CINXE.COM

Search results for: Marcin Zielinski

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Marcin Zielinski</title> <meta name="description" content="Search results for: Marcin Zielinski"> <meta name="keywords" content="Marcin Zielinski"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Marcin Zielinski" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Marcin Zielinski"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 52</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Marcin Zielinski</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Single-Section Fermentation Reactor with Cellular Mixing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski">Marcin Dębowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski"> Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski"> Mirosław Krzemieniewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This publication presents a reactor designed for methane fermentation of organic substrates. The design is based on rotating cellular cylinders connected to a biomass feeder and an ultrasonic generator. This allows for simultaneous mixing and partial disintegration of the biomass, as well as stimulating higher metabolic rates within the microorganisms. Such a design allows from 2-fold to 14-fold reduction of power usage when compared to conventional mixing systems. The sludge does not undergo mechanical deformation during the mixing process, which improves substrate biodegradation efficiency by 10-15%. Cavitation occurs near the surface of the rods, partially releasing the biomass and separating it from the destroyed microorganisms. Biogas is released further away from the cellular cylinder rods due to the effect of the ultrasonic waves, in addition to increased biochemical activity of the microorganisms and increased exchange of the nutrient medium with metabolic products, which results in biogas production increase by about 15%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane%20fermentation" title="methane fermentation">methane fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactors" title=" bioreactors"> bioreactors</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20system" title=" mixing system"> mixing system</a> </p> <a href="https://publications.waset.org/abstracts/3540/single-section-fermentation-reactor-with-cellular-mixing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Device for Thermo-Magnetic Depolymerisation of Plant Biomass Prior to Methane Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski">Mirosław Krzemieniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski"> Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski"> Marcin Dębowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This publication presents a device for depolymerisation of plant substrates applicable to agricultural biogas plants and closed-chamber sewage treatment plants where sludge fermentation is bolstered with plant mass. The device consists of a tank with a cover equipped with a heating system, an inlet for the substrate, and an outlet for the depolymerised substrate. Within the tank, a magnet shaft encased in a spiral casing is attached, equipped on its upper end with an internal magnetic disc. A motoreducer is mounted on an external magnetic disc located on the centre of the cover. Depolymerisation of the plant substrate allows for substrate destruction at much lower power levels than by conventional means. The temperature within the reactor can be lowered by 40% in comparison to existing designs. During the depolymerisation process, free radicals are generated within the magnetic field, oxidizing the conditioned substrate and promoting biodegradation. Thus, the fermentation time in the fermenters is reduced by approximately 20%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depolymerisation" title="depolymerisation">depolymerisation</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-treatment" title=" pre-treatment"> pre-treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/3543/device-for-thermo-magnetic-depolymerisation-of-plant-biomass-prior-to-methane-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> The Effect of Microwave Radiation on Biogas Production Efficiency Using Different Plant Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski">Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski"> Marcin Dębowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski"> Mirosław Krzemieniewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present work was to assess the impact of using electromagnetic microwave radiation as a means of stimulating the thermal conditions in anaerobic reactors on biomethanation efficiency of different plant substrates, as measured by the quantity and quality of the resultant biogas. Using electromagnetic microwave radiation to maintain optimal thermal conditions during biomethanation allows for achievement of much higher technological effects in comparison with a conventional heating system. After subjecting different plant substrates to fermentation in the model fermentation chambers, the largest improvements in regard to biogas production efficiency and biogas quality were recorded in the series with corn silage and grass silage. In the first case, the quantity of methane produced in the microwave-stimulated technological system exceeded by 15.26% the quantities produced in reactors heated conventionally. When grass silage was utilized as the organic substrate in the process of biomethanation, anaerobic reactors treated with microwave radiation produced 12.62% more methane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20radiation" title="microwave radiation">microwave radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20fermentation" title=" methane fermentation"> methane fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/3545/the-effect-of-microwave-radiation-on-biogas-production-efficiency-using-different-plant-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Device for Thermal Depolymerisation of Organic Substrates Prior to Methane Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski">Marcin Dębowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski"> Mirosław Krzemieniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski"> Marcin Zieliński</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This publication presents a device designed to depolymerise and structurally change organic substrate, for use in agricultural biogas plants or sewage treatment plants. The presented device consists of a heated tank equipped with an inlet valve for the crude substrate and an outlet valve for the treated substrate. The system also includes a gas conduit, which is at its tip equipped with a high-pressure solenoid valve and a vacuum relief solenoid valve. A conduit behind the high-pressure solenoid valve connects to the vacuum tank equipped with the outlet valve. The substrate introduced into the device is exposed to agents such as high temperature and cavitation produced by abrupt, short-term reduction of pressure within the heated tank. The combined effect of these processes is substrate destruction rate increase of about 20% when compared to using high temperature alone, and about 30% when compared to utilizing only cavitation. Energy consumption is greatly reduced, as the pressure increase is generated by heating the substrate. Thus, there is a 18% reduction of energy consumption when compared to a device designed to destroy substrate through high temperature alone, and a 35% reduction if compared to using cavitation as the only means of destruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20depolymerisation" title="thermal depolymerisation">thermal depolymerisation</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20substrate" title=" organic substrate"> organic substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-treatment" title=" pre-treatment"> pre-treatment</a> </p> <a href="https://publications.waset.org/abstracts/3544/device-for-thermal-depolymerisation-of-organic-substrates-prior-to-methane-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Device for Mechanical Fragmentation of Organic Substrates Before Methane Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski">Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski"> Marcin Dębowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski"> Mirosław Krzemieniewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This publication presents a device designed for mechanical fragmentation of plant substrate before methane fermentation. The device is equipped with a perforated rotary cylindrical drum coated with a thermal layer, connected to a substrate feeder and driven by a motoreducer. The drum contains ball- or cylinder-shaped weights of different diameters, while its interior is mounted with lateral permanent magnets with an attractive force ranging from 100 kg to 2 tonnes per m2 of the surface. Over the perforated rotary drum, an infrared radiation generator is mounted, producing 0.2 kW to 1 kW of infrared radiation per 1 m2 of the perforated drum surface. This design reduces the energy consumption required for the biomass destruction process by 10-30% in comparison to the conventional ball mill. The magnetic field generated by the permanent magnets situated within the perforated rotary drum promotes this process through generation of free radicals that act as powerful oxidants, accelerating the decomposition rate. Plant substrate shows increased susceptibility to biodegradation when subjected to magnetic conditioning, reducing the time required for biomethanation by 25%. Additionally, the electromagnetic radiation generated by the radiator improves substrate destruction by 10% and the efficiency of the process. The magnetic field and the infrared radiation contribute synergically to the increased efficiency of destruction and conversion of the substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20pretreatment" title="biomass pretreatment">biomass pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20fragmentation" title=" mechanical fragmentation"> mechanical fragmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20fermentation" title=" methane fermentation"> methane fermentation</a> </p> <a href="https://publications.waset.org/abstracts/3541/device-for-mechanical-fragmentation-of-organic-substrates-before-methane-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Possibility of Membrane Filtration to Treatment of Effluent from Digestate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Debowski">Marcin Debowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zielinski"> Marcin Zielinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Zielinska"> Magdalena Zielinska</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Rusanowska"> Paulina Rusanowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem with digestate management is one of the most important factors influencing on the development and operation of biogas plant. Turbidity and bacterial contamination negatively affect the growth of algae, which can limit the use of the effluent in the production of algae biomass on a large scale. These problems can be overcome by cultivating of algae species resistant to environmental factors, such as Chlorella sp., Scenedesmus sp., or reducing load of organic compounds to prevent bacterial contamination. The effluent requires dilution and/or purification. One of the methods of effluent treatment is the use of a membrane technology such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), depending on the membrane pore size and the cut off point. Membranes are a physical barrier to solids and particles larger than the size of the pores. MF membranes have the largest pores and are used to remove turbidity, suspensions, bacteria and some viruses. UF membranes remove also color, odor and organic compounds with high molecular weight. In treatment of wastewater or other waste streams, MF and UF can provide a sufficient degree of purification. NF membranes are used to remove natural organic matter from waters, water disinfection products and sulfates. RO membranes are applied to remove monovalent ions such as Na⁺ or K⁺. The effluent was used in UF for medium to cultivation of two microalgae: Chlorella sp. and Phaeodactylum tricornutum. Growth rates of Chlorella sp. and P. tricornutum were similar: 0.216 d⁻¹ and 0.200 d⁻¹ (Chlorella sp.); 0.128 d⁻¹ and 0.126 d⁻¹ (P. tricornutum), on synthetic medium and permeate from UF, respectively. The final biomass composition was also similar, regardless of the medium. Removal of nitrogen was 92% and 71% by Chlorella sp. and P. tricornutum, respectively. The fermentation effluents after UF and dilution were also used for cultivation of algae Scenedesmus sp. that is resistant to environmental conditions. The authors recommended the development of biorafinery based on the production of algae for the biogas production. There are examples of using a multi-stage membrane system to purify the liquid fraction from digestate. After the initial UF, RO is used to remove ammonium nitrogen and COD. To obtain a permeate with a concentration of ammonium nitrogen allowing to discharge it into the environment, it was necessary to apply three-stage RO. The composition of the permeate after two-stage RO was: COD 50–60 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 300–320 mg/dm³, total nitrogen 320–340 mg/dm³, total phosphorus 53 mg/dm³. However compostion of permeate after three-stage RO was: COD < 5 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 0 mg/dm³, total nitrogen 3.5 mg/dm³, total phosphorus < 0,05 mg/dm³. Last stage of RO might be replaced by ion exchange process. The negative aspect of membrane filtration systems is the fact that the permeate is about 50% of the introduced volume, the remainder is the retentate. The management of a retentate might involve recirculation to a biogas plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digestate" title="digestate">digestate</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20filtration" title=" membrane filtration"> membrane filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae%20cultivation" title=" microalgae cultivation"> microalgae cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20sp." title=" Chlorella sp."> Chlorella sp.</a> </p> <a href="https://publications.waset.org/abstracts/81343/possibility-of-membrane-filtration-to-treatment-of-effluent-from-digestate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Influence of Disintegration of Sida hermaphrodita Silage on Methane Fermentation Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zielinski">Marcin Zielinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Debowski"> Marcin Debowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Rusanowska"> Paulina Rusanowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Magda%20Dudek"> Magda Dudek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of sonification, the destruction of complex biomass structures results in an increase in the biogas yield from the conditioned material. First, the amount of organic matter released into the solution due to disintegration was determined. This parameter was determined by changes in the carbon content in liquid phase of the conditioned substrate. The amount of carbon in the liquid phase increased with the prolongation of the sonication time to 16 min. Further increase in the duration of sonication did not cause a statistically significant increase in the amount of organic carbon in the liquid phase. The disintegrated material was then used for respirometric measurements for determination of the impact of the conditioning process used on methane fermentation effectiveness. The relationship between the amount of energy introduced into the lignocellulosic substrate and the amount of biogas produced has been demonstrated. Statistically significant increase in the amount of biogas was observed until sonication of 16 min. Further increase in energy in the conditioning process did not significantly increase the production of biogas from the treated substrate. The biogas production from the conditioned substrate was 17% higher than from the reference biomass at that time. The ultrasonic disintegration method did not significantly affect the observed biogas composition. In all series, the methane content in the produced biogas from the conditioned substrate was similar to that obtained with the raw substrate sample (51.1%). Another method of substrate conditioning was hydrothermal depolymerization. This method consists in application of increased temperature and pressure to substrate. These phenomena destroy the structure of the processed material, the release of organic compounds to the solution, which should lead to increase the amount of produced biogas from such treated biomass. The hydrothermal depolymerization was conducted using an innovative microwave heating method. Control measurements were performed using conventional heating. The obtained results indicate the relationship between depolymerization temperature and the amount of biogas. Statistically significant value of the biogas production coefficients increased as the depolymerization temperature increased to 150°C. Further raising the depolymerization temperature to 180°C did not significantly increase the amount of produced biogas in the respirometric tests. As a result of the hydrothermal depolymerization obtained using microwave at 150°C for 20 min, the rate of biogas production from the Sida silage was 780 L/kg VS, which accounted for nearly 50% increase compared to 370 L/kg VS obtained from the same silage but not depolymerised. The study showed that by microwave heating it is possible to effectively depolymerized substrate. Significant differences occurred especially in the temperature range of 130-150ºC. The pre-treatment of Sida hermaphrodita silage (biogas substrate) did not significantly affect the quality of the biogas produced. The methane concentration was about 51.5% on average. The study was carried out in the framework of the project under program BIOSTRATEG funded by the National Centre for Research and Development No. 1/270745/2/NCBR/2015 'Dietary, power, and economic potential of Sida hermaphrodita cultivation on fallow land'. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disintegration" title="disintegration">disintegration</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20fermentation" title=" methane fermentation"> methane fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginia%20fanpetals" title=" Virginia fanpetals"> Virginia fanpetals</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/81346/influence-of-disintegration-of-sida-hermaphrodita-silage-on-methane-fermentation-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Technology for Biogas Upgrading with Immobilized Algae Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Debowski">Marcin Debowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zielinski"> Marcin Zielinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslaw%20Krzemieniewski"> Miroslaw Krzemieniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Glowacka-Gil"> Agata Glowacka-Gil</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Rusanowska"> Paulina Rusanowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Zielinska"> Magdalena Zielinska</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Cydzik-Kwiatkowska"> Agnieszka Cydzik-Kwiatkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas" title="biogas">biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilised%20biomass" title=" immobilised biomass"> immobilised biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=upgrading" title=" upgrading"> upgrading</a> </p> <a href="https://publications.waset.org/abstracts/97991/technology-for-biogas-upgrading-with-immobilized-algae-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Ultrasound Disintegration as a Potential Method for the Pre-Treatment of Virginia Fanpetals (Sida hermaphrodita) Biomass before Methane Fermentation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski">Marcin Dębowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski"> Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski"> Mirosław Krzemieniewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As methane fermentation is a complex series of successive biochemical transformations, its subsequent stages are determined, to a various extent, by physical and chemical factors. A specific state of equilibrium is being settled in the functioning fermentation system between environmental conditions and the rate of biochemical reactions and products of successive transformations. In the case of physical factors that influence the effectiveness of methane fermentation transformations, the key significance is ascribed to temperature and intensity of biomass agitation. Among the chemical factors, significant are pH value, type, and availability of the culture medium (to put it simply: the C/N ratio) as well as the presence of toxic substances. One of the important elements which influence the effectiveness of methane fermentation is the pre-treatment of organic substrates and the mode in which the organic matter is made available to anaerobes. Out of all known and described methods for organic substrate pre-treatment before methane fermentation process, the ultrasound disintegration is one of the most interesting technologies. Investigations undertaken on the ultrasound field and the use of installations operating on the existing systems result principally from very wide and universal technological possibilities offered by the sonication process. This physical factor may induce deep physicochemical changes in ultrasonicated substrates that are highly beneficial from the viewpoint of methane fermentation processes. In this case, special role is ascribed to disintegration of biomass that is further subjected to methane fermentation. Once cell walls are damaged, cytoplasm and cellular enzymes are released. The released substances – either in dissolved or colloidal form – are immediately available to anaerobic bacteria for biodegradation. To ensure the maximal release of organic matter from dead biomass cells, disintegration processes are aimed to achieve particle size below 50 μm. It has been demonstrated in many research works and in systems operating in the technical scale that immediately after substrate supersonication the content of organic matter (characterized by COD, BOD5 and TOC indices) was increasing in the dissolved phase of sedimentation water. This phenomenon points to the immediate sonolysis of solid substances contained in the biomass and to the release of cell material, and consequently to the intensification of the hydrolytic phase of fermentation. It results in a significant reduction of fermentation time and increased effectiveness of production of gaseous metabolites of anaerobic bacteria. Because disintegration of Virginia fanpetals biomass via ultrasounds applied in order to intensify its conversion is a novel technique, it is often underestimated by exploiters of agri-biogas works. It has, however, many advantages that have a direct impact on its technological and economical superiority over thus far applied methods of biomass conversion. As for now, ultrasound disintegrators for biomass conversion are not produced on the mass-scale, but by specialized groups in scientific or R&D centers. Therefore, their quality and effectiveness are to a large extent determined by their manufacturers’ knowledge and skills in the fields of acoustics and electronic engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20disintegration" title="ultrasound disintegration">ultrasound disintegration</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20fermentation" title=" methane fermentation"> methane fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginia%20fanpetals" title=" Virginia fanpetals"> Virginia fanpetals</a> </p> <a href="https://publications.waset.org/abstracts/41402/ultrasound-disintegration-as-a-potential-method-for-the-pre-treatment-of-virginia-fanpetals-sida-hermaphrodita-biomass-before-methane-fermentation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Feasibility of Applying a Hydrodynamic Cavitation Generator as a Method for Intensification of Methane Fermentation Process of Virginia Fanpetals (Sida hermaphrodita) Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski">Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski"> Marcin Dębowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski"> Mirosław Krzemieniewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The anaerobic degradation of substrates is limited especially by the rate and effectiveness of the first (hydrolytic) stage of fermentation. This stage may be intensified through pre-treatment of substrate aimed at disintegration of the solid phase and destruction of substrate tissues and cells. The most frequently applied criterion of disintegration outcomes evaluation is the increase in biogas recovery owing to the possibility of its use for energetic purposes and, simultaneously, recovery of input energy consumed for the pre-treatment of substrate before fermentation. Hydrodynamic cavitation is one of the methods for organic substrate disintegration that has a high implementation potential. Cavitation is explained as the phenomenon of the formation of discontinuity cavities filled with vapor or gas in a liquid induced by pressure drop to the critical value. It is induced by a varying field of pressures. A void needs to occur in the flow in which the pressure first drops to the value close to the pressure of saturated vapor and then increases. The process of cavitation conducted under controlled conditions was found to significantly improve the effectiveness of anaerobic conversion of organic substrates having various characteristics. This phenomenon allows effective damage and disintegration of cellular and tissue structures. Disintegration of structures and release of organic compounds to the dissolved phase has a direct effect on the intensification of biogas production in the process of anaerobic fermentation, on reduced dry matter content in the post-fermentation sludge as well as a high degree of its hygienization and its increased susceptibility to dehydration. A device the efficiency of which was confirmed both in laboratory conditions and in systems operating in the technical scale is a hydrodynamic generator of cavitation. Cavitators, agitators and emulsifiers constructed and tested worldwide so far have been characterized by low efficiency and high energy demand. Many of them proved effective under laboratory conditions but failed under industrial ones. The only task successfully realized by these appliances and utilized on a wider scale is the heating of liquids. For this reason, their usability was limited to the function of heating installations. Design of the presented cavitation generator allows achieving satisfactory energy efficiency and enables its use under industrial conditions in depolymerization processes of biomass with various characteristics. Investigations conducted on the laboratory and industrial scale confirmed the effectiveness of applying cavitation in the process of biomass destruction. The use of the cavitation generator in laboratory studies for disintegration of sewage sludge allowed increasing biogas production by ca. 30% and shortening the treatment process by ca. 20 - 25%. The shortening of the technological process and increase of wastewater treatment plant effectiveness may delay investments aimed at increasing system output. The use of a mechanical cavitator and application of repeated cavitation process (4-6 times) enables significant acceleration of the biogassing process. In addition, mechanical cavitation accelerates increases in COD and VFA levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20cavitation" title="hydrodynamic cavitation">hydrodynamic cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20fermentation" title=" methane fermentation"> methane fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginia%20fanpetals" title=" Virginia fanpetals"> Virginia fanpetals</a> </p> <a href="https://publications.waset.org/abstracts/41407/feasibility-of-applying-a-hydrodynamic-cavitation-generator-as-a-method-for-intensification-of-methane-fermentation-process-of-virginia-fanpetals-sida-hermaphrodita-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Technology of Electrokinetic Disintegration of Virginia Fanpetals (Sida hermaphrodita) Biomass in a Biogas Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski">Mirosław Krzemieniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski"> Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski"> Marcin Dębowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrokinetic disintegration is one of the high-voltage electric methods. The design of systems is exceptionally simple. Biomass flows through a system of pipes with alongside mounted electrodes that generate an electric field. Discharges in the electric field deform cell walls and lead to their successive perforation, thereby making their contents easily available to bacteria. The spark-over occurs between electrode surface and pipe jacket which is the second pole and closes the circuit. The value of voltage ranges from 10 to 100kV. Electrodes are supplied by normal “power grid” monophase electric current (230V, 50Hz). Next, the electric current changes into direct current of 24V in modules serving for particular electrodes, and this current directly feeds the electrodes. The installation is completely safe because the value of generated current does not exceed 250mA and because conductors are grounded. Therefore, there is no risk of electric shock posed to the personnel, even in the case of failure or incorrect connection. Low values of the electric current mean small energy consumption by the electrode which is extremely low – only 35W per electrode – compared to other methods of disintegration. Pipes with electrodes with diameter of DN150 are made of acid-proof steel and connected from both sides with 90º elbows ended with flanges. The available S and U types of pipes enable very convenient fitting with system construction in the existing installations and rooms or facilitate space management in new applications. The system of pipes for electrokinetic disintegration may be installed horizontally, vertically, askew, on special stands or also directly on the wall of a room. The number of pipes and electrodes is determined by operating conditions as well as the quantity of substrate, type of biomass, content of dry matter, method of disintegration (single or circulatory), mounting site etc. The most effective method involves pre-treatment of substrate that may be pumped through the disintegration system on the way to the fermentation tank or recirculated in a buffered intermediate tank (substrate mixing tank). Biomass structure destruction in the process of electrokinetic disintegration causes shortening of substrate retention time in the tank and acceleration of biogas production. A significant intensification of the fermentation process was observed in the systems operating in the technical scale, with the greatest increase in biogas production reaching 18%. The secondary, but highly significant for the energetic balance, effect is a tangible decrease of energy input by agitators in tanks. It is due to reduced viscosity of the biomass after disintegration, and may result in energy savings reaching even 20-30% of the earlier noted consumption. Other observed phenomena include reduction in the layer of surface scum, reduced sewage capability for foaming and successive decrease in the quantity of bottom sludge banks. Considering the above, the system for electrokinetic disintegration seems a very interesting and valuable solutions meeting the offer of specialist equipment for the processing of plant biomass, including Virginia fanpetals, before the process of methane fermentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrokinetic%20disintegration" title="electrokinetic disintegration">electrokinetic disintegration</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas%20production" title=" biogas production"> biogas production</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginia%20fanpetals" title=" Virginia fanpetals"> Virginia fanpetals</a> </p> <a href="https://publications.waset.org/abstracts/41403/technology-of-electrokinetic-disintegration-of-virginia-fanpetals-sida-hermaphrodita-biomass-in-a-biogas-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> The Analysis of Own Signals of PM Electrical Machines – Example of Eccentricity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Baranski">Marcin Baranski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a vibration diagnostic method designed for permanent magnets (PM) traction motors. Those machines are commonly used in traction drives of electrical vehicles. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. This work presents: field-circuit model, results of static tests, results of calculations and simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20vehicle" title="electrical vehicle">electrical vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet" title=" permanent magnet"> permanent magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=traction%20drive" title=" traction drive"> traction drive</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20machine" title=" electrical machine"> electrical machine</a>, <a href="https://publications.waset.org/abstracts/search?q=eccentricity" title=" eccentricity"> eccentricity</a> </p> <a href="https://publications.waset.org/abstracts/29703/the-analysis-of-own-signals-of-pm-electrical-machines-example-of-eccentricity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">628</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Problems of Boolean Reasoning Based Biclustering Parallelization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Michalak">Marcin Michalak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biclustering is the way of two-dimensional data analysis. For several years it became possible to express such issue in terms of Boolean reasoning, for processing continuous, discrete and binary data. The mathematical backgrounds of such approach &mdash; proved ability of induction of exact and inclusion&ndash;maximal biclusters fulfilling assumed criteria &mdash; are strong advantages of the method. Unfortunately, the core of the method has quite high computational complexity. In the paper the basics of Boolean reasoning approach for biclustering are presented. In such context the problems of computation parallelization are risen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boolean%20reasoning" title="Boolean reasoning">Boolean reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=biclustering" title=" biclustering"> biclustering</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelization" title=" parallelization"> parallelization</a>, <a href="https://publications.waset.org/abstracts/search?q=prime%20implicant" title=" prime implicant"> prime implicant</a> </p> <a href="https://publications.waset.org/abstracts/111606/problems-of-boolean-reasoning-based-biclustering-parallelization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Analyzing the Oil and Gas Exploration Opportunities in Poland: Five Prospective Areas Selected and Dedicated to the Tender</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krystian%20W%C3%B3jcik">Krystian Wójcik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Wr%C3%B3blewska"> Sara Wróblewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20%C5%81ojek"> Marcin Łojek</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Sobie%C5%84"> Katarzyna Sobień</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polish Geological Survey selected five of the most prospective areas for oil and gas exploration in Poland. They are dedicated to the 6th international tender round for hydrocarbon concessions, planned in 2022. The main exploration target of these areas is related to conventional and unconventional accumulations of gas and oil in the Carpathian basement, Carpathian Foredeep and Outer Carpathians (Block 413 – 414), as well as in the Carboniferous, Rotliegend, Main Dolomite (Block 208, Cybinka – Torzym, Zielona Góra West), and in the Mesozoic of the Polish Lowlands (Koło). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concession%20policy" title="concession policy">concession policy</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20tender" title=" international tender"> international tender</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas%20exploration%20horizons" title=" oil and gas exploration horizons"> oil and gas exploration horizons</a>, <a href="https://publications.waset.org/abstracts/search?q=prospective%20areas" title=" prospective areas"> prospective areas</a> </p> <a href="https://publications.waset.org/abstracts/146650/analyzing-the-oil-and-gas-exploration-opportunities-in-poland-five-prospective-areas-selected-and-dedicated-to-the-tender" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Vehicle to Grid Potential for Solar Powered Electric Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Kowalski">Marcin Kowalski</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Wiktor"> Tomasz Wiktor</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Ladonski"> Piotr Ladonski</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Bortnowski"> Krzysztof Bortnowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Przybyl"> Szymon Przybyl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Grzesiak"> Mateusz Grzesiak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides a detailed overview of the so-called smart grid or vehicle-to-grid idea, including a description of our way of implementation. The primary targets of this paper are technical students, young constructors, visionaries, however more experienced designers may find useful ideas for developing their vehicles. The publication will also be useful for home-grown builders who want to save on electricity. This article as well summarizes the advantages and disadvantages of V2G solution and might be helpful for students teams planning to participate in Bridgestone World Solar Challenge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20powered%20vehicle" title="solar powered vehicle">solar powered vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20to%20grid" title=" vehicle to grid"> vehicle to grid</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20car" title=" electric car"> electric car</a>, <a href="https://publications.waset.org/abstracts/search?q=v2g" title=" v2g"> v2g</a>, <a href="https://publications.waset.org/abstracts/search?q=bridgestone%20world%20solar%20challenge" title=" bridgestone world solar challenge"> bridgestone world solar challenge</a> </p> <a href="https://publications.waset.org/abstracts/143000/vehicle-to-grid-potential-for-solar-powered-electric-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Application of a SubIval Numerical Solver for Fractional Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Sowa">Marcin Sowa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discusses the subinterval-based numerical method for fractional derivative computations. It is now referred to by its acronym &ndash; SubIval. The basis of the method is briefly recalled. The ability of the method to be applied in time stepping solvers is discussed. The possibility of implementing a time step size adaptive solver is also mentioned. The solver is tested on a transient circuit example. In order to display the accuracy of the solver &ndash; the results have been compared with those obtained by means of a semi-analytical method called gcdAlpha. The time step size adaptive solver applying SubIval has been proven to be very accurate as the results are very close to the referential solution. The solver is currently able to solve FDE (fractional differential equations) with various derivative orders for each equation and any type of source time functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title="numerical method">numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=SubIval" title=" SubIval"> SubIval</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solver" title=" numerical solver"> numerical solver</a>, <a href="https://publications.waset.org/abstracts/search?q=circuit%20analysis" title=" circuit analysis"> circuit analysis</a> </p> <a href="https://publications.waset.org/abstracts/97566/application-of-a-subival-numerical-solver-for-fractional-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Combining the Dynamic Conditional Correlation and Range-GARCH Models to Improve Covariance Forecasts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Fiszeder">Piotr Fiszeder</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Fa%C5%82dzi%C5%84ski"> Marcin Fałdziński</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Moln%C3%A1r"> Peter Molnár</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamic conditional correlation model of Engle (2002) is one of the most popular multivariate volatility models. However, this model is based solely on closing prices. It has been documented in the literature that the high and low price of the day can be used in an efficient volatility estimation. We, therefore, suggest a model which incorporates high and low prices into the dynamic conditional correlation framework. Empirical evaluation of this model is conducted on three datasets: currencies, stocks, and commodity exchange-traded funds. The utilisation of realized variances and covariances as proxies for true variances and covariances allows us to reach a strong conclusion that our model outperforms not only the standard dynamic conditional correlation model but also a competing range-based dynamic conditional correlation model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=volatility" title="volatility">volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=DCC%20model" title=" DCC model"> DCC model</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20and%20low%20prices" title=" high and low prices"> high and low prices</a>, <a href="https://publications.waset.org/abstracts/search?q=range-based%20models" title=" range-based models"> range-based models</a>, <a href="https://publications.waset.org/abstracts/search?q=covariance%20forecasting" title=" covariance forecasting"> covariance forecasting</a> </p> <a href="https://publications.waset.org/abstracts/107388/combining-the-dynamic-conditional-correlation-and-range-garch-models-to-improve-covariance-forecasts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> The Impact of Alumina Cement on Properties of Portland Cement Slurries and Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Zieli%C5%84ski">Krzysztof Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Kierzek"> Dariusz Kierzek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The addition of a small amount of alumina cement to Portland cement results in immediate setting, a rapid increase in the compressive strength and a clear increase of the adhesion to concrete substrate. This phenomenon is used, among others, for the production of liquid floor self-levelling compounds. Alumina cement is several times more expensive than Portland cement and is a component having a significant impact on prices of products manufactured with its use. For the production of liquid floor self-levelling compounds, low-alumina cement containing approximately 40% Al<sub>2</sub>O<sub>3 </sub>is normally used. The aim of the study was to determine the impact of Portland cement with the addition of alumina cement on the basic physical and mechanical properties of cement slurries and mortars. CEM I 42.5R and three types of alumina cement containing 40%, 50% and 70% of Al<sub>2</sub>O<sub>3</sub> were used for the tests. Mixes containing 4%, 6%, 8%, 10% and 12% of different varieties of alumina cement were prepared; for which, the time of initial and final setting, compressive and flexural strength and adhesion to concrete substrate were determined. The analysis of the obtained test results showed that a similar immediate setting effect and clearly better adhesion strength can be obtained using the addition of 6% of high-alumina cement than 12% of low-alumina cement. As the prices of these cements are similar, this can give significant financial savings in the production of liquid floor self-levelling compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20cement" title="alumina cement">alumina cement</a>, <a href="https://publications.waset.org/abstracts/search?q=immediate%20setting" title=" immediate setting"> immediate setting</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20strength" title=" compression strength"> compression strength</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion%20to%20substrate" title=" adhesion to substrate"> adhesion to substrate</a> </p> <a href="https://publications.waset.org/abstracts/118238/the-impact-of-alumina-cement-on-properties-of-portland-cement-slurries-and-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Studies on Modified Zinc Oxide Nanoparticles as Potential Drug Carrier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Pulit-Prociak">Jolanta Pulit-Prociak</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Dlugosz"> Olga Dlugosz</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Banach"> Marcin Banach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The toxicity of bare zinc oxide nanoparticles used as drug carriers may be the result of releasing zinc ions. Thus, zinc oxide nanoparticles modified with galactose were obtained. The process of their formation was conducted in the microwave field. The physicochemical properties of the obtained products were studied. The size and electrokinetic potential were defined by using dynamic light scattering technique. The crystalline properties were assessed by X-ray diffractometry. In order to confirm the formation of the desired products, Fourier-transform infrared spectroscopy was used. The releasing of zinc ions from the prepared products when comparing to the bare oxide was analyzed. It was found out that modification of zinc oxide nanoparticles with galactose limits the releasing of zinc ions which are responsible for the toxic effect of the whole carrier-drug conjugate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title="nanomaterials">nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery%20system" title=" drug delivery system"> drug delivery system</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/138037/studies-on-modified-zinc-oxide-nanoparticles-as-potential-drug-carrier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> The Development of Chinese Film Market as Factor of Change in Global Hollywood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Adamczak">Marcin Adamczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growth of Chinese film market and its dynamic incomparable to any other historical phenomenon has already made China the second world market and potential future leader in 2-3 years period. The growing power of Chines box-office and its future prospects is then the crucial and potentially disturbing factor for persistence of global Hollywood reality. The paper is based on market statistical data. The main findings of the analysis are defining of essential obstacles for the development of Chinese market and its foreign expansion. However, the new strategies employed by the industry (acquisitions of cinema chains abroad, blockbuster made with the involvement of figures from Hollywood star system, coproduction ties within Pacific basin) could be a successful remedy for current shortcomings. The main factor for development will be wider economical framework and maintenance of growth pace. The future state of Chinese film market will be one of the main factors shaping global film culture and film market in following decades of XXI century. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production%20studies" title="production studies">production studies</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20market" title=" film market"> film market</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20film%20market" title=" Chinese film market"> Chinese film market</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution" title=" distribution"> distribution</a> </p> <a href="https://publications.waset.org/abstracts/88504/the-development-of-chinese-film-market-as-factor-of-change-in-global-hollywood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> The Modeling of City Bus Fuel Economy during the JE05 Emission Test Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslaw%20Wendeker">Miroslaw Wendeker</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Kacejko"> Piotr Kacejko</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Szlachetka"> Marcin Szlachetka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariusz%20Duk"> Mariusz Duk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a model of fuel economy in a city bus driving in a dynamic urban environment. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the bench test results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the behavior of a bus during the Japanese JE05 Emission Test Cycle. The fuel consumption was calculated for three separate research stages, i.e. urban, downtown and motorway. The simulations were performed for several values of vehicle mass and electrical load applied to on-board devices. The research results show fuel consumption is impacted by driving dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=city%20bus" title="city bus">city bus</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20duty%20vehicle" title=" heavy duty vehicle"> heavy duty vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=Japanese%20JE05%20test%20cycle" title=" Japanese JE05 test cycle"> Japanese JE05 test cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20energy" title=" kinetic energy"> kinetic energy</a> </p> <a href="https://publications.waset.org/abstracts/81457/the-modeling-of-city-bus-fuel-economy-during-the-je05-emission-test-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Modelling of Powered Roof Supports Work</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Michalak">Marcin Michalak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20modelling" title="machine modelling">machine modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20mining" title=" underground mining"> underground mining</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20mining" title=" coal mining"> coal mining</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/29127/modelling-of-powered-roof-supports-work" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Magnetic (Ethylene-Octene) Polymer Composites Reinforced With Carbon Black</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Maslowski">Marcin Maslowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20%20Zaborski"> Marian Zaborski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to receive magnetorheological elastomer composites (MRE) with the best mechanical characteristics. MRE based on different magnetoactive fillers in ethylene-octene rubber are reported and studied. To improve mechanical properties of polymer mixtures, also carbon black (N550) was added during the composites preparation process. Micro and nan-sized magnetites (Fe3O4), as well as gamma iron oxide (gamma-Fe2O3) and carbonyl iron powder (CIP) are added together with carbon black (N550) were found to be an active fillers systems improving both static and dynamic mechanical properties of elastomers. They also changed magnetic properties of composites. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Reinforcing character of applied different fillers systems results in an increased stress at 100% elongation, tensile strength and cross-linking density of the vulcanizates. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20black" title="carbon black">carbon black</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20composites" title=" magnetorheological composites"> magnetorheological composites</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20fillers" title=" magnetic fillers"> magnetic fillers</a> </p> <a href="https://publications.waset.org/abstracts/51042/magnetic-ethylene-octene-polymer-composites-reinforced-with-carbon-black" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> The Influence of Water and Salt Crystals Content on Thermal Conductivity Coefficient of Red Clay Brick</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Bednarska">Dalia Bednarska</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Koniorczyk"> Marcin Koniorczyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents results of experiments aimed at studying hygro-thermal properties of red clay brick. The main objective of research was to investigate the relation between thermal conductivity coefficient of brick and its water or Na2SO4 solution content. The research was conducted using stationary technique for the totally dried specimens, as well as the ones 25%, 50%, 75% and 100% imbued with water or sodium sulfate solution. Additionally, a sorption isotherm test was conducted for seven relative humidity levels. Furthermore the change of red clay brick pore structure before and after imbuing with water and salt solution was investigated by multi-cycle mercury intrusion test. The experimental results confirm negative influence of water or sodium sulphate on thermal properties of material. The value of thermal conductivity coefficient increases along with growth of water or Na₂SO₄ solution content. The study shows that the presence of Na₂SO₄ solution has less negative influence on brick’s thermal conductivity coefficient than water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20clay%20brick" title=" red clay brick"> red clay brick</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20sulfate" title=" sodium sulfate"> sodium sulfate</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity%20coefficient" title=" thermal conductivity coefficient"> thermal conductivity coefficient</a> </p> <a href="https://publications.waset.org/abstracts/67724/the-influence-of-water-and-salt-crystals-content-on-thermal-conductivity-coefficient-of-red-clay-brick" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Using Trip Planners in Developing Proper Transportation Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Sierpi%C5%84ski">Grzegorz Sierpiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Ireneusz%20Celi%C5%84ski"> Ireneusz Celiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Staniek"> Marcin Staniek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article discusses multi modal mobility in contemporary societies as a main planning and organization issue in the functioning of administrative bodies, a problem which really exists in the space of contemporary cities in terms of shaping modern transport systems. The article presents classification of available resources and initiatives undertaken for developing multi modal mobility. Solutions can be divided into three groups of measures–physical measures in the form of changes of the transport network infrastructure, organizational ones (including transport policy) and information measures. The latter ones include in particular direct support for people travelling in the transport network by providing information about ways of using available means of transport. A special measure contributing to this end is a trip planner. The article compares several selected planners. It includes a short description of the Green Travelling Project, which aims at developing a planner supporting environmentally friendly solutions in terms of transport network operation. The article summarizes preliminary findings of the project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobility" title="mobility">mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20split" title=" modal split"> modal split</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20trip" title=" multimodal trip"> multimodal trip</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20platforms" title=" multimodal platforms"> multimodal platforms</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20transport" title=" sustainable transport"> sustainable transport</a> </p> <a href="https://publications.waset.org/abstracts/15575/using-trip-planners-in-developing-proper-transportation-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20D%C5%82ugosz">Olga Długosz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Pulit-Prociak"> Jolanta Pulit-Prociak</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Banach"> Marcin Banach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO₂ nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO₂ nanoparticles was characterized from 30 to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were: water, SBF, and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title="titanium dioxide">titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20carrier" title=" drug carrier"> drug carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione" title=" glutathione"> glutathione</a> </p> <a href="https://publications.waset.org/abstracts/142599/titanium-dioxide-modified-with-glutathione-as-potential-drug-carrier-with-reduced-toxic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20D%C5%82ugosz">Olga Długosz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Pulit-Prociak"> Jolanta Pulit-Prociak</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Banach"> Marcin Banach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO₂ nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO₂ nanoparticles was characterized from 30 to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were water, SBF and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title="titanium dioxide">titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20carrier" title=" drug carrier"> drug carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione" title=" glutathione"> glutathione</a> </p> <a href="https://publications.waset.org/abstracts/138040/titanium-dioxide-modified-with-glutathione-as-potential-drug-carrier-with-reduced-toxic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Changes in Global DNA Methylation and DNA Damage in Two Tumor Cell Lines Treated with Silver and Gold Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Kruszewski">Marcin Kruszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Sochanowicz"> Barbara Sochanowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylwia%20M%C4%99czy%C5%84ska-Wielgosz"> Sylwia Męczyńska-Wielgosz</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Wojew%C3%B3dzka"> Maria Wojewódzka</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucyna%20Kapka-Skrzypczak"> Lucyna Kapka-Skrzypczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metallic NPs are widely used in a number of applications in industry, science and medicine. Among metallic NPs foreseen to be widely used in medicine are gold nanoparticles (AuNPs) due to their low toxicity, and silver NPs (AgNPs) due to their strong antimicrobial activity. In this study, we compared an effect of AgNPs and gold NPs (AuNPs) on the formation of DNA damage and global DNA methylation and in A2780 and 4T1 cell lines, widely used models of human ovarian carcinoma and murine mammary carcinoma, respectively. The cells were treated with AgNPs coated with citrate (AgNPs(cit) or PEG (AgNPs(PEG), or AuNPs. A global DNA methylation was investigated with ELISA, whereas the formation of DNA damage was investigated by a comet +/- FPG. AgNPs decreased global DNA methylation and increased the formation of DNA lesions in both cell lines. The effect was dependent on the type of NPs used, it's coating, and cell line used. In conclusion, the epigenetic and genotoxic effects of NPs strongly depends on NP nature and cellular context. Epigenetic changes observed upon the action of AgNPs may play a crucial role in NPs-induced changes in protein expression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage" title="DNA damage">DNA damage</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=methylation" title=" methylation"> methylation</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/108254/changes-in-global-dna-methylation-and-dna-damage-in-two-tumor-cell-lines-treated-with-silver-and-gold-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Posttranslational Modifications of Histone H3 in Tumor Tissue Isolated from Silver and Gold Nanoparticles Treated Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucyna%20Kapka-Skrzypczak">Lucyna Kapka-Skrzypczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Sochanowicz"> Barbara Sochanowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Matysiak-Kucharek"> Magdalena Matysiak-Kucharek</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Czajka"> Magdalena Czajka</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Sawicki"> Krzysztof Sawicki</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Kruszewski"> Marcin Kruszewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the strong antimicrobial activity silver nanoparticles (AgNPs) are widely used in various medical and general applications, among others, in cosmetics, odour resistant textiles, etc. The aim of this study was to compare effect of AgNPs and gold NPs (AuNPs) on histones posttranslational modifications. Histone molecule posttranscriptional modifications are responsible for chromatin compaction and repackaging. In this study, BALB/c mice were inoculated with murine mammary carcinoma 4T1 cells and treated with AgNPs coated with citrate (AgNPs(cit) or PEG (AgNPs(PEG), or AuNPs. Thereafter the histone H3 acetylation on Lys9 and H3 methylation on Lys4, Lys9, Lys29 was investigated. All NPs tested decreased H3 methylation, while no effect was observed for H3 acetylation. Modification of histone H3 methylation dependent on type of NPs used its coating, site of methylation and treatment used. Conclusion, epigenetic effects of nanomaterials depend on nanomaterial composition, its coating, and way of application. This work was supported by National Science Centre grant No. 2014/15/B/NZ7/01036 (MK, LKS, MMK, MC, KS), statutory funding for INTC (BS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title="gold nanoparticles">gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=histone" title=" histone"> histone</a>, <a href="https://publications.waset.org/abstracts/search?q=methylation" title=" methylation"> methylation</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/108255/posttranslational-modifications-of-histone-h3-in-tumor-tissue-isolated-from-silver-and-gold-nanoparticles-treated-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Response Evaluation of Electronic Nose with Polymer-Composite and Metal Oxide Semiconductor Sensor towards Microbiological Quality of Rapeseed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Tadla">Marcin Tadla</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Rusinek"> Robert Rusinek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Wawrzyniak"> Jolanta Wawrzyniak</a>, <a href="https://publications.waset.org/abstracts/search?q=Marzena%20Gawrysiak-Witulska"> Marzena Gawrysiak-Witulska</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Nawrocka"> Agnieszka Nawrocka</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Gancarz"> Marek Gancarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapeseeds were evaluated and classified by the static-headspace sampling method using electronic noses during the 25 days spoilage period. The Cyranose 320 comprising 32 polymer-composite sensors and VCA (Volatile Compound Analyzer - made in Institute of Agrophysics) built of 8 metal-oxide semiconductor (MOS) sensors were used to obtain sensor response (∆R/R). Each sample of spoiled material was divided into three parts and the degree of spoilage was measured four ways: determination of ergosterol content (ERG), colony forming units (CFU) and measurement with both e-noses. The study showed that both devices responsive to changes in the fungal microflora. Cyranose and VCA registered the change of domination microflora of fungi. After 7 days of storage, typical fungi for soil disappeared and appeared typical for storeroom was observed. In both cases, response ∆R/R decreased to the end of experiment, while ERG and JTK increased. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20nose" title="electronic nose">electronic nose</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20microflora" title=" fungal microflora"> fungal microflora</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-oxide%20sensor" title=" metal-oxide sensor"> metal-oxide sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer-composite%20sensors" title=" polymer-composite sensors"> polymer-composite sensors</a> </p> <a href="https://publications.waset.org/abstracts/43641/response-evaluation-of-electronic-nose-with-polymer-composite-and-metal-oxide-semiconductor-sensor-towards-microbiological-quality-of-rapeseed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Marcin%20Zielinski&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Marcin%20Zielinski&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10