CINXE.COM
Quadrilateral - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Quadrilateral - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"c0448323-2053-4380-ab1c-63404819f37f","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Quadrilateral","wgTitle":"Quadrilateral","wgCurRevisionId":1259238097,"wgRevisionId":1259238097,"wgArticleId":25278,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: archived copy as title","All articles with dead external links","Articles with dead external links from November 2024","Articles with permanently dead external links","Articles with short description","Short description is different from Wikidata","Commons category link is on Wikidata","Webarchive template wayback links","4 (number)","Quadrilaterals"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Quadrilateral", "wgRelevantArticleId":25278,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q36810","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform", "platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher" ,"ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Six_Quadrilaterals.svg/1200px-Six_Quadrilaterals.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Six_Quadrilaterals.svg/800px-Six_Quadrilaterals.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Six_Quadrilaterals.svg/640px-Six_Quadrilaterals.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Quadrilateral - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Quadrilateral"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Quadrilateral&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Quadrilateral"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Quadrilateral rootpage-Quadrilateral skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Quadrilateral" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Quadrilateral" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Quadrilateral" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Quadrilateral" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Simple_quadrilaterals" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Simple_quadrilaterals"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Simple quadrilaterals</span> </div> </a> <button aria-controls="toc-Simple_quadrilaterals-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Simple quadrilaterals subsection</span> </button> <ul id="toc-Simple_quadrilaterals-sublist" class="vector-toc-list"> <li id="toc-Convex_quadrilateral" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Convex_quadrilateral"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Convex quadrilateral</span> </div> </a> <ul id="toc-Convex_quadrilateral-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Concave_quadrilaterals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Concave_quadrilaterals"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Concave quadrilaterals</span> </div> </a> <ul id="toc-Concave_quadrilaterals-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Complex_quadrilaterals" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Complex_quadrilaterals"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Complex quadrilaterals</span> </div> </a> <ul id="toc-Complex_quadrilaterals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Special_line_segments" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Special_line_segments"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Special line segments</span> </div> </a> <ul id="toc-Special_line_segments-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Area_of_a_convex_quadrilateral" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Area_of_a_convex_quadrilateral"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Area of a convex quadrilateral</span> </div> </a> <button aria-controls="toc-Area_of_a_convex_quadrilateral-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Area of a convex quadrilateral subsection</span> </button> <ul id="toc-Area_of_a_convex_quadrilateral-sublist" class="vector-toc-list"> <li id="toc-Trigonometric_formulas" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Trigonometric_formulas"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Trigonometric formulas</span> </div> </a> <ul id="toc-Trigonometric_formulas-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Non-trigonometric_formulas" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Non-trigonometric_formulas"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Non-trigonometric formulas</span> </div> </a> <ul id="toc-Non-trigonometric_formulas-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vector_formulas" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Vector_formulas"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Vector formulas</span> </div> </a> <ul id="toc-Vector_formulas-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Diagonals" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Diagonals"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Diagonals</span> </div> </a> <button aria-controls="toc-Diagonals-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Diagonals subsection</span> </button> <ul id="toc-Diagonals-sublist" class="vector-toc-list"> <li id="toc-Properties_of_the_diagonals_in_quadrilaterals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Properties_of_the_diagonals_in_quadrilaterals"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Properties of the diagonals in quadrilaterals</span> </div> </a> <ul id="toc-Properties_of_the_diagonals_in_quadrilaterals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lengths_of_the_diagonals" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lengths_of_the_diagonals"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Lengths of the diagonals</span> </div> </a> <ul id="toc-Lengths_of_the_diagonals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations_of_the_parallelogram_law_and_Ptolemy's_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generalizations_of_the_parallelogram_law_and_Ptolemy's_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Generalizations of the parallelogram law and Ptolemy's theorem</span> </div> </a> <ul id="toc-Generalizations_of_the_parallelogram_law_and_Ptolemy's_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_metric_relations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_metric_relations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Other metric relations</span> </div> </a> <ul id="toc-Other_metric_relations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Angle_bisectors" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Angle_bisectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Angle bisectors</span> </div> </a> <ul id="toc-Angle_bisectors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bimedians" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Bimedians"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Bimedians</span> </div> </a> <ul id="toc-Bimedians-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Trigonometric_identities" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Trigonometric_identities"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Trigonometric identities</span> </div> </a> <ul id="toc-Trigonometric_identities-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inequalities" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Inequalities"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Inequalities</span> </div> </a> <button aria-controls="toc-Inequalities-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Inequalities subsection</span> </button> <ul id="toc-Inequalities-sublist" class="vector-toc-list"> <li id="toc-Area" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Area"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Area</span> </div> </a> <ul id="toc-Area-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Diagonals_and_bimedians" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Diagonals_and_bimedians"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Diagonals and bimedians</span> </div> </a> <ul id="toc-Diagonals_and_bimedians-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sides" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sides"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3</span> <span>Sides</span> </div> </a> <ul id="toc-Sides-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Maximum_and_minimum_properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Maximum_and_minimum_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Maximum and minimum properties</span> </div> </a> <ul id="toc-Maximum_and_minimum_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Remarkable_points_and_lines_in_a_convex_quadrilateral" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Remarkable_points_and_lines_in_a_convex_quadrilateral"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Remarkable points and lines in a convex quadrilateral</span> </div> </a> <ul id="toc-Remarkable_points_and_lines_in_a_convex_quadrilateral-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_properties_of_convex_quadrilaterals" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Other_properties_of_convex_quadrilaterals"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Other properties of convex quadrilaterals</span> </div> </a> <ul id="toc-Other_properties_of_convex_quadrilaterals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Taxonomy" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Taxonomy"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Taxonomy</span> </div> </a> <ul id="toc-Taxonomy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Skew_quadrilaterals" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Skew_quadrilaterals"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Skew quadrilaterals</span> </div> </a> <ul id="toc-Skew_quadrilaterals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Quadrilateral</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 103 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-103" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">103 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-kbd mw-list-item"><a href="https://kbd.wikipedia.org/wiki/%D0%9F%D0%BB%D3%80%D0%B8%D0%BC%D1%8D" title="ПлӀимэ – Kabardian" lang="kbd" hreflang="kbd" data-title="ПлӀимэ" data-language-autonym="Адыгэбзэ" data-language-local-name="Kabardian" class="interlanguage-link-target"><span>Адыгэбзэ</span></a></li><li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Vierhoek" title="Vierhoek – Afrikaans" lang="af" hreflang="af" data-title="Vierhoek" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8A%A0%E1%88%AB%E1%89%B5_%E1%88%9B%E1%8B%95%E1%8B%98%E1%8A%95" title="አራት ማዕዘን – Amharic" lang="am" hreflang="am" data-title="አራት ማዕዘን" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ang mw-list-item"><a href="https://ang.wikipedia.org/wiki/F%C4%93owerecge" title="Fēowerecge – Old English" lang="ang" hreflang="ang" data-title="Fēowerecge" data-language-autonym="Ænglisc" data-language-local-name="Old English" class="interlanguage-link-target"><span>Ænglisc</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B1%D8%A8%D8%A7%D8%B9%D9%8A_%D8%A3%D8%B6%D9%84%D8%A7%D8%B9" title="رباعي أضلاع – Arabic" lang="ar" hreflang="ar" data-title="رباعي أضلاع" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%9A%E0%A6%A4%E0%A7%81%E0%A7%B0%E0%A7%8D%E0%A6%AD%E0%A7%81%E0%A6%9C" title="চতুৰ্ভুজ – Assamese" lang="as" hreflang="as" data-title="চতুৰ্ভুজ" data-language-autonym="অসমীয়া" data-language-local-name="Assamese" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Cuadril%C3%A1teru" title="Cuadriláteru – Asturian" lang="ast" hreflang="ast" data-title="Cuadriláteru" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/D%C3%B6rdbucaql%C4%B1" title="Dördbucaqlı – Azerbaijani" lang="az" hreflang="az" data-title="Dördbucaqlı" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%9A%E0%A6%A4%E0%A7%81%E0%A6%B0%E0%A7%8D%E0%A6%AD%E0%A7%81%E0%A6%9C" title="চতুর্ভুজ – Bangla" lang="bn" hreflang="bn" data-title="চতুর্ভুজ" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/S%C3%AC-kak-h%C3%AAng" title="Sì-kak-hêng – Minnan" lang="nan" hreflang="nan" data-title="Sì-kak-hêng" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%94%D2%AF%D1%80%D1%82%D0%BC%D3%A9%D0%B9%D3%A9%D1%88" title="Дүртмөйөш – Bashkir" lang="ba" hreflang="ba" data-title="Дүртмөйөш" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A7%D0%B0%D1%82%D1%8B%D1%80%D0%BE%D1%85%D0%B2%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D1%96%D0%BA" title="Чатырохвугольнік – Belarusian" lang="be" hreflang="be" data-title="Чатырохвугольнік" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A7%D0%B0%D1%82%D1%8B%D1%80%D0%BE%D1%85%D0%BA%D1%83%D1%82%D0%BD%D1%96%D0%BA" title="Чатырохкутнік – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Чатырохкутнік" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Kwadrilatero" title="Kwadrilatero – Central Bikol" lang="bcl" hreflang="bcl" data-title="Kwadrilatero" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A7%D0%B5%D1%82%D0%B8%D1%80%D0%B8%D1%8A%D0%B3%D1%8A%D0%BB%D0%BD%D0%B8%D0%BA" title="Четириъгълник – Bulgarian" lang="bg" hreflang="bg" data-title="Четириъгълник" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/%C4%8Cetverougao" title="Četverougao – Bosnian" lang="bs" hreflang="bs" data-title="Četverougao" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Pevarc%27hostezeg" title="Pevarc'hostezeg – Breton" lang="br" hreflang="br" data-title="Pevarc'hostezeg" data-language-autonym="Brezhoneg" data-language-local-name="Breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Quadril%C3%A0ter" title="Quadrilàter – Catalan" lang="ca" hreflang="ca" data-title="Quadrilàter" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%C4%83%D0%B2%D0%B0%D1%82%D0%BA%C4%95%D1%82%D0%B5%D1%81%D0%BB%C4%95%D1%85" title="Тăваткĕтеслĕх – Chuvash" lang="cv" hreflang="cv" data-title="Тăваткĕтеслĕх" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/%C4%8Cty%C5%99%C3%BAheln%C3%ADk" title="Čtyřúhelník – Czech" lang="cs" hreflang="cs" data-title="Čtyřúhelník" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Gonyoina" title="Gonyoina – Shona" lang="sn" hreflang="sn" data-title="Gonyoina" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Pedrochr" title="Pedrochr – Welsh" lang="cy" hreflang="cy" data-title="Pedrochr" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Firkant" title="Firkant – Danish" lang="da" hreflang="da" data-title="Firkant" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-se mw-list-item"><a href="https://se.wikipedia.org/wiki/Njealje%C4%8Diegat" title="Njealječiegat – Northern Sami" lang="se" hreflang="se" data-title="Njealječiegat" data-language-autonym="Davvisámegiella" data-language-local-name="Northern Sami" class="interlanguage-link-target"><span>Davvisámegiella</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Viereck" title="Viereck – German" lang="de" hreflang="de" data-title="Viereck" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Nelinurk" title="Nelinurk – Estonian" lang="et" hreflang="et" data-title="Nelinurk" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A4%CE%B5%CF%84%CF%81%CE%AC%CF%80%CE%BB%CE%B5%CF%85%CF%81%CE%BF" title="Τετράπλευρο – Greek" lang="el" hreflang="el" data-title="Τετράπλευρο" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Cuadril%C3%A1tero" title="Cuadrilátero – Spanish" lang="es" hreflang="es" data-title="Cuadrilátero" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Kvarlatero" title="Kvarlatero – Esperanto" lang="eo" hreflang="eo" data-title="Kvarlatero" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Lauki" title="Lauki – Basque" lang="eu" hreflang="eu" data-title="Lauki" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%DA%86%D9%87%D8%A7%D8%B1%D8%B6%D9%84%D8%B9%DB%8C" title="چهارضلعی – Persian" lang="fa" hreflang="fa" data-title="چهارضلعی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Quadrilat%C3%A8re" title="Quadrilatère – French" lang="fr" hreflang="fr" data-title="Quadrilatère" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gd mw-list-item"><a href="https://gd.wikipedia.org/wiki/Ceithir-che%C3%A0rnach" title="Ceithir-cheàrnach – Scottish Gaelic" lang="gd" hreflang="gd" data-title="Ceithir-cheàrnach" data-language-autonym="Gàidhlig" data-language-local-name="Scottish Gaelic" class="interlanguage-link-target"><span>Gàidhlig</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Cuadril%C3%A1tero" title="Cuadrilátero – Galician" lang="gl" hreflang="gl" data-title="Cuadrilátero" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%82%AC%EA%B0%81%ED%98%95" title="사각형 – Korean" lang="ko" hreflang="ko" data-title="사각형" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%94%D5%A1%D5%BC%D5%A1%D5%B6%D5%AF%D5%B5%D5%B8%D6%82%D5%B6" title="Քառանկյուն – Armenian" lang="hy" hreflang="hy" data-title="Քառանկյուն" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%9A%E0%A4%A4%E0%A5%81%E0%A4%B0%E0%A5%8D%E0%A4%AD%E0%A5%81%E0%A4%9C" title="चतुर्भुज – Hindi" lang="hi" hreflang="hi" data-title="चतुर्भुज" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/%C4%8Cetverokut" title="Četverokut – Croatian" lang="hr" hreflang="hr" data-title="Četverokut" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Quadrilatero" title="Quadrilatero – Ido" lang="io" hreflang="io" data-title="Quadrilatero" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Segi_empat" title="Segi empat – Indonesian" lang="id" hreflang="id" data-title="Segi empat" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Quadrilatero" title="Quadrilatero – Interlingua" lang="ia" hreflang="ia" data-title="Quadrilatero" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Ferhyrningur" title="Ferhyrningur – Icelandic" lang="is" hreflang="is" data-title="Ferhyrningur" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Quadrilatero" title="Quadrilatero – Italian" lang="it" hreflang="it" data-title="Quadrilatero" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A8%D7%95%D7%91%D7%A2" title="מרובע – Hebrew" lang="he" hreflang="he" data-title="מרובע" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Quadrilateral" title="Quadrilateral – Javanese" lang="jv" hreflang="jv" data-title="Quadrilateral" data-language-autonym="Jawa" data-language-local-name="Javanese" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9D%E1%83%97%E1%83%AE%E1%83%99%E1%83%A3%E1%83%97%E1%83%AE%E1%83%94%E1%83%93%E1%83%98" title="ოთხკუთხედი – Georgian" lang="ka" hreflang="ka" data-title="ოთხკუთხედი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A2%D3%A9%D1%80%D1%82%D0%B1%D2%B1%D1%80%D1%8B%D1%88" title="Төртбұрыш – Kazakh" lang="kk" hreflang="kk" data-title="Төртбұрыш" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Pembenne" title="Pembenne – Swahili" lang="sw" hreflang="sw" data-title="Pembenne" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/%C3%87argo%C5%9Fe" title="Çargoşe – Kurdish" lang="ku" hreflang="ku" data-title="Çargoşe" data-language-autonym="Kurdî" data-language-local-name="Kurdish" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Quadrilaterale" title="Quadrilaterale – Latin" lang="la" hreflang="la" data-title="Quadrilaterale" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/%C4%8Cetrst%C5%ABris" title="Četrstūris – Latvian" lang="lv" hreflang="lv" data-title="Četrstūris" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Keturkampis" title="Keturkampis – Lithuanian" lang="lt" hreflang="lt" data-title="Keturkampis" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Veerhook" title="Veerhook – Limburgish" lang="li" hreflang="li" data-title="Veerhook" data-language-autonym="Limburgs" data-language-local-name="Limburgish" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Quadril%C3%A0ter_(geometr%C3%ACa)" title="Quadrilàter (geometrìa) – Lombard" lang="lmo" hreflang="lmo" data-title="Quadrilàter (geometrìa)" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/N%C3%A9gysz%C3%B6g" title="Négyszög – Hungarian" lang="hu" hreflang="hu" data-title="Négyszög" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A7%D0%B5%D1%82%D0%B8%D1%80%D0%B8%D0%B0%D0%B3%D0%BE%D0%BB%D0%BD%D0%B8%D0%BA" title="Четириаголник – Macedonian" lang="mk" hreflang="mk" data-title="Четириаголник" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Efadafy" title="Efadafy – Malagasy" lang="mg" hreflang="mg" data-title="Efadafy" data-language-autonym="Malagasy" data-language-local-name="Malagasy" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%9A%E0%B4%A4%E0%B5%81%E0%B5%BC%E0%B4%AD%E0%B5%81%E0%B4%9C%E0%B4%82" title="ചതുർഭുജം – Malayalam" lang="ml" hreflang="ml" data-title="ചതുർഭുജം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%9A%E0%A5%8C%E0%A4%95%E0%A5%8B%E0%A4%A8" title="चौकोन – Marathi" lang="mr" hreflang="mr" data-title="चौकोन" data-language-autonym="मराठी" data-language-local-name="Marathi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Segi_empat" title="Segi empat – Malay" lang="ms" hreflang="ms" data-title="Segi empat" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%85%E1%80%90%E1%80%AF%E1%80%82%E1%80%B6" title="စတုဂံ – Burmese" lang="my" hreflang="my" data-title="စတုဂံ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Vierhoek" title="Vierhoek – Dutch" lang="nl" hreflang="nl" data-title="Vierhoek" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%9A%E0%A4%A4%E0%A5%81%E0%A4%B0%E0%A5%8D%E0%A4%AD%E0%A5%81%E0%A4%9C" title="चतुर्भुज – Nepali" lang="ne" hreflang="ne" data-title="चतुर्भुज" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-new mw-list-item"><a href="https://new.wikipedia.org/wiki/%E0%A4%AA%E0%A5%8D%E0%A4%AF%E0%A4%95%E0%A5%81%E0%A4%82" title="प्यकुं – Newari" lang="new" hreflang="new" data-title="प्यकुं" data-language-autonym="नेपाल भाषा" data-language-local-name="Newari" class="interlanguage-link-target"><span>नेपाल भाषा</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%9B%9B%E8%A7%92%E5%BD%A2" title="四角形 – Japanese" lang="ja" hreflang="ja" data-title="四角形" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Firkant" title="Firkant – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Firkant" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Firkant" title="Firkant – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Firkant" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Quadrilat%C3%A8r" title="Quadrilatèr – Occitan" lang="oc" hreflang="oc" data-title="Quadrilatèr" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%9A%E0%AC%A4%E0%AD%81%E0%AC%B0%E0%AD%8D%E0%AC%AD%E0%AD%81%E0%AC%9C" title="ଚତୁର୍ଭୁଜ – Odia" lang="or" hreflang="or" data-title="ଚତୁର୍ଭୁଜ" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="Odia" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/To%CA%BBrtburchak" title="Toʻrtburchak – Uzbek" lang="uz" hreflang="uz" data-title="Toʻrtburchak" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%9A%E0%A9%81%E0%A8%AC%E0%A8%BE%E0%A8%B9%E0%A9%80%E0%A8%86" title="ਚੁਬਾਹੀਆ – Punjabi" lang="pa" hreflang="pa" data-title="ਚੁਬਾਹੀਆ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%DA%86%D9%88%DA%A9%D9%88%D8%B1" title="چوکور – Western Punjabi" lang="pnb" hreflang="pnb" data-title="چوکور" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%DA%85%D9%84%D9%88%D8%B1%DA%85%D9%86%DA%89%DB%8C" title="څلورڅنډی – Pashto" lang="ps" hreflang="ps" data-title="څلورڅنډی" data-language-autonym="پښتو" data-language-local-name="Pashto" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%85%E1%9E%8F%E1%9E%BB%E1%9E%80%E1%9F%84%E1%9E%8E" title="ចតុកោណ – Khmer" lang="km" hreflang="km" data-title="ចតុកោណ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="Khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Czworok%C4%85t" title="Czworokąt – Polish" lang="pl" hreflang="pl" data-title="Czworokąt" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Quadril%C3%A1tero" title="Quadrilátero – Portuguese" lang="pt" hreflang="pt" data-title="Quadrilátero" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Patrulater" title="Patrulater – Romanian" lang="ro" hreflang="ro" data-title="Patrulater" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Tawak%27uchu" title="Tawak'uchu – Quechua" lang="qu" hreflang="qu" data-title="Tawak'uchu" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A7%D0%B5%D1%82%D1%8B%D1%80%D1%91%D1%85%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA" title="Четырёхугольник – Russian" lang="ru" hreflang="ru" data-title="Четырёхугольник" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Quadrilateral" title="Quadrilateral – Simple English" lang="en-simple" hreflang="en-simple" data-title="Quadrilateral" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%DA%86%D9%88%DA%AA%D9%86%DA%8A%D9%88" title="چوڪنڊو – Sindhi" lang="sd" hreflang="sd" data-title="چوڪنڊو" data-language-autonym="سنڌي" data-language-local-name="Sindhi" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/%C5%A0tvoruholn%C3%ADk" title="Štvoruholník – Slovak" lang="sk" hreflang="sk" data-title="Štvoruholník" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/%C5%A0tirikotnik" title="Štirikotnik – Slovenian" lang="sl" hreflang="sl" data-title="Štirikotnik" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%86%D9%88%D8%A7%D8%B1%D9%84%D8%A7" title="چوارلا – Central Kurdish" lang="ckb" hreflang="ckb" data-title="چوارلا" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A7%D0%B5%D1%82%D0%B2%D0%BE%D1%80%D0%BE%D1%83%D0%B3%D0%B0%D0%BE" title="Четвороугао – Serbian" lang="sr" hreflang="sr" data-title="Четвороугао" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/%C4%8Cetverokut" title="Četverokut – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Četverokut" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Nelikulmio" title="Nelikulmio – Finnish" lang="fi" hreflang="fi" data-title="Nelikulmio" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Fyrh%C3%B6rning" title="Fyrhörning – Swedish" lang="sv" hreflang="sv" data-title="Fyrhörning" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Kuwadrilateral" title="Kuwadrilateral – Tagalog" lang="tl" hreflang="tl" data-title="Kuwadrilateral" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A8%E0%AE%BE%E0%AE%B1%E0%AF%8D%E0%AE%95%E0%AE%B0%E0%AE%AE%E0%AF%8D" title="நாற்கரம் – Tamil" lang="ta" hreflang="ta" data-title="நாற்கரம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%9A%E0%B0%A4%E0%B1%81%E0%B0%B0%E0%B1%8D%E0%B0%AD%E0%B1%81%E0%B0%9C%E0%B0%BF" title="చతుర్భుజి – Telugu" lang="te" hreflang="te" data-title="చతుర్భుజి" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B9%E0%B8%9B%E0%B8%AA%E0%B8%B5%E0%B9%88%E0%B9%80%E0%B8%AB%E0%B8%A5%E0%B8%B5%E0%B9%88%E0%B8%A2%E0%B8%A1" title="รูปสี่เหลี่ยม – Thai" lang="th" hreflang="th" data-title="รูปสี่เหลี่ยม" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/D%C3%B6rtgen" title="Dörtgen – Turkish" lang="tr" hreflang="tr" data-title="Dörtgen" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A7%D0%BE%D1%82%D0%B8%D1%80%D0%B8%D0%BA%D1%83%D1%82%D0%BD%D0%B8%D0%BA" title="Чотирикутник – Ukrainian" lang="uk" hreflang="uk" data-title="Чотирикутник" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ug mw-list-item"><a href="https://ug.wikipedia.org/wiki/%D8%AA%DB%86%D8%AA_%D8%AA%DB%95%D8%B1%DB%95%D9%BE%D9%84%D9%89%D9%83" title="تۆت تەرەپلىك – Uyghur" lang="ug" hreflang="ug" data-title="تۆت تەرەپلىك" data-language-autonym="ئۇيغۇرچە / Uyghurche" data-language-local-name="Uyghur" class="interlanguage-link-target"><span>ئۇيغۇرچە / Uyghurche</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/T%E1%BB%A9_gi%C3%A1c" title="Tứ giác – Vietnamese" lang="vi" hreflang="vi" data-title="Tứ giác" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%9B%9B%E9%82%8A%E5%BD%A2" title="四邊形 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="四邊形" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Vieroek" title="Vieroek – West Flemish" lang="vls" hreflang="vls" data-title="Vieroek" data-language-autonym="West-Vlams" data-language-local-name="West Flemish" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Kwadrilatero" title="Kwadrilatero – Waray" lang="war" hreflang="war" data-title="Kwadrilatero" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%9B%9B%E8%BE%B9%E5%BD%A2" title="四边形 – Wu" lang="wuu" hreflang="wuu" data-title="四边形" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%9B%9B%E9%82%8A%E5%BD%A2" title="四邊形 – Cantonese" lang="yue" hreflang="yue" data-title="四邊形" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%9B%9B%E9%82%8A%E5%BD%A2" title="四邊形 – Chinese" lang="zh" hreflang="zh" data-title="四邊形" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zgh mw-list-item"><a href="https://zgh.wikipedia.org/wiki/%E2%B4%B0%E2%B4%BD%E2%B5%93%E2%B5%A5%E2%B4%B7%E2%B5%89%E2%B5%99" title="ⴰⴽⵓⵥⴷⵉⵙ – Standard Moroccan Tamazight" lang="zgh" hreflang="zgh" data-title="ⴰⴽⵓⵥⴷⵉⵙ" data-language-autonym="ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ" data-language-local-name="Standard Moroccan Tamazight" class="interlanguage-link-target"><span>ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q36810#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Quadrilateral" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Quadrilateral" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Quadrilateral"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Quadrilateral&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Quadrilateral&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Quadrilateral"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Quadrilateral&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Quadrilateral&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Quadrilateral" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Quadrilateral" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Quadrilateral&oldid=1259238097" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Quadrilateral&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Quadrilateral&id=1259238097&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FQuadrilateral"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FQuadrilateral"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Quadrilateral&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Quadrilateral&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Tetragons" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/A_Guide_to_the_GRE/Quadrilaterals" hreflang="en"><span>Wikibooks</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q36810" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Polygon with four sides and four corners</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about four-sided mathematical shapes. For other uses, see <a href="/wiki/Quadrilateral_(disambiguation)" class="mw-disambig" title="Quadrilateral (disambiguation)">Quadrilateral (disambiguation)</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">"Tetragon" redirects here. For the edible plant, see <a href="/wiki/Tetragonia_tetragonioides" title="Tetragonia tetragonioides">Tetragonia tetragonioides</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox"><tbody><tr><th colspan="2" class="infobox-above" style="background:#e7dcc3;">Quadrilateral</th></tr><tr><td colspan="2" class="infobox-image"><span typeof="mw:File"><a href="/wiki/File:Six_Quadrilaterals.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Six_Quadrilaterals.svg/220px-Six_Quadrilaterals.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Six_Quadrilaterals.svg/330px-Six_Quadrilaterals.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3d/Six_Quadrilaterals.svg/440px-Six_Quadrilaterals.svg.png 2x" data-file-width="300" data-file-height="300" /></a></span><div class="infobox-caption">Some types of quadrilaterals</div></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Edge_(geometry)" title="Edge (geometry)">Edges</a> and <a href="/wiki/Vertex_(geometry)" title="Vertex (geometry)">vertices</a></th><td class="infobox-data">4</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Schl%C3%A4fli_symbol" title="Schläfli symbol">Schläfli symbol</a></th><td class="infobox-data">{4} (for square)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Area" title="Area">Area</a></th><td class="infobox-data">various methods;<br /><a href="#Area_of_a_convex_quadrilateral">see below</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Internal_angle" class="mw-redirect" title="Internal angle">Internal angle</a> (<a href="/wiki/Degree_(angle)" title="Degree (angle)">degrees</a>)</th><td class="infobox-data">90° (for square and rectangle)</td></tr></tbody></table> <p>In <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">geometry</a> a <b>quadrilateral</b> is a four-sided <a href="/wiki/Polygon" title="Polygon">polygon</a>, having four <a href="/wiki/Edge_(geometry)" title="Edge (geometry)">edges</a> (sides) and four <a href="/wiki/Vertex_(geometry)" title="Vertex (geometry)">corners</a> (vertices). The word is derived from the Latin words <i>quadri</i>, a variant of four, and <i>latus</i>, meaning "side". It is also called a <b>tetragon</b>, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons (e.g. <a href="/wiki/Pentagon" title="Pentagon">pentagon</a>). Since "gon" means "angle", it is analogously called a <b>quadrangle</b>, or 4-angle. A quadrilateral with vertices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> is sometimes denoted as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \square ABCD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>◻<!-- ◻ --></mi> <mi>A</mi> <mi>B</mi> <mi>C</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \square ABCD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83f54153304ec3963272dedf0701611bf6633aeb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.006ex; height:2.176ex;" alt="{\displaystyle \square ABCD}"></span>.<sup id="cite_ref-:0_1-0" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>Quadrilaterals are either <a href="/wiki/Simple_polygon" title="Simple polygon">simple</a> (not self-intersecting), or <a href="/wiki/Complex_polygon" title="Complex polygon">complex</a> (self-intersecting, or crossed). Simple quadrilaterals are either <a href="/wiki/Convex_polygon" title="Convex polygon">convex</a> or <a href="/wiki/Concave_polygon" title="Concave polygon">concave</a>. </p><p>The <a href="/wiki/Internal_and_external_angle" class="mw-redirect" title="Internal and external angle">interior angles</a> of a simple (and <a href="/wiki/Plane_(geometry)" class="mw-redirect" title="Plane (geometry)">planar</a>) quadrilateral <i>ABCD</i> add up to 360 <a href="/wiki/Degree_(angle)" title="Degree (angle)">degrees</a>, that is<sup id="cite_ref-:0_1-1" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle A+\angle B+\angle C+\angle D=360^{\circ }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>A</mi> <mo>+</mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>B</mi> <mo>+</mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>C</mi> <mo>+</mo> <mi mathvariant="normal">∠<!-- ∠ --></mi> <mi>D</mi> <mo>=</mo> <msup> <mn>360</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>∘<!-- ∘ --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle A+\angle B+\angle C+\angle D=360^{\circ }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ea3c18f6a825eb8a3f7e2ccc2c347a7e6c977c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:30.718ex; height:2.509ex;" alt="{\displaystyle \angle A+\angle B+\angle C+\angle D=360^{\circ }.}"></span></dd></dl> <p>This is a special case of the <i>n</i>-gon interior angle sum formula: <i>S</i> = (<i>n</i> − 2) × 180° (here, n=4).<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>All non-self-crossing quadrilaterals <a href="/wiki/Tessellation" title="Tessellation">tile the plane</a>, by repeated rotation around the midpoints of their edges.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Simple_quadrilaterals">Simple quadrilaterals</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=1" title="Edit section: Simple quadrilaterals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Any quadrilateral that is not self-intersecting is a simple quadrilateral. </p> <div class="mw-heading mw-heading3"><h3 id="Convex_quadrilateral">Convex quadrilateral</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=2" title="Edit section: Convex quadrilateral"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Euler_diagram_of_quadrilateral_types.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Euler_diagram_of_quadrilateral_types.svg/300px-Euler_diagram_of_quadrilateral_types.svg.png" decoding="async" width="300" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Euler_diagram_of_quadrilateral_types.svg/450px-Euler_diagram_of_quadrilateral_types.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Euler_diagram_of_quadrilateral_types.svg/600px-Euler_diagram_of_quadrilateral_types.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption><a href="/wiki/Euler_diagram" title="Euler diagram">Euler diagram</a> of some types of simple quadrilaterals. (UK) denotes British English and (US) denotes American English.</figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Symmetries_of_square.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Symmetries_of_square.svg/300px-Symmetries_of_square.svg.png" decoding="async" width="300" height="341" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Symmetries_of_square.svg/450px-Symmetries_of_square.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/14/Symmetries_of_square.svg/600px-Symmetries_of_square.svg.png 2x" data-file-width="606" data-file-height="688" /></a><figcaption>Convex quadrilaterals by symmetry, represented with a <a href="/wiki/Hasse_diagram" title="Hasse diagram">Hasse diagram</a>.</figcaption></figure> <p>In a convex quadrilateral all interior angles are less than 180°, and the two diagonals both lie inside the quadrilateral. </p> <ul><li>Irregular quadrilateral (<a href="/wiki/British_English" title="British English">British English</a>) or trapezium (<a href="/wiki/North_American_English" title="North American English">North American English</a>): no sides are parallel. (In British English, this was once called a <i>trapezoid</i>. For more, see <a href="/wiki/Trapezoid#Trapezium_vs_Trapezoid" title="Trapezoid">Trapezoid § Trapezium vs Trapezoid</a>.)</li> <li><a href="/wiki/Trapezoid" title="Trapezoid">Trapezium</a> (UK) or <a href="/wiki/Trapezoid" title="Trapezoid">trapezoid</a> (US): at least one pair of opposite sides are <a href="/wiki/Parallel_(geometry)" title="Parallel (geometry)">parallel</a>. Trapezia (UK) and trapezoids (US) include parallelograms.</li> <li><a href="/wiki/Isosceles_trapezium" class="mw-redirect" title="Isosceles trapezium">Isosceles trapezium</a> (UK) or <a href="/wiki/Isosceles_trapezoid" title="Isosceles trapezoid">isosceles trapezoid</a> (US): one pair of opposite sides are parallel and the base <a href="/wiki/Angle" title="Angle">angles</a> are equal in measure. Alternative definitions are a quadrilateral with an axis of symmetry bisecting one pair of opposite sides, or a trapezoid with diagonals of equal length.</li> <li><a href="/wiki/Parallelogram" title="Parallelogram">Parallelogram</a>: a quadrilateral with two pairs of parallel sides. Equivalent conditions are that opposite sides are of equal length; that opposite angles are equal; or that the diagonals bisect each other. Parallelograms include rhombi (including those rectangles called squares) and rhomboids (including those rectangles called oblongs). In other words, parallelograms include all rhombi and all rhomboids, and thus also include all rectangles.</li> <li><a href="/wiki/Rhombus" title="Rhombus">Rhombus</a>, rhomb:<sup id="cite_ref-:0_1-2" class="reference"><a href="#cite_note-:0-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> all four sides are of equal length (equilateral). An equivalent condition is that the diagonals perpendicularly bisect each other. Informally: "a pushed-over square" (but strictly including a square, too).</li> <li><a href="/wiki/Rhomboid" title="Rhomboid">Rhomboid</a>: a parallelogram in which adjacent sides are of unequal lengths, and some angles are <a href="/wiki/Angle#Types_of_angles" title="Angle">oblique</a> (equiv., having no right angles). Informally: "a pushed-over oblong". Not all references agree; some define a rhomboid as a parallelogram that is not a rhombus.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Rectangle" title="Rectangle">Rectangle</a>: all four angles are right angles (equiangular). An equivalent condition is that the diagonals bisect each other, and are equal in length. Rectangles include squares and oblongs. Informally: "a box or oblong" (including a square).</li> <li><a href="/wiki/Square_(geometry)" class="mw-redirect" title="Square (geometry)">Square</a> (regular quadrilateral): all four sides are of equal length (equilateral), and all four angles are right angles. An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length. A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles).</li> <li><a href="https://en.wiktionary.org/wiki/oblong" class="extiw" title="wikt:oblong">Oblong</a>: longer than wide, or wider than long (i.e., a rectangle that is not a square).<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></li> <li><a href="/wiki/Kite_(geometry)" title="Kite (geometry)">Kite</a>: two pairs of adjacent sides are of equal length. This implies that one diagonal divides the kite into <a href="/wiki/Congruent_triangles" class="mw-redirect" title="Congruent triangles">congruent triangles</a>, and so the angles between the two pairs of equal sides are equal in measure. It also implies that the diagonals are perpendicular. Kites include rhombi.</li></ul> <p><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:Quadrilaterals.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Quadrilaterals.svg/661px-Quadrilaterals.svg.png" decoding="async" width="661" height="320" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Quadrilaterals.svg/992px-Quadrilaterals.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/68/Quadrilaterals.svg/1322px-Quadrilaterals.svg.png 2x" data-file-width="661" data-file-height="320" /></a></span> </p> <ul><li><a href="/wiki/Tangential_quadrilateral" title="Tangential quadrilateral">Tangential quadrilateral</a>: the four sides are tangents to an inscribed circle. A convex quadrilateral is tangential if and only if opposite sides have equal sums.</li> <li><a href="/wiki/Tangential_trapezoid" title="Tangential trapezoid">Tangential trapezoid</a>: a trapezoid where the four sides are <a href="/wiki/Tangent" title="Tangent">tangents</a> to an <a href="/wiki/Inscribed_circle" class="mw-redirect" title="Inscribed circle">inscribed circle</a>.</li> <li><a href="/wiki/Cyclic_quadrilateral" title="Cyclic quadrilateral">Cyclic quadrilateral</a>: the four vertices lie on a <a href="/wiki/Circumscribed_circle" title="Circumscribed circle">circumscribed circle</a>. A convex quadrilateral is cyclic if and only if opposite angles sum to 180°.</li> <li><a href="/wiki/Right_kite" title="Right kite">Right kite</a>: a kite with two opposite right angles. It is a type of cyclic quadrilateral.</li> <li><a href="/wiki/Harmonic_quadrilateral" title="Harmonic quadrilateral">Harmonic quadrilateral</a>: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal.</li> <li><a href="/wiki/Bicentric_quadrilateral" title="Bicentric quadrilateral">Bicentric quadrilateral</a>: it is both tangential and cyclic.</li> <li><a href="/wiki/Orthodiagonal_quadrilateral" title="Orthodiagonal quadrilateral">Orthodiagonal quadrilateral</a>: the diagonals cross at <a href="/wiki/Right_angle" title="Right angle">right angles</a>.</li> <li><a href="/wiki/Equidiagonal_quadrilateral" title="Equidiagonal quadrilateral">Equidiagonal quadrilateral</a>: the diagonals are of equal length.</li> <li>Bisect-diagonal quadrilateral: one diagonal bisects the other into equal lengths. Every dart and kite is bisect-diagonal. When both diagonals bisect another, it's a parallelogram.</li> <li><a href="/wiki/Ex-tangential_quadrilateral" title="Ex-tangential quadrilateral">Ex-tangential quadrilateral</a>: the four extensions of the sides are tangent to an <a href="/wiki/Excircle" class="mw-redirect" title="Excircle">excircle</a>.</li> <li>An <i>equilic quadrilateral</i> has two opposite equal sides that when extended, meet at 60°.</li> <li>A <i>Watt quadrilateral</i> is a quadrilateral with a pair of opposite sides of equal length.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></li> <li>A <i>quadric quadrilateral</i> is a convex quadrilateral whose four vertices all lie on the perimeter of a square.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup></li> <li>A <i>diametric quadrilateral</i> is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></li> <li>A <i>Hjelmslev quadrilateral</i> is a quadrilateral with two right angles at opposite vertices.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Concave_quadrilaterals">Concave quadrilaterals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=3" title="Edit section: Concave quadrilaterals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a concave quadrilateral, one interior angle is bigger than 180°, and one of the two diagonals lies outside the quadrilateral. </p> <ul><li>A <i>dart</i> (or arrowhead) is a <a href="/wiki/Concave_polygon" title="Concave polygon">concave</a> quadrilateral with bilateral symmetry like a kite, but where one interior angle is reflex. See <a href="/wiki/Kite_(geometry)" title="Kite (geometry)">Kite</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Complex_quadrilaterals">Complex quadrilaterals</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=4" title="Edit section: Complex quadrilaterals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:DU21_facets.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/DU21_facets.png/180px-DU21_facets.png" decoding="async" width="180" height="180" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/75/DU21_facets.png/270px-DU21_facets.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/75/DU21_facets.png/360px-DU21_facets.png 2x" data-file-width="1200" data-file-height="1200" /></a><figcaption>An antiparallelogram</figcaption></figure> <p>A <a href="/wiki/List_of_self-intersecting_polygons" title="List of self-intersecting polygons">self-intersecting</a> quadrilateral is called variously a <b>cross-quadrilateral</b>, <b>crossed quadrilateral</b>, <b><a href="/wiki/Butterfly" title="Butterfly">butterfly</a> quadrilateral</b> or <b><a href="/wiki/Bow-tie" class="mw-redirect" title="Bow-tie">bow-tie</a> quadrilateral</b>. In a crossed quadrilateral, the four "interior" angles on either side of the crossing (two <a href="/wiki/Acute_angle" class="mw-redirect" title="Acute angle">acute</a> and two <a href="/wiki/Reflex_angle" class="mw-redirect" title="Reflex angle">reflex</a>, all on the left or all on the right as the figure is traced out) add up to 720°.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <ul><li><a href="/wiki/Isosceles_trapezoid#Self-intersections" title="Isosceles trapezoid">Crossed trapezoid</a> (US) or trapezium (Commonwealth):<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> a crossed quadrilateral in which one pair of nonadjacent sides is parallel (like a <a href="/wiki/Trapezoid" title="Trapezoid">trapezoid</a>).</li> <li><a href="/wiki/Antiparallelogram" title="Antiparallelogram">Antiparallelogram</a>: a crossed quadrilateral in which each pair of nonadjacent sides have equal lengths (like a <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a>).</li> <li><a href="/wiki/Crossed_rectangle" class="mw-redirect" title="Crossed rectangle">Crossed rectangle</a>: an antiparallelogram whose sides are two opposite sides and the two diagonals of a <a href="/wiki/Rectangle" title="Rectangle">rectangle</a>, hence having one pair of parallel opposite sides.</li> <li><a href="/wiki/Square#Crossed_square" title="Square">Crossed square</a>: a special case of a crossed rectangle where two of the sides intersect at right angles.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Special_line_segments">Special line segments</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=5" title="Edit section: Special line segments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The two <a href="/wiki/Diagonal" title="Diagonal">diagonals</a> of a convex quadrilateral are the <a href="/wiki/Line_segment" title="Line segment">line segments</a> that connect opposite vertices. </p><p>The two <b>bimedians</b> of a convex quadrilateral are the line segments that connect the midpoints of opposite sides.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> They intersect at the "vertex centroid" of the quadrilateral (see <a href="#Remarkable_points_and_lines_in_a_convex_quadrilateral">§ Remarkable points and lines in a convex quadrilateral</a> below). </p><p>The four <b>maltitudes</b> of a convex quadrilateral are the perpendiculars to a side—through the midpoint of the opposite side.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Area_of_a_convex_quadrilateral">Area of a convex quadrilateral</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=6" title="Edit section: Area of a convex quadrilateral"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are various general formulas for the <a href="/wiki/Area" title="Area">area</a> <span class="texhtml"><i>K</i></span> of a convex quadrilateral <i>ABCD</i> with sides <span class="texhtml"><i>a</i> = <i>AB</i>, <i>b</i> = <i>BC</i>, <i>c</i> = <i>CD</i> and <i>d</i> = <i>DA</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Trigonometric_formulas">Trigonometric formulas</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=7" title="Edit section: Trigonometric formulas"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The area can be expressed in trigonometric terms as<sup id="cite_ref-:1_14-0" class="reference"><a href="#cite_note-:1-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{2}}pq\sin \theta ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>p</mi> <mi>q</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{2}}pq\sin \theta ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb422f3244c36997bed91a3574fe0db7ce0b8f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:14.429ex; height:3.509ex;" alt="{\displaystyle K={\tfrac {1}{2}}pq\sin \theta ,}"></span></dd></dl> <p>where the lengths of the diagonals are <span class="texhtml"><i>p</i></span> and <span class="texhtml"><i>q</i></span> and the angle between them is <span class="texhtml"><i>θ</i></span>.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> In the case of an orthodiagonal quadrilateral (e.g. rhombus, square, and kite), this formula reduces to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {pq}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>p</mi> <mi>q</mi> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {pq}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f1650f1d3797c628d94e5a092ff3851b730c979" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.584ex; height:3.509ex;" alt="{\displaystyle K={\tfrac {pq}{2}}}"></span> since <span class="texhtml"><i>θ</i></span> is <span class="texhtml">90°</span>. </p><p>The area can be also expressed in terms of bimedians as<sup id="cite_ref-Josefsson4_16-0" class="reference"><a href="#cite_note-Josefsson4-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=mn\sin \varphi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi>m</mi> <mi>n</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>φ<!-- φ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=mn\sin \varphi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b1974d756d5a624225461818948e149c577ad29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.396ex; height:2.676ex;" alt="{\displaystyle K=mn\sin \varphi ,}"></span></dd></dl> <p>where the lengths of the bimedians are <span class="texhtml"><i>m</i></span> and <span class="texhtml"><i>n</i></span> and the angle between them is <span class="texhtml"><i>φ</i></span>. </p><p><a href="/wiki/Bretschneider%27s_formula" title="Bretschneider's formula">Bretschneider's formula</a><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:1_14-1" class="reference"><a href="#cite_note-:1-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> expresses the area in terms of the sides and two opposite angles: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}K&={\sqrt {(s-a)(s-b)(s-c)(s-d)-{\tfrac {1}{2}}abcd\;[1+\cos(A+C)]}}\\&={\sqrt {(s-a)(s-b)(s-c)(s-d)-abcd\,\cos ^{2}{\tfrac {1}{2}}(A+C)}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>K</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> <mspace width="thickmathspace" /> <mo stretchy="false">[</mo> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> <mspace width="thinmathspace" /> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>C</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}K&={\sqrt {(s-a)(s-b)(s-c)(s-d)-{\tfrac {1}{2}}abcd\;[1+\cos(A+C)]}}\\&={\sqrt {(s-a)(s-b)(s-c)(s-d)-abcd\,\cos ^{2}{\tfrac {1}{2}}(A+C)}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6195867b271ce1ef16fc42e8371f1fcf1657f0cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:61.811ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}K&={\sqrt {(s-a)(s-b)(s-c)(s-d)-{\tfrac {1}{2}}abcd\;[1+\cos(A+C)]}}\\&={\sqrt {(s-a)(s-b)(s-c)(s-d)-abcd\,\cos ^{2}{\tfrac {1}{2}}(A+C)}}\end{aligned}}}"></span></dd></dl> <p>where the sides in sequence are <span class="texhtml"><i>a</i></span>, <span class="texhtml"><i>b</i></span>, <span class="texhtml"><i>c</i></span>, <span class="texhtml"><i>d</i></span>, where <span class="texhtml"><i>s</i></span> is the semiperimeter, and <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>C</i></span> are two (in fact, any two) opposite angles. This reduces to <a href="/wiki/Brahmagupta%27s_formula" title="Brahmagupta's formula">Brahmagupta's formula</a> for the area of a cyclic quadrilateral—when <span class="texhtml"><span class="nowrap"><i>A</i> + <i>C</i> = 180°</span> </span>. </p><p>Another area formula in terms of the sides and angles, with angle <span class="texhtml"><i>C</i></span> being between sides <span class="texhtml"><i>b</i></span> and <span class="texhtml"><i>c</i></span>, and <span class="texhtml"><i>A</i></span> being between sides <span class="texhtml"><i>a</i></span> and <span class="texhtml"><i>d</i></span>, is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{2}}ad\sin {A}+{\tfrac {1}{2}}bc\sin {C}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>a</mi> <mi>d</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>b</mi> <mi>c</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{2}}ad\sin {A}+{\tfrac {1}{2}}bc\sin {C}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02a70bf585f6eb899d823ab9c028808f95243196" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:27.187ex; height:3.509ex;" alt="{\displaystyle K={\tfrac {1}{2}}ad\sin {A}+{\tfrac {1}{2}}bc\sin {C}.}"></span></dd></dl> <p>In the case of a cyclic quadrilateral, the latter formula becomes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{2}}(ad+bc)\sin {A}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{2}}(ad+bc)\sin {A}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d88698617b7222ea84fb512999f74d1f7bd09086" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:21.942ex; height:3.509ex;" alt="{\displaystyle K={\tfrac {1}{2}}(ad+bc)\sin {A}.}"></span> </p><p>In a parallelogram, where both pairs of opposite sides and angles are equal, this formula reduces to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=ab\cdot \sin {A}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi>a</mi> <mi>b</mi> <mo>⋅<!-- ⋅ --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=ab\cdot \sin {A}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70722d5cac90f9bbfbbff084058a295f8db48638" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.704ex; height:2.176ex;" alt="{\displaystyle K=ab\cdot \sin {A}.}"></span> </p><p>Alternatively, we can write the area in terms of the sides and the intersection angle <span class="texhtml"><i>θ</i></span> of the diagonals, as long <span class="texhtml"><i>θ</i></span> is not <span class="texhtml">90°</span>:<sup id="cite_ref-Mitchell_18-0" class="reference"><a href="#cite_note-Mitchell-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{4}}\left|\tan \theta \right|\cdot \left|a^{2}+c^{2}-b^{2}-d^{2}\right|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mrow> <mo>|</mo> <mrow> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mrow> <mo>|</mo> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>|</mo> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{4}}\left|\tan \theta \right|\cdot \left|a^{2}+c^{2}-b^{2}-d^{2}\right|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa7a981cb95357bd5d2af46dd35cf8d616439723" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:34.538ex; height:3.509ex;" alt="{\displaystyle K={\tfrac {1}{4}}\left|\tan \theta \right|\cdot \left|a^{2}+c^{2}-b^{2}-d^{2}\right|.}"></span></dd></dl> <p>In the case of a parallelogram, the latter formula becomes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{2}}\left|\tan \theta \right|\cdot \left|a^{2}-b^{2}\right|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow> <mo>|</mo> <mrow> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> </mrow> <mo>|</mo> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>|</mo> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{2}}\left|\tan \theta \right|\cdot \left|a^{2}-b^{2}\right|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24a83bc9f432b80bfc1e7690bdaf3bb525ddbd0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:24.523ex; height:3.509ex;" alt="{\displaystyle K={\tfrac {1}{2}}\left|\tan \theta \right|\cdot \left|a^{2}-b^{2}\right|.}"></span> </p><p>Another area formula including the sides <span class="texhtml"><i>a</i></span>, <span class="texhtml"><i>b</i></span>, <span class="texhtml"><i>c</i></span>, <span class="texhtml"><i>d</i></span> is<sup id="cite_ref-Josefsson4_16-1" class="reference"><a href="#cite_note-Josefsson4-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{2}}{\sqrt {{\bigl (}(a^{2}+c^{2})-2x^{2}{\bigr )}{\bigl (}(b^{2}+d^{2})-2x^{2}{\bigr )}}}\sin {\varphi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </msqrt> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>φ<!-- φ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{2}}{\sqrt {{\bigl (}(a^{2}+c^{2})-2x^{2}{\bigr )}{\bigl (}(b^{2}+d^{2})-2x^{2}{\bigr )}}}\sin {\varphi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3de13c339159849d2703d5675a63b2a767c045e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:49.298ex; height:4.843ex;" alt="{\displaystyle K={\tfrac {1}{2}}{\sqrt {{\bigl (}(a^{2}+c^{2})-2x^{2}{\bigr )}{\bigl (}(b^{2}+d^{2})-2x^{2}{\bigr )}}}\sin {\varphi }}"></span></dd></dl> <p>where <span class="texhtml"><i>x</i></span> is the distance between the midpoints of the diagonals, and <span class="texhtml"><i>φ</i></span> is the angle between the <a class="mw-selflink-fragment" href="#Special_line_segments">bimedians</a>. </p><p>The last trigonometric area formula including the sides <span class="texhtml"><i>a</i></span>, <span class="texhtml"><i>b</i></span>, <span class="texhtml"><i>c</i></span>, <span class="texhtml"><i>d</i></span> and the angle <span class="texhtml"><i>α</i></span> (between <span class="texhtml"><i>a</i></span> and <span class="texhtml"><i>b</i></span>) is:<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{2}}ab\sin {\alpha }+{\tfrac {1}{4}}{\sqrt {4c^{2}d^{2}-(c^{2}+d^{2}-a^{2}-b^{2}+2ab\cos {\alpha })^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>a</mi> <mi>b</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>4</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{2}}ab\sin {\alpha }+{\tfrac {1}{4}}{\sqrt {4c^{2}d^{2}-(c^{2}+d^{2}-a^{2}-b^{2}+2ab\cos {\alpha })^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af62c77b929550016c0e5f2172236254b38ab1b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:61.63ex; height:4.843ex;" alt="{\displaystyle K={\tfrac {1}{2}}ab\sin {\alpha }+{\tfrac {1}{4}}{\sqrt {4c^{2}d^{2}-(c^{2}+d^{2}-a^{2}-b^{2}+2ab\cos {\alpha })^{2}}},}"></span></dd></dl> <p>which can also be used for the area of a concave quadrilateral (having the concave part opposite to angle <span class="texhtml"><i>α</i></span>), by just changing the first sign <span class="texhtml">+</span> to <span class="texhtml">-</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Non-trigonometric_formulas">Non-trigonometric formulas</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=8" title="Edit section: Non-trigonometric formulas"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following two formulas express the area in terms of the sides <span class="texhtml"><i>a</i></span>, <span class="texhtml"><i>b</i></span>, <span class="texhtml"><i>c</i></span> and <span class="texhtml"><i>d</i></span>, the <a href="/wiki/Semiperimeter#Quadrilaterals" title="Semiperimeter">semiperimeter</a> <span class="texhtml"><i>s</i></span>, and the diagonals <span class="texhtml"><i>p</i></span>, <span class="texhtml"><i>q</i></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\sqrt {(s-a)(s-b)(s-c)(s-d)-{\tfrac {1}{4}}(ac+bd+pq)(ac+bd-pq)}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>b</mi> <mi>d</mi> <mo>+</mo> <mi>p</mi> <mi>q</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>b</mi> <mi>d</mi> <mo>−<!-- − --></mo> <mi>p</mi> <mi>q</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\sqrt {(s-a)(s-b)(s-c)(s-d)-{\tfrac {1}{4}}(ac+bd+pq)(ac+bd-pq)}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebcbb01d08917fc3edbaf23e36a08ba376462043" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:68.402ex; height:4.843ex;" alt="{\displaystyle K={\sqrt {(s-a)(s-b)(s-c)(s-d)-{\tfrac {1}{4}}(ac+bd+pq)(ac+bd-pq)}},}"></span> <sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{4}}{\sqrt {4p^{2}q^{2}-\left(a^{2}+c^{2}-b^{2}-d^{2}\right)^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>4</mn> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{4}}{\sqrt {4p^{2}q^{2}-\left(a^{2}+c^{2}-b^{2}-d^{2}\right)^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a497c04c22e1ad983d44c4a1444520a2bda67610" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:38.528ex; height:4.843ex;" alt="{\displaystyle K={\tfrac {1}{4}}{\sqrt {4p^{2}q^{2}-\left(a^{2}+c^{2}-b^{2}-d^{2}\right)^{2}}}.}"></span> <sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup></dd></dl> <p>The first reduces to Brahmagupta's formula in the cyclic quadrilateral case, since then <span class="texhtml"><i>pq</i> = <i>ac</i> + <i>bd</i></span>. </p><p>The area can also be expressed in terms of the bimedians <span class="texhtml"><i>m</i></span>, <span class="texhtml"><i>n</i></span> and the diagonals <span class="texhtml"><i>p</i></span>, <span class="texhtml"><i>q</i></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{2}}{\sqrt {(m+n+p)(m+n-p)(m+n+q)(m+n-q)}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>+</mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>q</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{2}}{\sqrt {(m+n+p)(m+n-p)(m+n+q)(m+n-q)}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd6160ff5c0893c088302ca5e1ed1ed6dbc6234b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:57.972ex; height:4.843ex;" alt="{\displaystyle K={\tfrac {1}{2}}{\sqrt {(m+n+p)(m+n-p)(m+n+q)(m+n-q)}},}"></span> <sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{2}}{\sqrt {p^{2}q^{2}-(m^{2}-n^{2})^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{2}}{\sqrt {p^{2}q^{2}-(m^{2}-n^{2})^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c2dc8282ed3d6e1fd84870cc3d34eecebc358d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:28.238ex; height:4.843ex;" alt="{\displaystyle K={\tfrac {1}{2}}{\sqrt {p^{2}q^{2}-(m^{2}-n^{2})^{2}}}.}"></span> <sup id="cite_ref-Josefsson3_23-0" class="reference"><a href="#cite_note-Josefsson3-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: Thm. 7">: Thm. 7 </span></sup></dd></dl> <p>In fact, any three of the four values <span class="texhtml"><i>m</i></span>, <span class="texhtml"><i>n</i></span>, <span class="texhtml"><i>p</i></span>, and <span class="texhtml"><i>q</i></span> suffice for determination of the area, since in any quadrilateral the four values are related by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{2}+q^{2}=2(m^{2}+n^{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{2}+q^{2}=2(m^{2}+n^{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48ffcfca88c30dfa5f35dd88ce8c062d62bf367e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:22.388ex; height:3.176ex;" alt="{\displaystyle p^{2}+q^{2}=2(m^{2}+n^{2}).}"></span><sup id="cite_ref-Altshiller-Court_24-0" class="reference"><a href="#cite_note-Altshiller-Court-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p. 126">: p. 126 </span></sup> The corresponding expressions are:<sup id="cite_ref-Josefsson6_25-0" class="reference"><a href="#cite_note-Josefsson6-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{2}}{\sqrt {[(m+n)^{2}-p^{2}]\cdot [p^{2}-(m-n)^{2}]}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">[</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{2}}{\sqrt {[(m+n)^{2}-p^{2}]\cdot [p^{2}-(m-n)^{2}]}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46e6f895931ea57ab71ca3ec4d03175e3d73bef8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:42.466ex; height:4.843ex;" alt="{\displaystyle K={\tfrac {1}{2}}{\sqrt {[(m+n)^{2}-p^{2}]\cdot [p^{2}-(m-n)^{2}]}},}"></span></dd></dl> <p>if the lengths of two bimedians and one diagonal are given, and<sup id="cite_ref-Josefsson6_25-1" class="reference"><a href="#cite_note-Josefsson6-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{4}}{\sqrt {[(p+q)^{2}-4m^{2}]\cdot [4m^{2}-(p-q)^{2}]}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>4</mn> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">[</mo> <mn>4</mn> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{4}}{\sqrt {[(p+q)^{2}-4m^{2}]\cdot [4m^{2}-(p-q)^{2}]}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da2f523551c427056fa7199b6ad0d093b770d4b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:44.14ex; height:4.843ex;" alt="{\displaystyle K={\tfrac {1}{4}}{\sqrt {[(p+q)^{2}-4m^{2}]\cdot [4m^{2}-(p-q)^{2}]}},}"></span></dd></dl> <p>if the lengths of two diagonals and one bimedian are given. </p> <div class="mw-heading mw-heading3"><h3 id="Vector_formulas">Vector formulas</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=9" title="Edit section: Vector formulas"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The area of a quadrilateral <span class="texhtml"><i>ABCD</i></span> can be calculated using <a href="/wiki/Vector_(geometric)" class="mw-redirect" title="Vector (geometric)">vectors</a>. Let vectors <span class="texhtml"><b>AC</b></span> and <span class="texhtml"><b>BD</b></span> form the diagonals from <span class="texhtml"><i>A</i></span> to <span class="texhtml"><i>C</i></span> and from <span class="texhtml"><i>B</i></span> to <span class="texhtml"><i>D</i></span>. The area of the quadrilateral is then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{2}}|\mathbf {AC} \times \mathbf {BD} |,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">C</mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{2}}|\mathbf {AC} \times \mathbf {BD} |,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e48a73a24dc41afdcd2b345c0ae2a5b0b6489e56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:19.505ex; height:3.509ex;" alt="{\displaystyle K={\tfrac {1}{2}}|\mathbf {AC} \times \mathbf {BD} |,}"></span></dd></dl> <p>which is half the magnitude of the <a href="/wiki/Cross_product" title="Cross product">cross product</a> of vectors <span class="texhtml"><b>AC</b></span> and <span class="texhtml"><b>BD</b></span>. In two-dimensional Euclidean space, expressing vector <span class="texhtml"><b>AC</b></span> as a <a href="/wiki/Euclidean_vector#In_Cartesian_space" title="Euclidean vector">free vector in Cartesian space</a> equal to <span class="texhtml">(<b><i>x</i><sub>1</sub>,<i>y</i><sub>1</sub></b>)</span> and <span class="texhtml"><b>BD</b></span> as <span class="texhtml">(<b><i>x</i><sub>2</sub>,<i>y</i><sub>2</sub></b>)</span>, this can be rewritten as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{2}}|x_{1}y_{2}-x_{2}y_{1}|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{2}}|x_{1}y_{2}-x_{2}y_{1}|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec8e7ee38a0432822b333b787a087e726e854947" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:20.758ex; height:3.509ex;" alt="{\displaystyle K={\tfrac {1}{2}}|x_{1}y_{2}-x_{2}y_{1}|.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Diagonals">Diagonals</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=10" title="Edit section: Diagonals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Properties_of_the_diagonals_in_quadrilaterals">Properties of the diagonals in quadrilaterals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=11" title="Edit section: Properties of the diagonals in quadrilaterals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the following table it is listed if the diagonals in some of the most basic quadrilaterals bisect each other, if their diagonals are <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a>, and if their diagonals have equal length.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> The list applies to the most general cases, and excludes named subsets. </p> <table class="wikitable"> <tbody><tr> <th scope="col">Quadrilateral </th> <th scope="col">Bisecting diagonals </th> <th scope="col">Perpendicular diagonals </th> <th scope="col">Equal diagonals </th></tr> <tr> <th scope="row"><a href="/wiki/Trapezoid" title="Trapezoid">Trapezoid</a> </th> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td><i>See note 1</i></td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No </td></tr> <tr> <th scope="row"><a href="/wiki/Isosceles_trapezoid" title="Isosceles trapezoid">Isosceles trapezoid</a> </th> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td><i>See note 1</i></td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes </td></tr> <tr> <th scope="row"><a href="/wiki/Parallelogram" title="Parallelogram">Parallelogram</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No </td></tr> <tr> <th scope="row"><a href="/wiki/Kite_(geometry)" title="Kite (geometry)">Kite</a> </th> <td><i>See note 2</i></td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td><i>See note 2</i> </td></tr> <tr> <th scope="row"><a href="/wiki/Rectangle" title="Rectangle">Rectangle</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes </td></tr> <tr> <th scope="row"><a href="/wiki/Rhombus" title="Rhombus">Rhombus</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No </td></tr> <tr> <th scope="row"><a href="/wiki/Square" title="Square">Square</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes </td></tr></tbody></table> <ul><li><i>Note 1: The most general trapezoids and isosceles trapezoids do not have perpendicular diagonals, but there are infinite numbers of (non-similar) trapezoids and isosceles trapezoids that do have perpendicular diagonals and are not any other named quadrilateral.</i></li> <li><i>Note 2: In a kite, one diagonal bisects the other. The most general kite has unequal diagonals, but there is an infinite number of (non-similar) kites in which the diagonals are equal in length (and the kites are not any other named quadrilateral).</i></li></ul> <div class="mw-heading mw-heading3"><h3 id="Lengths_of_the_diagonals">Lengths of the diagonals</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=12" title="Edit section: Lengths of the diagonals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The lengths of the diagonals in a convex quadrilateral <i>ABCD</i> can be calculated using the <a href="/wiki/Law_of_cosines" title="Law of cosines">law of cosines</a> on each triangle formed by one diagonal and two sides of the quadrilateral. Thus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={\sqrt {a^{2}+b^{2}-2ab\cos {B}}}={\sqrt {c^{2}+d^{2}-2cd\cos {D}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>c</mi> <mi>d</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p={\sqrt {a^{2}+b^{2}-2ab\cos {B}}}={\sqrt {c^{2}+d^{2}-2cd\cos {D}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b8ad154c5671d1785ffc254cd237f8c331b30aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:50.368ex; height:3.509ex;" alt="{\displaystyle p={\sqrt {a^{2}+b^{2}-2ab\cos {B}}}={\sqrt {c^{2}+d^{2}-2cd\cos {D}}}}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q={\sqrt {a^{2}+d^{2}-2ad\cos {A}}}={\sqrt {b^{2}+c^{2}-2bc\cos {C}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mi>d</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>b</mi> <mi>c</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q={\sqrt {a^{2}+d^{2}-2ad\cos {A}}}={\sqrt {b^{2}+c^{2}-2bc\cos {C}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34d73a44cb88f98d1f324621ca5ec14e40bb60c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.647ex; height:3.509ex;" alt="{\displaystyle q={\sqrt {a^{2}+d^{2}-2ad\cos {A}}}={\sqrt {b^{2}+c^{2}-2bc\cos {C}}}.}"></span></dd></dl> <p>Other, more symmetric formulas for the lengths of the diagonals, are<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={\sqrt {\frac {(ac+bd)(ad+bc)-2abcd(\cos {B}+\cos {D})}{ab+cd}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>b</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mo>+</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>a</mi> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mi>d</mi> </mrow> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p={\sqrt {\frac {(ac+bd)(ad+bc)-2abcd(\cos {B}+\cos {D})}{ab+cd}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/178dfdb70d1e5e3a7f7f3d0614d319e0c68dc15b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; margin-left: -0.089ex; width:49.504ex; height:7.676ex;" alt="{\displaystyle p={\sqrt {\frac {(ac+bd)(ad+bc)-2abcd(\cos {B}+\cos {D})}{ab+cd}}}}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q={\sqrt {\frac {(ab+cd)(ac+bd)-2abcd(\cos {A}+\cos {C})}{ad+bc}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>b</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mo>+</mo> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> </mrow> </mfrac> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q={\sqrt {\frac {(ab+cd)(ac+bd)-2abcd(\cos {A}+\cos {C})}{ad+bc}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfb0d3565d72fc0ed6477b0f51f993dbec4c2c8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:49.783ex; height:7.676ex;" alt="{\displaystyle q={\sqrt {\frac {(ab+cd)(ac+bd)-2abcd(\cos {A}+\cos {C})}{ad+bc}}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Generalizations_of_the_parallelogram_law_and_Ptolemy's_theorem"><span id="Generalizations_of_the_parallelogram_law_and_Ptolemy.27s_theorem"></span>Generalizations of the parallelogram law and Ptolemy's theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=13" title="Edit section: Generalizations of the parallelogram law and Ptolemy's theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In any convex quadrilateral <i>ABCD</i>, the sum of the squares of the four sides is equal to the sum of the squares of the two diagonals plus four times the square of the line segment connecting the midpoints of the diagonals. Thus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=p^{2}+q^{2}+4x^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>4</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=p^{2}+q^{2}+4x^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52d207f329643a75a3c3c856d040896474e262a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:33.873ex; height:3.009ex;" alt="{\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=p^{2}+q^{2}+4x^{2}}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">x</span> is the distance between the midpoints of the diagonals.<sup id="cite_ref-Altshiller-Court_24-1" class="reference"><a href="#cite_note-Altshiller-Court-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p.126">: p.126 </span></sup> This is sometimes known as <a href="/wiki/Euler%27s_quadrilateral_theorem" title="Euler's quadrilateral theorem">Euler's quadrilateral theorem</a> and is a generalization of the <a href="/wiki/Parallelogram_law" title="Parallelogram law">parallelogram law</a>. </p><p>The German mathematician <a href="/wiki/Carl_Anton_Bretschneider" title="Carl Anton Bretschneider">Carl Anton Bretschneider</a> derived in 1842 the following generalization of <a href="/wiki/Ptolemy%27s_theorem" title="Ptolemy's theorem">Ptolemy's theorem</a>, regarding the product of the diagonals in a convex quadrilateral<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{2}q^{2}=a^{2}c^{2}+b^{2}d^{2}-2abcd\cos {(A+C)}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{2}q^{2}=a^{2}c^{2}+b^{2}d^{2}-2abcd\cos {(A+C)}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae09985fb3f93afa18f4c32a5a0fcc36ba072351" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:40.199ex; height:3.176ex;" alt="{\displaystyle p^{2}q^{2}=a^{2}c^{2}+b^{2}d^{2}-2abcd\cos {(A+C)}.}"></span></dd></dl> <p>This relation can be considered to be a <a href="/wiki/Law_of_cosines" title="Law of cosines">law of cosines</a> for a quadrilateral. In a <a href="/wiki/Cyclic_quadrilateral" title="Cyclic quadrilateral">cyclic quadrilateral</a>, where <span class="texhtml"><i>A</i> + <i>C</i> = 180°</span>, it reduces to <span class="texhtml"><i>pq</i> = <i>ac</i> + <i>bd</i></span>. Since <span class="texhtml">cos<span style="white-space: nowrap;"> </span>(<i>A</i> + <i>C</i>) ≥ −1</span>, it also gives a proof of Ptolemy's inequality. </p> <div class="mw-heading mw-heading3"><h3 id="Other_metric_relations">Other metric relations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=14" title="Edit section: Other metric relations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">Y</span> are the feet of the normals from <span class="texhtml mvar" style="font-style:italic;">B</span> and <span class="texhtml mvar" style="font-style:italic;">D</span> to the diagonal <span class="texhtml"><i>AC</i> = <i>p</i></span> in a convex quadrilateral <i>ABCD</i> with sides <span class="texhtml"><i>a</i> = <i>AB</i></span>, <span class="texhtml"><i>b</i> = <i>BC</i></span>, <span class="texhtml"><i>c</i> = <i>CD</i></span>, <span class="texhtml"><i>d</i> = <i>DA</i></span>, then<sup id="cite_ref-Josefsson_29-0" class="reference"><a href="#cite_note-Josefsson-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p.14">: p.14 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle XY={\frac {|a^{2}+c^{2}-b^{2}-d^{2}|}{2p}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mi>Y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle XY={\frac {|a^{2}+c^{2}-b^{2}-d^{2}|}{2p}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60f8f015a4360feb7a3496e3ea02441b6fdf8bbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.819ex; height:6.343ex;" alt="{\displaystyle XY={\frac {|a^{2}+c^{2}-b^{2}-d^{2}|}{2p}}.}"></span></dd></dl> <p>In a convex quadrilateral <i>ABCD</i> with sides <span class="texhtml"><i>a</i> = <i>AB</i></span>, <span class="texhtml"><i>b</i> = <i>BC</i></span>, <span class="texhtml"><i>c</i> = <i>CD</i></span>, <span class="texhtml"><i>d</i> = <i>DA</i></span>, and where the diagonals intersect at <span class="texhtml mvar" style="font-style:italic;">E</span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle efgh(a+c+b+d)(a+c-b-d)=(agh+cef+beh+dfg)(agh+cef-beh-dfg)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mi>f</mi> <mi>g</mi> <mi>h</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>g</mi> <mi>h</mi> <mo>+</mo> <mi>c</mi> <mi>e</mi> <mi>f</mi> <mo>+</mo> <mi>b</mi> <mi>e</mi> <mi>h</mi> <mo>+</mo> <mi>d</mi> <mi>f</mi> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>g</mi> <mi>h</mi> <mo>+</mo> <mi>c</mi> <mi>e</mi> <mi>f</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>e</mi> <mi>h</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mi>f</mi> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle efgh(a+c+b+d)(a+c-b-d)=(agh+cef+beh+dfg)(agh+cef-beh-dfg)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c80e0679eab13c6c23d339e4229a1e94ace1e343" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:86.306ex; height:2.843ex;" alt="{\displaystyle efgh(a+c+b+d)(a+c-b-d)=(agh+cef+beh+dfg)(agh+cef-beh-dfg)}"></span></dd></dl> <p>where <span class="texhtml"><i>e</i> = <i>AE</i></span>, <span class="texhtml"><i>f</i> = <i>BE</i></span>, <span class="texhtml"><i>g</i> = <i>CE</i></span>, and <span class="texhtml"><i>h</i> = <i>DE</i></span>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p><p>The shape and size of a convex quadrilateral are fully determined by the lengths of its sides in sequence and of one diagonal between two specified vertices. The two diagonals <span class="texhtml"><i>p</i>, <i>q</i></span> and the four side lengths <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i>, <i>d</i></span> of a quadrilateral are related<sup id="cite_ref-:1_14-2" class="reference"><a href="#cite_note-:1-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> by the <a href="/wiki/Distance_geometry#Cayley.E2.80.93Menger_determinants" title="Distance geometry">Cayley-Menger</a> <a href="/wiki/Determinant" title="Determinant">determinant</a>, as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det {\begin{bmatrix}0&a^{2}&p^{2}&d^{2}&1\\a^{2}&0&b^{2}&q^{2}&1\\p^{2}&b^{2}&0&c^{2}&1\\d^{2}&q^{2}&c^{2}&0&1\\1&1&1&1&0\end{bmatrix}}=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det {\begin{bmatrix}0&a^{2}&p^{2}&d^{2}&1\\a^{2}&0&b^{2}&q^{2}&1\\p^{2}&b^{2}&0&c^{2}&1\\d^{2}&q^{2}&c^{2}&0&1\\1&1&1&1&0\end{bmatrix}}=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f91d61c86c38ecf5b26a0a0f66d4da8224975de1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; margin-top: -0.266ex; width:31.893ex; height:16.176ex;" alt="{\displaystyle \det {\begin{bmatrix}0&a^{2}&p^{2}&d^{2}&1\\a^{2}&0&b^{2}&q^{2}&1\\p^{2}&b^{2}&0&c^{2}&1\\d^{2}&q^{2}&c^{2}&0&1\\1&1&1&1&0\end{bmatrix}}=0.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Angle_bisectors">Angle bisectors</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=15" title="Edit section: Angle bisectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The internal <a href="/wiki/Angle_bisector" class="mw-redirect" title="Angle bisector">angle bisectors</a> of a convex quadrilateral either form a <a href="/wiki/Cyclic_quadrilateral" title="Cyclic quadrilateral">cyclic quadrilateral</a><sup id="cite_ref-Altshiller-Court_24-2" class="reference"><a href="#cite_note-Altshiller-Court-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p.127">: p.127 </span></sup> (that is, the four intersection points of adjacent angle bisectors are <a href="/wiki/Concyclic_points" title="Concyclic points">concyclic</a>) or they are <a href="/wiki/Concurrent_lines" title="Concurrent lines">concurrent</a>. In the latter case the quadrilateral is a <a href="/wiki/Tangential_quadrilateral" title="Tangential quadrilateral">tangential quadrilateral</a>. </p><p>In quadrilateral <i>ABCD</i>, if the <a href="/wiki/Bisection#Of_angles" title="Bisection">angle bisectors</a> of <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">C</span> meet on diagonal <span class="texhtml mvar" style="font-style:italic;">BD</span>, then the angle bisectors of <span class="texhtml mvar" style="font-style:italic;">B</span> and <span class="texhtml mvar" style="font-style:italic;">D</span> meet on diagonal <span class="texhtml mvar" style="font-style:italic;">AC</span>.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Bimedians">Bimedians</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=16" title="Edit section: Bimedians"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Varignon%27s_theorem" title="Varignon's theorem">Varignon's theorem</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Varignon_theorem_convex.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Varignon_theorem_convex.png/300px-Varignon_theorem_convex.png" decoding="async" width="300" height="203" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Varignon_theorem_convex.png/450px-Varignon_theorem_convex.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Varignon_theorem_convex.png/600px-Varignon_theorem_convex.png 2x" data-file-width="706" data-file-height="477" /></a><figcaption>The Varignon parallelogram <i>EFGH</i></figcaption></figure> <p>The <a class="mw-selflink-fragment" href="#Special_line_segments">bimedians</a> of a quadrilateral are the line segments connecting the <a href="/wiki/Midpoint" title="Midpoint">midpoints</a> of the opposite sides. The intersection of the bimedians is the <a href="/wiki/Centroid" title="Centroid">centroid</a> of the vertices of the quadrilateral.<sup id="cite_ref-:1_14-3" class="reference"><a href="#cite_note-:1-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p><p>The midpoints of the sides of any quadrilateral (convex, concave or crossed) are the vertices of a <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a> called the <a href="/wiki/Varignon%27s_theorem" title="Varignon's theorem">Varignon parallelogram</a>. It has the following properties: </p> <ul><li>Each pair of opposite sides of the Varignon parallelogram are parallel to a diagonal in the original quadrilateral.</li> <li>A side of the Varignon parallelogram is half as long as the diagonal in the original quadrilateral it is parallel to.</li> <li>The area of the Varignon parallelogram equals half the area of the original quadrilateral. This is true in convex, concave and crossed quadrilaterals provided the area of the latter is defined to be the difference of the areas of the two triangles it is composed of.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Perimeter" title="Perimeter">perimeter</a> of the Varignon parallelogram equals the sum of the diagonals of the original quadrilateral.</li> <li>The diagonals of the Varignon parallelogram are the bimedians of the original quadrilateral.</li></ul> <p>The two bimedians in a quadrilateral and the line segment joining the midpoints of the diagonals in that quadrilateral are <a href="/wiki/Concurrent_lines" title="Concurrent lines">concurrent</a> and are all bisected by their point of intersection.<sup id="cite_ref-Altshiller-Court_24-3" class="reference"><a href="#cite_note-Altshiller-Court-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p.125">: p.125 </span></sup> </p><p>In a convex quadrilateral with sides <span class="texhtml mvar" style="font-style:italic;">a</span>, <span class="texhtml mvar" style="font-style:italic;">b</span>, <span class="texhtml mvar" style="font-style:italic;">c</span> and <span class="texhtml mvar" style="font-style:italic;">d</span>, the length of the bimedian that connects the midpoints of the sides <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">c</span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m={\tfrac {1}{2}}{\sqrt {-a^{2}+b^{2}-c^{2}+d^{2}+p^{2}+q^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>−<!-- − --></mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m={\tfrac {1}{2}}{\sqrt {-a^{2}+b^{2}-c^{2}+d^{2}+p^{2}+q^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca1cb9942329f76eb2454b706ec6c63ce8337272" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:38.157ex; height:4.843ex;" alt="{\displaystyle m={\tfrac {1}{2}}{\sqrt {-a^{2}+b^{2}-c^{2}+d^{2}+p^{2}+q^{2}}}}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">q</span> are the length of the diagonals.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> The length of the bimedian that connects the midpoints of the sides <span class="texhtml mvar" style="font-style:italic;">b</span> and <span class="texhtml mvar" style="font-style:italic;">d</span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n={\tfrac {1}{2}}{\sqrt {a^{2}-b^{2}+c^{2}-d^{2}+p^{2}+q^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n={\tfrac {1}{2}}{\sqrt {a^{2}-b^{2}+c^{2}-d^{2}+p^{2}+q^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71beb3c187aab28cf32df989830aff9041280d6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:36.35ex; height:4.843ex;" alt="{\displaystyle n={\tfrac {1}{2}}{\sqrt {a^{2}-b^{2}+c^{2}-d^{2}+p^{2}+q^{2}}}.}"></span></dd></dl> <p>Hence<sup id="cite_ref-Altshiller-Court_24-4" class="reference"><a href="#cite_note-Altshiller-Court-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p.126">: p.126 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle p^{2}+q^{2}=2(m^{2}+n^{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle p^{2}+q^{2}=2(m^{2}+n^{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f0b98b4334dd6400016e189f7a1d151ce92c1e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:22.388ex; height:3.176ex;" alt="{\displaystyle \displaystyle p^{2}+q^{2}=2(m^{2}+n^{2}).}"></span></dd></dl> <p>This is also a <a href="/wiki/Corollary" title="Corollary">corollary</a> to the <a href="/wiki/Parallelogram_law" title="Parallelogram law">parallelogram law</a> applied in the Varignon parallelogram. </p><p>The lengths of the bimedians can also be expressed in terms of two opposite sides and the distance <span class="texhtml mvar" style="font-style:italic;">x</span> between the midpoints of the diagonals. This is possible when using Euler's quadrilateral theorem in the above formulas. Whence<sup id="cite_ref-Josefsson3_23-1" class="reference"><a href="#cite_note-Josefsson3-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m={\tfrac {1}{2}}{\sqrt {2(b^{2}+d^{2})-4x^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>4</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m={\tfrac {1}{2}}{\sqrt {2(b^{2}+d^{2})-4x^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9903d87f5dc01b783a55324c992bfe6771ff37d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:25.644ex; height:4.843ex;" alt="{\displaystyle m={\tfrac {1}{2}}{\sqrt {2(b^{2}+d^{2})-4x^{2}}}}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n={\tfrac {1}{2}}{\sqrt {2(a^{2}+c^{2})-4x^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>4</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n={\tfrac {1}{2}}{\sqrt {2(a^{2}+c^{2})-4x^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3e358f396a3695ce1f75f9f1c10cc5119b9d864" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:25.666ex; height:4.843ex;" alt="{\displaystyle n={\tfrac {1}{2}}{\sqrt {2(a^{2}+c^{2})-4x^{2}}}.}"></span></dd></dl> <p>Note that the two opposite sides in these formulas are not the two that the bimedian connects. </p><p>In a convex quadrilateral, there is the following <a href="/wiki/Duality_(mathematics)" title="Duality (mathematics)">dual</a> connection between the bimedians and the diagonals:<sup id="cite_ref-Josefsson_29-1" class="reference"><a href="#cite_note-Josefsson-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p> <ul><li>The two bimedians have equal length <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> the two diagonals are <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a>.</li> <li>The two bimedians are perpendicular if and only if the two diagonals have equal length.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Trigonometric_identities">Trigonometric identities</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=17" title="Edit section: Trigonometric identities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The four angles of a simple quadrilateral <i>ABCD</i> satisfy the following identities:<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin A+\sin B+\sin C+\sin D=4\sin {\tfrac {1}{2}}(A+B)\,\sin {\tfrac {1}{2}}(A+C)\,\sin {\tfrac {1}{2}}(A+D)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>A</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>B</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>C</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>D</mi> <mo>=</mo> <mn>4</mn> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>D</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin A+\sin B+\sin C+\sin D=4\sin {\tfrac {1}{2}}(A+B)\,\sin {\tfrac {1}{2}}(A+C)\,\sin {\tfrac {1}{2}}(A+D)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a27630643f063668b25a1fb7515e538566129ddf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:74.222ex; height:3.509ex;" alt="{\displaystyle \sin A+\sin B+\sin C+\sin D=4\sin {\tfrac {1}{2}}(A+B)\,\sin {\tfrac {1}{2}}(A+C)\,\sin {\tfrac {1}{2}}(A+D)}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\tan A\,\tan {B}-\tan C\,\tan D}{\tan A\,\tan C-\tan B\,\tan D}}={\frac {\tan(A+C)}{\tan(A+B)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mo>−<!-- − --></mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>C</mi> <mspace width="thinmathspace" /> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>D</mi> </mrow> <mrow> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>A</mi> <mspace width="thinmathspace" /> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>C</mi> <mo>−<!-- − --></mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>B</mi> <mspace width="thinmathspace" /> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>D</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>tan</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\tan A\,\tan {B}-\tan C\,\tan D}{\tan A\,\tan C-\tan B\,\tan D}}={\frac {\tan(A+C)}{\tan(A+B)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5a89b505db538675a76ae78ccbca4b7f2b4722b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:43.51ex; height:6.509ex;" alt="{\displaystyle {\frac {\tan A\,\tan {B}-\tan C\,\tan D}{\tan A\,\tan C-\tan B\,\tan D}}={\frac {\tan(A+C)}{\tan(A+B)}}.}"></span></dd></dl> <p>Also,<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\tan A+\tan B+\tan C+\tan D}{\cot A+\cot B+\cot C+\cot D}}=\tan {A}\tan {B}\tan {C}\tan {D}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>A</mi> <mo>+</mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>B</mi> <mo>+</mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>C</mi> <mo>+</mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>D</mi> </mrow> <mrow> <mi>cot</mi> <mo>⁡<!-- --></mo> <mi>A</mi> <mo>+</mo> <mi>cot</mi> <mo>⁡<!-- --></mo> <mi>B</mi> <mo>+</mo> <mi>cot</mi> <mo>⁡<!-- --></mo> <mi>C</mi> <mo>+</mo> <mi>cot</mi> <mo>⁡<!-- --></mo> <mi>D</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>D</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\tan A+\tan B+\tan C+\tan D}{\cot A+\cot B+\cot C+\cot D}}=\tan {A}\tan {B}\tan {C}\tan {D}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b43d8cf48ab73bc7dfb792e7b85077a7b31e179" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:58.633ex; height:5.676ex;" alt="{\displaystyle {\frac {\tan A+\tan B+\tan C+\tan D}{\cot A+\cot B+\cot C+\cot D}}=\tan {A}\tan {B}\tan {C}\tan {D}.}"></span></dd></dl> <p>In the last two formulas, no angle is allowed to be a <a href="/wiki/Right_angle" title="Right angle">right angle</a>, since tan 90° is not defined. </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> be the sides of a convex quadrilateral, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01d131dfd7673938b947072a13a9744fe997e632" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:1.676ex;" alt="{\displaystyle s}"></span> is the semiperimeter, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> are opposite angles, then<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ad\sin ^{2}{\tfrac {1}{2}}A+bc\cos ^{2}{\tfrac {1}{2}}C=(s-a)(s-d)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>d</mi> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>A</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>C</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ad\sin ^{2}{\tfrac {1}{2}}A+bc\cos ^{2}{\tfrac {1}{2}}C=(s-a)(s-d)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/427ac4d0dfa0929e8adaf936d0d599f0f6a2e798" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:40.764ex; height:3.509ex;" alt="{\displaystyle ad\sin ^{2}{\tfrac {1}{2}}A+bc\cos ^{2}{\tfrac {1}{2}}C=(s-a)(s-d)}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle bc\sin ^{2}{\tfrac {1}{2}}C+ad\cos ^{2}{\tfrac {1}{2}}A=(s-b)(s-c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mi>c</mi> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>C</mi> <mo>+</mo> <mi>a</mi> <mi>d</mi> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle bc\sin ^{2}{\tfrac {1}{2}}C+ad\cos ^{2}{\tfrac {1}{2}}A=(s-b)(s-c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61d19cda07dbbaebffda7e1ca6b4902713bcce20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:40.323ex; height:3.509ex;" alt="{\displaystyle bc\sin ^{2}{\tfrac {1}{2}}C+ad\cos ^{2}{\tfrac {1}{2}}A=(s-b)(s-c)}"></span>.</dd></dl> <p>We can use these identities to derive the <a href="/wiki/Bretschneider%27s_Formula" class="mw-redirect" title="Bretschneider's Formula">Bretschneider's Formula</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Inequalities">Inequalities</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=18" title="Edit section: Inequalities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Area">Area</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=19" title="Edit section: Area"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If a convex quadrilateral has the consecutive sides <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i> and the diagonals <i>p</i>, <i>q</i>, then its area <i>K</i> satisfies<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\leq {\tfrac {1}{4}}(a+c)(b+d)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\leq {\tfrac {1}{4}}(a+c)(b+d)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/236dd3b6f77de775b2cbd4954dd23ba90b56ee44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:20.572ex; height:3.509ex;" alt="{\displaystyle K\leq {\tfrac {1}{4}}(a+c)(b+d)}"></span> with equality only for a <a href="/wiki/Rectangle" title="Rectangle">rectangle</a>.</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\leq {\tfrac {1}{4}}(a^{2}+b^{2}+c^{2}+d^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\leq {\tfrac {1}{4}}(a^{2}+b^{2}+c^{2}+d^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1341d919b6e494479203d3503e26fb0c3b2f5b5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:25.822ex; height:3.509ex;" alt="{\displaystyle K\leq {\tfrac {1}{4}}(a^{2}+b^{2}+c^{2}+d^{2})}"></span> with equality only for a <a href="/wiki/Square" title="Square">square</a>.</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\leq {\tfrac {1}{4}}(p^{2}+q^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\leq {\tfrac {1}{4}}(p^{2}+q^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fba62309c39f6ab9bd3f08803b86852d6cf7cebd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:15.83ex; height:3.509ex;" alt="{\displaystyle K\leq {\tfrac {1}{4}}(p^{2}+q^{2})}"></span> with equality only if the diagonals are perpendicular and equal.</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\leq {\tfrac {1}{2}}{\sqrt {(a^{2}+c^{2})(b^{2}+d^{2})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\leq {\tfrac {1}{2}}{\sqrt {(a^{2}+c^{2})(b^{2}+d^{2})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff68993009bd9c9c7d69c33e5ae3010e81c6c26b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:27.115ex; height:4.843ex;" alt="{\displaystyle K\leq {\tfrac {1}{2}}{\sqrt {(a^{2}+c^{2})(b^{2}+d^{2})}}}"></span> with equality only for a rectangle.<sup id="cite_ref-Josefsson4_16-2" class="reference"><a href="#cite_note-Josefsson4-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup></dd></dl> <p>From <a href="/wiki/Bretschneider%27s_formula" title="Bretschneider's formula">Bretschneider's formula</a> it directly follows that the area of a quadrilateral satisfies </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\leq {\sqrt {(s-a)(s-b)(s-c)(s-d)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>s</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\leq {\sqrt {(s-a)(s-b)(s-c)(s-d)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87b41e01c7b9154659897b6d0f6747d304bd2d61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.899ex; height:4.843ex;" alt="{\displaystyle K\leq {\sqrt {(s-a)(s-b)(s-c)(s-d)}}}"></span></dd></dl> <p>with equality <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> the quadrilateral is <a href="/wiki/Cyclic_quadrilateral" title="Cyclic quadrilateral">cyclic</a> or degenerate such that one side is equal to the sum of the other three (it has collapsed into a <a href="/wiki/Line_segment" title="Line segment">line segment</a>, so the area is zero). </p><p>Also, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\leq {\sqrt {abcd}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> <mi>b</mi> <mi>c</mi> <mi>d</mi> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\leq {\sqrt {abcd}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32254af3f173cbd25c87defc4abb18f015b89f89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.197ex; height:3.009ex;" alt="{\displaystyle K\leq {\sqrt {abcd}},}"></span></dd></dl> <p>with equality for a <a href="/wiki/Bicentric_quadrilateral" title="Bicentric quadrilateral">bicentric quadrilateral</a> or a rectangle. </p><p>The area of any quadrilateral also satisfies the inequality<sup id="cite_ref-Alsina_38-0" class="reference"><a href="#cite_note-Alsina-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle K\leq {\tfrac {1}{2}}{\sqrt[{3}]{(ab+cd)(ac+bd)(ad+bc)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>b</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>.</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle K\leq {\tfrac {1}{2}}{\sqrt[{3}]{(ab+cd)(ac+bd)(ad+bc)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423a43c2641c34f91f0be6e9ccf2ba7c9cc8412a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.092ex; height:4.843ex;" alt="{\displaystyle \displaystyle K\leq {\tfrac {1}{2}}{\sqrt[{3}]{(ab+cd)(ac+bd)(ad+bc)}}.}"></span></dd></dl> <p>Denoting the perimeter as <i>L</i>, we have<sup id="cite_ref-Alsina_38-1" class="reference"><a href="#cite_note-Alsina-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p.114">: p.114 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\leq {\tfrac {1}{16}}L^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>16</mn> </mfrac> </mstyle> </mrow> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\leq {\tfrac {1}{16}}L^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e83e88d301f1516f5d97522c3a288ebef18d82b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:10.928ex; height:3.676ex;" alt="{\displaystyle K\leq {\tfrac {1}{16}}L^{2},}"></span></dd></dl> <p>with equality only in the case of a square. </p><p>The area of a convex quadrilateral also satisfies </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\leq {\tfrac {1}{2}}pq}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>p</mi> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\leq {\tfrac {1}{2}}pq}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ccd53be28f2cdd679dfb0e3c837034646c597bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:9.061ex; height:3.509ex;" alt="{\displaystyle K\leq {\tfrac {1}{2}}pq}"></span></dd></dl> <p>for diagonal lengths <i>p</i> and <i>q</i>, with equality if and only if the diagonals are perpendicular. </p><p>Let <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i> be the lengths of the sides of a convex quadrilateral <i>ABCD</i> with the area <i>K</i> and diagonals <i>AC = p</i>, <i>BD = q</i>. Then<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\leq {\tfrac {1}{8}}(a^{2}+b^{2}+c^{2}+d^{2}+p^{2}+q^{2}+pq-ac-bd)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>p</mi> <mi>q</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mi>c</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>d</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\leq {\tfrac {1}{8}}(a^{2}+b^{2}+c^{2}+d^{2}+p^{2}+q^{2}+pq-ac-bd)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7bf03c6f257720d60c4131fcc80b9c8d6573960" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:51.071ex; height:3.676ex;" alt="{\displaystyle K\leq {\tfrac {1}{8}}(a^{2}+b^{2}+c^{2}+d^{2}+p^{2}+q^{2}+pq-ac-bd)}"></span> with equality only for a square.</dd></dl> <p>Let <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i> be the lengths of the sides of a convex quadrilateral <i>ABCD</i> with the area <i>K</i>, then the following inequality holds:<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\leq {\frac {1}{3+{\sqrt {3}}}}(ab+ac+ad+bc+bd+cd)-{\frac {1}{2(1+{\sqrt {3}})^{2}}}(a^{2}+b^{2}+c^{2}+d^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mi>b</mi> <mo>+</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <mo>+</mo> <mi>b</mi> <mi>d</mi> <mo>+</mo> <mi>c</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\leq {\frac {1}{3+{\sqrt {3}}}}(ab+ac+ad+bc+bd+cd)-{\frac {1}{2(1+{\sqrt {3}})^{2}}}(a^{2}+b^{2}+c^{2}+d^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/642ae81c84d51d098cc75490e2de54995300f062" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:76.267ex; height:6.343ex;" alt="{\displaystyle K\leq {\frac {1}{3+{\sqrt {3}}}}(ab+ac+ad+bc+bd+cd)-{\frac {1}{2(1+{\sqrt {3}})^{2}}}(a^{2}+b^{2}+c^{2}+d^{2})}"></span> with equality only for a square.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Diagonals_and_bimedians">Diagonals and bimedians</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=20" title="Edit section: Diagonals and bimedians"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A corollary to Euler's quadrilateral theorem is the inequality </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}+c^{2}+d^{2}\geq p^{2}+q^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}+c^{2}+d^{2}\geq p^{2}+q^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a61351bf78f29335853987f542ac945099e6d592" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.487ex; height:3.009ex;" alt="{\displaystyle a^{2}+b^{2}+c^{2}+d^{2}\geq p^{2}+q^{2}}"></span></dd></dl> <p>where equality holds if and only if the quadrilateral is a <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a>. </p><p><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a> also generalized <a href="/wiki/Ptolemy%27s_theorem" title="Ptolemy's theorem">Ptolemy's theorem</a>, which is an equality in a <a href="/wiki/Cyclic_quadrilateral" title="Cyclic quadrilateral">cyclic quadrilateral</a>, into an inequality for a convex quadrilateral. It states that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle pq\leq ac+bd}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mi>q</mi> <mo>≤<!-- ≤ --></mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>b</mi> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle pq\leq ac+bd}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/270efed7debd13222f4c73bad75713339edb9476" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:12.717ex; height:2.509ex;" alt="{\displaystyle pq\leq ac+bd}"></span></dd></dl> <p>where there is equality <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> the quadrilateral is cyclic.<sup id="cite_ref-Altshiller-Court_24-5" class="reference"><a href="#cite_note-Altshiller-Court-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p.128–129">: p.128–129 </span></sup> This is often called <a href="/wiki/Ptolemy%27s_inequality" title="Ptolemy's inequality">Ptolemy's inequality</a>. </p><p>In any convex quadrilateral the bimedians <i>m, n</i> and the diagonals <i>p, q</i> are related by the inequality </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle pq\leq m^{2}+n^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mi>q</mi> <mo>≤<!-- ≤ --></mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle pq\leq m^{2}+n^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09454e09ddb273228ede155d9e71a75a40b961ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:14.458ex; height:3.009ex;" alt="{\displaystyle pq\leq m^{2}+n^{2},}"></span></dd></dl> <p>with equality holding if and only if the diagonals are equal.<sup id="cite_ref-J2014_41-0" class="reference"><a href="#cite_note-J2014-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: Prop.1">: Prop.1 </span></sup> This follows directly from the quadrilateral identity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m^{2}+n^{2}={\tfrac {1}{2}}(p^{2}+q^{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m^{2}+n^{2}={\tfrac {1}{2}}(p^{2}+q^{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2bd9595f453af70facb753abb46185aeefcd871" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:22.794ex; height:3.509ex;" alt="{\displaystyle m^{2}+n^{2}={\tfrac {1}{2}}(p^{2}+q^{2}).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Sides">Sides</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=21" title="Edit section: Sides"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The sides <i>a</i>, <i>b</i>, <i>c</i>, and <i>d</i> of any quadrilateral satisfy<sup id="cite_ref-Crux_42-0" class="reference"><a href="#cite_note-Crux-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p.228, #275">: p.228, #275 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}+b^{2}+c^{2}>{\tfrac {1}{3}}d^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}+b^{2}+c^{2}>{\tfrac {1}{3}}d^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/127d03b77eb6d407c28863396447be7dd1c85e75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:19.107ex; height:3.676ex;" alt="{\displaystyle a^{2}+b^{2}+c^{2}>{\tfrac {1}{3}}d^{2}}"></span></dd></dl> <p>and<sup id="cite_ref-Crux_42-1" class="reference"><a href="#cite_note-Crux-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p.234, #466">: p.234, #466 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{4}+b^{4}+c^{4}\geq {\tfrac {1}{27}}d^{4}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>27</mn> </mfrac> </mstyle> </mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{4}+b^{4}+c^{4}\geq {\tfrac {1}{27}}d^{4}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a49ce333c1567b7630551b732f460a6f39913a94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:20.575ex; height:3.676ex;" alt="{\displaystyle a^{4}+b^{4}+c^{4}\geq {\tfrac {1}{27}}d^{4}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Maximum_and_minimum_properties">Maximum and minimum properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=22" title="Edit section: Maximum and minimum properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Among all quadrilaterals with a given <a href="/wiki/Perimeter" title="Perimeter">perimeter</a>, the one with the largest area is the <a href="/wiki/Square_(geometry)" class="mw-redirect" title="Square (geometry)">square</a>. This is called the <i><a href="/wiki/Isoperimetric_inequality" title="Isoperimetric inequality">isoperimetric theorem</a> for quadrilaterals</i>. It is a direct consequence of the area inequality<sup id="cite_ref-Alsina_38-2" class="reference"><a href="#cite_note-Alsina-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p.114">: p.114 </span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K\leq {\tfrac {1}{16}}L^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>16</mn> </mfrac> </mstyle> </mrow> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K\leq {\tfrac {1}{16}}L^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6587904ece9061f95aaded3a026ac50ca8949edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:10.282ex; height:3.676ex;" alt="{\displaystyle K\leq {\tfrac {1}{16}}L^{2}}"></span></dd></dl> <p>where <i>K</i> is the area of a convex quadrilateral with perimeter <i>L</i>. Equality holds <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> the quadrilateral is a square. The dual theorem states that of all quadrilaterals with a given area, the square has the shortest perimeter. </p><p>The quadrilateral with given side lengths that has the <a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">maximum</a> area is the <a href="/wiki/Cyclic_quadrilateral" title="Cyclic quadrilateral">cyclic quadrilateral</a>.<sup id="cite_ref-Peter_43-0" class="reference"><a href="#cite_note-Peter-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> </p><p>Of all convex quadrilaterals with given diagonals, the <a href="/wiki/Orthodiagonal_quadrilateral" title="Orthodiagonal quadrilateral">orthodiagonal quadrilateral</a> has the largest area.<sup id="cite_ref-Alsina_38-3" class="reference"><a href="#cite_note-Alsina-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p.119">: p.119 </span></sup> This is a direct consequence of the fact that the area of a convex quadrilateral satisfies </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\tfrac {1}{2}}pq\sin {\theta }\leq {\tfrac {1}{2}}pq,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>p</mi> <mi>q</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>θ<!-- θ --></mi> </mrow> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>p</mi> <mi>q</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\tfrac {1}{2}}pq\sin {\theta }\leq {\tfrac {1}{2}}pq,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5198c0272ce42ab760d0fdd72ec64d9c84abbadf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:21.424ex; height:3.509ex;" alt="{\displaystyle K={\tfrac {1}{2}}pq\sin {\theta }\leq {\tfrac {1}{2}}pq,}"></span></dd></dl> <p>where <i>θ</i> is the angle between the diagonals <i>p</i> and <i>q</i>. Equality holds if and only if <i>θ</i> = 90°. </p><p>If <i>P</i> is an interior point in a convex quadrilateral <i>ABCD</i>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AP+BP+CP+DP\geq AC+BD.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>P</mi> <mo>+</mo> <mi>B</mi> <mi>P</mi> <mo>+</mo> <mi>C</mi> <mi>P</mi> <mo>+</mo> <mi>D</mi> <mi>P</mi> <mo>≥<!-- ≥ --></mo> <mi>A</mi> <mi>C</mi> <mo>+</mo> <mi>B</mi> <mi>D</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AP+BP+CP+DP\geq AC+BD.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52215f60c8de53fd7e51f58610f47efde1fa7b72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:36.484ex; height:2.343ex;" alt="{\displaystyle AP+BP+CP+DP\geq AC+BD.}"></span></dd></dl> <p>From this inequality it follows that the point inside a quadrilateral that <a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">minimizes</a> the sum of distances to the <a href="/wiki/Vertex_(geometry)" title="Vertex (geometry)">vertices</a> is the intersection of the diagonals. Hence that point is the <a href="/wiki/Fermat_point" title="Fermat point">Fermat point</a> of a convex quadrilateral.<sup id="cite_ref-autogenerated1_44-0" class="reference"><a href="#cite_note-autogenerated1-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: p.120">: p.120 </span></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Remarkable_points_and_lines_in_a_convex_quadrilateral">Remarkable points and lines in a convex quadrilateral</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=23" title="Edit section: Remarkable points and lines in a convex quadrilateral"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The centre of a quadrilateral can be defined in several different ways. The "vertex centroid" comes from considering the quadrilateral as being empty but having equal masses at its vertices. The "side centroid" comes from considering the sides to have constant mass per unit length. The usual centre, called just <a href="/wiki/Centroid" title="Centroid">centroid</a> (centre of area) comes from considering the surface of the quadrilateral as having constant density. These three points are in general not all the same point.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p><p>The "vertex centroid" is the intersection of the two <a class="mw-selflink-fragment" href="#Special_line_segments">bimedians</a>.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> As with any polygon, the <i>x</i> and <i>y</i> coordinates of the vertex centroid are the <a href="/wiki/Arithmetic_mean" title="Arithmetic mean">arithmetic means</a> of the <i>x</i> and <i>y</i> coordinates of the vertices. </p><p>The "area centroid" of quadrilateral <i>ABCD</i> can be constructed in the following way. Let <i>G<sub>a</sub></i>, <i>G<sub>b</sub></i>, <i>G<sub>c</sub></i>, <i>G<sub>d</sub></i> be the centroids of triangles <i>BCD</i>, <i>ACD</i>, <i>ABD</i>, <i>ABC</i> respectively. Then the "area centroid" is the intersection of the lines <i>G<sub>a</sub>G<sub>c</sub></i> and <i>G<sub>b</sub>G<sub>d</sub></i>.<sup id="cite_ref-Myakishev_47-0" class="reference"><a href="#cite_note-Myakishev-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p><p>In a general convex quadrilateral <i>ABCD</i>, there are no natural analogies to the <a href="/wiki/Circumcenter" class="mw-redirect" title="Circumcenter">circumcenter</a> and <a href="/wiki/Orthocenter" title="Orthocenter">orthocenter</a> of a <a href="/wiki/Triangle" title="Triangle">triangle</a>. But two such points can be constructed in the following way. Let <i>O<sub>a</sub></i>, <i>O<sub>b</sub></i>, <i>O<sub>c</sub></i>, <i>O<sub>d</sub></i> be the circumcenters of triangles <i>BCD</i>, <i>ACD</i>, <i>ABD</i>, <i>ABC</i> respectively; and denote by <i>H<sub>a</sub></i>, <i>H<sub>b</sub></i>, <i>H<sub>c</sub></i>, <i>H<sub>d</sub></i> the orthocenters in the same triangles. Then the intersection of the lines <i>O<sub>a</sub>O<sub>c</sub></i> and <i>O<sub>b</sub>O<sub>d</sub></i> is called the <a href="/wiki/Circumcenter_of_mass" title="Circumcenter of mass">quasicircumcenter</a>, and the intersection of the lines <i>H<sub>a</sub>H<sub>c</sub></i> and <i>H<sub>b</sub>H<sub>d</sub></i> is called the <i>quasiorthocenter</i> of the convex quadrilateral.<sup id="cite_ref-Myakishev_47-1" class="reference"><a href="#cite_note-Myakishev-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> These points can be used to define an <a href="/wiki/Euler_line" title="Euler line">Euler line</a> of a quadrilateral. In a convex quadrilateral, the quasiorthocenter <i>H</i>, the "area centroid" <i>G</i>, and the quasicircumcenter <i>O</i> are <a href="/wiki/Collinear" class="mw-redirect" title="Collinear">collinear</a> in this order, and <i>HG</i> = 2<i>GO</i>.<sup id="cite_ref-Myakishev_47-2" class="reference"><a href="#cite_note-Myakishev-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p><p>There can also be defined a <i>quasinine-point center</i> <i>E</i> as the intersection of the lines <i>E<sub>a</sub>E<sub>c</sub></i> and <i>E<sub>b</sub>E<sub>d</sub></i>, where <i>E<sub>a</sub></i>, <i>E<sub>b</sub></i>, <i>E<sub>c</sub></i>, <i>E<sub>d</sub></i> are the <a href="/wiki/Nine-point_circle" title="Nine-point circle">nine-point centers</a> of triangles <i>BCD</i>, <i>ACD</i>, <i>ABD</i>, <i>ABC</i> respectively. Then <i>E</i> is the <a href="/wiki/Midpoint" title="Midpoint">midpoint</a> of <i>OH</i>.<sup id="cite_ref-Myakishev_47-3" class="reference"><a href="#cite_note-Myakishev-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p><p>Another remarkable line in a convex non-parallelogram quadrilateral is the <a href="/wiki/Newton_line" title="Newton line">Newton line</a>, which connects the midpoints of the diagonals, the segment connecting these points being bisected by the vertex centroid. One more interesting line (in some sense dual to the <a href="/wiki/Newton_line" title="Newton line">Newton's</a> one) is the line connecting the point of intersection of diagonals with the vertex centroid. The line is remarkable by the fact that it contains the (area) centroid. The vertex centroid divides the segment connecting the intersection of diagonals and the (area) centroid in the ratio 3:1.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> </p><p>For any quadrilateral <i>ABCD</i> with points <i>P</i> and <i>Q</i> the intersections of <i>AD</i> and <i>BC</i> and <i>AB</i> and <i>CD</i>, respectively, the circles <i>(PAB), (PCD), (QAD),</i> and <i>(QBC)</i> pass through a common point <i>M</i>, called a Miquel point.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p><p>For a convex quadrilateral <i>ABCD</i> in which <i>E</i> is the point of intersection of the diagonals and <i>F</i> is the point of intersection of the extensions of sides <i>BC</i> and <i>AD</i>, let ω be a circle through <i>E</i> and <i>F</i> which meets <i>CB</i> internally at <i>M</i> and <i>DA</i> internally at <i>N</i>. Let <i>CA</i> meet ω again at <i>L</i> and let <i>DB</i> meet ω again at <i>K</i>. Then there holds: the straight lines <i>NK</i> and <i>ML</i> intersect at point <i>P</i> that is located on the side <i>AB</i>; the straight lines <i>NL</i> and <i>KM</i> intersect at point <i>Q</i> that is located on the side <i>CD</i>. Points <i>P</i> and <i>Q</i> are called "Pascal points" formed by circle ω on sides <i>AB</i> and <i>CD</i>. <sup id="cite_ref-Fraivert_50-0" class="reference"><a href="#cite_note-Fraivert-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> <sup id="cite_ref-Fraivert2_51-0" class="reference"><a href="#cite_note-Fraivert2-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> <sup id="cite_ref-Fraivert3_52-0" class="reference"><a href="#cite_note-Fraivert3-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Other_properties_of_convex_quadrilaterals">Other properties of convex quadrilaterals</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=24" title="Edit section: Other properties of convex quadrilaterals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Let exterior squares be drawn on all sides of a quadrilateral. The segments connecting the <a href="/wiki/Centre_(geometry)#Symmetric_objects" title="Centre (geometry)">centers</a> of opposite squares are (a) equal in length, and (b) <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a>. Thus these centers are the vertices of an <a href="/wiki/Orthodiagonal_quadrilateral" title="Orthodiagonal quadrilateral">orthodiagonal quadrilateral</a>. This is called <a href="/wiki/Van_Aubel%27s_theorem" title="Van Aubel's theorem">Van Aubel's theorem</a>.</li> <li>For any simple quadrilateral with given edge lengths, there is a <a href="/wiki/Cyclic_quadrilateral" title="Cyclic quadrilateral">cyclic quadrilateral</a> with the same edge lengths.<sup id="cite_ref-Peter_43-1" class="reference"><a href="#cite_note-Peter-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup></li> <li>The four smaller triangles formed by the diagonals and sides of a convex quadrilateral have the property that the product of the areas of two opposite triangles equals the product of the areas of the other two triangles.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup></li> <li>The angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>θ<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> at the intersection of the diagonals satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \theta ={\frac {a^{2}+c^{2}-b^{2}-d^{2}}{2pq}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>p</mi> <mi>q</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \theta ={\frac {a^{2}+c^{2}-b^{2}-d^{2}}{2pq}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4ae1f5e6b5d8f8e1e68490fe9632d538b9e321f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.361ex; height:6.176ex;" alt="{\displaystyle \cos \theta ={\frac {a^{2}+c^{2}-b^{2}-d^{2}}{2pq}},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p,q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p,q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953a97b9fe7d257c9666fb3cf6bf75380295e2cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:3.362ex; height:2.009ex;" alt="{\displaystyle p,q}"></span> are the diagonals of the quadrilateral.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Taxonomy">Taxonomy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=25" title="Edit section: Taxonomy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Quadrilateral_hierarchy_svg.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/Quadrilateral_hierarchy_svg.svg/220px-Quadrilateral_hierarchy_svg.svg.png" decoding="async" width="220" height="269" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/Quadrilateral_hierarchy_svg.svg/330px-Quadrilateral_hierarchy_svg.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/31/Quadrilateral_hierarchy_svg.svg/440px-Quadrilateral_hierarchy_svg.svg.png 2x" data-file-width="819" data-file-height="1000" /></a><figcaption>A taxonomy of quadrilaterals, using a <a href="/wiki/Hasse_diagram" title="Hasse diagram">Hasse diagram</a>.</figcaption></figure> <p>A hierarchical <a href="/wiki/Taxonomy_(general)" class="mw-redirect" title="Taxonomy (general)">taxonomy</a> of quadrilaterals is illustrated by the figure to the right. Lower classes are special cases of higher classes they are connected to. Note that "trapezoid" here is referring to the North American definition (the British equivalent is a trapezium). Inclusive definitions are used throughout. </p> <div class="mw-heading mw-heading2"><h2 id="Skew_quadrilaterals">Skew quadrilaterals</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=26" title="Edit section: Skew quadrilaterals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Skew_polygon" title="Skew polygon">Skew polygon</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Disphenoid_tetrahedron.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Disphenoid_tetrahedron.png/260px-Disphenoid_tetrahedron.png" decoding="async" width="260" height="199" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Disphenoid_tetrahedron.png/390px-Disphenoid_tetrahedron.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Disphenoid_tetrahedron.png/520px-Disphenoid_tetrahedron.png 2x" data-file-width="1002" data-file-height="767" /></a><figcaption>The (red) side edges of <a href="/wiki/Tetragonal_disphenoid" class="mw-redirect" title="Tetragonal disphenoid">tetragonal disphenoid</a> represent a regular zig-zag skew quadrilateral</figcaption></figure> <p>A non-planar quadrilateral is called a <b>skew quadrilateral</b>. Formulas to compute its dihedral angles from the edge lengths and the angle between two adjacent edges were derived for work on the properties of molecules such as <a href="/wiki/Cyclobutane" title="Cyclobutane">cyclobutane</a> that contain a "puckered" ring of four atoms.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> Historically the term <b>gauche quadrilateral</b> was also used to mean a skew quadrilateral.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> A skew quadrilateral together with its diagonals form a (possibly non-regular) <a href="/wiki/Tetrahedron" title="Tetrahedron">tetrahedron</a>, and conversely every skew quadrilateral comes from a tetrahedron where a pair of opposite <a href="/wiki/Edge_(geometry)" title="Edge (geometry)">edges</a> is removed. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=27" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Complete_quadrangle" title="Complete quadrangle">Complete quadrangle</a></li> <li><a href="/wiki/Perpendicular_bisector_construction_of_a_quadrilateral" title="Perpendicular bisector construction of a quadrilateral">Perpendicular bisector construction of a quadrilateral</a></li> <li><a href="/wiki/Saccheri_quadrilateral" title="Saccheri quadrilateral">Saccheri quadrilateral</a></li> <li><a href="/wiki/Types_of_mesh#Quadrilateral" title="Types of mesh">Types of mesh § Quadrilateral</a></li> <li><a href="/wiki/Quadrangle_(geography)" title="Quadrangle (geography)">Quadrangle (geography)</a></li> <li><a href="/wiki/Homography" title="Homography">Homography</a> - Any quadrilateral can be transformed into another quadrilateral by a projective transformation (homography)</li></ul> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=28" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-:0-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_1-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathsisfun.com/quadrilaterals.html">"Quadrilaterals - Square, Rectangle, Rhombus, Trapezoid, Parallelogram"</a>. <i>Mathsisfun.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Mathsisfun.com&rft.atitle=Quadrilaterals+-+Square%2C+Rectangle%2C+Rhombus%2C+Trapezoid%2C+Parallelogram&rft_id=https%3A%2F%2Fwww.mathsisfun.com%2Fquadrilaterals.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.cuemath.com/geometry/sum-of-angles-in-a-polygon/">"Sum of Angles in a Polygon"</a>. <i>Cuemath</i><span class="reference-accessdate">. Retrieved <span class="nowrap">22 June</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Cuemath&rft.atitle=Sum+of+Angles+in+a+Polygon&rft_id=https%3A%2F%2Fwww.cuemath.com%2Fgeometry%2Fsum-of-angles-in-a-polygon%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartin1982" class="citation cs2">Martin, George Edward (1982), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=gevlBwAAQBAJ&pg=PA120"><i>Transformation geometry</i></a>, Undergraduate Texts in Mathematics, Springer-Verlag, Theorem 12.1, page 120, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4612-5680-9">10.1007/978-1-4612-5680-9</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-90636-3" title="Special:BookSources/0-387-90636-3"><bdi>0-387-90636-3</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0718119">0718119</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Transformation+geometry&rft.series=Undergraduate+Texts+in+Mathematics&rft.pages=Theorem+12.1%2C+page+120&rft.pub=Springer-Verlag&rft.date=1982&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D718119%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-1-4612-5680-9&rft.isbn=0-387-90636-3&rft.aulast=Martin&rft.aufirst=George+Edward&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DgevlBwAAQBAJ%26pg%3DPA120&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140514200449/http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf">"Archived copy"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf">the original</a> <span class="cs1-format">(PDF)</span> on May 14, 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">June 20,</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Archived+copy&rft_id=http%3A%2F%2Fwww.cimt.plymouth.ac.uk%2Fresources%2Ftopics%2Fart002.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: archived copy as title (<a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">link</a>)</span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.cleavebooks.co.uk/scol/calrect.htm">"Rectangles Calculator"</a>. <i>Cleavebooks.co.uk</i><span class="reference-accessdate">. Retrieved <span class="nowrap">1 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Cleavebooks.co.uk&rft.atitle=Rectangles+Calculator&rft_id=http%3A%2F%2Fwww.cleavebooks.co.uk%2Fscol%2Fcalrect.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKeadyScalesNémeth2004" class="citation journal cs1">Keady, G.; Scales, P.; Németh, S. Z. (2004). <a rel="nofollow" class="external text" href="http://www.m-a.org.uk/jsp/index.jsp?lnk=620">"Watt Linkages and Quadrilaterals"</a>. <i><a href="/wiki/The_Mathematical_Gazette" title="The Mathematical Gazette">The Mathematical Gazette</a></i>. <b>88</b> (513): 475–492. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0025557200176107">10.1017/S0025557200176107</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125102050">125102050</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Mathematical+Gazette&rft.atitle=Watt+Linkages+and+Quadrilaterals&rft.volume=88&rft.issue=513&rft.pages=475-492&rft.date=2004&rft_id=info%3Adoi%2F10.1017%2FS0025557200176107&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125102050%23id-name%3DS2CID&rft.aulast=Keady&rft.aufirst=G.&rft.au=Scales%2C+P.&rft.au=N%C3%A9meth%2C+S.+Z.&rft_id=http%3A%2F%2Fwww.m-a.org.uk%2Fjsp%2Findex.jsp%3Flnk%3D620&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJobbings1997" class="citation journal cs1">Jobbings, A. K. (1997). "Quadric Quadrilaterals". <i>The Mathematical Gazette</i>. <b>81</b> (491): 220–224. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3619199">10.2307/3619199</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3619199">3619199</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250440553">250440553</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Mathematical+Gazette&rft.atitle=Quadric+Quadrilaterals&rft.volume=81&rft.issue=491&rft.pages=220-224&rft.date=1997&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250440553%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3619199%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F3619199&rft.aulast=Jobbings&rft.aufirst=A.+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeauregard2009" class="citation journal cs1">Beauregard, R. A. (2009). "Diametric Quadrilaterals with Two Equal Sides". <i>College Mathematics Journal</i>. <b>40</b> (1): 17–21. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F07468342.2009.11922331">10.1080/07468342.2009.11922331</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122206817">122206817</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=College+Mathematics+Journal&rft.atitle=Diametric+Quadrilaterals+with+Two+Equal+Sides&rft.volume=40&rft.issue=1&rft.pages=17-21&rft.date=2009&rft_id=info%3Adoi%2F10.1080%2F07468342.2009.11922331&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122206817%23id-name%3DS2CID&rft.aulast=Beauregard&rft.aufirst=R.+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHartshorne2005" class="citation book cs1">Hartshorne, R. (2005). <i>Geometry: Euclid and Beyond</i>. Springer. pp. 429–430. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4419-3145-0" title="Special:BookSources/978-1-4419-3145-0"><bdi>978-1-4419-3145-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry%3A+Euclid+and+Beyond&rft.pages=429-430&rft.pub=Springer&rft.date=2005&rft.isbn=978-1-4419-3145-0&rft.aulast=Hartshorne&rft.aufirst=R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160303182521/http://mysite.mweb.co.za/residents/profmd/stars.pdf">"Stars: A Second Look"</a> <span class="cs1-format">(PDF)</span>. <i>Mysite.mweb.co.za</i>. Archived from <a rel="nofollow" class="external text" href="http://mysite.mweb.co.za/residents/profmd/stars.pdf">the original</a> <span class="cs1-format">(PDF)</span> on March 3, 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">March 1,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Mysite.mweb.co.za&rft.atitle=Stars%3A+A+Second+Look&rft_id=http%3A%2F%2Fmysite.mweb.co.za%2Fresidents%2Fprofmd%2Fstars.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFButler2016" class="citation web cs1">Butler, David (2016-04-06). <a rel="nofollow" class="external text" href="https://blogs.adelaide.edu.au/maths-learning/2016/04/06/the-crossed-trapezium/">"The crossed trapezium"</a>. <i>Making Your Own Sense</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-09-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Making+Your+Own+Sense&rft.atitle=The+crossed+trapezium&rft.date=2016-04-06&rft.aulast=Butler&rft.aufirst=David&rft_id=https%3A%2F%2Fblogs.adelaide.edu.au%2Fmaths-learning%2F2016%2F04%2F06%2Fthe-crossed-trapezium%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFE.W._Weisstein" class="citation web cs1">E.W. Weisstein. <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Bimedian.html">"Bimedian"</a>. MathWorld – A Wolfram Web Resource.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Bimedian&rft.pub=MathWorld+%E2%80%93+A+Wolfram+Web+Resource&rft.au=E.W.+Weisstein&rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FBimedian.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFE.W._Weisstein" class="citation web cs1">E.W. Weisstein. <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Maltitude.html">"Maltitude"</a>. MathWorld – A Wolfram Web Resource.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Maltitude&rft.pub=MathWorld+%E2%80%93+A+Wolfram+Web+Resource&rft.au=E.W.+Weisstein&rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FMaltitude.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-:1-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_14-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_14-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:1_14-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Quadrilateral.html">"Quadrilateral"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathworld.wolfram.com&rft.atitle=Quadrilateral&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FQuadrilateral.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">Harries, J. "Area of a quadrilateral," <i>Mathematical Gazette</i> 86, July 2002, 310–311.</span> </li> <li id="cite_note-Josefsson4-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-Josefsson4_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Josefsson4_16-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Josefsson4_16-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJosefsson2013" class="citation cs2">Josefsson, Martin (2013), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304001152/http://forumgeom.fau.edu/FG2013volume13/FG201304.pdf">"Five Proofs of an Area Characterization of Rectangles"</a> <span class="cs1-format">(PDF)</span>, <i>Forum Geometricorum</i>, <b>13</b>: 17–21, archived from <a rel="nofollow" class="external text" href="http://forumgeom.fau.edu/FG2013volume13/FG201304.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2016-03-04<span class="reference-accessdate">, retrieved <span class="nowrap">2013-02-20</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Forum+Geometricorum&rft.atitle=Five+Proofs+of+an+Area+Characterization+of+Rectangles&rft.volume=13&rft.pages=17-21&rft.date=2013&rft.aulast=Josefsson&rft.aufirst=Martin&rft_id=http%3A%2F%2Fforumgeom.fau.edu%2FFG2013volume13%2FFG201304.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span>.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">R. A. Johnson, <i>Advanced Euclidean Geometry</i>, 2007, <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publ.</a>, p. 82.</span> </li> <li id="cite_note-Mitchell-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Mitchell_18-0">^</a></b></span> <span class="reference-text">Mitchell, Douglas W., "The area of a quadrilateral," <i>Mathematical Gazette</i> 93, July 2009, 306–309.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathcentre.ac.uk/resources/uploaded/mc-ty-triangleformulae-2009-1.pdf">"Triangle formulae"</a> <span class="cs1-format">(PDF)</span>. <i>mathcentre.ac.uk</i>. 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">26 June</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathcentre.ac.uk&rft.atitle=Triangle+formulae&rft.date=2009&rft_id=https%3A%2F%2Fwww.mathcentre.ac.uk%2Fresources%2Fuploaded%2Fmc-ty-triangleformulae-2009-1.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">J. L. Coolidge, "A historically interesting formula for the area of a quadrilateral", <i>American Mathematical Monthly</i>, 46 (1939) 345–347.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFE.W._Weisstein" class="citation web cs1">E.W. Weisstein. <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/BretschneidersFormula.html">"Bretschneider's formula"</a>. MathWorld – A Wolfram Web Resource.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Bretschneider%27s+formula&rft.pub=MathWorld+%E2%80%93+A+Wolfram+Web+Resource&rft.au=E.W.+Weisstein&rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FBretschneidersFormula.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">Archibald, R. C., "The Area of a Quadrilateral", <i>American Mathematical Monthly</i>, 29 (1922) pp. 29–36.</span> </li> <li id="cite_note-Josefsson3-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-Josefsson3_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Josefsson3_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJosefsson2011" class="citation cs2">Josefsson, Martin (2011), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200105031952/http://forumgeom.fau.edu/FG2011volume11/FG201116.pdf">"The Area of a Bicentric Quadrilateral"</a> <span class="cs1-format">(PDF)</span>, <i>Forum Geometricorum</i>, <b>11</b>: 155–164, archived from <a rel="nofollow" class="external text" href="http://forumgeom.fau.edu/FG2011volume11/FG201116.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2020-01-05<span class="reference-accessdate">, retrieved <span class="nowrap">2012-02-08</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Forum+Geometricorum&rft.atitle=The+Area+of+a+Bicentric+Quadrilateral&rft.volume=11&rft.pages=155-164&rft.date=2011&rft.aulast=Josefsson&rft.aufirst=Martin&rft_id=http%3A%2F%2Fforumgeom.fau.edu%2FFG2011volume11%2FFG201116.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span>.</span> </li> <li id="cite_note-Altshiller-Court-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-Altshiller-Court_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Altshiller-Court_24-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Altshiller-Court_24-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Altshiller-Court_24-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Altshiller-Court_24-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Altshiller-Court_24-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text">Altshiller-Court, Nathan, <i>College Geometry</i>, Dover Publ., 2007.</span> </li> <li id="cite_note-Josefsson6-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-Josefsson6_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Josefsson6_25-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Josefsson, Martin (2016) ‘100.31 Heron-like formulas for quadrilaterals’, <i>The Mathematical Gazette</i>, <b>100</b> (549), pp. 505–508.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://math.okstate.edu/geoset/Projects/Ideas/QuadDiags.htm">"Diagonals of Quadrilaterals -- Perpendicular, Bisecting or Both"</a>. <i>Math.okstate.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">1 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Math.okstate.edu&rft.atitle=Diagonals+of+Quadrilaterals+--+Perpendicular%2C+Bisecting+or+Both&rft_id=https%3A%2F%2Fmath.okstate.edu%2Fgeoset%2FProjects%2FIdeas%2FQuadDiags.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">Rashid, M. A. & Ajibade, A. O., "Two conditions for a quadrilateral to be cyclic expressed in terms of the lengths of its sides", <i>Int. J. Math. Educ. Sci. Technol.</i>, vol. 34 (2003) no. 5, pp. 739–799.</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text">Andreescu, Titu & Andrica, Dorian, <i>Complex Numbers from A to...Z</i>, Birkhäuser, 2006, pp. 207–209.</span> </li> <li id="cite_note-Josefsson-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-Josefsson_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Josefsson_29-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJosefsson2012" class="citation cs2">Josefsson, Martin (2012), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201205213638/http://forumgeom.fau.edu/FG2012volume12/FG201202.pdf">"Characterizations of Orthodiagonal Quadrilaterals"</a> <span class="cs1-format">(PDF)</span>, <i>Forum Geometricorum</i>, <b>12</b>: 13–25, archived from <a rel="nofollow" class="external text" href="http://forumgeom.fau.edu/FG2012volume12/FG201202.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2020-12-05<span class="reference-accessdate">, retrieved <span class="nowrap">2012-04-08</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Forum+Geometricorum&rft.atitle=Characterizations+of+Orthodiagonal+Quadrilaterals&rft.volume=12&rft.pages=13-25&rft.date=2012&rft.aulast=Josefsson&rft.aufirst=Martin&rft_id=http%3A%2F%2Fforumgeom.fau.edu%2FFG2012volume12%2FFG201202.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span>.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoehn2011" class="citation cs2">Hoehn, Larry (2011), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130616232126/http://forumgeom.fau.edu/FG2011volume11/FG201122.pdf">"A New Formula Concerning the Diagonals and Sides of a Quadrilateral"</a> <span class="cs1-format">(PDF)</span>, <i>Forum Geometricorum</i>, <b>11</b>: 211–212, archived from <a rel="nofollow" class="external text" href="http://forumgeom.fau.edu/FG2011volume11/FG201122.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2013-06-16<span class="reference-accessdate">, retrieved <span class="nowrap">2012-04-28</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Forum+Geometricorum&rft.atitle=A+New+Formula+Concerning+the+Diagonals+and+Sides+of+a+Quadrilateral&rft.volume=11&rft.pages=211-212&rft.date=2011&rft.aulast=Hoehn&rft.aufirst=Larry&rft_id=http%3A%2F%2Fforumgeom.fau.edu%2FFG2011volume11%2FFG201122.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span>.</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">Leversha, Gerry, "A property of the diagonals of a cyclic quadrilateral", <i>Mathematical Gazette</i> 93, March 2009, 116–118.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><a href="/wiki/Harold_Scott_MacDonald_Coxeter" title="Harold Scott MacDonald Coxeter">H. S. M. Coxeter</a> and <a href="/wiki/Samuel_L._Greitzer" title="Samuel L. Greitzer">S. L. Greitzer</a>, Geometry Revisited, MAA, 1967, pp. 52–53.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20141024134419/http://www.artofproblemsolving.com/Forum/viewtopic.php?t=363253">"Mateescu Constantin, Answer to <i>Inequality Of Diagonal</i>"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.artofproblemsolving.com/Forum/viewtopic.php?t=363253">the original</a> on 2014-10-24<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-09-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Mateescu+Constantin%2C+Answer+to+Inequality+Of+Diagonal&rft_id=http%3A%2F%2Fwww.artofproblemsolving.com%2FForum%2Fviewtopic.php%3Ft%3D363253&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">C. V. Durell & A. Robson, <i>Advanced Trigonometry</i>, Dover, 2003, p. 267.</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.mathpropress.com/archive/RabinowitzProblems1963-2005.pdf">"Original Problems Proposed by Stanley Rabinowitz 1963–2005"</a> <span class="cs1-format">(PDF)</span>. <i>Mathpropress.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">March 1,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Mathpropress.com&rft.atitle=Original+Problems+Proposed+by+Stanley+Rabinowitz+1963%E2%80%932005&rft_id=http%3A%2F%2Fwww.mathpropress.com%2Farchive%2FRabinowitzProblems1963-2005.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://matinf.upit.ro/MATINF6/index.html#p=1">"E. A. José García, Two Identities and their Consequences, MATINF, 6 (2020) 5-11"</a>. <i>Matinf.upit.ro</i><span class="reference-accessdate">. Retrieved <span class="nowrap">1 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Matinf.upit.ro&rft.atitle=E.+A.+Jos%C3%A9+Garc%C3%ADa%2C+Two+Identities+and+their+Consequences%2C+MATINF%2C+6+%282020%29+5-11&rft_id=http%3A%2F%2Fmatinf.upit.ro%2FMATINF6%2Findex.html%23p%3D1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text">O. Bottema, <i>Geometric Inequalities</i>, Wolters–Noordhoff Publishing, The Netherlands, 1969, pp. 129, 132.</span> </li> <li id="cite_note-Alsina-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-Alsina_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Alsina_38-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Alsina_38-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Alsina_38-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlsinaNelsen2009" class="citation cs2">Alsina, Claudi; Nelsen, Roger (2009), <i>When Less is More: Visualizing Basic Inequalities</i>, Mathematical Association of America, p. 68</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=When+Less+is+More%3A+Visualizing+Basic+Inequalities&rft.pages=68&rft.pub=Mathematical+Association+of+America&rft.date=2009&rft.aulast=Alsina&rft.aufirst=Claudi&rft.au=Nelsen%2C+Roger&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span>.</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">Dao Thanh Oai, Leonard Giugiuc, Problem 12033, American Mathematical Monthly, March 2018, p. 277</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeonard_Mihai_GiugiucDao_Thanh_OaiKadir_Altintas2018" class="citation journal cs1">Leonard Mihai Giugiuc; Dao Thanh Oai; Kadir Altintas (2018). <a rel="nofollow" class="external text" href="https://ijgeometry.com/wp-content/uploads/2018/04/81-86.pdf">"An inequality related to the lengths and area of a convex quadrilateral"</a> <span class="cs1-format">(PDF)</span>. <i>International Journal of Geometry</i>. <b>7</b>: 81–86.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Geometry&rft.atitle=An+inequality+related+to+the+lengths+and+area+of+a+convex+quadrilateral&rft.volume=7&rft.pages=81-86&rft.date=2018&rft.au=Leonard+Mihai+Giugiuc&rft.au=Dao+Thanh+Oai&rft.au=Kadir+Altintas&rft_id=https%3A%2F%2Fijgeometry.com%2Fwp-content%2Fuploads%2F2018%2F04%2F81-86.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-J2014-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-J2014_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJosefsson2014" class="citation journal cs1">Josefsson, Martin (2014). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20240605032351/https://forumgeom.fau.edu/FG2014volume14/FG201412index.html">"Properties of equidiagonal quadrilaterals"</a>. <i>Forum Geometricorum</i>. <b>14</b>: 129–144. Archived from <a rel="nofollow" class="external text" href="http://forumgeom.fau.edu/FG2014volume14/FG201412index.html">the original</a> on 2024-06-05<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-08-28</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Forum+Geometricorum&rft.atitle=Properties+of+equidiagonal+quadrilaterals&rft.volume=14&rft.pages=129-144&rft.date=2014&rft.aulast=Josefsson&rft.aufirst=Martin&rft_id=http%3A%2F%2Fforumgeom.fau.edu%2FFG2014volume14%2FFG201412index.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-Crux-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-Crux_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Crux_42-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.imomath.com/othercomp/Journ/ineq.pdf">"Inequalities proposed in <i>Crux Mathematicorum</i> (from vol. 1, no. 1 to vol. 4, no. 2 known as "Eureka")"</a> <span class="cs1-format">(PDF)</span>. <i>Imomath.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">March 1,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Imomath.com&rft.atitle=Inequalities+proposed+in+Crux+Mathematicorum+%28from+vol.+1%2C+no.+1+to+vol.+4%2C+no.+2+known+as+%22Eureka%22%29&rft_id=http%3A%2F%2Fwww.imomath.com%2Fothercomp%2FJourn%2Fineq.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-Peter-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-Peter_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Peter_43-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Peter, Thomas, "Maximizing the Area of a Quadrilateral", <i>The College Mathematics Journal</i>, Vol. 34, No. 4 (September 2003), pp. 315–316.</span> </li> <li id="cite_note-autogenerated1-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-autogenerated1_44-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlsinaNelsen2010" class="citation book cs1">Alsina, Claudi; Nelsen, Roger (2010). <i>Charming Proofs : A Journey Into Elegant Mathematics</i>. Mathematical Association of America. pp. 114, 119, 120, 261. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-88385-348-1" title="Special:BookSources/978-0-88385-348-1"><bdi>978-0-88385-348-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Charming+Proofs+%3A+A+Journey+Into+Elegant+Mathematics&rft.pages=114%2C+119%2C+120%2C+261&rft.pub=Mathematical+Association+of+America&rft.date=2010&rft.isbn=978-0-88385-348-1&rft.aulast=Alsina&rft.aufirst=Claudi&rft.au=Nelsen%2C+Roger&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://sites.math.washington.edu/~king/java/gsp/center-mass-quad.html">"Two Centers of Mass of a Quadrilateral"</a>. <i>Sites.math.washington.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">1 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Sites.math.washington.edu&rft.atitle=Two+Centers+of+Mass+of+a+Quadrilateral&rft_id=https%3A%2F%2Fsites.math.washington.edu%2F~king%2Fjava%2Fgsp%2Fcenter-mass-quad.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text">Honsberger, Ross, <i>Episodes in Nineteenth and Twentieth Century Euclidean Geometry</i>, Math. Assoc. Amer., 1995, pp. 35–41.</span> </li> <li id="cite_note-Myakishev-47"><span class="mw-cite-backlink">^ <a href="#cite_ref-Myakishev_47-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Myakishev_47-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Myakishev_47-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Myakishev_47-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMyakishev2006" class="citation cs2">Myakishev, Alexei (2006), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20191231055834/http://forumgeom.fau.edu/FG2006volume6/FG200634.pdf">"On Two Remarkable Lines Related to a Quadrilateral"</a> <span class="cs1-format">(PDF)</span>, <i>Forum Geometricorum</i>, <b>6</b>: 289–295, archived from <a rel="nofollow" class="external text" href="http://forumgeom.fau.edu/FG2006volume6/FG200634.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2019-12-31<span class="reference-accessdate">, retrieved <span class="nowrap">2012-04-15</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Forum+Geometricorum&rft.atitle=On+Two+Remarkable+Lines+Related+to+a+Quadrilateral&rft.volume=6&rft.pages=289-295&rft.date=2006&rft.aulast=Myakishev&rft.aufirst=Alexei&rft_id=http%3A%2F%2Fforumgeom.fau.edu%2FFG2006volume6%2FFG200634.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span>.</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohn_Boris_Miller" class="citation web cs1">John Boris Miller. <a rel="nofollow" class="external text" href="https://www.austms.org.au/Publ/Gazette/2010/May10/TechPaperMiller.pdf">"Centroid of a quadrilateral"</a> <span class="cs1-format">(PDF)</span>. <i>Austmd.org.au</i><span class="reference-accessdate">. Retrieved <span class="nowrap">March 1,</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Austmd.org.au&rft.atitle=Centroid+of+a+quadrilateral&rft.au=John+Boris+Miller&rft_id=https%3A%2F%2Fwww.austms.org.au%2FPubl%2FGazette%2F2010%2FMay10%2FTechPaperMiller.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChen2016" class="citation book cs1"><a href="/w/index.php?title=Evan_Chen&action=edit&redlink=1" class="new" title="Evan Chen (page does not exist)">Chen, Evan</a> (2016). <i>Euclidean Geometry in Mathematical Olympiads</i>. Washington, D.C.: Mathematical Association of America. p. 198. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780883858394" title="Special:BookSources/9780883858394"><bdi>9780883858394</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Euclidean+Geometry+in+Mathematical+Olympiads&rft.place=Washington%2C+D.C.&rft.pages=198&rft.pub=Mathematical+Association+of+America&rft.date=2016&rft.isbn=9780883858394&rft.aulast=Chen&rft.aufirst=Evan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-Fraivert-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fraivert_50-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid2019" class="citation cs2">David, Fraivert (2019), "Pascal-points quadrilaterals inscribed in a cyclic quadrilateral", <i><a href="/wiki/The_Mathematical_Gazette" title="The Mathematical Gazette">The Mathematical Gazette</a></i>, <b>103</b> (557): 233–239, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fmag.2019.54">10.1017/mag.2019.54</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:233360695">233360695</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Mathematical+Gazette&rft.atitle=Pascal-points+quadrilaterals+inscribed+in+a+cyclic+quadrilateral&rft.volume=103&rft.issue=557&rft.pages=233-239&rft.date=2019&rft_id=info%3Adoi%2F10.1017%2Fmag.2019.54&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A233360695%23id-name%3DS2CID&rft.aulast=David&rft.aufirst=Fraivert&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span>.</span> </li> <li id="cite_note-Fraivert2-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fraivert2_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid2019" class="citation cs2">David, Fraivert (2019), <a rel="nofollow" class="external text" href="http://www.heldermann.de/JGG/JGG23/JGG231/jgg23002.htm">"A Set of Rectangles Inscribed in an Orthodiagonal Quadrilateral and Defined by Pascal-Points Circles"</a>, <i>Journal for Geometry and Graphics</i>, <b>23</b>: 5–27</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+for+Geometry+and+Graphics&rft.atitle=A+Set+of+Rectangles+Inscribed+in+an+Orthodiagonal+Quadrilateral+and+Defined+by+Pascal-Points+Circles&rft.volume=23&rft.pages=5-27&rft.date=2019&rft.aulast=David&rft.aufirst=Fraivert&rft_id=http%3A%2F%2Fwww.heldermann.de%2FJGG%2FJGG23%2FJGG231%2Fjgg23002.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span>.</span> </li> <li id="cite_note-Fraivert3-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fraivert3_52-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid2017" class="citation cs2">David, Fraivert (2017), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201205215507/http://forumgeom.fau.edu/FG2017volume17/FG201748.pdf">"Properties of a Pascal points circle in a quadrilateral with perpendicular diagonals"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Forum_Geometricorum" title="Forum Geometricorum">Forum Geometricorum</a></i>, <b>17</b>: 509–526, archived from <a rel="nofollow" class="external text" href="http://forumgeom.fau.edu/FG2017volume17/FG201748.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2020-12-05<span class="reference-accessdate">, retrieved <span class="nowrap">2020-04-29</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Forum+Geometricorum&rft.atitle=Properties+of+a+Pascal+points+circle+in+a+quadrilateral+with+perpendicular+diagonals&rft.volume=17&rft.pages=509-526&rft.date=2017&rft.aulast=David&rft.aufirst=Fraivert&rft_id=http%3A%2F%2Fforumgeom.fau.edu%2FFG2017volume17%2FFG201748.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span>.</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJosefsson,_Martin2013" class="citation journal cs1">Josefsson, Martin (2013). <a rel="nofollow" class="external text" href="http://forumgeom.fau.edu/FG2013volume13/FG201305.pdf">"Characterizations of Trapezoids"</a> <span class="cs1-format">(PDF)</span>. <i>Forum Geometricorum</i>. <b>13</b>: 23–35.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Forum+Geometricorum&rft.atitle=Characterizations+of+Trapezoids&rft.volume=13&rft.pages=23-35&rft.date=2013&rft.au=Josefsson%2C+Martin&rft_id=http%3A%2F%2Fforumgeom.fau.edu%2FFG2013volume13%2FFG201305.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title=" Dead link tagged November 2024">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">‍</span>]</span></sup></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlsinaNelsen2020" class="citation book cs1">Alsina, Claudi; Nelsen, Roger (2020). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CGDSDwAAQBAJ"><i>A Cornucopia of Quadrilaterals</i></a>. American Mathematical Society. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CGDSDwAAQBAJ&dq=%22Adding%20the%20four%20equations%2C%20noting%22&pg=PA18">pp. 17–18</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-47-045312-1" title="Special:BookSources/978-1-47-045312-1"><bdi>978-1-47-045312-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Cornucopia+of+Quadrilaterals&rft.pages=pp.-17-18&rft.pub=American+Mathematical+Society&rft.date=2020&rft.isbn=978-1-47-045312-1&rft.aulast=Alsina&rft.aufirst=Claudi&rft.au=Nelsen%2C+Roger&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCGDSDwAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarnettCapitani2006" class="citation journal cs1">Barnett, M. P.; Capitani, J. F. (2006). "Modular chemical geometry and symbolic calculation". <i>International Journal of Quantum Chemistry</i>. <b>106</b> (1): 215–227. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006IJQC..106..215B">2006IJQC..106..215B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fqua.20807">10.1002/qua.20807</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=International+Journal+of+Quantum+Chemistry&rft.atitle=Modular+chemical+geometry+and+symbolic+calculation&rft.volume=106&rft.issue=1&rft.pages=215-227&rft.date=2006&rft_id=info%3Adoi%2F10.1002%2Fqua.20807&rft_id=info%3Abibcode%2F2006IJQC..106..215B&rft.aulast=Barnett&rft.aufirst=M.+P.&rft.au=Capitani%2C+J.+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHamilton1850" class="citation journal cs1">Hamilton, William Rowan (1850). <a rel="nofollow" class="external text" href="http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Gauche/Gauche1.pdf">"On Some Results Obtained by the Quaternion Analysis Respecting the Inscription of "Gauche" Polygons in Surfaces of the Second Order"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the Royal Irish Academy</i>. <b>4</b>: 380–387.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Irish+Academy&rft.atitle=On+Some+Results+Obtained+by+the+Quaternion+Analysis+Respecting+the+Inscription+of+%22Gauche%22+Polygons+in+Surfaces+of+the+Second+Order&rft.volume=4&rft.pages=380-387&rft.date=1850&rft.aulast=Hamilton&rft.aufirst=William+Rowan&rft_id=http%3A%2F%2Fwww.maths.tcd.ie%2Fpub%2FHistMath%2FPeople%2FHamilton%2FGauche%2FGauche1.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quadrilateral&action=edit&section=29" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Tetragons" class="extiw" title="commons:Category:Tetragons">Tetragons</a></span>.</div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Quadrangle,_complete">"Quadrangle, complete"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Quadrangle%2C+complete&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DQuadrangle%2C_complete&rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuadrilateral" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://www.cut-the-knot.org/Curriculum/Geometry/PerpBisectQuadri.shtml">Quadrilaterals Formed by Perpendicular Bisectors</a>, <a rel="nofollow" class="external text" href="http://www.cut-the-knot.org/Curriculum/Geometry/ProjectiveQuadri.shtml">Projective Collinearity</a> and <a rel="nofollow" class="external text" href="http://www.cut-the-knot.org/Curriculum/Geometry/Quadrilaterals.shtml">Interactive Classification</a> of Quadrilaterals from <a href="/wiki/Cut-the-knot" class="mw-redirect" title="Cut-the-knot">cut-the-knot</a></li> <li><a rel="nofollow" class="external text" href="http://www.mathopenref.com/tocs/quadrilateraltoc.html">Definitions and examples of quadrilaterals</a> and <a rel="nofollow" class="external text" href="http://www.mathopenref.com/tetragon.html">Definition and properties of tetragons</a> from Mathopenref</li> <li><a rel="nofollow" class="external text" href="http://dynamicmathematicslearning.com/quad-tree-new-web.html">A (dynamic) Hierarchical Quadrilateral Tree</a> at <a rel="nofollow" class="external text" href="http://dynamicmathematicslearning.com/JavaGSPLinks.htm">Dynamic Geometry Sketches</a></li> <li><a rel="nofollow" class="external text" href="http://mysite.mweb.co.za/residents/profmd/quadclassify.pdf">An extended classification of quadrilaterals</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20191230004754/http://mysite.mweb.co.za/residents/profmd/quadclassify.pdf">Archived</a> 2019-12-30 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> at <a rel="nofollow" class="external text" href="http://mysite.mweb.co.za/residents/profmd/homepage4.html">Dynamic Math Learning Homepage</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180825150046/http://mysite.mweb.co.za/residents/profmd/homepage4.html">Archived</a> 2018-08-25 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110719175018/http://mzone.mweb.co.za/residents/profmd/classify.pdf">The role and function of a hierarchical classification of quadrilaterals</a> by Michael de Villiers</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Polygons_(List)" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Polygons" title="Template:Polygons"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Polygons" title="Template talk:Polygons"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Polygons" title="Special:EditPage/Template:Polygons"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Polygons_(List)" style="font-size:114%;margin:0 4em"><a href="/wiki/Polygon" title="Polygon">Polygons</a> (<a href="/wiki/List_of_polygons" title="List of polygons">List</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Triangle" title="Triangle">Triangles</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Acute_and_obtuse_triangles" title="Acute and obtuse triangles">Acute</a></li> <li><a href="/wiki/Equilateral_triangle" title="Equilateral triangle">Equilateral</a></li> <li><a href="/wiki/Ideal_triangle" title="Ideal triangle">Ideal</a></li> <li><a href="/wiki/Isosceles_triangle" title="Isosceles triangle">Isosceles</a></li> <li><a href="/wiki/Kepler_triangle" title="Kepler triangle">Kepler</a></li> <li><a href="/wiki/Acute_and_obtuse_triangles" title="Acute and obtuse triangles">Obtuse</a></li> <li><a href="/wiki/Right_triangle" title="Right triangle">Right</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink selflink">Quadrilaterals</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Antiparallelogram" title="Antiparallelogram">Antiparallelogram</a></li> <li><a href="/wiki/Bicentric_quadrilateral" title="Bicentric quadrilateral">Bicentric</a></li> <li><a href="/wiki/Crossed_quadrilateral" class="mw-redirect" title="Crossed quadrilateral">Crossed</a></li> <li><a href="/wiki/Cyclic_quadrilateral" title="Cyclic quadrilateral">Cyclic</a></li> <li><a href="/wiki/Equidiagonal_quadrilateral" title="Equidiagonal quadrilateral">Equidiagonal</a></li> <li><a href="/wiki/Ex-tangential_quadrilateral" title="Ex-tangential quadrilateral">Ex-tangential</a></li> <li><a href="/wiki/Harmonic_quadrilateral" title="Harmonic quadrilateral">Harmonic</a></li> <li><a href="/wiki/Isosceles_trapezoid" title="Isosceles trapezoid">Isosceles trapezoid</a></li> <li><a href="/wiki/Kite_(geometry)" title="Kite (geometry)">Kite</a></li> <li><a href="/wiki/Orthodiagonal_quadrilateral" title="Orthodiagonal quadrilateral">Orthodiagonal</a></li> <li><a href="/wiki/Parallelogram" title="Parallelogram">Parallelogram</a></li> <li><a href="/wiki/Rectangle" title="Rectangle">Rectangle</a></li> <li><a href="/wiki/Right_kite" title="Right kite">Right kite</a></li> <li><a href="/wiki/Right_trapezoid" class="mw-redirect" title="Right trapezoid">Right trapezoid</a></li> <li><a href="/wiki/Rhomboid" title="Rhomboid">Rhomboid</a></li> <li><a href="/wiki/Rhombus" title="Rhombus">Rhombus</a></li> <li><a href="/wiki/Square" title="Square">Square</a></li> <li><a href="/wiki/Tangential_quadrilateral" title="Tangential quadrilateral">Tangential</a></li> <li><a href="/wiki/Tangential_trapezoid" title="Tangential trapezoid">Tangential trapezoid</a></li> <li><a href="/wiki/Trapezoid" title="Trapezoid">Trapezoid</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By number <br />of sides</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">1–10 sides</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Monogon" title="Monogon">Monogon (1)</a></li> <li><a href="/wiki/Digon" title="Digon">Digon (2)</a></li> <li><a href="/wiki/Triangle" title="Triangle">Triangle (3)</a></li> <li><a class="mw-selflink selflink">Quadrilateral (4)</a></li> <li><a href="/wiki/Pentagon" title="Pentagon">Pentagon (5)</a></li> <li><a href="/wiki/Hexagon" title="Hexagon">Hexagon (6)</a></li> <li><a href="/wiki/Heptagon" title="Heptagon">Heptagon (7)</a></li> <li><a href="/wiki/Octagon" title="Octagon">Octagon (8)</a></li> <li><a href="/wiki/Nonagon" title="Nonagon">Nonagon/Enneagon (9)</a></li> <li><a href="/wiki/Decagon" title="Decagon">Decagon (10)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">11–20 sides</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hendecagon" title="Hendecagon">Hendecagon (11)</a></li> <li><a href="/wiki/Dodecagon" title="Dodecagon">Dodecagon (12)</a></li> <li><a href="/wiki/Tridecagon" title="Tridecagon">Tridecagon (13)</a></li> <li><a href="/wiki/Tetradecagon" title="Tetradecagon">Tetradecagon (14)</a></li> <li><a href="/wiki/Pentadecagon" title="Pentadecagon">Pentadecagon (15)</a></li> <li><a href="/wiki/Hexadecagon" title="Hexadecagon">Hexadecagon (16)</a></li> <li><a href="/wiki/Heptadecagon" title="Heptadecagon">Heptadecagon (17)</a></li> <li><a href="/wiki/Octadecagon" title="Octadecagon">Octadecagon (18)</a></li> <li><a href="/wiki/Icosagon" title="Icosagon">Icosagon (20)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">>20 sides</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Icositrigon" title="Icositrigon">Icositrigon (23)</a></li> <li><a href="/wiki/Icositetragon" title="Icositetragon">Icositetragon (24)</a></li> <li><a href="/wiki/Triacontagon" title="Triacontagon">Triacontagon (30)</a></li> <li><a href="/wiki/257-gon" title="257-gon">257-gon</a></li> <li><a href="/wiki/Chiliagon" title="Chiliagon">Chiliagon (1000)</a></li> <li><a href="/wiki/Myriagon" title="Myriagon">Myriagon (10,000)</a></li> <li><a href="/wiki/65537-gon" title="65537-gon">65537-gon</a></li> <li><a href="/wiki/Megagon" title="Megagon">Megagon (1,000,000)</a></li> <li><a href="/wiki/Apeirogon" title="Apeirogon">Apeirogon (∞)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Star_polygon" title="Star polygon">Star polygons</a><br /></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pentagram" title="Pentagram">Pentagram</a></li> <li><a href="/wiki/Hexagram" title="Hexagram">Hexagram</a></li> <li><a href="/wiki/Heptagram" title="Heptagram">Heptagram</a></li> <li><a href="/wiki/Octagram" title="Octagram">Octagram</a></li> <li><a href="/wiki/Enneagram_(geometry)" title="Enneagram (geometry)">Enneagram</a></li> <li><a href="/wiki/Decagram_(geometry)" title="Decagram (geometry)">Decagram</a></li> <li><a href="/wiki/Hendecagram" title="Hendecagram">Hendecagram</a></li> <li><a href="/wiki/Dodecagram" title="Dodecagram">Dodecagram</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Classes</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Concave_polygon" title="Concave polygon">Concave</a></li> <li><a href="/wiki/Convex_polygon" title="Convex polygon">Convex</a></li> <li><a href="/wiki/Cyclic_polygon" class="mw-redirect" title="Cyclic polygon">Cyclic</a></li> <li><a href="/wiki/Equiangular_polygon" title="Equiangular polygon">Equiangular</a></li> <li><a href="/wiki/Equilateral_polygon" title="Equilateral polygon">Equilateral</a></li> <li><a href="/wiki/Infinite_skew_polygon" title="Infinite skew polygon">Infinite skew</a></li> <li><a href="/wiki/Isogonal_figure" title="Isogonal figure">Isogonal</a></li> <li><a href="/wiki/Isotoxal_figure" title="Isotoxal figure">Isotoxal</a></li> <li><a href="/wiki/Magic_polygon" title="Magic polygon">Magic</a></li> <li><a href="/wiki/Pseudotriangle" title="Pseudotriangle">Pseudotriangle</a></li> <li><a href="/wiki/Rectilinear_polygon" title="Rectilinear polygon">Rectilinear</a></li> <li><a href="/wiki/Regular_polygon" title="Regular polygon">Regular</a></li> <li><a href="/wiki/Reinhardt_polygon" title="Reinhardt polygon">Reinhardt</a></li> <li><a href="/wiki/Simple_polygon" title="Simple polygon">Simple</a></li> <li><a href="/wiki/Skew_polygon" title="Skew polygon">Skew</a></li> <li><a href="/wiki/Star-shaped_polygon" title="Star-shaped polygon">Star-shaped</a></li> <li><a href="/wiki/Tangential_polygon" title="Tangential polygon">Tangential</a></li> <li><a href="/wiki/Weakly_simple_polygon" title="Weakly simple polygon">Weakly simple</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐lrrgs Cached time: 20241124031740 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.075 seconds Real time usage: 1.309 seconds Preprocessor visited node count: 11801/1000000 Post‐expand include size: 128620/2097152 bytes Template argument size: 10006/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 168962/5000000 bytes Lua time usage: 0.555/10.000 seconds Lua memory usage: 6648246/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1020.430 1 -total 36.55% 372.998 1 Template:Reflist 16.20% 165.261 18 Template:Cite_web 11.22% 114.467 15 Template:Rp 10.35% 105.642 15 Template:R/superscript 10.22% 104.293 90 Template:Math 9.49% 96.801 1 Template:Short_description 8.30% 84.671 2 Template:Navbox 8.28% 84.514 1 Template:Polygons 6.26% 63.891 1 Template:Commons_category --> <!-- Saved in parser cache with key enwiki:pcache:idhash:25278-0!canonical and timestamp 20241124031740 and revision id 1259238097. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Quadrilateral&oldid=1259238097">https://en.wikipedia.org/w/index.php?title=Quadrilateral&oldid=1259238097</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:4_(number)" title="Category:4 (number)">4 (number)</a></li><li><a href="/wiki/Category:Quadrilaterals" title="Category:Quadrilaterals">Quadrilaterals</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">CS1 maint: archived copy as title</a></li><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_November_2024" title="Category:Articles with dead external links from November 2024">Articles with dead external links from November 2024</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 24 November 2024, at 03:17<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Quadrilateral&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-s7r2r","wgBackendResponseTime":179,"wgPageParseReport":{"limitreport":{"cputime":"1.075","walltime":"1.309","ppvisitednodes":{"value":11801,"limit":1000000},"postexpandincludesize":{"value":128620,"limit":2097152},"templateargumentsize":{"value":10006,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":168962,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1020.430 1 -total"," 36.55% 372.998 1 Template:Reflist"," 16.20% 165.261 18 Template:Cite_web"," 11.22% 114.467 15 Template:Rp"," 10.35% 105.642 15 Template:R/superscript"," 10.22% 104.293 90 Template:Math"," 9.49% 96.801 1 Template:Short_description"," 8.30% 84.671 2 Template:Navbox"," 8.28% 84.514 1 Template:Polygons"," 6.26% 63.891 1 Template:Commons_category"]},"scribunto":{"limitreport-timeusage":{"value":"0.555","limit":"10.000"},"limitreport-memusage":{"value":6648246,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-lrrgs","timestamp":"20241124031740","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Quadrilateral","url":"https:\/\/en.wikipedia.org\/wiki\/Quadrilateral","sameAs":"http:\/\/www.wikidata.org\/entity\/Q36810","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q36810","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-10-13T21:46:45Z","dateModified":"2024-11-24T03:17:26Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/3d\/Six_Quadrilaterals.svg","headline":"polygon with four sides"}</script> </body> </html>