </h2> <ul class="value galleys_links"> <li> <a class="obj_galley_link pdf" href="https://ojs.cvut.cz/ojs/index.php/ap/article/view/9438/7233"> PDF </a> </li> </ul> </div> <div class="item published"> <section class="sub_item"> <h2 class="label"> Published </h2> <div class="value"> <span>2024-11-11</span> </div> </section> </div> <div class="item issue"> <section class="sub_item"> <h2 class="label"> Issue </h2> <div class="value"> <a class="title" href="https://ojs.cvut.cz/ojs/index.php/ap/issue/view/900"> Vol. 64 No. 5 (2024) </a> </div> </section> <section class="sub_item"> <h2 class="label"> Section </h2> <div class="value"> Articles </div> </section> </div> <div class="item copyright"> <h2 class="label"> License </h2> <p>Copyright (c) 2024 Mohammed Abdulshareef Hussein, Hassan Kamil Jassim</p> <a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" src="//i.creativecommons.org/l/by/4.0/88x31.png" /></a><p>This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p> </div> <div class="item citation"> <section class="sub_item citation_display"> <h2 class="label"> How to Cite </h2> <div class="value"> <div id="citationOutput" role="region" aria-live="polite"> <div class="csl-bib-body"> <div class="csl-entry">Hussein, M. A., & Jassim, H. K. . (2024). A novel approach to nonlinear fractional volterra integral equations. <i>Acta Polytechnica</i>, <i>64</i>(5), 414–419. <a href="https://doi.org/10.14311/AP.2024.64.0414">https://doi.org/10.14311/AP.2024.64.0414</a></div> </div> </div> <div class="citation_formats"> <button class="citation_formats_button label" aria-controls="cslCitationFormats" aria-expanded="false" data-csl-dropdown="true"> More Citation Formats </button> <div id="cslCitationFormats" class="citation_formats_list" aria-hidden="true"> <ul class="citation_formats_styles"> <li> <a aria-controls="citationOutput" href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/acm-sig-proceedings?submissionId=9438&publicationId=6680&issueId=900" data-load-citation data-json-href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/acm-sig-proceedings?submissionId=9438&publicationId=6680&issueId=900&return=json" > ACM </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/acs-nano?submissionId=9438&publicationId=6680&issueId=900" data-load-citation data-json-href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/acs-nano?submissionId=9438&publicationId=6680&issueId=900&return=json" > ACS </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/apa?submissionId=9438&publicationId=6680&issueId=900" data-load-citation data-json-href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/apa?submissionId=9438&publicationId=6680&issueId=900&return=json" > APA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=9438&publicationId=6680&issueId=900" data-load-citation data-json-href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=9438&publicationId=6680&issueId=900&return=json" > ABNT </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/chicago-author-date?submissionId=9438&publicationId=6680&issueId=900" data-load-citation data-json-href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/chicago-author-date?submissionId=9438&publicationId=6680&issueId=900&return=json" > Chicago </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/harvard-cite-them-right?submissionId=9438&publicationId=6680&issueId=900" data-load-citation data-json-href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/harvard-cite-them-right?submissionId=9438&publicationId=6680&issueId=900&return=json" > Harvard </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/ieee?submissionId=9438&publicationId=6680&issueId=900" data-load-citation data-json-href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/ieee?submissionId=9438&publicationId=6680&issueId=900&return=json" > IEEE </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/modern-language-association?submissionId=9438&publicationId=6680&issueId=900" data-load-citation data-json-href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/modern-language-association?submissionId=9438&publicationId=6680&issueId=900&return=json" > MLA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=9438&publicationId=6680&issueId=900" data-load-citation data-json-href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=9438&publicationId=6680&issueId=900&return=json" > Turabian </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/vancouver?submissionId=9438&publicationId=6680&issueId=900" data-load-citation data-json-href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/vancouver?submissionId=9438&publicationId=6680&issueId=900&return=json" > Vancouver </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/ama?submissionId=9438&publicationId=6680&issueId=900" data-load-citation data-json-href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/get/ama?submissionId=9438&publicationId=6680&issueId=900&return=json" > AMA </a> </li> </ul> <div class="label"> Download Citation </div> <ul class="citation_formats_styles"> <li> <a href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/download/ris?submissionId=9438&publicationId=6680&issueId=900"> <span class="fa fa-download"></span> Endnote/Zotero/Mendeley (RIS) </a> </li> <li> <a href="https://ojs.cvut.cz/ojs/index.php/ap/citationstylelanguage/download/bibtex?submissionId=9438&publicationId=6680&issueId=900"> <span class="fa fa-download"></span> BibTeX </a> </li> </ul> </div> </div> </div> </section> </div> </div><!-- .entry_details --> </div><!-- .row --> </article> </div><!-- .page --> </div><!-- pkp_structure_main --> <div class="pkp_structure_sidebar left" role="complementary"> <div class="pkp_block block_custom" id="customblock-ctujournals"> <h2 class="title pkp_screen_reader">ctujournals</h2> <div class="content"> <p><a href="https://ojs.cvut.cz">CTU Journals</a></p> </div> </div> <div class="pkp_block block_custom" id="customblock-statistika"> <h2 class="title pkp_screen_reader">statistika</h2> <div class="content"> <p><a title="SCImago Journal & Country Rank" href="http://www.scimagojr.com/journalsearch.php?q=21100200605&tip=sid&exact=no"><img src="http://www.scimagojr.com/journal_img.php?id=21100200605&title=false" alt="SCImago Journal & Country Rank" height="120px" border="0" /></a></p> </div> </div> <div class="pkp_block block_custom" id="customblock-esci"> <h2 class="title pkp_screen_reader">esci</h2> <div class="content"> <p><img src="/ojs/public/site/images/adleriva/ESCI_button_clarivate.png" alt="" width="123" height="126" /></p> </div> </div> <div class="pkp_block block_information"> <h2 class="title">Information</h2> <div class="content"> <ul> <li> <a href="https://ojs.cvut.cz/ojs/index.php/ap/information/readers"> For Readers </a> </li> <li> <a href="https://ojs.cvut.cz/ojs/index.php/ap/information/authors"> For Authors </a> </li> <li> <a href="https://ojs.cvut.cz/ojs/index.php/ap/information/librarians"> For Librarians </a> </li> </ul> </div> </div> <div class="pkp_block block_developed_by"> <h2 class="pkp_screen_reader"> Developed By </h2> <div class="content"> <a href="https://pkp.sfu.ca/ojs/"> Open Journal Systems </a> </div> </div> </div><!-- pkp_sidebar.left --> </div><!-- pkp_structure_content --> <div class="pkp_structure_footer_wrapper" role="contentinfo"> <a id="pkp_content_footer"></a> <div class="pkp_structure_footer"> <div class="pkp_footer_content"> <p>ISSN 1805–2363 (online)</p> <p>ISSN 1210–2709 (print - terminated to Vol. 61 No. 6 (2021))</p> <p><a href="https://www.cvut.cz/en" target="_blank" rel="noopener">Czech Technical University in Prague</a>, Jugoslávských partyzánů 1580/3, 160 00 Praha 6 – Dejvice, Czech Republic</p> <p>Licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" target="_blank" rel="license noopener">Creative Commons Attribution 4.0 International License</a> <a href="http://creativecommons.org/licenses/by/4.0/" target="_blank" rel="license noopener"><img style="border-width: 0;" src="https://i.creativecommons.org/l/by/4.0/80x15.png" alt="Creative Commons License" /></a></p> </div> <div class="pkp_brand_footer"> <a href="https://ojs.cvut.cz/ojs/index.php/ap/about/aboutThisPublishingSystem"> <img alt="More information about the publishing system, Platform and Workflow by OJS/PKP." src="https://ojs.cvut.cz/ojs/templates/images/ojs_brand.png"> </a> </div> </div> </div><!-- pkp_structure_footer_wrapper --> </div><!-- pkp_structure_page --> <script src="https://ojs.cvut.cz/ojs/lib/pkp/lib/vendor/components/jquery/jquery.min.js?v=3.4.0.5" type="text/javascript"></script><script src="https://ojs.cvut.cz/ojs/lib/pkp/lib/vendor/components/jqueryui/jquery-ui.min.js?v=3.4.0.5" type="text/javascript"></script><script src="https://ojs.cvut.cz/ojs/plugins/themes/default/js/lib/popper/popper.js?v=3.4.0.5" type="text/javascript"></script><script src="https://ojs.cvut.cz/ojs/plugins/themes/default/js/lib/bootstrap/util.js?v=3.4.0.5" type="text/javascript"></script><script src="https://ojs.cvut.cz/ojs/plugins/themes/default/js/lib/bootstrap/dropdown.js?v=3.4.0.5" type="text/javascript"></script><script src="https://ojs.cvut.cz/ojs/plugins/themes/default/js/main.js?v=3.4.0.5" type="text/javascript"></script><script src="https://ojs.cvut.cz/ojs/plugins/generic/citationStyleLanguage/js/articleCitation.js?v=3.4.0.5" type="text/javascript"></script><script type="text/javascript">var pkpUsageStats = pkpUsageStats || {};pkpUsageStats.data = pkpUsageStats.data || {};pkpUsageStats.data.Submission = pkpUsageStats.data.Submission || {};pkpUsageStats.data.Submission[9438] = {"data":{"2024":{"11":"106","12":"88"}},"label":"All Downloads","color":"79,181,217","total":194};</script><script src="https://ojs.cvut.cz/ojs/lib/pkp/js/lib/Chart.min.js?v=3.4.0.5" type="text/javascript"></script><script type="text/javascript">var pkpUsageStats = pkpUsageStats || {};pkpUsageStats.locale = pkpUsageStats.locale || {};pkpUsageStats.locale.months = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"];pkpUsageStats.config = pkpUsageStats.config || {};pkpUsageStats.config.chartType = "bar";</script><script src="https://ojs.cvut.cz/ojs/lib/pkp/js/usage-stats-chart.js?v=3.4.0.5" type="text/javascript"></script> </body> </html>