CINXE.COM

geometric measure theory in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> geometric measure theory in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> geometric measure theory </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/3187/#Item_3" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="integration_theory">Integration theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/integration">integration</a></strong></p> <table><thead><tr><th>analytic integration</th><th>cohomological integration</th></tr></thead><tbody><tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/measurable+space">measurable space</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Poincar%C3%A9+duality">Poincaré duality</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/measure">measure</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/orientation+in+generalized+cohomology">orientation in generalized cohomology</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/volume+form">volume form</a></td><td style="text-align: left;">(<a class="existingWikiWord" href="/nlab/show/virtual+fundamental+class">virtual</a>) <a class="existingWikiWord" href="/nlab/show/fundamental+class">fundamental class</a></td></tr> <tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Riemann+integration">Riemann</a>/<a class="existingWikiWord" href="/nlab/show/Lebesgue+integration">Lebesgue integration</a> <a class="existingWikiWord" href="/nlab/show/integration+of+differential+forms">of differential forms</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/push-forward+in+generalized+cohomology">push-forward in generalized cohomology</a>/<a class="existingWikiWord" href="/nlab/show/fiber+integration+in+differential+cohomology">in differential cohomology</a></td></tr> </tbody></table> <h2 id="analytic_integration">Analytic integration</h2> <p><a class="existingWikiWord" href="/nlab/show/integral+calculus">integral calculus</a></p> <p><a class="existingWikiWord" href="/nlab/show/Riemann+integration">Riemann integration</a>, <a class="existingWikiWord" href="/nlab/show/Lebesgue+integration">Lebesgue integration</a></p> <p><a class="existingWikiWord" href="/nlab/show/line+integral">line integral</a>/<a class="existingWikiWord" href="/nlab/show/contour+integration">contour integration</a></p> <p><a class="existingWikiWord" href="/nlab/show/integration+of+differential+forms">integration of differential forms</a></p> <p><a class="existingWikiWord" href="/nlab/show/integration+over+supermanifolds">integration over supermanifolds</a>, <a class="existingWikiWord" href="/nlab/show/Berezin+integral">Berezin integral</a>, <a class="existingWikiWord" href="/nlab/show/fermionic+path+integral">fermionic path integral</a></p> <p><a class="existingWikiWord" href="/nlab/show/Kontsevich+integral">Kontsevich integral</a>, <a class="existingWikiWord" href="/nlab/show/Selberg+integral">Selberg integral</a>, <a class="existingWikiWord" href="/nlab/show/elliptic+Selberg+integral">elliptic Selberg integral</a></p> <h2 id="cohomological_integration">Cohomological integration</h2> <p><a class="existingWikiWord" href="/nlab/show/integration+in+ordinary+differential+cohomology">integration in ordinary differential cohomology</a></p> <p><a class="existingWikiWord" href="/nlab/show/integration+in+differential+K-theory">integration in differential K-theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/Riemann-Roch+theorem">Riemann-Roch theorem</a></p> <h2 id="variants">Variants</h2> <p><a class="existingWikiWord" href="/nlab/show/Lie+integration">Lie integration</a></p> <p><a class="existingWikiWord" href="/nlab/show/path+integral">path integral</a></p> <p><a class="existingWikiWord" href="/nlab/show/Batalin-Vilkovisky+integral">Batalin-Vilkovisky integral</a></p></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p><em>Geometric measure theory</em> and <em>geometric integration theory</em> studies various <a class="existingWikiWord" href="/nlab/show/measures">measures</a> of subsets of <a class="existingWikiWord" href="/nlab/show/Euclidean+spaces">Euclidean spaces</a> and possibly of some geometric generalizations) and their geometric properties. Especially, one studies <a class="existingWikiWord" href="/nlab/show/rectifiability">rectifiability</a> of subsets of some lower dimensionality, to define notions like area, arc length etc. and to study <a class="existingWikiWord" href="/nlab/show/distributions">distributions</a> and <a class="existingWikiWord" href="/nlab/show/currents">currents</a> on such spaces. Very central questions and motivations belong to the <a class="existingWikiWord" href="/nlab/show/variational+calculus">variational problems</a> including the study of <a class="existingWikiWord" href="/nlab/show/minimal+surface">minimal surfaces</a>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomological+integration">cohomological integration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/current+%28distribution+theory%29">current (distribution theory)</a></p> </li> </ul> <h2 id="references">References</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Herbert+Federer">Herbert Federer</a>, <em>Geometric measure theory</em>, Grundlehren <strong>153</strong>, Springer (1969, 1996) &lbrack;<a href="https://doi.org/10.1007/978-3-642-62010-2">doi:10.1007/978-3-642-62010-2</a>&rbrack;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Victor+Guillemin">Victor Guillemin</a>, <a class="existingWikiWord" href="/nlab/show/Shlomo+Sternberg">Shlomo Sternberg</a>, <em>Geometric asymptotics</em>, Mathematical Surveys and Monographs <strong>14</strong>, AMS (1977) &lbrack;<a href="https://bookstore.ams.org/surv-14">ams:surv-14</a>&rbrack;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/J%C3%BCrgen+Jost">Jürgen Jost</a>, <em>The geometric calculus of variations: a short survey and a list of open problems</em>, Exposition. Math. <strong>6</strong> (1988), no. 2, 111–143, <a href="http://www.ams.org/mathscinet-getitem?mr=938179">MR89h:58036</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Steven+G.+Krantz">Steven G. Krantz</a>, <a class="existingWikiWord" href="/nlab/show/Harold+Parks">Harold Parks</a>, <em>Geometric integration theory</em>, Springer (2008) &lbrack;<a href="http://www.math.wustl.edu/~sk/books/root.pdf">pdf</a>&rbrack;</p> </li> <li> <p>Frederick J., Jr. Almgren, Almgren’s big regularity paper (book form of a 1970s preprint)</p> </li> <li> <p>F. J. Almgren, Jr., <em>Geometric measure theory and elliptic variational problems</em>, Proc. ICM Nice 1970, vol. 2, <a href="http://www.mathunion.org/ICM/ICM1970.2/Main/icm1970.2.0813.0820.ocr.djvu">djvu:350 K</a>, <a href="http://www.mathunion.org/ICM/ICM1970.2/Main/icm1970.2.0813.0820.ocr.pdf">pdf:649 K</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Frank+Morgan">Frank Morgan</a>, <em>Geometric measure theory: a beginner’s guide</em>, Academic Press (2016) &lbrack;<a href="https://doi.org/10.1016/C2015-0-01918-9">doi:10.1016/C2015-0-01918-9</a>&rbrack;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/eom">eom</a>: T.C.O’Neil (2001), <a href="http://eom.springer.de/G/g130040.htm">Geometric measure theory</a></p> </li> <li> <p>H. Federer, W. H. Fleming, <em>Normal and integral currents</em>, Ann. of Math. (2) <strong>72</strong> 1960 458–520, <a href="http://www.ams.org/mathscinet-getitem?mr=123260">MR123260</a>, <a href="http://dx.doi.org/10.2307/1970227">doi</a></p> </li> <li> <p>Stephen H. Schanuel, <em>What is the length of a potato? An introduction to geometric measure theory</em>, in: Categories in continuum physics (Buffalo, N.Y., 1982), 118–126, Lecture Notes in Math. <strong>1174</strong>, Springer 1986, <a href="http://www.ams.org/mathscinet-getitem?mr=842922">MR842922</a>,<a href="http://dx.doi.org/10.1007/BFb0076939">doi</a></p> </li> <li> <p>Rodolfo Rios-Zertuche, <em>The variational structure of the space of holonomic measures</em>, <a href="http://arxiv.org/abs/1408.5785">arxiv1408.5785</a></p> </li> </ul> <p>See also:</p> <ul> <li>wikipedia <a href="http://en.wikipedia.org/wiki/Geometric_measure_theory">geometric measure theory</a></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on June 10, 2023 at 07:37:03. See the <a href="/nlab/history/geometric+measure+theory" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/geometric+measure+theory" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/3187/#Item_3">Discuss</a><span class="backintime"><a href="/nlab/revision/geometric+measure+theory/6" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/geometric+measure+theory" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/geometric+measure+theory" accesskey="S" class="navlink" id="history" rel="nofollow">History (6 revisions)</a> <a href="/nlab/show/geometric+measure+theory/cite" style="color: black">Cite</a> <a href="/nlab/print/geometric+measure+theory" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/geometric+measure+theory" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10