CINXE.COM

Search results for: discharge energy

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: discharge energy</title> <meta name="description" content="Search results for: discharge energy"> <meta name="keywords" content="discharge energy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="discharge energy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="discharge energy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9099</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: discharge energy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9099</span> A One Dimensional Particle in Cell Model for Excimer Lamps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Benstaali">W. Benstaali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belasri"> A. Belasri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work we study a planar lamp filled with neon-xenon gas. We use a one-dimensional particle in a cell with Monte Carlo simulation (PIC-MCC) to investigate the effect xenon concentration on the energy deposited on excitation, ionization and ions. A Xe-Ne discharge is studied for a gas pressure of 400 torr. The results show an efficient Xe20-Ne mixture with an applied voltage of 1.2KV; the xenon excitation energy represents 65% form total energy dissipated in the discharge. We have also studied electrical properties and the energy balance a discharge for Xe50-Ne which needs a voltage of 2kv; the xenon energy is than more important. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20barrier%20discharge" title="dielectric barrier discharge">dielectric barrier discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation" title=" excitation"> excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=lamps" title=" lamps"> lamps</a> </p> <a href="https://publications.waset.org/abstracts/93201/a-one-dimensional-particle-in-cell-model-for-excimer-lamps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9098</span> An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Perveen">Asma Perveen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Jahan"> M. P. Jahan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20holes" title="micro holes">micro holes</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20EDM" title=" micro EDM"> micro EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20Alloy" title=" Ni Alloy"> Ni Alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=discharge%20energy" title=" discharge energy"> discharge energy</a> </p> <a href="https://publications.waset.org/abstracts/56332/an-experimental-study-on-the-effect-of-operating-parameters-during-the-micro-electro-discharge-machining-of-ni-based-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9097</span> Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shane%20D.%20Inder">Shane D. Inder</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Khamooshi"> Mehrdad Khamooshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAES" title="CAES">CAES</a>, <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20compressed%20air%20energy%20storage" title=" adiabatic compressed air energy storage"> adiabatic compressed air energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion%20phase" title=" expansion phase"> expansion phase</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20generation" title=" micro generation"> micro generation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic" title=" thermodynamic"> thermodynamic</a> </p> <a href="https://publications.waset.org/abstracts/80163/energy-efficiency-analysis-of-discharge-modes-of-an-adiabatic-compressed-air-energy-storage-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9096</span> Performance Analysis of Solar Assisted Air Condition Using Carbon Dioxide as Refrigerant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusola%20Bamisile">Olusola Bamisile</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferdinard%20Dika"> Ferdinard Dika</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dagbasi"> Mustafa Dagbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Abbasoglu"> Serkan Abbasoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to model an air conditioning system that brings about effective cooling and reduce fossil fuel consumption with solar energy as an alternative source of energy. The objective of the study is to design a system with high COP, low usage of electricity and to integrate solar energy into AC systems. A hybrid solar assisted air conditioning system is designed to produce 30kW cooling capacity and R744 (CO₂) is used as a refrigerant. The effect of discharge pressure on the performance of the system is studied. The subcool temperature, evaporating temperature (5°C) and suction gas return temperature (12°C) are kept constant for the four different discharge pressures considered. The cooling gas temperature is set at 25°C, and the discharge pressure includes 80, 85, 90 and 95 bars. Copeland Scroll software is used for the simulation. A pressure-enthalpy graph is also used to deduce each enthalpy point while numerical methods were used in making other calculations. From the result of the study, it is observed that a higher COP is achieved with the use of solar assisted systems. As much as 46% of electricity requirements will be save using solar input at compressor stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title="air conditioning">air conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a> </p> <a href="https://publications.waset.org/abstracts/82514/performance-analysis-of-solar-assisted-air-condition-using-carbon-dioxide-as-refrigerant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9095</span> New Kinetic Effects in Spatial Distribution of Electron Flux and Excitation Rates in Glow Discharge Plasmas in Middle and High Pressures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirill%20D.%20Kapustin">Kirill D. Kapustin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20B.%20Krasilnikov"> Mikhail B. Krasilnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatoly%20A.%20Kudryavtsev"> Anatoly A. Kudryavtsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Physical formation mechanisms of differential electron fluxes is high pressure positive column gas discharge are discussed. It is shown that the spatial differential fluxes of the electrons are directed both inward and outward depending on the energy relaxation law. In some cases the direction of energy differential flux at intermediate energies (5-10eV) in whole volume, except region near the wall, appeared to be down directed, so electron in this region dissipate more energy than gain from axial electric field. Paradoxical behaviour of electron flux in spatial-energy space is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20kinetics" title="plasma kinetics">plasma kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20distribution%20function" title=" electron distribution function"> electron distribution function</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation%20and%20radiation%20rates" title=" excitation and radiation rates"> excitation and radiation rates</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20and%20nonlocal%20EDF" title=" local and nonlocal EDF"> local and nonlocal EDF</a> </p> <a href="https://publications.waset.org/abstracts/4431/new-kinetic-effects-in-spatial-distribution-of-electron-flux-and-excitation-rates-in-glow-discharge-plasmas-in-middle-and-high-pressures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9094</span> Electrodynamic Principles for Generation and Wireless Transfer of Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steven%20D.%20P.%20Moore">Steven D. P. Moore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An electrical discharge in the air induces an electromagnetic (EM) wave capable of wireless transfer, reception, and conversion back into electrical discharge at a distant location. Following Norton’s ground wave principles, EM wave radiation (EMR) runs parallel to the Earth’s surface. Energy in an EMR wave can move through the air and be focused to create a spark at a distant location, focused by a receiver to generate a local electrical discharge. This local discharge can be amplified and stored but also has the propensity to initiate another EMR wave. In addition to typical EM waves, lightning is also associated with atmospheric events, trans-ionospheric pulse pairs, the most powerful natural EMR signal on the planet. With each lightning strike, regardless of global position, it generates naturally occurring pulse-pairs that are emitted towards space within a narrow cone. An EMR wave can self-propagate, travel at the speed of light, and, if polarized, contain vector properties. If this reflective pulse could be directed by design through structures that have increased probabilities for lighting strikes, it could theoretically travel near the surface of the Earth at light speed towards a selected receiver for local transformation into electrical energy. Through research, there are several influencing parameters that could be modified to model, test, and increase the potential for adopting this technology towards the goal of developing a global grid that utilizes natural sources of energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electricity" title="electricity">electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=sparkgap" title=" sparkgap"> sparkgap</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless" title=" wireless"> wireless</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic" title=" electromagnetic"> electromagnetic</a> </p> <a href="https://publications.waset.org/abstracts/142330/electrodynamic-principles-for-generation-and-wireless-transfer-of-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9093</span> Degradation of Different Organic Contaminates Using Corona Discharge Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20El-Shazly">A. H. El-Shazly</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El-Tayeb"> A. El-Tayeb</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Elkady"> M. F. Elkady</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20G.%20E.%20Ibrahim"> Mona G. E. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20M.%20Negm"> Abdelazim M. Negm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, corona discharge plasma reactor was used for degradation of organic pollution in aqueous solutions in batch reactor. This work examines the possibility of increasing the organic pollution removal efficiency from wastewater using non-thermal plasma. Three types of organic pollution phenol, acid blue 25 and methylene blue are presented to investigate experimentally the amount of organic pollution removal efficiency from wastewater. Measurement results for phenol degradation percentage are 71% in 35 min and 96% when its residence time is 60 min. In addition, the degradation behavior of acid blue 25 utilizing dual pin-to-plate corona discharge plasma system displays a removal efficiency of 82% in 11 min. The complete decolorization was accomplished in 35 min for concentration of acid blue 25 up to 100 ppm. Furthermore, the methylene blue degradation touched up to 85% during 35 min treatment in corona discharge plasma a batch reactor system. The decolorization ratio, conductivity, corona current and discharge energy are considered at various concentration molarity for AlCl3, CaCl2, KCl and NaCl under different molar concentration. It was observed that the attendance of salts at the same concentration level considerably diminished the rate and the extent of decolorization. The research presented that the corona system could be positively utilized in a diversity of organically contaminated at diverse concentrations. Energy consumption requirements for decolorization was considered. The consequences will be valuable for designing the plasma treatment systems appropriate for industrial wastewaters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title="wastewater treatment">wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=corona%20discharge" title=" corona discharge"> corona discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=non-thermal%20plasma" title=" non-thermal plasma"> non-thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollution" title=" organic pollution"> organic pollution</a> </p> <a href="https://publications.waset.org/abstracts/52495/degradation-of-different-organic-contaminates-using-corona-discharge-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9092</span> Detecting Trends in Annual Discharge and Precipitation in the Chott Melghir Basin in Southeastern Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Bouziane">M. T. Bouziane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benkhaled"> A. Benkhaled</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Achour"> B. Achour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, data from 30 catchments in the Chott Melghir basin in the semiarid region of southern East Algeria were analyzed to investigate changes in annual discharge, annual precipitation over the 1965-2005 period. These data were analyzed with the aid of Kendall test trend and regression analysis. The results indicate that the major variations in all catchments discharge in Chott Melghir correspond well to the precipitation. Changes in total annual discharge of Chott Melghir were lower than changes in annual precipitation. Annual precipitation decreased by 66 percent and annual discharge decreased by 4 percent. No significant trend is detected for annual discharge and precipitation at major catchments up to 95% confidence level. The decreasing trend in Chott Melghir discharge is mainly attributed to the decrease of precipitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trends" title="trends">trends</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=discharge" title=" discharge"> discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=Kendall%20test" title=" Kendall test"> Kendall test</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Chott%20Melghir%20catchments" title=" Chott Melghir catchments"> Chott Melghir catchments</a> </p> <a href="https://publications.waset.org/abstracts/12752/detecting-trends-in-annual-discharge-and-precipitation-in-the-chott-melghir-basin-in-southeastern-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9091</span> Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nirav%20J.%20Patel">Nirav J. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalpesh%20K.%20Dudani"> Kalpesh K. Dudani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic" title="acoustic">acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20discharge" title=" partial discharge"> partial discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=perfectly%20matched%20layer" title=" perfectly matched layer"> perfectly matched layer</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor "> sensor </a> </p> <a href="https://publications.waset.org/abstracts/28299/acoustic-partial-discharge-propagation-and-perfectly-matched-layer-in-acoustic-detection-transformer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9090</span> Development of All-in-One Solar Kit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azhan%20Azhar">Azhan Azhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sakib"> Mohammed Sakib</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaurez%20Ahmad"> Zaurez Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy we receive from the sun is known as solar energy, and it is a reliable, long-lasting, eco-friendly and the most widely used energy source in the 21st century. It is. There are several techniques for harnessing solar energy, and we are all seeing large utility-scale projects to collect maximum amperes from the sun using current technologies. Solar PV is now on the rise as a means of harvesting energy from the sun. Moving a step further, our project is focused on designing an All-in-one portable Solar Energy based solution. We considered the minimum load conditions and evaluated the requirements of various devices utilized in this study to resolve the power requirements of small stores, hawkers, or travelers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DOD-depth%20of%20discharge" title="DOD-depth of discharge">DOD-depth of discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20width%20modulation%20charge%20controller" title=" pulse width modulation charge controller"> pulse width modulation charge controller</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20PV-%20solar%20photovoltaic" title=" solar PV- solar photovoltaic"> solar PV- solar photovoltaic</a> </p> <a href="https://publications.waset.org/abstracts/142940/development-of-all-in-one-solar-kit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9089</span> Reforming of CO₂-Containing Natural Gas by Using an AC Gliding Arc Discharge Plasma System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krittiya%20Pornmai">Krittiya Pornmai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumaeth%20Chavadej"> Sumaeth Chavadej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing in global energy demand has affected the climate change caused by the generation of greenhouse gases. Therefore, the objective of this work was to investigate a direct production of synthesis gas from a CO₂-containing natural gas by using gliding arc discharge plasma technology. In this research, the effects of steam reforming, combined steam reforming and partial oxidation, and using multistage gliding arc discharge system on the process performance have been discussed. The simulated natural gas used in this study contains 70% methane, 5% ethane, 5% propane, and 20% carbon dioxide. In comparison with different plasma reforming processes (under their optimum conditions), the steam reforming provides the highest H₂ selectivity resulting from the cracking reaction of steam. In addition, the combined steam reforming and partial oxidation process gives a very high CO production implying that the addition of both oxygen and steam can offer the acceptably highest synthesis gas production. The stage number of plasma reactor plays an important role in the improvement of CO₂ conversion. Moreover, 3 stage number of plasma reactor is considered as an optimum stage number for the reforming of CO₂-containing natural gas with steam and partial oxidation in term of providing low energy consumption as compared with other plasma reforming processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title="natural gas">natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=reforming%20process" title=" reforming process"> reforming process</a>, <a href="https://publications.waset.org/abstracts/search?q=gliding%20arc%20discharge" title=" gliding arc discharge"> gliding arc discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20technology" title=" plasma technology"> plasma technology</a> </p> <a href="https://publications.waset.org/abstracts/98440/reforming-of-co2-containing-natural-gas-by-using-an-ac-gliding-arc-discharge-plasma-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9088</span> Fabrication of Miniature Gear of Hastelloy X by WEDM Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhupinder%20Singh">Bhupinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Joy%20Prakash%20Misra"> Joy Prakash Misra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article provides the information regarding machining of hastelloy-X on wire electro spark machining (WEDM). Experimental investigation has been carried out by varying pulse-on time (TON), pulse-off time (TOFF), peak current (IP) and spark gap voltage (SV). Effect of these parameters is studied on material removal rate (MRR). Experiments are designed as per box-behnken design (BBD) technique of response surface methodology (RSM). Analysis of variance (ANOVA) results indicates that TON, TOFF, IP, SV, TON x IP are significant parameters that influenced the MRR, and it is depicted that value of MRR is more at high discharge energy (HDE) and less at low discharge energy (LDE). Furthermore, miniature impeller and miniature gear (OD≤10MM) is fabricated by WEDM at optimized condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing" title="advanced manufacturing">advanced manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=WEDM" title=" WEDM"> WEDM</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20alloy" title=" super alloy"> super alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=gear" title=" gear"> gear</a> </p> <a href="https://publications.waset.org/abstracts/139907/fabrication-of-miniature-gear-of-hastelloy-x-by-wedm-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9087</span> Predicting Trapezoidal Weir Discharge Coefficient Using Evolutionary Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Roushanger">K. Roushanger</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Soleymanzadeh"> A. Soleymanzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weirs are structures often used in irrigation techniques, sewer networks and flood protection. However, the hydraulic behavior of this type of weir is complex and difficult to predict accurately. An accurate flow prediction over a weir mainly depends on the proper estimation of discharge coefficient. In this study, the Genetic Expression Programming (GEP) approach was used for predicting trapezoidal and rectangular sharp-crested side weirs discharge coefficient. Three different performance indexes are used as comparing criteria for the evaluation of the model’s performances. The obtained results approved capability of GEP in prediction of trapezoidal and rectangular side weirs discharge coefficient. The results also revealed the influence of downstream Froude number for trapezoidal weir and upstream Froude number for rectangular weir in prediction of the discharge coefficient for both of side weirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discharge%20coefficient" title="discharge coefficient">discharge coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20expression%20programming" title=" genetic expression programming"> genetic expression programming</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20weir" title=" trapezoidal weir"> trapezoidal weir</a> </p> <a href="https://publications.waset.org/abstracts/61052/predicting-trapezoidal-weir-discharge-coefficient-using-evolutionary-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9086</span> Chaotic Response of Electrical Insulation System with Gaseous Dielectric under High AC and DC Voltages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arijit%20Basuray">Arijit Basuray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that if an electrical insulation system is stressed under high voltage then discharge may occur in various form and if the system is made of composite dielectric having interfaces of materials having different dielectric constant discharge may occur due to gross mismatch of dielectric constant causing intense local field in the interfaces. Here author has studied, firstly, behavior of discharges in gaseous dielectric circuit under AC and DC voltages. A gaseous dielectric circuit is made such that a pair of electrode of typical geometry is used to make the discharges occur under application of AC and DC voltages. Later on, composite insulation system with air gap is also studied. Discharge response of the dielectric circuit is measured across a typically designed impedance. The time evolution of the discharge characteristics showed some interesting chaotic behavior. Author here proposed some analysis of such behavior of the discharge pattern and discussed about the possibility of presence of such discharge circuit in lumped electric circuit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20insulation%20system" title="electrical insulation system">electrical insulation system</a>, <a href="https://publications.waset.org/abstracts/search?q=EIS" title=" EIS"> EIS</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20dielectric" title=" composite dielectric"> composite dielectric</a>, <a href="https://publications.waset.org/abstracts/search?q=discharge" title=" discharge"> discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a> </p> <a href="https://publications.waset.org/abstracts/103867/chaotic-response-of-electrical-insulation-system-with-gaseous-dielectric-under-high-ac-and-dc-voltages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9085</span> Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruyang%20Ren">Ruyang Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaohua%20Zhao"> Yaohua Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanhua%20Diao"> Yanhua Diao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20dissipation" title="heat dissipation">heat dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery%20thermal%20management" title=" lithium-ion battery thermal management"> lithium-ion battery thermal management</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20heat%20pipe%20array" title=" micro heat pipe array"> micro heat pipe array</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20uniformity" title=" temperature uniformity"> temperature uniformity</a> </p> <a href="https://publications.waset.org/abstracts/148328/experimental-investigation-on-the-lithium-ion-battery-thermal-management-system-based-on-micro-heat-pipe-array-in-high-temperature-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9084</span> Experimental Parameters’ Effects on the Electrical Discharge Machining Performances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmae%20Tafraouti">Asmae Tafraouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina%20Layouni"> Yasmina Layouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Kleimann"> Pascal Kleimann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, such as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, and the initial gap, has been studied. This analysis helps to improve the machining performances, such as the workpiece surface condition and the lateral crater's gap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=craters" title="craters">craters</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20discharges" title=" electrical discharges"> electrical discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-electrical%20discharge%20machining" title=" micro-electrical discharge machining"> micro-electrical discharge machining</a>, <a href="https://publications.waset.org/abstracts/search?q=microsystems" title=" microsystems"> microsystems</a> </p> <a href="https://publications.waset.org/abstracts/146294/experimental-parameters-effects-on-the-electrical-discharge-machining-performances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9083</span> Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ansari">M. A. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hussain"> A. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Uddin"> A. Uddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discharge%20coefficient" title="discharge coefficient">discharge coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20method%20of%20data%20handling" title=" group method of data handling"> group method of data handling</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel" title=" open channel"> open channel</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20labyrinth%20weir" title=" side labyrinth weir"> side labyrinth weir</a> </p> <a href="https://publications.waset.org/abstracts/115809/estimation-of-coefficient-of-discharge-of-side-trapezoidal-labyrinth-weir-using-group-method-of-data-handling-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9082</span> Experimental Parameters’ Effects on the Electrical Discharge Machining Performances (µEDM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmae%20Tafraouti">Asmae Tafraouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina%20Layouni"> Yasmina Layouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Kleimann"> Pascal Kleimann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, the initial gap, has been studied. This analysis helps to improve the machining performances, such: the workpiece surface condition and the lateral crater's gap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=craters" title="craters">craters</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20discharges" title=" electrical discharges"> electrical discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-electrical%20discharge%20machining%20%28%C2%B5EDM%29" title=" micro-electrical discharge machining (µEDM)"> micro-electrical discharge machining (µEDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=microsystems" title=" microsystems"> microsystems</a> </p> <a href="https://publications.waset.org/abstracts/150983/experimental-parameters-effects-on-the-electrical-discharge-machining-performances-edm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9081</span> A Computational Diagnostics for Dielectric Barrier Discharge Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20D.%20Abd%20Ali">Zainab D. Abd Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Thamir%20H.%20Khalaf"> Thamir H. Khalaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the characteristics of electric discharge in gap between two (parallel-plate) dielectric plates are studies, the gap filled with Argon gas in atm pressure at ambient temperature, the thickness of gap typically less than 1 mm and dielectric may be up 10 cm in diameter. One of dielectric plates a sinusoidal voltage is applied with Rf frequency, the other plates is electrically grounded. The simulation in this work depending on Boltzmann equation solver in first few moments, fluid model and plasma chemistry, in one dimensional modeling. This modeling have insight into characteristics of Dielectric Barrier Discharge through studying properties of breakdown of gas, electric field, electric potential, and calculating electron density, mean electron energy, electron current density ,ion current density, total plasma current density. The investigation also include: 1. The influence of change in thickness of gap between two plates if we doubled or reduced gap to half. 2. The effect of thickness of dielectric plates. 3. The influence of change in type and properties of dielectric material (gass, silicon, Teflon). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20diagnostics" title="computational diagnostics">computational diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20equation" title=" Boltzmann equation"> Boltzmann equation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20discharge" title=" electric discharge"> electric discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20density" title=" electron density"> electron density</a> </p> <a href="https://publications.waset.org/abstracts/12511/a-computational-diagnostics-for-dielectric-barrier-discharge-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">777</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9080</span> Application of Remote Sensing and In-Situ Measurements for Discharge Monitoring in Large Rivers: Case of Pool Malebo in the Congo River Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kechnit%20Djamel">Kechnit Djamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammarri%20Abdelhadi"> Ammarri Abdelhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Tshimang"> Raphael Tshimang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Trrig"> Mark Trrig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important aspects of monitoring rivers is navigation. The variation of discharge in the river generally produces a change in available draft for a vessel, particularly in the low flow season, which can impact the navigable water path, especially when the water depth is less than the normal one, which allows safe navigation for boats. The water depth is related to the bathymetry of the channel as well as the discharge. For a seasonal update of the navigation maps, a daily discharge value is required. Many novel approaches based on earth observation and remote sensing have been investigated for large rivers. However, it should be noted that most of these approaches are not currently able to directly estimate river discharge. This paper discusses the application of remote sensing tools using the analysis of the reflectance value of MODIS imagery and is combined with field measurements for the estimation of discharge. This approach is applied in the lower reach of the Congo River (Pool Malebo) for the period between 2019 and 2021. The correlation obtained between the observed discharge observed in the gauging station and the reflectance ratio time series is 0.81. In this context, a Discharge Reflectance Model (DRM) was developed to express discharge as a function of reflectance. This model introduces a non-contact method that allows discharge monitoring using earth observation. DRM was validated by field measurements using ADCP, in different sections on the Pool Malebo, over two different periods (dry and wet seasons), as well as by the observed discharge in the gauging station. The observed error between the estimated and measured discharge values ranges from 1 to 8% for the ADCP and from (1% to 11%) for the gauging station. The study of the uncertainties will give us the possibility to judge the robustness of the DRM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discharge%20monitoring" title="discharge monitoring">discharge monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=MODIS" title=" MODIS"> MODIS</a>, <a href="https://publications.waset.org/abstracts/search?q=empiric" title=" empiric"> empiric</a>, <a href="https://publications.waset.org/abstracts/search?q=ADCP" title=" ADCP"> ADCP</a>, <a href="https://publications.waset.org/abstracts/search?q=Congo%20River" title=" Congo River"> Congo River</a> </p> <a href="https://publications.waset.org/abstracts/160633/application-of-remote-sensing-and-in-situ-measurements-for-discharge-monitoring-in-large-rivers-case-of-pool-malebo-in-the-congo-river-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9079</span> Treatment of Coal-Water-Oil Slurry Using High Voltage Discharge and Dielectric Barrier Discharge Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Song-Chol%20Pak">Song-Chol Pak</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jun%20Kim"> Yong-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hak-%20Chol%20Choe"> Hak- Chol Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Son%20Choe"> Yong-Son Choe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We converted the coal-water-oil slurry (CWOS) into an alternative fuel (AF) for internal combustion engines by high-voltage discharge (HVD) and dielectric barrier discharge (DBD) plasmas. After its treatments, the CWOS had the average coal size reduced from 12.95 to 8.26㎛, improved dispersibility, fewer deposits, and calorific value enhanced by 35%. The effects of some parameters were analyzed on the conversion of CWOS to AF, and the AF was characterized. The plasma-treated CWOS is similar to other liquid fuels in rheological properties and calorific value. It is therefore concluded that it can be directly employed in internal combustion engines with a little design modification. The suggested method may be an alternative way of converting CWOS to AF without any dispersant or stabilizer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal-water-oil%20slurry" title="coal-water-oil slurry">coal-water-oil slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=high-voltage%20discharge" title=" high-voltage discharge"> high-voltage discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20barrier%20discharge" title=" dielectric barrier discharge"> dielectric barrier discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20treatment" title=" plasma treatment"> plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuel" title=" alternative fuel"> alternative fuel</a> </p> <a href="https://publications.waset.org/abstracts/191431/treatment-of-coal-water-oil-slurry-using-high-voltage-discharge-and-dielectric-barrier-discharge-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9078</span> Energy Efficient Heterogeneous System for Wireless Sensor Networks (WSN)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Anderson%20Rodrigues%20de%20Souza">José Anderson Rodrigues de Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Teles%20de%20Sales%20Bezerra"> Teles de Sales Bezerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Saulo%20Aislan%20da%20Silva%20Eleuterio"> Saulo Aislan da Silva Eleuterio</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeronimo%20Silva%20Rocha">Jeronimo Silva Rocha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile devices are increasingly occupying sectors of society and one of its most important features is mobility. However, the use of mobile devices is subject to the lifetime of the batteries. Thus, the use of energy batteries has become an important issue in the study of wireless network technologies. In this context, new solutions that enable aggregate energy efficiency not only through energy saving, and principally they are evaluated from a more realistic model of energy discharge, if easy adaptation to existing protocols. This paper presents a study on the energy needed and the lifetime for Wireless Sensor Networks (WSN) using a heterogeneous network and applying the LEACH protocol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title="wireless sensor networks">wireless sensor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous" title=" heterogeneous"> heterogeneous</a>, <a href="https://publications.waset.org/abstracts/search?q=LEACH%20protocol" title=" LEACH protocol"> LEACH protocol</a> </p> <a href="https://publications.waset.org/abstracts/19737/energy-efficient-heterogeneous-system-for-wireless-sensor-networks-wsn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9077</span> Investigation of Flow Characteristics of Trapezoidal Side Weir in Rectangular Channel for Subcritical Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malkhan%20Thakur">Malkhan Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Deepak%20Kumar"> P. Deepak Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20S.%20Dikshit"> P. K. S. Dikshit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the hydraulic behavior of side weirs has been the subject of many investigations. Most of the studies have been in connection with specific problems and have involved models. This is perhaps understandable, since a generalized treatment is made difficult by the large number of possible variables to be used to define the problem. A variety of empirical head discharge relationships have been suggested for side weirs. These empirical approaches failed to adequately consider the actual situation, and produced equations applicable only in circumstances virtually identical to those of the experiment. The present investigation is targeted to study to a greater depth the effect of different trapezium angles of a trapezoidal side weir and study of water surface profile in spatially varied flow with decreasing discharge maintaining the main channel flow subcritical. On the basis of experiment, the relationship between upstream Froude number and coefficient of discharge has been established. All the characteristics of spatially varied flow with decreasing discharge have been studied and subsequently formulated. The scope of the present investigation has been basically limited to a one-dimensional model of flow for the purpose of analysis. A formulation has been derived using the theoretical concept of constant specific energy. Coefficient of discharge has been calculated and experimental results were presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weirs" title="weirs">weirs</a>, <a href="https://publications.waset.org/abstracts/search?q=subcritical%20flow" title=" subcritical flow"> subcritical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20channel" title=" rectangular channel"> rectangular channel</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20side%20weir" title=" trapezoidal side weir"> trapezoidal side weir</a> </p> <a href="https://publications.waset.org/abstracts/47362/investigation-of-flow-characteristics-of-trapezoidal-side-weir-in-rectangular-channel-for-subcritical-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9076</span> Photocapacitor Integrating Solar Energy Conversion and Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihuai%20Wu">Jihuai Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyu%20Song"> Zeyu Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lan"> Zhang Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Liuxue%20Sun"> Liuxue Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=joule%20efficiency" title="joule efficiency">joule efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite%20solar%20cell" title=" perovskite solar cell"> perovskite solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=photocapacitor" title=" photocapacitor"> photocapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20solar%20cell" title=" silicon solar cell"> silicon solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a> </p> <a href="https://publications.waset.org/abstracts/168790/photocapacitor-integrating-solar-energy-conversion-and-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9075</span> Evaluation of an Air Energy Recovery System in Greenhouse Fed by an Axial Air Extractor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugueni%20Romantchik">Eugueni Romantchik</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilbero%20Lopez"> Gilbero Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Terrazas"> Diego Terrazas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The residual wind energy recovery from axial air extractors in greenhouses represents a constant source of clean energy production, which reduces production costs by reducing energy consumption costs. The objective of this work is to design, build and evaluate a residual wind energy recovery system. This system consists of a wind turbine placed at an optimal distance, a cone in the air discharge and a mechanism to vary the blades angle of the wind turbine. The system energy balance was analyzed, measuring the main energy parameters such as voltage, amperage, air velocities and angular speeds of the rotors. Tests were carried in a greenhouse with extractor Multifan 130 (1.2 kW, 550 rpm and 1.3 m of diameter) without cone and with cone, with the wind turbine (3 blades with 1.2 m in diameter). The implementation of the system allowed recovering up to 55% of the motor's energy. With the cone installed, the electric energy recovered was increased by 10%. Experimentally, it was shown that changing in 3 degrees the original angle of the wind turbine blades, the angular velocity increases 17.7%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20energy" title="air energy">air energy</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20fan" title=" exhaust fan"> exhaust fan</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title=" greenhouse"> greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/105900/evaluation-of-an-air-energy-recovery-system-in-greenhouse-fed-by-an-axial-air-extractor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9074</span> Analytical Formulae for the Approach Velocity Head Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Abdulrahman">Abdulrahman Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Critical depth meters, such as abroad crested weir, Venture Flume and combined control flume are standard devices for measuring flow in open channels. The discharge relation for these devices cannot be solved directly, but it needs iteration process to account for the approach velocity head. In this paper, analytical solution was developed to calculate the discharge in a combined critical depth-meter namely, a hump combined with lateral contraction in rectangular channel with subcritical approach flow including energy losses. Also analytical formulae were derived for approach velocity head coefficient for different types of critical depth meters. The solution was derived by solving a standard cubic equation considering energy loss on the base of trigonometric identity. The advantage of this technique is to avoid iteration process adopted in measuring flow by these devices. Numerical examples are chosen for demonstration of the proposed solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broad%20crested%20weir" title="broad crested weir">broad crested weir</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20control%20meter" title=" combined control meter"> combined control meter</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20structures" title=" control structures"> control structures</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20flow" title=" critical flow"> critical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=discharge%20measurement" title=" discharge measurement"> discharge measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20engineering" title=" hydraulic engineering"> hydraulic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20structures" title=" hydraulic structures"> hydraulic structures</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title=" open channel flow"> open channel flow</a> </p> <a href="https://publications.waset.org/abstracts/71803/analytical-formulae-for-the-approach-velocity-head-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9073</span> Optical Diagnostics of Corona Discharge by Laser Interferometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Bendimerad">N. Bendimerad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lemerini"> M. Lemerini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guen"> A. Guen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we propose to determine the density of neutral particles of an electric discharge peak - Plan types performed in air at atmospheric pressure by applying a technique based on laser interferometry. The experimental methods used so far as the shadowgraph or stereoscopy, give rather qualitative results with regard to the determination of the neutral density. The neutral rotational temperature has been subject of several studies but direct measurements of kinetic temperature are rare. The aim of our work is to determine quantitatively and experimentally depopulation with a Mach-Zehnder type interferometer. This purely optical appearance of the discharge is important when looking to know the refractive index of any gas for any physicochemical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20source" title="laser source">laser source</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehnder%20interferometer" title=" Mach-Zehnder interferometer"> Mach-Zehnder interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=refractive%20index" title=" refractive index"> refractive index</a>, <a href="https://publications.waset.org/abstracts/search?q=corona%20discharge" title=" corona discharge"> corona discharge</a> </p> <a href="https://publications.waset.org/abstracts/30938/optical-diagnostics-of-corona-discharge-by-laser-interferometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9072</span> Optimization of Machining Parameters of Wire Electric Discharge Machining (WEDM) of Inconel 625 Super Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amitesh%20Goswami">Amitesh Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Gulati"> Vishal Gulati</a>, <a href="https://publications.waset.org/abstracts/search?q=Annu%20Yadav"> Annu Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, WEDM has been used to investigate the machining characteristics of Inconel-625 alloy. The machining characteristics namely material removal rate (MRR) and surface roughness (SR) have been investigated along with surface microstructure analysis using SEM and EDS of the machined surface. Taguchi’s L27 Orthogonal array design has been used by considering six varying input parameters viz. Pulse-on time (Ton), Pulse-off time (Toff), Spark Gap Set Voltage (SV), Peak Current (IP), Wire Feed (WF) and Wire Tension (WT) for the responses of interest. It has been found out that Pulse-on time (Ton) and Spark Gap Set Voltage (SV) are the most significant parameters affecting material removal rate (MRR) and surface roughness (SR) are. Microstructure analysis of workpiece was also done using Scanning Electron Microscope (SEM). It was observed that, variations in pulse-on time and pulse-off time causes varying discharge energy and as a result of which deep craters / micro cracks and large/ small number of debris were formed. These results were helpful in studying the effects of pulse-on time and pulse-off time on MRR and SR. Energy Dispersive Spectrometry (EDS) was also done to check the compositional analysis of the material and it was observed that Copper and Zinc which were initially not present in the Inconel 625, later migrated on the material surface from the brass wire electrode during machining <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MRR" title="MRR">MRR</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=SR" title=" SR"> SR</a>, <a href="https://publications.waset.org/abstracts/search?q=taguchi" title=" taguchi"> taguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wire%20Electric%20Discharge%20Machining" title=" Wire Electric Discharge Machining"> Wire Electric Discharge Machining</a> </p> <a href="https://publications.waset.org/abstracts/49334/optimization-of-machining-parameters-of-wire-electric-discharge-machining-wedm-of-inconel-625-super-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9071</span> Experimental Investigation on the Effect of Cross Flow on Discharge Coefficient of an Orifice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathew%20Saxon%20A">Mathew Saxon A</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneeh%20Rajan"> Aneeh Rajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajeev%20P"> Sajeev P</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many fluid flow applications employ different types of orifices to control the flow rate or to reduce the pressure. Discharge coefficients generally vary from 0.6 to 0.95 depending on the type of the orifice. The tabulated value of discharge coefficients of various types of orifices available can be used in most common applications. The upstream and downstream flow condition of an orifice is hardly considered while choosing the discharge coefficient of an orifice. But literature shows that the discharge coefficient can be affected by the presence of cross flow. Cross flow is defined as the condition wherein; a fluid is injected nearly perpendicular to a flowing fluid. Most researchers have worked on water being injected into a cross-flow of water. The present work deals with water to gas systems in which water is injected in a normal direction into a flowing stream of gas. The test article used in the current work is called thermal regulator, which is used in a liquid rocket engine to reduce the temperature of hot gas tapped from the gas generator by injecting water into the hot gas so that a cooler gas can be supplied to the turbine. In a thermal regulator, water is injected through an orifice in a normal direction into the hot gas stream. But the injection orifice had been calibrated under backpressure by maintaining a stagnant gas medium at the downstream. The motivation of the present study aroused due to the observation of a lower Cd of the orifice in flight compared to the calibrated Cd. A systematic experimental investigation is carried out in this paper to study the effect of cross-flow on the discharge coefficient of an orifice in water to a gas system. The study reveals that there is an appreciable reduction in the discharge coefficient with cross flow compared to that without cross flow. It is found that the discharge coefficient greatly depends on the ratio of momentum of water injected to the momentum of the gas cross flow. The effective discharge coefficient of different orifices was normalized using the discharge coefficient without cross-flow and it is observed that normalized curves of effective discharge coefficient of different orifices with momentum ratio collapsing into a single curve. Further, an equation is formulated using the test data to predict the effective discharge coefficient with cross flow using the calibrated Cd value without cross flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross%20flow" title="cross flow">cross flow</a>, <a href="https://publications.waset.org/abstracts/search?q=discharge%20coefficient" title=" discharge coefficient"> discharge coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=orifice" title=" orifice"> orifice</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum%20ratio" title=" momentum ratio"> momentum ratio</a> </p> <a href="https://publications.waset.org/abstracts/124296/experimental-investigation-on-the-effect-of-cross-flow-on-discharge-coefficient-of-an-orifice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9070</span> Effect of Plasma Discharge Power on Activation Energies of Plasma Poly(Ethylene Oxide) Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahin%20Yakut">Sahin Yakut</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kemal%20Ulutas"> H. Kemal Ulutas</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Deger"> Deniz Deger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma Assisted Physical Vapor Deposition (PAPVD) method used to produce Poly(ethylene oxide) (pPEO) thin films. Depositions were progressed at various plasma discharge powers as 0, 2, 5 and 30 W for pPEO at 500nm film thicknesses. The capacitance and dielectric dissipation of the thin films were measured at 0,1-107 Hz frequency range and 173-353 K temperature range by an impedance analyzer. Then, alternative conductivity (σac) and activation energies were derived from capacitance and dielectric dissipation. σac of conventional PEO (PEO precursor) was measured to determine the effect of plasma discharge. Differences were observed between the alternative conductivity of PEO’s and pPEO’s depending on plasma discharge power. By this purpose, structural characterization techniques such as Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) were applied on pPEO thin films. Structural analysis showed that density of crosslinking is plasma power dependent. The crosslinking density increases with increasing plasma discharge power and this increase is displayed as increasing dynamic glass transition temperatures at DSC results. Also, shifting of frequencies of some type of bond vibrations, belonging to bond vibrations produced after fragmentation because of plasma discharge, were observed at FTIR results. The dynamic glass transition temperatures obtained from alternative conductivity results for pPEO consistent with the results of DSC. Activation energies exhibit Arrhenius behavior. Activation energies decrease with increasing plasma discharge power. This behavior supports the suggestion expressing that long polymer chains and long oligomers are fragmented into smaller oligomers or radicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title="activation energy">activation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20spectroscopy" title=" dielectric spectroscopy"> dielectric spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20thin%20films" title=" organic thin films"> organic thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20polymer" title=" plasma polymer"> plasma polymer</a> </p> <a href="https://publications.waset.org/abstracts/66302/effect-of-plasma-discharge-power-on-activation-energies-of-plasma-polyethylene-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discharge%20energy&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discharge%20energy&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discharge%20energy&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discharge%20energy&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discharge%20energy&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discharge%20energy&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discharge%20energy&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discharge%20energy&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discharge%20energy&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discharge%20energy&amp;page=303">303</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discharge%20energy&amp;page=304">304</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=discharge%20energy&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10