CINXE.COM

Search results for: surface reaction rate

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: surface reaction rate</title> <meta name="description" content="Search results for: surface reaction rate"> <meta name="keywords" content="surface reaction rate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="surface reaction rate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="surface reaction rate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15356</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: surface reaction rate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15116</span> Ni-W alloy Coatings: A Promising Electrode Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mr.%20Liju%20Elias">Mr. Liju Elias</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chitharanjan%20Hegde"> A. Chitharanjan Hegde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ni-W alloy coatings have been developed galvanostatically on copper substrate from tri-sodium citrate bath, using glycerol as the additive. The deposition conditions for production of Ni-W coatings have been optimized for peak performance of their electrocatalytic activity, namely hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The corrosion behavior of the coatings were tested under working conditions of electrocatalysis (1M KOH). Electrocatalytic behaviours were tested by cyclic voltammetry and chrono-potentiometry techniques. Experimental results demonstrated that Ni-W coatings at low and high current densities (c. d.) showing superior performance for OER and HER respectively. The increased electrocatalytic activity for HER with increase of deposition c. d. was attributed to the phase structure, surface morphology and chemical composition of the coatings, confirmed by XRD, SEM and EDX analysis, respectively. The dependency of hardness and thickness of the coatings on HER and OER were examined, and results were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocatalytic%20behavior" title="electrocatalytic behavior">electrocatalytic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=HER" title=" HER"> HER</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni-W%20alloy" title=" Ni-W alloy"> Ni-W alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=OER" title=" OER"> OER</a> </p> <a href="https://publications.waset.org/abstracts/17794/ni-w-alloy-coatings-a-promising-electrode-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15115</span> Comparative Assessment of MRR, TWR, and Surface Integrity in Rotary and Stationary Tool EDM for Machining AISI D3 Tool Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anand%20Prakash%20Dwivedi">Anand Prakash Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sounak%20Kumar%20Choudhury"> Sounak Kumar Choudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric Discharge Machining (EDM) is a well-established and one of the most primitive unconventional manufacturing processes, that is used world-wide for the machining of geometrically complex or hard and electrically conductive materials which are extremely difficult to cut by any other conventional machining process. One of the major flaws, over all its advantages, is its very slow Material Removal Rate (MRR). In order to eradicate this slow machining rate, various researchers have proposed various methods like; providing rotational motion to the tool or work-piece or to both, mixing of conducting additives (such as SiC, Cr, Al, graphite etc) powders in the dielectric, providing vibrations to the tool or work-piece or to both etc. Present work is a comparative study of Rotational and Stationary Tool EDM, which deals with providing rotational motion to the copper tool for the machining of AISI D3 Tool Steel and the results have been compared with stationary tool EDM. It has been found that the tool rotation substantially increases the MRR up to 28%. The average surface finish increases around 9-10% by using the rotational tool EDM. The average tool wear increment is observed to be around 19% due to the tool rotation. Apart from this, the present work also focusses on the recast layer analysis, which are being re-deposited on the work-piece surface during the operation. The recast layer thickness is less in case of Rotational EDM and more for Stationary Tool EDM. Moreover, the cracking on the re-casted surface is also more for stationary tool EDM as compared with the rotational EDM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EDM" title="EDM">EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=MRR" title=" MRR"> MRR</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra" title=" Ra"> Ra</a>, <a href="https://publications.waset.org/abstracts/search?q=TWR" title=" TWR"> TWR</a> </p> <a href="https://publications.waset.org/abstracts/26356/comparative-assessment-of-mrr-twr-and-surface-integrity-in-rotary-and-stationary-tool-edm-for-machining-aisi-d3-tool-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15114</span> Synergy Surface Modification for High Performance Li-Rich Cathode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aipeng%20Zhu">Aipeng Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Zhang"> Yun Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing grievous environment problems together with the exhaustion of energy resources put urgent demands for developing high energy density. Considering the factors including capacity, resource and environment, Manganese-based lithium-rich layer-structured cathode materials xLi₂MnO₃⋅(1-x)LiMO₂ (M = Ni, Co, Mn, and other metals) are drawing increasing attention due to their high reversible capacities, high discharge potentials, and low cost. They are expected to be one type of the most promising cathode materials for the next-generation Li-ion batteries (LIBs) with higher energy densities. Unfortunately, their commercial applications are hindered with crucial drawbacks such as poor rate performance, limited cycle life and continuous falling of the discharge potential. With decades of extensive studies, significant achievements have been obtained in improving their cyclability and rate performances, but they cannot meet the requirement of commercial utilization till now. One major problem for lithium-rich layer-structured cathode materials (LLOs) is the side reaction during cycling, which leads to severe surface degradation. In this process, the metal ions can dissolve in the electrolyte, and the surface phase change can hinder the intercalation/deintercalation of Li ions and resulting in low capacity retention and low working voltage. To optimize the LLOs cathode material, the surface coating is an efficient method. Considering the price and stability, Al₂O₃ was used as a coating material in the research. Meanwhile, due to the low initial Coulombic efficiency (ICE), the pristine LLOs was pretreated by KMnO₄ to increase the ICE. The precursor was prepared by a facile coprecipitation method. The as-prepared precursor was then thoroughly mixed with Li₂CO₃ and calcined in air at 500℃ for 5h and 900℃ for 12h to produce Li₁.₂[Ni₀.₂Mn₀.₆]O₂ (LNMO). The LNMO was then put into 0.1ml/g KMnO₄ solution stirring for 3h. The resultant was filtered and washed with water, and dried in an oven. The LLOs obtained was dispersed in Al(NO₃)₃ solution. The mixture was lyophilized to confer the Al(NO₃)₃ was uniformly coated on LLOs. After lyophilization, the LLOs was calcined at 500℃ for 3h to obtain LNMO@LMO@ALO. The working electrodes were prepared by casting the mixture of active material, acetylene black, and binder (polyvinglidene fluoride) dissolved in N-methyl-2-pyrrolidone with a mass ratio of 80: 15: 5 onto an aluminum foil. The electrochemical performance tests showed that the multiple surface modified materials had a higher initial Coulombic efficiency (84%) and better capacity retention (91% after 100 cycles) compared with that of pristine LNMO (76% and 80%, respectively). The modified material suggests that the KMnO₄ pretreat and Al₂O₃ coating can increase the ICE and cycling stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-rich%20materials" title="Li-rich materials">Li-rich materials</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20coating" title=" surface coating"> surface coating</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20batteries" title=" lithium ion batteries"> lithium ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%E2%82%82O%E2%82%83" title=" Al₂O₃"> Al₂O₃</a> </p> <a href="https://publications.waset.org/abstracts/127498/synergy-surface-modification-for-high-performance-li-rich-cathode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15113</span> Uranium Adsorption Using a Composite Material Based on Platelet SBA-15 Supported Tin Salt Tungstomolybdophosphoric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Aghayan">H. Aghayan</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Hashemi"> F. A. Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Yavari"> R. Yavari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a new composite adsorbent based on a mesoporous silica SBA-15 with platelet morphology and tin salt of tungstomolybdophosphoric (TWMP) acid was synthesized and applied for uranium adsorption from aqueous solution. The sample was characterized by X-ray diffraction, Fourier transfer infra-red, and N<sub>2</sub> adsorption-desorption analysis, and then, effect of various parameters such as concentration of metal ions and contact time on adsorption behavior was examined. The experimental result showed that the adsorption process was explained by the Langmuir isotherm model very well, and predominant reaction mechanism is physisorption. Kinetic data of adsorption suggest that the adsorption process can be described by the pseudo second-order reaction rate model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=platelet%20SBA-15" title="platelet SBA-15">platelet SBA-15</a>, <a href="https://publications.waset.org/abstracts/search?q=tungstomolybdophosphoric%20acid" title=" tungstomolybdophosphoric acid"> tungstomolybdophosphoric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium%20ion" title=" uranium ion"> uranium ion</a> </p> <a href="https://publications.waset.org/abstracts/73436/uranium-adsorption-using-a-composite-material-based-on-platelet-sba-15-supported-tin-salt-tungstomolybdophosphoric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15112</span> Predictions of Values in a Causticizing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Andreola">R. Andreola</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20A.%20Santos"> O. A. A. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20M.%20Jorge"> L. M. M. Jorge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papé is, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causticizing" title="causticizing">causticizing</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a> </p> <a href="https://publications.waset.org/abstracts/24627/predictions-of-values-in-a-causticizing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15111</span> [Keynote Talk]: Machining Parameters Optimization with Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dejan%20Taniki%C4%87">Dejan Tanikić</a>, <a href="https://publications.waset.org/abstracts/search?q=Miodrag%20Mani%C4%87"> Miodrag Manić</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20%C4%90okovi%C4%87"> Jelena Đoković</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C5%A1a%20Kalinovi%C4%87"> Saša Kalinović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the determination of the optimum machining parameters, according to the measured and modelled data of the cutting temperature and surface roughness, during the turning of the AISI 4140 steel. The high cutting temperatures are unwanted occurences in the metal cutting process. They impact negatively on the quality of the machined part. The machining experiments were performed using different cutting regimes (cutting speed, feed rate and depth of cut), with different values of the workpiece hardness, which causes different values of the measured cutting temperature as well as the measured surface roughness. The temperature and surface roughness data were modelled after that using Response Surface Methodology (RSM). The obtained RSM models are used in the process of optimization of the cutting regimes using the Genetic Algorithms (GA) tool, which enables the metal cutting process in the optimum conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title="genetic algorithms">genetic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=machining%20parameters" title=" machining parameters"> machining parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=turning%20process" title=" turning process"> turning process</a> </p> <a href="https://publications.waset.org/abstracts/82130/keynote-talk-machining-parameters-optimization-with-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15110</span> Hydrothermal Treatment for Production of Aqueous Co-Product and Efficient Oil Extraction from Microalgae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manatchanok%20Tantiphiphatthana">Manatchanok Tantiphiphatthana</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Peng"> Lin Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rujira%20Jitrwung"> Rujira Jitrwung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunio%20Yoshikawa"> Kunio Yoshikawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrothermal liquefaction (HTL) is a technique for obtaining clean biofuel from biomass in the presence of heat and pressure in an aqueous medium which leads to a decomposition of this biomass to the formation of various products. A role of operating conditions is essential for the bio-oil and other products’ yield and also quality of the products. The effects of these parameters were investigated in regards to the composition and yield of the products. Chlorellaceae microalgae were tested under different HTL conditions to clarify suitable conditions for extracting bio-oil together with value-added co-products. Firstly, different microalgae loading rates (5-30%) were tested and found that this parameter has not much significant to product yield. Therefore, 10% microalgae loading rate was selected as a proper economical solution for conditioned schedule at 250oC and 30 min-reaction time. Next, a range of temperature (210-290oC) was applied to verify the effects of each parameter by keeping the reaction time constant at 30 min. The results showed no linkage with the increase of the reaction temperature and some reactions occurred that lead to different product yields. Moreover, some nutrients found in the aqueous product are possible to be utilized for nutrient recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-oil" title="bio-oil">bio-oil</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20liquefaction" title=" hydrothermal liquefaction"> hydrothermal liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20co-product" title=" aqueous co-product"> aqueous co-product</a> </p> <a href="https://publications.waset.org/abstracts/25776/hydrothermal-treatment-for-production-of-aqueous-co-product-and-efficient-oil-extraction-from-microalgae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15109</span> Smartphone Addiction and Reaction Time in Geriatric Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjali%20N.%20Shete">Anjali N. Shete</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Mahajan"> G. D. Mahajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanda%20Somwanshi"> Nanda Somwanshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: Smartphones are the new generation of mobile phones; they have emerged over the last few years. Technology has developed so much that it has become part of our life and mobile phones are one of them. These smartphones are equipped with the capabilities to display photos, play games, watch videos and navigation, etc. The advances have a huge impact on many walks of life. The adoption of new technology has been challenging for the elderly. But, the elder population is also moving towards digitally connected lives. As age advances, there is a decline in the motor and cognitive functions of the brain, and hence the reaction time is affected. The study was undertaken to assess the usefulness of smartphones in improving cognitive functions. Aims and Objectives: The aim of the study was to observe the effects of smartphone addiction on reaction time in elderly population Material and Methods: This is an experimental study. 100 elderly subjects were enrolled in this study randomly from urban areas. They all were using smartphones for several hours a day. They were divided into two groups according to the scores of the mobile phone addiction scale (MPAS). Simple reaction time was estimated by the Ruler drop method. The reaction time was then calculated for each subject in both groups. The data were analyzed using mean, standard deviation, and Pearson correlation test. Results: The mean reaction time in Group A is 0.27+ 0.040 and in Group B is 0.20 + 0.032. The values show a statistically significant change in reaction time. Conclusion: Group A with a high MPAS score has a low reaction time compared to Group B with a low MPAS score. Hence, it can be concluded that the use of smartphones in the elderly is useful, delaying the neurological decline, and smarten the brain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smartphones" title="smartphones">smartphones</a>, <a href="https://publications.waset.org/abstracts/search?q=MPAS" title=" MPAS"> MPAS</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20time" title=" reaction time"> reaction time</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly%20population" title=" elderly population"> elderly population</a> </p> <a href="https://publications.waset.org/abstracts/113508/smartphone-addiction-and-reaction-time-in-geriatric-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15108</span> Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Mohammadpour">Masoud Mohammadpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Blair%20Carlson"> Blair Carlson</a>, <a href="https://publications.waset.org/abstracts/search?q=Radovan%20Kovacevic"> Radovan Kovacevic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2&ndash;4 kW), welding speed (60&ndash;80 mm/s) and wire feed rate (70&ndash;90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box&ndash; Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 &micro;m. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700&ndash;900 &deg;C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20welding-brazing" title="laser welding-brazing">laser welding-brazing</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology%20%28RSM%29" title=" response surface methodology (RSM)"> response surface methodology (RSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-response%20optimization" title=" multi-response optimization"> multi-response optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-beam%20laser" title=" cross-beam laser"> cross-beam laser</a> </p> <a href="https://publications.waset.org/abstracts/82651/parameter-optimization-and-thermal-simulation-in-laser-joining-of-coach-peel-panels-of-dissimilar-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15107</span> Simultaneous Esterification and Transesterification of High FFA Jatropha Oil Using Reactive Distillation for Biodiesel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Dewi%20Kusumaningtyas">Ratna Dewi Kusumaningtyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Prima%20Astuti%20Handayani"> Prima Astuti Handayani</a>, <a href="https://publications.waset.org/abstracts/search?q=Arief%20Budiman"> Arief Budiman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reactive Distillation (RD) is a multifunctional reactor which integrates chemical reaction with in situ separation to shift the equilibrium towards the product formation. Thus, it is suitable for equilibrium limited reaction such as esterification and transesterification to enhance the reaction conversion. In this work, the application of RD for high FFA oil esterification-transterification for biodiesel production using sulphuric acid catalyst has been studied. Crude Jatropha Oil with FFA content of 30.57% was utilized as the feedstock. Effects of the catalyst concentration and molar ratio of the alcohol to oils were also investigated. It was revealed that best result was obtained with sulphuric acid catalyst (reaction conversion of 94.71% and FFA content of 1.62%) at 60C, molar ratio of methanol to FFA of 30:1, and catalyst loading of 3%. After undergoing esterification reaction, jatropha oil was then transesterified to produce biodiesel. Transesterification reaction was performed in the presence of NaOH catalyst in RD column at 60C, molar ratio of methanol to oil of 6:1, and catalyst concentration of 1%. It demonstrated that biodiesel produced in this work agreed with the Indonesian National and ASTM standard of fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactive%20distillation" title="reactive distillation">reactive distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=esterification" title=" esterification"> esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/9418/simultaneous-esterification-and-transesterification-of-high-ffa-jatropha-oil-using-reactive-distillation-for-biodiesel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15106</span> Enhanced Photocatalytic Activities of TiO2/Ag2O Heterojunction Nanotubes Arrays Obtained by Electrochemical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Diaka">Magdalena Diaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawe%C5%82%20Mazierski"> Paweł Mazierski</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20%C5%BBebrowska"> Joanna Żebrowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Winiarski"> Michał Winiarski</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Klimczuk"> Tomasz Klimczuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Zaleska-Medynska"> Adriana Zaleska-Medynska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last years, TiO2 nanotubes have been widely studied due to their unique highly ordered array structure, unidirectional charge transfer and higher specific surface area compared to conventional TiO2 powder. These photoactive materials, in the form of thin layer, can be activated by low powered and low cost irradiation sources (such as LEDs) to remove VOCs, microorganism and to deodorize air streams. This is possible due to their directly growth on a support material and high surface area, which guarantee enhanced photon absorption together with an extensive adsorption of reactant molecules on the photocatalyst surface. TiO2 nanotubes exhibit also lots of other attractive properties, such as potential enhancement of electron percolation pathways, light conversion, and ion diffusion at the semiconductor-electrolyte interface. Pure TiO2 nanotubes were previously used to remove organic compounds from the gas phase as well as in water splitting reaction. The major factors limiting the use of TiO2 nanotubes, which have not been fully overcome, are their relatively large band gap (3-3,2 eV) and high recombination rate of photogenerated electron–hole pairs. Many different strategies were proposed to solve this problem, however titania nanostructures containing incorporated metal oxides like Ag2O shows very promising, new optical and photocatalytic properties. Unfortunately, there is still very limited number of reports regarding application of TiO2/MxOy nanostructures. In the present work, we prepared TiO2/Ag2O nanotubes obtained by anodization of Ti-Ag alloys containing 5, 10 and 15 wt. % Ag. Photocatalysts prepared in this way were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), luminescence spectroscopy and UV-Vis spectroscopy. The activities of new TiO2/Ag2O were examined by photocatalytic degradation of toluene in gas phase reaction and phenol in aqueous phase using 1000 W Xenon lamp (Oriel) and light emitting diodes (LED) as a irradiation sources. Additionally efficiency of bacteria (Pseudomonas aeruginosa) removal from the gas phase was estimated. The number of surviving bacteria was determined by the serial twofold dilution microtiter plate method, in Tryptic Soy Broth medium (TSB, GibcoBRL). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20properties" title=" antibacterial properties"> antibacterial properties</a>, <a href="https://publications.waset.org/abstracts/search?q=titania%20nanotubes" title=" titania nanotubes"> titania nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20TiO2%2FMxOy%20nanostructures" title=" new TiO2/MxOy nanostructures"> new TiO2/MxOy nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/41607/enhanced-photocatalytic-activities-of-tio2ag2o-heterojunction-nanotubes-arrays-obtained-by-electrochemical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15105</span> Efficient Oxygen Evolution and Gas Bubble Release by a Low-Bubble-Adhesion Iron-Nickel Vanadate Electrocatalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Dastafkan">Kamran Dastafkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuan%20Zhao"> Chuan Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving surface chemistry is a promising approach in addition to the rational alteration in the catalyst composition to advance water electrolysis. Here, we demonstrate an evident enhancement of oxygen evolution on an iron-nickel vanadate catalyst synthesized by a facile successive ionic adsorption and reaction method. The vanadate-modified catalyst demonstrates a highly efficient oxygen evolution in 1 M KOH by requiring low overpotentials of 274 and 310 mV for delivering large current densities of 100 and 400 mA cm⁻², respectively where vigorous gas bubble evolution occurs. Vanadate modification augments the OER activity from three aspects. (i) Both the electrochemical surface area (47.1 cm²) and intrinsic activity (318 mV to deliver 10 mA cm⁻² per unit ECSA) of the catalytic sites are improved. (ii) The amorphous and roughened nanoparticle-comprised catalyst film exhibits a high surface wettability and a low-gas bubble-adhesion, which is beneficial for the accelerated mass transport and gas bubble dissipation at large current densities. The gas bubble dissipation behavior is studied by operando dynamic specific resistance measurements where a significant change in the variation of the interfacial resistance during the OER is detected for the vanadate-modified catalyst. (iii) The introduced vanadate poly-oxo-anions with high charge density have electronic interplay with Fe and Ni catalytic centers. Raman study reveals the structural evolution of β-NiOOH and γ-FeOOH phases during the OER through the vanadate-active site synergistic interactions. Achievement of a high catalytic turnover of 0.12 s⁻¹ put the developed FeNi vanadate among the best recent catalysts for water oxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20bubble%20dissipation" title="gas bubble dissipation">gas bubble dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=iron-nickel%20vanadate" title=" iron-nickel vanadate"> iron-nickel vanadate</a>, <a href="https://publications.waset.org/abstracts/search?q=low-gas%20bubble-adhesion%20catalyst" title=" low-gas bubble-adhesion catalyst"> low-gas bubble-adhesion catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20evolution%20reaction" title=" oxygen evolution reaction"> oxygen evolution reaction</a> </p> <a href="https://publications.waset.org/abstracts/118358/efficient-oxygen-evolution-and-gas-bubble-release-by-a-low-bubble-adhesion-iron-nickel-vanadate-electrocatalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15104</span> Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mojiri">Amin Mojiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Akiyoshi%20Ohashi"> Akiyoshi Ohashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomonori%20Kindaichi"> Tomonori Kindaichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO<sub>2</sub>-IrO<sub>2</sub>) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20oxidation" title=" electrochemical oxidation"> electrochemical oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=SBR" title=" SBR"> SBR</a> </p> <a href="https://publications.waset.org/abstracts/93816/pollutants-removal-from-synthetic-wastewater-by-the-combined-electrochemical-sequencing-batch-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15103</span> Investigation of the Use of Surface-Modified Waste Orange Pulp for the Adsorption of Remazol Black B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ceren%20Karaman">Ceren Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Onur%20Karaman"> Onur Karaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption of Remazol Black B (RBB), an anionic dye, onto dried orange pulp (DOP) adsorbent prepared by only drying and by treating with cetyltrimetylammonium bromide (CTAB), a cationic surfactant, surface-modified orange pulp (SMOP) was studied in a stirred batch experiments system at 25°C. The adsorption of RBB on each adsorbent as a function of surfactant dosage, initial pH of the solution and initial dye concentration was investigated. The optimum amount of CTAB was found to be 25g/l. For RBB adsorption studies, while working pH value for the DOP adsorbent system was determined as 2.0, it was observed that this value shifted to 8.0 when the 25 g/l CTAB treated-orange pulp (SMOP) adsorbent was used. It was obtained that the adsorption rate and capacity increased to a certain value, and the adsorption efficiency decreased with increasing initial RBB concentration for both DOP and SMOP adsorbents at pH 2.0 and pH 8.0. While the highest adsorption capacity for DOP was determined as 62.4 mg/g at pH 2.0, and as 325.0 mg/g for SMOP at pH 8.0. As a result, it can be said that permanent cationic coating of the adsorbent surface by CTAB surfactant shifted the working pH from 2.0 to 8.0 and it increased the dye adsorption rate and capacity of orange pulp much more significantly at pH 8.0. The equilibrium RBB adsorption data on each adsorbent were best described by the Langmuir isotherm model. The adsorption kinetics of RBB on each adsorbent followed a pseudo-second-order model. Moreover, the intraparticle diffusion model was used to describe the kinetic data. It was found that diffusion is not the only rate controlling step. The adsorbent was characterized by the Brunauer–Emmett–Teller (BET) analysis, Fourier-transform-infrared (FTIR) spectroscopy, and scanning-electron-microscopy (SEM). The mechanism for the adsorption of RBB on the SMOP may include hydrophobic interaction, van der Waals interaction, stacking and electrostatic interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Cetyltrimethylammonium%20Bromide%20%28CTAB%29" title=" Cetyltrimethylammonium Bromide (CTAB)"> Cetyltrimethylammonium Bromide (CTAB)</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20pulp" title=" orange pulp"> orange pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=Remazol%20Black%20B%20%28RBB%29" title=" Remazol Black B (RBB)"> Remazol Black B (RBB)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/70127/investigation-of-the-use-of-surface-modified-waste-orange-pulp-for-the-adsorption-of-remazol-black-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15102</span> Macroscopic Evidence of the Liquidlike Nature of Nanoscale Polydimethylsiloxane Brushes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoxiao%20Zhao">Xiaoxiao Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report macroscopic evidence of the liquidlike nature of surface-tethered poly(dimethylsiloxane) (PDMS) brushes by studying their adhesion to ice. Whereas ice permanently detaches from solid surfaces when subjected to sufficient shear, commonly referred to as the material’s ice adhesion strength, adhered ice instead slides over PDMS brushes indefinitely. When additionally methylated, we observe a Couette-like flow of the PDMS brushes between the ice and silicon surface. PDMS brush ice adhesion displays shear-rate-dependent shear stress and rheological behavior reminiscent of liquids and is affected by ice velocity, temperature, and brush thickness, following scaling laws akin to liquid PDMS films. This liquidlike nature allows it to detach solely by self-weight, yielding an ice adhesion strength of 0.3 kPa, 1000 times less than low surface energy, perfluorinated monolayer. The methylated PDMS brushes also display omniphobicity, repelling all liquids essentially with vanishingly small contact angle hysteresis. Methylation results in significantly higher contact angles than previously reported, nonmethylated brushes, especially for polar liquids of both high and low surface tension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=omniphobic" title="omniphobic">omniphobic</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20science" title=" surface science"> surface science</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20brush" title=" polymer brush"> polymer brush</a>, <a href="https://publications.waset.org/abstracts/search?q=icephobic%20surface" title=" icephobic surface"> icephobic surface</a> </p> <a href="https://publications.waset.org/abstracts/164155/macroscopic-evidence-of-the-liquidlike-nature-of-nanoscale-polydimethylsiloxane-brushes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15101</span> Development and Characterization of Cobalt Metal Loaded ZSM-5 and H-ZSM-5 Catalyst for Fischer -Tropsch Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Bahri">Shashank Bahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Divyanshu%20Arya"> Divyanshu Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Jain"> Rajni Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreedevi%20Upadhyayula"> Sreedevi Upadhyayula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petroleum products can be obtained from syngas catalytic conversion using Fischer Tropsch Reaction. The liquid fuels obtained from FTS are sulphur and nitrogen free and thus may easily meet the increasing stringent environment regulations. In the present work we have synthesized Meso porous ZSM-5 supported catalyst. Meso structure were created in H-ZSM-5 crystallites by demetalation via subsequent base and acid treatment. Desilication through base treatment provides H-ZSM-5 with pore size and volumes similar to amorphous SiO2 (Conventional Carrier). Modifying the zeolite texture and surface chemistry by Desilication and acid washing alters its accessibility and interactions with metal phase and consequently the CO adsorption behavior and hydrocarbon product distribution. Increasing the mesoporosity via desilication provides the micro porous zeolite with essential surface area to support optimally sized metal crystallites. This improves the metal dispersion and hence improve the activity of the catalyst. Transition metal (Co) was loaded using wet impregnation method. Synthesized catalysts were characterized by Infrared Spectroscopy, Powdered X-Ray Diffraction, Scanning Electron Microscopy (SEM), BET Method analytical techniques. Acidity of the catalyst which plays an important role in FTS reaction was measured by DRIFT setup pyridine adsorption instead of NH3 Temperature Programmed Desorption. The major difference is that, Pyridine Adsorption can distinguish between Lewis acidity and Bronsted Acidity, thus giving their relative strengths in the catalyst sample, whereas TPD gives total acidity including Lewis and Bronsted ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesopourus" title="mesopourus">mesopourus</a>, <a href="https://publications.waset.org/abstracts/search?q=fischer%20tropsch%20reaction" title=" fischer tropsch reaction"> fischer tropsch reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=pyridine%20adsorrption" title=" pyridine adsorrption"> pyridine adsorrption</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20study" title=" drift study"> drift study</a> </p> <a href="https://publications.waset.org/abstracts/14761/development-and-characterization-of-cobalt-metal-loaded-zsm-5-and-h-zsm-5-catalyst-for-fischer-tropsch-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15100</span> Organic Rejection and Membrane Fouling with Inorganic Alumina Membrane for Industrial Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rizwan%20Ahmad">Rizwan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Soomin%20Chang"> Soomin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Daeun%20Kwon"> Daeun Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeonghwan%20Kim"> Jeonghwan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interests in an inorganic membrane are growing rapidly for industrial wastewater treatment due to its excellent chemical and thermal stability over polymeric membrane. Nevertheless, understanding of the membrane rejection and fouling rate caused by the deposit of contaminants on membrane surface and within membrane pores through inorganic porous membranes still requires much attention. Microfiltration alumina membranes were developed and applied for the industrial wastewater treatment to investigate rejection efficiency of organic contaminant and membrane fouling at various operational conditions. In this study, organic rejection and membrane fouling were investigated by using the alumina flat-tubular membrane developed for the treatment of industrial wastewaters. The flat-tubular alumina membranes were immersed in a fluidized membrane reactor added with granular activated carbon (GAC) particles. Fluidization was driven by recirculating a bulk industrial wastewater along membrane surface through the reactor. In the absence of GAC particles, for hazardous anionic dye contaminants, functional group characterized by the organic contaminant was found as one of the main factors affecting both membrane rejection and fouling rate. More fouling on the membrane surface led to the existence of dipolar characterizations and this was more pronounced at lower solution pH, thereby improving membrane rejection accordingly. Similar result was observed with a real metal-plating wastewater. Strong correlation was found that higher fouling rate resulted in higher organic rejection efficiency. Hydrophilicity exhibited by alumina membrane improved the organic rejection efficiency of the membrane due to the formation of hydrophilic fouling layer deposited on it. In addition, less surface roughness of alumina membrane resulted in less fouling rate. Regardless of the operational conditions applied in this study, fluidizing the GAC particles along the surface of alumina membrane was very effective to enhance organic removal efficiency higher than 95% and provide an excellent tool to reduce membrane fouling. Less than 0.1 bar as suction pressure was maintained with the alumina membrane at 25 L/m²hr of permeate set-point flux during the whole operational periods without performing any backwashing and chemical enhanced cleaning for the membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20membrane" title="alumina membrane">alumina membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20membrane%20reactor" title=" fluidized membrane reactor"> fluidized membrane reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title=" industrial wastewater"> industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling" title=" membrane fouling"> membrane fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=rejection" title=" rejection"> rejection</a> </p> <a href="https://publications.waset.org/abstracts/102592/organic-rejection-and-membrane-fouling-with-inorganic-alumina-membrane-for-industrial-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15099</span> The Dynamics of a Droplet Spreading on a Steel Surface </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeniya%20Orlova">Evgeniya Orlova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitriy%20Feoktistov"> Dmitriy Feoktistov</a>, <a href="https://publications.waset.org/abstracts/search?q=Geniy%20Kuznetsov"> Geniy Kuznetsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20line%20speed" title="contact line speed">contact line speed</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20growth%20rate" title=" droplet growth rate"> droplet growth rate</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20contact%20angle" title=" dynamic contact angle"> dynamic contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=shadow%20system" title=" shadow system"> shadow system</a>, <a href="https://publications.waset.org/abstracts/search?q=spreading" title=" spreading"> spreading</a> </p> <a href="https://publications.waset.org/abstracts/57156/the-dynamics-of-a-droplet-spreading-on-a-steel-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15098</span> The Effect of Metformin in Combination with Dexamethasone on the CXCR4 Level in Multiple Myeloma Cell Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyede%20Sanaz%20Seyedebrahimi">Seyede Sanaz Seyedebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shima%20Rahimi"> Shima Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shohreh%20Fakhari"> Shohreh Fakhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Jalili"> Ali Jalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: CXCR4, as a chemokine receptor, plays well-known roles in various types of cancers. Several studies have been conducted to overcome CXCR4 axis acts in multiple myeloma (MM) pathogenesis and progression. Dexamethasone, a standard treatment for multiple myeloma, has been shown to increase CXCR4 levels in multiple myeloma cell lines. Herein, we focused on the effects of metformin and dexamethasone on CXCR4 at the cellular level and the migration rate of cell lines after exposure to a combination compared to single-agent models. Materials and Method: Multiple myeloma cell lines (U266 and RPMI8226) were cultured with different metformin and dexamethasone concentrations in single-agent and combination models. The simultaneous combination doses were calculated by CompuSyn software. Cell surface and mRNA expression of CXCR4 were determined using flow cytometry and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay, respectively. The Transwell cell migration assay evaluated the migration ability. Results: In concurred with previous studies, our results showed a dexamethasone up-regulation effect on CXCR4 in a dose-dependent manner. Although, the metformin single-agent model could reduce CXCR4 expression of U266 and RPMI8226 in cell surface and mRNA expression level. Moreover, the administration of metformin and dexamethasone simultaneously exerted a higher suppression effect on CXCR4 expression than the metformin single-agent model. The migration rate through the combination model's matrigel membrane was remarkably lower than the metformin and dexamethasone single-agent model. Discussion: According to our findings, the combination of metformin and dexamethasone effectively inhibited dexamethasone-induced CXCR4 expression in multiple myeloma cell lines. As a result, metformin may be counted as an alternative medicine combined with other chemotherapies to combat multiple myeloma. However, more research is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CXCR4" title="CXCR4">CXCR4</a>, <a href="https://publications.waset.org/abstracts/search?q=dexamethasone" title=" dexamethasone"> dexamethasone</a>, <a href="https://publications.waset.org/abstracts/search?q=metformin" title=" metformin"> metformin</a>, <a href="https://publications.waset.org/abstracts/search?q=migration" title=" migration"> migration</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20myeloma" title=" multiple myeloma"> multiple myeloma</a> </p> <a href="https://publications.waset.org/abstracts/137004/the-effect-of-metformin-in-combination-with-dexamethasone-on-the-cxcr4-level-in-multiple-myeloma-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15097</span> Improving Biodegradation Behavior of Fabricated WE43 Magnesium Alloy by High-Temperature Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinge%20Liu">Jinge Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuyuan%20Min"> Shuyuan Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingchuan%20Liu"> Bingchuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangzhao%20Yin"> Bangzhao Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Peng"> Bo Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Wen"> Peng Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Tian"> Yun Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> WE43 magnesium alloy can be additively manufactured via laser powder bed fusion (LPBF) for biodegradable applications, but the as-built WE43 exhibits an excessively rapid corrosion rate. High-temperature oxidation (HTO) was performed on the as-built WE43 to improve its biodegradation behavior. A sandwich structure including an oxide layer at the surface, a transition layer in the middle, and the matrix was generated influenced by the oxidation reaction and diffusion of RE atoms when heated at 525 ℃for 8 hours. The oxide layer consisted of Y₂O₃ and Nd₂O₃ oxides with a thickness of 2-3 μm. The transition layer is composed of α-Mg and Y₂O₃ with a thickness of 60-70 μm, while Mg24RE5 could be observed except α-Mg and Y₂O₃. The oxide layer and transition layer appeared to have an effective passivation effect. The as-built WE43 lost 40% weight after the in vitro immersion test for three days and finally broke into debris after seven days of immersion. The high-temperature oxidation samples kept the structural integrity and lost only 6.88 % weight after 28-day immersion. The corrosion rate of HTO samples was significantly controlled, which improved the biocompatibility of the as-built WE43 at the same time. The samples after HTO had better osteogenic capability according to ALP activity. Moreover, as built WE43 performed unqualified in cell adhesion and hemolytic test due to its excessively rapid corrosion rate. While as for HTO samples, cells adhered well, and the hemolysis ratio was only 1.59%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20powder%20bed%20fusion" title="laser powder bed fusion">laser powder bed fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20metal" title=" biodegradable metal"> biodegradable metal</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20oxidation" title=" high temperature oxidation"> high temperature oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation%20behavior" title=" biodegradation behavior"> biodegradation behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=WE43" title=" WE43"> WE43</a> </p> <a href="https://publications.waset.org/abstracts/156258/improving-biodegradation-behavior-of-fabricated-we43-magnesium-alloy-by-high-temperature-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15096</span> Optimization of Machining Parameters by Using Cryogenic Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shafqat%20Wahab">Shafqat Wahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Tahir"> Waseem Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Manzoor%20Ahmad"> Manzoor Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarfraz%20Khan"> Sarfraz Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Azam"> M. Azam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimization and analysis of tool flank wear width and surface finish of alloy steel rods are studied in the presence of cryogenic media (LN2) by using Tungsten Carbide Insert (CNMG 120404- WF 4215). Robust design concept of Taguchi L9(34) method and ANOVA is applied to determine the contribution of key cutting parameters and their optimum conditions. Through analysis, it revealed that cryogenic impact is more significant in reduction of the tool flank wear width while surface finish is mostly dependent on feed rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turning" title="turning">turning</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20fluid" title=" cryogenic fluid"> cryogenic fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen" title=" liquid nitrogen"> liquid nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=flank%20wear" title=" flank wear"> flank wear</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=taguchi" title=" taguchi"> taguchi</a> </p> <a href="https://publications.waset.org/abstracts/25627/optimization-of-machining-parameters-by-using-cryogenic-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">666</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15095</span> Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Velid%20Demir">Velid Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesut%20Akg%C3%BCn"> Mesut Akgün</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al₂O₃ using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al₂O₃ was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La₂O₃/γ-Al₂O₃ at the same parameters. For this study, ZnO/γ-Al₂O₃ was the most suitable catalyst due to performance and cost considerations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalyst" title=" heterogeneous catalyst"> heterogeneous catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=jatropha%20oil" title=" jatropha oil"> jatropha oil</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20methanol" title=" supercritical methanol"> supercritical methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/162036/supercritical-methanol-for-biodiesel-production-from-jatropha-oil-in-the-presence-of-heterogeneous-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15094</span> Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaseen%20Muhammad">Yaseen Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenxia%20Zhao"> Zhenxia Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhangfa%20Tong"> Zhangfa Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT%20simulation" title="DFT simulation">DFT simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS%20and%20reaction%20mechanism" title=" GC-MS and reaction mechanism"> GC-MS and reaction mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=Ionic%20liquid%20coupled%20HDS%20of%20DBT" title=" Ionic liquid coupled HDS of DBT"> Ionic liquid coupled HDS of DBT</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Pd%20loaded%20catalyst" title=" low Pd loaded catalyst"> low Pd loaded catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20operating%20condition" title=" mild operating condition "> mild operating condition </a> </p> <a href="https://publications.waset.org/abstracts/90224/catalytic-hydrodesulfurization-of-dibenzothiophene-coupled-with-ionic-liquids-over-low-pd-incorporated-co-mo-at-al2o3-and-ni-mo-at-al2o3-catalysts-at-mild-operating-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15093</span> Nanoprofiling of GaAs Surface in a Combined Low-Temperature Plasma for Microwave Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20S.%20Klimin">Victor S. Klimin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20A.%20Rezvan"> Alexey A. Rezvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxim%20S.%20Solodovnik"> Maxim S. Solodovnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20A.%20Ageev"> Oleg A. Ageev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problems of existing methods of profiling and surface modification of nanoscale arsenide-gallium structures are analyzed. The use of a combination of methods of local anodic oxidation and plasma chemical etching to solve this problem is considered. The main features that make this technology one of the promising areas of modification and profiling of near-surface layers of solids are demonstrated. In this paper, we studied the effect of formation stress and etching time on the geometrical parameters of the etched layer and the roughness of the etched surface. Experimental dependences of the thickness of the etched layer on the time and stress of formation were obtained. The surface analysis was carried out using atomic force microscopy methods, the corresponding profilograms were constructed from the obtained images, and the roughness of the etched surface was studied accordingly. It was shown that at high formation voltage, the depth of the etched surface increased, this is due to an increase in the number of active particles (oxygen ions and hydroxyl groups) formed as a result of the decomposition of water molecules in an electric field, during the formation of oxide nanostructures on the surface of gallium arsenide. Oxide layers were used as negative masks for subsequent plasma chemical etching by the STE ICPe68 unit. BCl₃ was chosen as the chlorine-containing gas, which differs from analogs in some parameters for the effect of etching of nanostructures based on gallium arsenide in the low-temperature plasma. The gas mixture of reaction chamber consisted of a buffer gas NAr = 100 cm³/min and a chlorine-containing gas NBCl₃ = 15 cm³/min at a pressure P = 2 Pa. The influence of these methods modes, which are formation voltage and etching time, on the roughness and geometric parameters, and corresponding dependences are demonstrated. Probe nanotechnology was used for surface analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title="nanostructures">nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20chemical%20etching" title=" plasma chemical etching"> plasma chemical etching</a>, <a href="https://publications.waset.org/abstracts/search?q=modification%20structures" title=" modification structures"> modification structures</a> </p> <a href="https://publications.waset.org/abstracts/106770/nanoprofiling-of-gaas-surface-in-a-combined-low-temperature-plasma-for-microwave-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15092</span> Computation of Natural Logarithm Using Abstract Chemical Reaction Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iuliia%20Zarubiieva">Iuliia Zarubiieva</a>, <a href="https://publications.waset.org/abstracts/search?q=Joyun%20Tseng"> Joyun Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishwesh%20Kulkarni"> Vishwesh Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent researches has focused on nucleic acids as a substrate for designing biomolecular circuits for in situ monitoring and control. A common approach is to express them by a set of idealised abstract chemical reaction networks (ACRNs). Here, we present new results on how abstract chemical reactions, viz., catalysis, annihilation and degradation, can be used to implement circuit that accurately computes logarithm function using the method of Arithmetic-Geometric Mean (AGM), which has not been previously used in conjunction with ACRNs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction%20networks" title="chemical reaction networks">chemical reaction networks</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20computation" title=" ratio computation"> ratio computation</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a> </p> <a href="https://publications.waset.org/abstracts/93960/computation-of-natural-logarithm-using-abstract-chemical-reaction-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15091</span> Experimental Investigation of Fluid Dynamic Effects on Crystallisation Scale Growth and Suppression in Agitation Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasanjit%20Das">Prasanjit Das</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20K.%20Khan"> M. M. K. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Rasul"> M. G. Rasul</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Wu"> Jie Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Youn"> I. Youn </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mineral scale formation is undoubtedly a more serious problem in the mineral industry than other process industries. To better understand scale growth and suppression, an experimental model is proposed in this study for supersaturated crystallised solutions commonly found in mineral process plants. In this experiment, surface crystallisation of potassium nitrate (KNO3) on the wall of the agitation tank and agitation effects on the scale growth and suppression are studied. The new quantitative scale suppression model predicts that at lower agitation speed, the scale growth rate is enhanced and at higher agitation speed, the scale suppression rate increases due to the increased flow erosion effect. A lab-scale agitation tank with and without baffles were used as a benchmark in this study. The fluid dynamic effects on scale growth and suppression in the agitation tank with three different size impellers (diameter 86, 114, 160 mm and model A310 with flow number 0.56) at various ranges of rotational speed (up to 700 rpm) and solution with different concentration (4.5, 4.75 and 5.25 mol/dm3) were investigated. For more elucidation, the effects of the different size of the impeller on wall surface scale growth and suppression rate as well as bottom settled scale accumulation rate are also discussed. Emphasis was placed on applications in the mineral industry, although results are also relevant to other industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agitation%20tank" title="agitation tank">agitation tank</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallisation" title=" crystallisation"> crystallisation</a>, <a href="https://publications.waset.org/abstracts/search?q=impeller%20speed" title=" impeller speed"> impeller speed</a>, <a href="https://publications.waset.org/abstracts/search?q=scale" title=" scale"> scale</a> </p> <a href="https://publications.waset.org/abstracts/80970/experimental-investigation-of-fluid-dynamic-effects-on-crystallisation-scale-growth-and-suppression-in-agitation-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15090</span> Synthesis, Characterization of Benzodiazepine Derivatives through Condensation Reaction, Crystal Structure, and DFT Calculations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samir%20Hmaimou">Samir Hmaimou</a>, <a href="https://publications.waset.org/abstracts/search?q=Marouane%20Ait%20Lahcen"> Marouane Ait Lahcen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Adardour"> Mohamed Adardour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Maatallah"> Mohamed Maatallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdesselam%20Baouid"> Abdesselam Baouid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stereoisomers (E)-2,2-dimethyl-4-(4-subsitutedstyryl)-2,3-dihydro-1H-[1,5]-benzodiazepine 3(a-d) were synthesized via the condensation reaction of 2,2,3 4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepine (BZD) 1 with the benzaldehyde derivatives 2(a-d) in polar protic solvent as ethanol. The chemical structure of the prepared products was confirmed by NMR (¹H and ¹³C), HRMS, and X-ray analysis of the crystal structure 3d. The condensation reaction was examined using DFT calculations at the theoretical level of B3LYP/6-311G(d,p). Frontier molecular orbital analysis shows that the most favorable interaction is between the HOMO of BZD 1 and the LUMO of 2(a-d). On the other hand, the calculation of the global reactivity indices (softness, hardness, and chemical potential) confirmed that benzodiazepine BDZ 1 act as a nucleophile, whereas the aldehyde derivatives 2(a-d) play the role of electrophile. Furthermore, we identified each reagent's reactive sites by the measurement of the reactivity indices to explain the experimentally observed regioselectivity, using Fukui local reactivity descriptors. A one-step mechanism reaction and order 2 water elimination were investigated. We also looked at how the electron-withdrawing groups (EWG) of various aldehydes affected the reaction's mechanism and the stability of products 3(a-d). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzodiazepine" title="benzodiazepine">benzodiazepine</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20calculations" title=" DFT calculations"> DFT calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20structure" title=" crystal structure"> crystal structure</a>, <a href="https://publications.waset.org/abstracts/search?q=regioselective" title=" regioselective"> regioselective</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation%20Reaction" title=" condensation Reaction"> condensation Reaction</a> </p> <a href="https://publications.waset.org/abstracts/192346/synthesis-characterization-of-benzodiazepine-derivatives-through-condensation-reaction-crystal-structure-and-dft-calculations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15089</span> Experimental Investigation on Sustainable Machining of Hastelloy C-276 Utilizing Different Cooling Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balkar%20Singh">Balkar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurpreet%20Singh"> Gurpreet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Aggarwal"> Vivek Aggarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sehijpal%20Singh"> Sehijpal Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research focused to improve the machinability of Hastelloy C-276 at different machining speeds such as 31, 55, and 79 m/min. The use of CO2 gas and Minimum quantity lubrication (MQL) was applied as coolant and lubrication purposes to enhance the machinability of the superalloy. The output in the form of surface roughness (S.R) and heat generation was monitored under dry, MQL, and MQL-CO2-cooled conditions. The Design of the Experiment was prepared using MINITAB software utilizing Taguchi L-27 orthogonal arrays followed by ANOVA analysis for finding the impact of input variables on output responses. At different speeds and lubrication conditions, different behavioral patterns for Surface Roughness and the temperature was observed. ANOVA analysis depicted that the cooling environment impacted the S.R. majorly (50%) followed by cutting speed (29.84%), feed rate (5.09%), and least through depth of cut (4.95%). On the other side, the temperature was greatly influenced by cutting speed (69.12%), Cryo-MQL (8.09%), feed rate (7.59%), and depth of cut (6.20%). Experimental results revealed that Cryo-MQL cooling enhanced the Surface roughness by 12% compared to MQL condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hastelloy%20C-276" title="Hastelloy C-276">Hastelloy C-276</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20quantity%20lubrication" title=" minimum quantity lubrication"> minimum quantity lubrication</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title=" olive oil"> olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20Cooling%20%28CO2%29" title=" cryogenic Cooling (CO2)"> cryogenic Cooling (CO2)</a> </p> <a href="https://publications.waset.org/abstracts/164049/experimental-investigation-on-sustainable-machining-of-hastelloy-c-276-utilizing-different-cooling-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15088</span> Nitrogen/Platinum Co-Doped TiO₂ for Enhanced Visible Light Photocatalytic Degradation of Brilliant Black </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarre%20Nzaba">Sarre Nzaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Bulelwa%20Ntsendwana"> Bulelwa Ntsendwana</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekkie%20Mamba"> Bekkie Mamba</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Kuvarega"> Alex Kuvarega</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elimination of toxic organic compounds from wastewater is currently one of the most important subjects in water pollution control. The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N,Pt) co-doped TiO₂ photocatalyts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. SEM/ EDX, TEM, XRD, XPS, TGA, FTIR, RS, PL and UV-Vis were used to characterize the prepared nanomaterials. The synthesized photocatalysts exhibited lower band gap energies as compared to the commercial TiO₂ revealing a shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180 min reaction time with initial concentration of 50 ppm BB solution. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The co-doped N,Pt also exhibited pseudo-first order kinetic behaviour with half-life and rate constant of 0.37 min 0.1984 min⁻¹ and respectively. N doped TiO₂ and N,Pt co-doped TiO₂ exhibited enhanced photocatalytic performances for the removal of BB from water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=N" title="N">N</a>, <a href="https://publications.waset.org/abstracts/search?q=Pt%20co-doped%20TiO%E2%82%82" title="Pt co-doped TiO₂">Pt co-doped TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrimer" title=" dendrimer"> dendrimer</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=visible-light" title=" visible-light"> visible-light</a> </p> <a href="https://publications.waset.org/abstracts/78458/nitrogenplatinum-co-doped-tio2-for-enhanced-visible-light-photocatalytic-degradation-of-brilliant-black" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15087</span> Layer-By-Layer Deposition of Poly (Amidoamine) and Poly (Acrylic Acid) on Grafted-Polylactide Nonwoven with Different Surface Charge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sima%20Shakoorjavan">Sima Shakoorjavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdieh%20Eskafi"> Mahdieh Eskafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Stawski"> Dawid Stawski</a>, <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Akbari"> Somaye Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, poly (amidoamine) dendritic material (PAMAM) and poly (acrylic acid) (PAA) as polycation and polyanion were deposited on surface charged polylactide (PLA) nonwoven to study the relationship of dye absorption capacity of layered-PLA with the number of deposited layers. To produce negatively charged-PLA, acrylic acid (AA) was grafted on the PLA surface (PLA-g-AA) through a chemical redox reaction with the strong oxidizing agent. Spectroscopy analysis, water contact measurement, and FTIR-ATR analysis confirm the successful grafting of AA on the PLA surface through the chemical redox reaction method. In detail, an increase in dye absorption percentage by 19% and immediate absorption of water droplets ensured hydrophilicity of PLA-g-AA surface; and the presence of new carbonyl bond at 1530 cm-¹ and a wide peak of hydroxyl between 3680-3130 cm-¹ confirm AA grafting. In addition, PLA as linear polyester can undergo aminolysis, which is the cleavage of ester bonds and replacement with amid bonds when exposed to an aminolysis agent. Therefore, to produce positively charged PLA, PAMAM as amine-terminated dendritic material was introduced to PLA molecular chains at different conditions; (1) at 60 C for 0.5, 1, 1.5, 2 hours of aminolysis and (2) at room temperature (RT) for 1, 2, 3, and 4 hours of aminolysis. Weight changes and spectrophotometer measurements showed a maximum in weight gain graph and K/S value curve indicating the highest PAMAM attachment at 60 C for 1 hour and RT for 2 hours which is considered as an optimum condition. Also, the emerging new peak around 1650 cm-1 corresponding to N-H bending vibration and double wide peak at around 3670-3170 cm-1 corresponding to N-H stretching vibration confirm PAMAM attachment in selected optimum condition. In the following, regarding the initial surface charge of grafted-PLA, lbl deposition was performed and started with PAA or PAMAM. FTIR-ATR results confirm chemical changes in samples due to deposition of the first layer (PAA or PAMAM). Generally, spectroscopy analysis indicated that an increase in layer number costed dye absorption capacity. It can be due to the partial deposition of a new layer on the previously deposited layer; therefore, the available PAMAM at the first layer is more than the third layer. In detail, in the case of layer-PLA starting lbl with negatively charged, having PAMAM as the first top layer (PLA-g-AA/PAMAM) showed the highest dye absorption of both cationic and anionic model dye. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title="surface modification">surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20technique" title=" layer-by-layer technique"> layer-by-layer technique</a>, <a href="https://publications.waset.org/abstracts/search?q=dendritic%20materials" title=" dendritic materials"> dendritic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=PAMAM" title=" PAMAM"> PAMAM</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20absorption%20capacity" title=" dye absorption capacity"> dye absorption capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20nonwoven" title=" PLA nonwoven"> PLA nonwoven</a> </p> <a href="https://publications.waset.org/abstracts/165278/layer-by-layer-deposition-of-poly-amidoamine-and-poly-acrylic-acid-on-grafted-polylactide-nonwoven-with-different-surface-charge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate&amp;page=8" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate&amp;page=8">8</a></li> <li class="page-item active"><span class="page-link">9</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate&amp;page=12">12</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate&amp;page=511">511</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate&amp;page=512">512</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surface%20reaction%20rate&amp;page=10" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10