CINXE.COM
Search results for: plasma deposition
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: plasma deposition</title> <meta name="description" content="Search results for: plasma deposition"> <meta name="keywords" content="plasma deposition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="plasma deposition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="plasma deposition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1828</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: plasma deposition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1828</span> Inorganic Microporous Membranes Fabricated by Atmospheric Pressure Plasma Liquid Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damian%20A.%20Mooney">Damian A. Mooney</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20T.%20P.%20Mc%20Cann"> Michael T. P. Mc Cann</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Don%20MacElroy"> J. M. Don MacElroy</a>, <a href="https://publications.waset.org/abstracts/search?q=Olli%20Antson"> Olli Antson</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20P.%20Dowling"> Denis P. Dowling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric pressure plasma liquid deposition (APPLD) is a novel technology used for the deposition of thin films via the injection of a reactive liquid precursor into a high-energy discharge plasma at ambient pressure. In this work, APPLD, utilising a TEOS precursor, was employed to produce asymmetric membranes consisting of a thin (100 nm) layer of deposited silica on a microporous silica support in order to assess their suitability for high temperature gas separation applications. He and N₂ gas permeability measurements were made for each of the fabricated membranes and a maximum ideal He/N₂ selectivity of 66 was observed at room temperature. He, N₂ and CO2 gas permeances were also measured at the elevated temperature of 673K and ideal He/N₂ and CO₂/N₂ selectivities of 300 and 7.4, respectively, were observed. The results suggest that this plasma-based deposition technique can be a viable method for the manufacture of membranes for the efficient separation of high temperature, post-combustion gases, including that of CO₂/N₂ where the constituent gases differ in size by fractions of an Ångstrom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20membrane" title="asymmetric membrane">asymmetric membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20separation" title=" CO₂ separation"> CO₂ separation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20deposition" title=" plasma deposition"> plasma deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/48713/inorganic-microporous-membranes-fabricated-by-atmospheric-pressure-plasma-liquid-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1827</span> Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Geringswald">D. Geringswald</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hintze"> B. Hintze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H<sub>2</sub>:N<sub>2</sub>). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALD" title="ALD">ALD</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20aspect%20ratio" title=" high aspect ratio"> high aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=PE-MOCVD" title=" PE-MOCVD"> PE-MOCVD</a>, <a href="https://publications.waset.org/abstracts/search?q=TiN" title=" TiN"> TiN</a> </p> <a href="https://publications.waset.org/abstracts/50360/approximation-of-pe-mocvd-to-ald-for-tin-concerning-resistivity-and-chemical-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1826</span> Effect of the Deposition Time of Hydrogenated Nanocrystalline Si Grown on Porous Alumina Film on Glass Substrate by Plasma Processing Chemical Vapor Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Laatar">F. Laatar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ktifa"> S. Ktifa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ezzaouia"> H. Ezzaouia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma Enhanced Chemical Vapor Deposition (PECVD) method is used to deposit hydrogenated nanocrystalline silicon films (nc-Si: H) on Porous Anodic Alumina Films (PAF) on glass substrate at different deposition duration. Influence of the deposition time on the physical properties of nc-Si: H grown on PAF was investigated through an extensive correlation between micro-structural and optical properties of these films. In this paper, we present an extensive study of the morphological, structural and optical properties of these films by Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) techniques and a UV-Vis-NIR spectrometer. It was found that the changes in DT can modify the films thickness, the surface roughness and eventually improve the optical properties of the composite. Optical properties (optical thicknesses, refractive indexes (n), absorption coefficients (α), extinction coefficients (k), and the values of the optical transitions EG) of this kind of samples were obtained using the data of the transmittance T and reflectance R spectra’s recorded by the UV–Vis–NIR spectrometer. We used Cauchy and Wemple–DiDomenico models for the analysis of the dispersion of the refractive index and the determination of the optical properties of these films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydragenated%20nanocrystalline%20silicon" title="hydragenated nanocrystalline silicon">hydragenated nanocrystalline silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20processing%20chemical%20vapor%20deposition" title=" plasma processing chemical vapor deposition"> plasma processing chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/6992/effect-of-the-deposition-time-of-hydrogenated-nanocrystalline-si-grown-on-porous-alumina-film-on-glass-substrate-by-plasma-processing-chemical-vapor-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1825</span> Plasma Spray Deposition of Bio-Active Coating on Titanium Alloy (Ti-6Al-4V) Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renu%20Kumari">Renu Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyotsna%20Dutta%20Majumdar"> Jyotsna Dutta Majumdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, composite coating consisting of hydroxyapatite (HA) + 50 wt% TiO2 has been developed on Ti-6Al-4V substrate by plasma spray deposition technique. Followed by plasma spray deposition, detailed surface roughness and microstructural characterization were carried out by using optical profilometer and scanning electron microscopy (SEM), respectively. The composition and phase analysis were carried out by energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction (XRD) technique, respectively. The bio-activity behavior of the uncoated and coated samples was also compared by dipping test in Hank’s solution. The average surface roughness of the coating was 10 µm (as compared to 0.5 µm of as-received Ti-6Al-4V substrate) with the presence of porosities. The microstructure of the coating was found to be continuous with the presence of solidified splats. A detailed XRD analysis shows phase transformation of TiO2 from anatase to rutile, decomposition of hydroxyapatite, and formation of CaTiO3 phase. Standard dipping test confirmed a faster kinetics of deposition of calcium phosphate in the coated HA+50% wt.% TiO2 surface as compared to the as-received substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium" title="titanium">titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20spraying" title=" plasma spraying"> plasma spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-activity" title=" bio-activity"> bio-activity</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a> </p> <a href="https://publications.waset.org/abstracts/48657/plasma-spray-deposition-of-bio-active-coating-on-titanium-alloy-ti-6al-4v-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1824</span> Studies on Plasma Spray Deposited La2O3 - YSZ (Yttria-Stabilized Zirconia) Composite Thermal Barrier Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Sharma">Prashant Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyotsna%20Dutta%20Majumdar"> Jyotsna Dutta Majumdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study concerns development of a composite thermal barrier coating consisting of a mixture of La2O3 and YSZ (with 8 wt.%, 32 wt.% and 50 wt.% 50% La2O3) by plasma spray deposition technique on a CoNiCrAlY based bond coat deposited on Inconel 718 substrate by high velocity oxy-fuel deposition (HVOF) technique. The addition of La2O3 in YSZ causes the formation of pyrochlore (La2Zr2O7) phase in the inter splats boundary along with the presence of LaYO3 phase. The coefficient of thermal expansion is significantly reduced from due to the evolution of different phases and structural defects in the sprayed coating. The activation energy for TGO growth under isothermal and cyclic oxidation was increased in the composite coating as compared to YSZ coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20spraying" title="plasma spraying">plasma spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20resistance" title=" oxidation resistance"> oxidation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20method" title=" X-ray method"> X-ray method</a> </p> <a href="https://publications.waset.org/abstracts/48738/studies-on-plasma-spray-deposited-la2o3-ysz-yttria-stabilized-zirconia-composite-thermal-barrier-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1823</span> Thickness Dependence of AC Conductivity in Plasma Poly(Ethylene Oxide) Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yakut">S. Yakut</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Deger"> D. Deger</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ulutas"> K. Ulutas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Bozoglu"> D. Bozoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma poly(ethylene oxide) (pPEO) thin films were deposited between Aluminum (Al) electrodes on glass substrates by plasma assisted physical vapor deposition (PAPVD). The deposition was operated inside Argon plasma under 10⁻³ Torr and the thicknesses of samples were determined as 20, 100, 250, 500 nm. The plasma was produced at 5 W by magnetron connected to RF power supply. The capacitance C and dielectric loss factor tan δ were measured by Novovontrol Alpha-A high frequency empedance analyzer at freqquency and temperature intervals of 0,1 Hz and 1MHz, 193-353K, respectively. AC conductivity was derived from these values. AC conductivity results exhibited three different conductivity regions except for 20 nm. These regions can be classified as low, mid and high frequency regions. Low frequency region is observed at around 10 Hz and 300 K while mid frequency region is observed at around 1 kHz and 300 K. The last one, high frequency region, is observed at around 1 kHz and 200 K. There are some coinciding definitions for conduction regions, because these regions shift depending on temperature. Low frequency region behaves as DC-like conductivity while mid and high frequency regions show conductivities corresponding to mechanisms such as classical hopping, tunneling, etc. which are observed for amorphous materials. Unlike other thicknesses, for 20 nm sample low frequency region can not be detected in the investigated freuency range. It is thought that this is arised because of the presence of dead layer behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20polymers" title="plasma polymers">plasma polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=dead%20layer" title=" dead layer"> dead layer</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20spectroscopy" title=" dielectric spectroscopy"> dielectric spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=AC%20conductivity" title=" AC conductivity"> AC conductivity</a> </p> <a href="https://publications.waset.org/abstracts/92911/thickness-dependence-of-ac-conductivity-in-plasma-polyethylene-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1822</span> Reactive Sputter Deposition of Titanium Nitride on Silicon Using a Magnetized Sheet Plasma Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janella%20Salamania">Janella Salamania</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcedon%20Fernandez"> Marcedon Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Villanueva%20Henry%20Ramos"> Matthew Villanueva Henry Ramos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium nitrite (TiN) a popular functional and decorative coating because of its golden yellow color, high hardness and superior wear resistance. It is also being studied as a diffusion barrier in integrated circuits due to its known chemical stability and low resistivity. While there have been numerous deposition methods done for TiN, most required the heating of substrates at high temperatures. In this work, TiN films are deposited on silicon (111) and (100) substrates without substrate heating using a patented magnetized sheet plasma source. Films were successfully deposited without substrate heating at various target bias, while maintaining a constant 25% N2 to Ar ratio, and deposition of time of 30 minutes. The resulting films exhibited a golden yellow color which is characteristic of TiN. X-ray diffraction patterns show the formation of TiN predominantly oriented in the (111) direction regardless of substrate used. EDX data also confirms the 1:1 stoichiometry of titanium an nitrogen. Ellipsometry measurements estimate the thickness to range from 28 nm to 33 nm. SEM images were also taken to observe the morphology of the film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coatings" title="coatings">coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrides" title=" nitrides"> nitrides</a>, <a href="https://publications.waset.org/abstracts/search?q=coatings" title=" coatings"> coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20magnetron%20sputtering" title=" reactive magnetron sputtering"> reactive magnetron sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/29494/reactive-sputter-deposition-of-titanium-nitride-on-silicon-using-a-magnetized-sheet-plasma-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1821</span> Electron Bernstein Wave Heating in the Toroidally Magnetized System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johan%20Buermans">Johan Buermans</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristel%20Cromb%C3%A9"> Kristel Crombé</a>, <a href="https://publications.waset.org/abstracts/search?q=Niek%20Desmet"> Niek Desmet</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Dittrich"> Laura Dittrich</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Goriaev"> Andrei Goriaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Yurii%20Kovtun"> Yurii Kovtun</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20L%C3%B3pez-Rodriguez"> Daniel López-Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%B6ren%20M%C3%B6ller"> Sören Möller</a>, <a href="https://publications.waset.org/abstracts/search?q=Per%20Petersson"> Per Petersson</a>, <a href="https://publications.waset.org/abstracts/search?q=Maja%20Verstraeten"> Maja Verstraeten</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The International Thermonuclear Experimental Reactor (ITER) will rely on three sources of external heating to produce and sustain a plasma; Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), and Electron Cyclotron Resonance Heating (ECRH). ECRH is a way to heat the electrons in a plasma by resonant absorption of electromagnetic waves. The energy of the electrons is transferred indirectly to the ions by collisions. The electron cyclotron heating system can be directed to deposit heat in particular regions in the plasma (https://www.iter.org/mach/Heating). Electron Cyclotron Resonance Heating (ECRH) at the fundamental resonance in X-mode is limited by a low cut-off density. Electromagnetic waves cannot propagate in the region between this cut-off and the Upper Hybrid Resonance (UHR) and cannot reach the Electron Cyclotron Resonance (ECR) position. Higher harmonic heating is hence preferred in heating scenarios nowadays to overcome this problem. Additional power deposition mechanisms can occur above this threshold to increase the plasma density. This includes collisional losses in the evanescent region, resonant power coupling at the UHR, tunneling of the X-wave with resonant coupling at the ECR, and conversion to the Electron Bernstein Wave (EBW) with resonant coupling at the ECR. A more profound knowledge of these deposition mechanisms can help determine the optimal plasma production scenarios. Several ECRH experiments are performed on the TOroidally MAgnetized System (TOMAS) to identify the conditions for Electron Bernstein Wave (EBW) heating. Density and temperature profiles are measured with movable Triple Langmuir Probes in the horizontal and vertical directions. Measurements of the forwarded and reflected power allow evaluation of the coupling efficiency. Optical emission spectroscopy and camera images also contribute to plasma characterization. The influence of the injected power, magnetic field, gas pressure, and wave polarization on the different deposition mechanisms is studied, and the contribution of the Electron Bernstein Wave is evaluated. The TOMATOR 1D hydrogen-helium plasma simulator numerically describes the evolution of current less magnetized Radio Frequency plasmas in a tokamak based on Braginskii’s legal continuity and heat balance equations. This code was initially benchmarked with experimental data from TCV to determine the transport coefficients. The code is used to model the plasma parameters and the power deposition profiles. The modeling is compared with the data from the experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20Bernstein%20wave" title="electron Bernstein wave">electron Bernstein wave</a>, <a href="https://publications.waset.org/abstracts/search?q=Langmuir%20probe" title=" Langmuir probe"> Langmuir probe</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20characterization" title=" plasma characterization"> plasma characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=TOMAS" title=" TOMAS"> TOMAS</a> </p> <a href="https://publications.waset.org/abstracts/163243/electron-bernstein-wave-heating-in-the-toroidally-magnetized-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1820</span> Characterization of Single-Walled Carbon Nano Tubes Forest Decorated with Chromium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Paula%20Mousinho">Ana Paula Mousinho</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronaldo%20D.%20Mansano"> Ronaldo D. Mansano</a>, <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Ordonez"> Nelson Ordonez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes are one of the main elements in nanotechnologies; their applications are in microelectronics, nano-electronics devices (photonics, spintronic), chemical sensors, structural material and currently in clean energy devices (supercapacitors and fuel cells). The use of magnetic particle decorated carbon nanotubes increases the applications in magnetic devices, magnetic memory, and magnetic oriented drug delivery. In this work, single-walled carbon nanotubes (CNTs) forest decorated with chromium were deposited at room temperature by high-density plasma chemical vapor deposition (HDPCVD) system. The CNTs forest was obtained using pure methane plasmas and chromium, as precursor material (seed) and for decorating the CNTs. Magnetron sputtering deposited the chromium on silicon wafers before the CNTs' growth. Scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy, and X-ray diffraction characterized the single-walled CNTs forest decorated with chromium. In general, the CNTs' spectra show a unique emission band, but due to the presence of the chromium, the spectra obtained in this work showed many bands that are related to the CNTs with different diameters. The CNTs obtained by the HDPCVD system are highly aligned and showed metallic features, and they can be used as photonic material, due to the unique structural and electrical properties. The results of this work proved the possibility of obtaining the controlled deposition of aligned single-walled CNTs forest films decorated with chromium by high-density plasma chemical vapor deposition system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNTs%20forest" title="CNTs forest">CNTs forest</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20plasma%20deposition" title=" high density plasma deposition"> high density plasma deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=high-aligned%20CNTs" title=" high-aligned CNTs"> high-aligned CNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/110542/characterization-of-single-walled-carbon-nano-tubes-forest-decorated-with-chromium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1819</span> IgA/λ Plasma Cell Myeloma with λ Light Chain Amyloidosis: A Case Report </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Pei%20Huang">Kai Pei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting%20Chung%20Hung"> Ting Chung Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Ching%20Wu"> Li Ching Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amyloidosis refers to a variety of conditions wherein amyloid proteins are abnormally deposited in organ or tissues and cause harm. Among the several forms of amyloidosis, the principal types of that in inpatient medical services are the AL amyloidosis (primary) and AA amyloidois (secondary). AL Amyloidois is due to deposition of protein derived from overproduction of immunoglobulin light chain in plasma cell myeloma. Furthermore, it is a systemic disorder that can present with a variety of symptoms, including heavy proteinemia and edema, heptosplenomegaly, otherwise unexplained heart failure. We reported a 78-year-old female presenting dysuria, oliguria and leg edema for several months. Laboratory data showed proteinuria (UPCR:1679.8), leukocytosis (WBC:16.2 x 10^3/uL), results of serum urea nitrogen (39mg/dL), creatinine (0.76 mg/dL), IgG (748 mg/dL.), IgA (635 mg/dL), IgM (63 mg/dL), kappa light chain(18.8 mg/dL), lambda light chain (110.0 mg/dL) and kappa/lambda ratio (0.17). Renal biopsy found amyloid fibrils in glomerular mesangial area, and Congo red stain highlights amyloid deposition in glomeruli. Additional lab studies included serum protein electrophoresis, which shows a major monoclonal peak in β region and minor small peak in gamma region, and the immunotyping studies for serum showed two IgA/λ type. We treated sample with beta-mercaptoethanol which reducing the polymerized immunoglobulin to clarify two IgA/λ are secreted from the same plasma cell clone in bone marrow. Later examination confirmed it existed plasma cell infiltration in bone marrow, and the immunohistochemical staining showed monotypic for λ light chain and are positive for IgA. All findings mentioned above reveal it is a case of plasma cell myeloma with λ Light Chain Amyloidosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amyloidosis" title="amyloidosis">amyloidosis</a>, <a href="https://publications.waset.org/abstracts/search?q=immunoglobulin%20light%20chain" title=" immunoglobulin light chain"> immunoglobulin light chain</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20cell%20myeloma" title=" plasma cell myeloma"> plasma cell myeloma</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20protein%20electrophoresis" title=" serum protein electrophoresis"> serum protein electrophoresis</a> </p> <a href="https://publications.waset.org/abstracts/53574/igal-plasma-cell-myeloma-with-l-light-chain-amyloidosis-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1818</span> Deposition and Properties of PEO Coatings on Zinc-Aluminum Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linlin%20Wang">Linlin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangdong%20Bian"> Guangdong Bian</a>, <a href="https://publications.waset.org/abstracts/search?q=Jifeng%20Shen"> Jifeng Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingzhu%20Zeng"> Jingzhu Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc-aluminum alloys have been applied as alternatives to bronze, aluminum alloys, and cast iron due to their distinguishing features such as high as-cast strength, excellent bearing properties, as well as low energy requirements for melting. In this study, oxide coatings were produced on ZA27 zinc-aluminum alloy by a plasma electrolytic oxidation (PEO) method. Three coatings were deposited by using three various electrolytes, i.e. silicate, aluminate and aluminate/borate composite solutions. The current density is set at 0.1A/cm2, deposition time is 40 mins for all the deposition processes. The surface morphology and phase structure of the three coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Pin-on-disc sliding wear tests were conducted to test the tribological properties of coatings. The results indicated that the coating produced using the aluminate/borate composite electrolyte had the highest deposition rate and best wear resistance among the three coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxide%20coating" title="oxide coating">oxide coating</a>, <a href="https://publications.waset.org/abstracts/search?q=PEO" title=" PEO"> PEO</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20properties" title=" tribological properties"> tribological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ZA27" title=" ZA27"> ZA27</a> </p> <a href="https://publications.waset.org/abstracts/22895/deposition-and-properties-of-peo-coatings-on-zinc-aluminum-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1817</span> Magnetic Field Generation in Inhomogeneous Plasma via Ponderomotive Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Shahi">Fatemeh Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Sharifian"> Mehdi Sharifian</a>, <a href="https://publications.waset.org/abstracts/search?q=Laia%20Shahrassai"> Laia Shahrassai</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Eskandari%20A."> Elham Eskandari A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new mechanism is reported here for magnetic field generation in laser-plasma interaction by means of nonlinear ponderomotive force. The plasma considered here is unmagnetized inhomogeneous plasma with an exponentially decreasing profile. A damped periodic magnetic field with a relatively lower frequency is obtained using the ponderomotive force exerted on plasma electrons. Finally, with an electric field and by using Faraday’s law, the magnetic field profile in the plasma has been obtained. Because of the negative exponential density profile, the generated magnetic field is relatively slowly oscillating and damped through the plasma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20generation" title="magnetic field generation">magnetic field generation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-plasma%20interaction" title=" laser-plasma interaction"> laser-plasma interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ponderomotive%20force" title=" ponderomotive force"> ponderomotive force</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20plasma" title=" inhomogeneous plasma"> inhomogeneous plasma</a> </p> <a href="https://publications.waset.org/abstracts/134152/magnetic-field-generation-in-inhomogeneous-plasma-via-ponderomotive-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1816</span> Condition for Plasma Instability and Stability Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Sen">Ratna Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As due to very high temperature of Plasma it is very difficult to confine it for sufficient time so that nuclear fusion reactions to take place, As we know Plasma escapes faster than the binary collision rates. We studied the ball analogy and the ‘energy principle’ and calculated the total potential energy for the whole Plasma. If δ ⃗w is negative, that is decrease in potential energy then the plasma will be unstable. We also discussed different approaches of stability analysis such as Nyquist Method, MHD approximation and Vlasov approach of plasma stability. So that by using magnetic field configurations we can able to create a stable Plasma in Tokamak for generating energy for future generations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jello" title="jello">jello</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20configuration" title=" magnetic field configuration"> magnetic field configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20approximation" title=" MHD approximation"> MHD approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20principle" title=" energy principle"> energy principle</a> </p> <a href="https://publications.waset.org/abstracts/50172/condition-for-plasma-instability-and-stability-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1815</span> Nitrogen-Doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Coaxial Arc Plasma Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Zkria">Abdelrahman Zkria</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Yoshitake"> Tsuyoshi Yoshitake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diamond is one of the most interesting semiconducting carbon materials owing to its unique physical and chemical properties, yet its application in electronic devices is limited due to the difficulty of realizing n-type conduction by nitrogen doping. In contrast Ultrananocrystalline diamond with diamond grains of about 3–5 nm in diameter have attracted much attention for device-oriented applications because they may enable the realization of n-type doping with nitrogen. In this study, nitrogen-doped Ultra-Nanocrystalline diamond films were prepared by coaxial arc plasma deposition (CAPD) method, the nitrogen content was estimated by X-ray photoemission spectroscopy (XPS). The electrical conductivity increased with increasing nitrogen contents. Heterojunction diodes with p-type Si were fabricated and evaluated based on current–voltage (I–V) and capacitance–voltage (C–V) characteristics measured in dark at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterojunction%20diodes" title="heterojunction diodes">heterojunction diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=hopping%20conduction%20mechanism" title=" hopping conduction mechanism"> hopping conduction mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen-doping" title=" nitrogen-doping"> nitrogen-doping</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-nanocrystalline%20diamond" title=" ultra-nanocrystalline diamond"> ultra-nanocrystalline diamond</a> </p> <a href="https://publications.waset.org/abstracts/44205/nitrogen-doped-ultrananocrystalline-diamondhydrogenated-amorphous-carbon-composite-films-prepared-by-coaxial-arc-plasma-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1814</span> Adhesion of Sputtered Copper Thin Films Deposited on Flexible Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rwei-Ching%20Chang">Rwei-Ching Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Yu%20Su"> Bo-Yu Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesion of copper thin films deposited on polyethylene terephthAdhesion of copper thin films deposited on polyethylene terephthalate substrate by direct current sputtering with different sputtering parameters is discussed in this work. The effects of plasma treatment with 0, 5, and 10 minutes on the thin film properties are investigated first. Various argon flow rates at 40, 50, 60 standard cubic centimeters per minute (sccm), deposition power at 30, 40, 50 W, and film thickness at 100, 200, 300 nm are also discussed. The 3-dimensional surface profilometer, micro scratch machine, and optical microscope are used to characterize the thin film properties. The results show that the increase of the plasma treatment time on the polyethylene terephthalate surface affects the roughness and critical load of the films. The critical load increases as the plasma treatment time increases. When the plasma treatment time was adjusted from 5 minutes to 10 minutes, the adhesion increased from 8.20 mN to 13.67 mN. When the argon flow rate is decreased from 60 sccm to 40 sccm, the adhesion increases from 8.27 mN to 13.67 mN. The adhesion is also increased by the condition of higher power, where the adhesion increased from 13.67 mN to 25.07 mN as the power increases from 30 W to 50 W. The adhesion of the film increases from 13.67 mN to 21.41mN as the film thickness increases from 100 nm to 300 nm. Comparing all the deposition parameters, it indicates the change of the power and thickness has much improvement on the film adhesion.alate substrate by direct current sputtering with different sputtering parameters is discussed in this work. The effects of plasma treatment with 0, 5, and 10 minutes on the thin film properties are investigated first. Various argon flow rates at 40, 50, 60 standard cubic centimeters per minute (sccm), deposition power at 30, 40, 50 W, and film thickness at 100, 200, 300 nm are also discussed. The 3-dimensional surface profilometer, micro scratch machine, and optical microscope are used to characterize the thin film properties. The results show that the increase of the plasma treatment time on the polyethylene terephthalate surface affects the roughness and critical load of the films. The critical load increases as the plasma treatment time increases. When the plasma treatment time was adjusted from 5 minutes to 10 minutes, the adhesion increased from 8.20 mN to 13.67 mN. When the argon flow rate is decreased from 60 sccm to 40 sccm, the adhesion increases from 8.27 mN to 13.67 mN. The adhesion is also increased by the condition of higher power, where the adhesion increased from 13.67 mN to 25.07 mN as the power increases from 30 W to 50 W. The adhesion of the film increases from 13.67 mN to 21.41mN as the film thickness increases from 100 nm to 300 nm. Comparing all the deposition parameters, it indicates the change of the power and thickness has much improvement on the film adhesion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20substrate" title="flexible substrate">flexible substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=sputtering" title=" sputtering"> sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20thin%20film" title=" copper thin film"> copper thin film</a> </p> <a href="https://publications.waset.org/abstracts/104732/adhesion-of-sputtered-copper-thin-films-deposited-on-flexible-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1813</span> Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Gao">Xiaodong Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Pingchuan%20Dong"> Pingchuan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Qichao%20Gao"> Qichao Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been lots of published work focused on asphaltene deposited on the smooth pipe under steady conditions, while particle deposition on the blockage wellbores under transient conditions has not been well elucidated. This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effect of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene%20deposition%20rate" title="asphaltene deposition rate">asphaltene deposition rate</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20length" title=" blockage length"> blockage length</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20thickness" title=" blockage thickness"> blockage thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=blockage%20diameter" title=" blockage diameter"> blockage diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20condition" title=" transient condition"> transient condition</a> </p> <a href="https://publications.waset.org/abstracts/149723/simulation-of-the-asphaltene-deposition-rate-in-a-wellbore-blockage-via-computational-fluid-dynamic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1812</span> Effect of Plasma Discharge Power on Activation Energies of Plasma Poly(Ethylene Oxide) Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahin%20Yakut">Sahin Yakut</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kemal%20Ulutas"> H. Kemal Ulutas</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Deger"> Deniz Deger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma Assisted Physical Vapor Deposition (PAPVD) method used to produce Poly(ethylene oxide) (pPEO) thin films. Depositions were progressed at various plasma discharge powers as 0, 2, 5 and 30 W for pPEO at 500nm film thicknesses. The capacitance and dielectric dissipation of the thin films were measured at 0,1-107 Hz frequency range and 173-353 K temperature range by an impedance analyzer. Then, alternative conductivity (σac) and activation energies were derived from capacitance and dielectric dissipation. σac of conventional PEO (PEO precursor) was measured to determine the effect of plasma discharge. Differences were observed between the alternative conductivity of PEO’s and pPEO’s depending on plasma discharge power. By this purpose, structural characterization techniques such as Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) were applied on pPEO thin films. Structural analysis showed that density of crosslinking is plasma power dependent. The crosslinking density increases with increasing plasma discharge power and this increase is displayed as increasing dynamic glass transition temperatures at DSC results. Also, shifting of frequencies of some type of bond vibrations, belonging to bond vibrations produced after fragmentation because of plasma discharge, were observed at FTIR results. The dynamic glass transition temperatures obtained from alternative conductivity results for pPEO consistent with the results of DSC. Activation energies exhibit Arrhenius behavior. Activation energies decrease with increasing plasma discharge power. This behavior supports the suggestion expressing that long polymer chains and long oligomers are fragmented into smaller oligomers or radicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title="activation energy">activation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20spectroscopy" title=" dielectric spectroscopy"> dielectric spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20thin%20films" title=" organic thin films"> organic thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20polymer" title=" plasma polymer"> plasma polymer</a> </p> <a href="https://publications.waset.org/abstracts/66302/effect-of-plasma-discharge-power-on-activation-energies-of-plasma-polyethylene-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1811</span> Behavior of Printing Inks on Historical Documents Subjected to Cold RF Plasma Discharges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dorina%20Rusu">Dorina Rusu</a>, <a href="https://publications.waset.org/abstracts/search?q=Emil%20Ghiocel%20Ioanid"> Emil Ghiocel Ioanid</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Ursescu"> Marta Ursescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Maria%20Vlad"> Ana Maria Vlad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaela%20Popescu"> Mihaela Popescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decades the cold plasma discharges made the subject of numerous studies concerning the applications in the cultural heritage field, especially concentrated on ecological and non-invasive aspect of these conservation procedures. The conservation treatment using cold plasma is based, on the one hand, on the well-known property of plasma discharges to inactivate the contaminant biological species and, on the other hand, on the surface cleaning effect. Moreover the plasma discharge produces the functionalization of the treated surface, allowing subsequent deposition of protective layers. The paper presents the behavior of printing inks on historical documents treated in cold RF plasma. Two types of printing inks were studied, namely red and black ink, used on a religious book published in 19 century. SEM-EDX analysis results in the identification of the two inks as carbon black ink (C presence in the EDX spectrum) and cinnabar based red ink (Hg and S lines in the spectrum), result confirmed by XRF analysis. The experiments have been performed on paper samples written with laboratory- made inks, of similar composition with the inks identified on historical documents. The samples were subjected to RF plasma discharge, operating in nitrogen gaseous medium, at 1.2 MHz frequency and low-pressure (0.5 mbar), performed in a self-designed equipment for the application of conservation treatments on naturally aged paper supports. The impact of plasma discharge on the inks has been evaluated by SEM, XRD and color analysis. The color analysis revealed a slight discoloration of cinnabar ink on the historical document. SEM and XRD analyses have been carried out in an attempt to elucidate the process responsable for color modification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RF%20plasma" title="RF plasma">RF plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=printing%20inks" title=" printing inks"> printing inks</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20documents" title=" historical documents"> historical documents</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20cleaning%20effect" title=" surface cleaning effect"> surface cleaning effect</a> </p> <a href="https://publications.waset.org/abstracts/27316/behavior-of-printing-inks-on-historical-documents-subjected-to-cold-rf-plasma-discharges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1810</span> Analysis of Superconducting and Optical Properties in Atomic Layer Deposition and Sputtered Thin Films for Next-Generation Single-Photon Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nidhi%20Choudhary">Nidhi Choudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Silke%20A.%20Peeters"> Silke A. Peeters</a>, <a href="https://publications.waset.org/abstracts/search?q=Ciaran%20T.%20Lennon"> Ciaran T. Lennon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmytro%20Besprozvannyy"> Dmytro Besprozvannyy</a>, <a href="https://publications.waset.org/abstracts/search?q=Harm%20C.%20M.%20Knoops"> Harm C. M. Knoops</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20H.%20Hadfield"> Robert H. Hadfield</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superconducting Nanowire Single Photon Detectors (SNSPDs) have become leading devices in quantum optics and photonics, known for their exceptional efficiency in detecting single photons from ultraviolet to mid-infrared wavelengths with minimal dark counts, low noise, and reduced timing jitter. Recent advancements in materials science focus attention on refractory metal thin films such as NbN and NbTiN to enhance the optical properties and superconducting performance of SNSPDs, opening the way for next-generation detectors. These films have been deposited by several different techniques, such as atomic layer deposition (ALD), plasma pro-advanced plasma processing (ASP) and magnetron sputtering. The fabrication flexibility of these films enables precise control over morphology, crystallinity, stoichiometry and optical properties, which is crucial for optimising the SNSPD performance. Hence, it is imperative to study the optical and superconducting properties of these materials across a wide range of wavelengths. This study provides a comprehensive analysis of the optical and superconducting properties of some important materials in this category (NbN, NbTiN) by different deposition methods. Using Variable angle ellipsometry spectroscopy (VASE), we measured the refractive index, extinction, and absorption coefficient across a wide wavelength range (200-1700 nm) to enhance light confinement for optical communication devices. The critical temperature and sheet resistance were measured using a four-probe method in a custom-built, cryogen-free cooling system with a Sumitomo RDK-101D cold head and CNA-11C compressor. Our results indicate that ALD-deposited NbN shows a higher refractive index and extinction coefficient in the near-infrared region (~1500 nm) than sputtered NbN of the same thickness. Further, the analysis of the optical properties of plasma pro-ASP deposited NbTiN was performed at different substrate bias voltages and different thicknesses. The analysis of substrate bias voltage indicates that the maximum value of the refractive index and extinction coefficient observed for the substrate biasing of 50-80 V across a substrate bias range of (0 V - 150 V). The optical properties of sputtered NbN films are also investigated in terms of the different substrate temperatures during deposition (100 °C-500 °C). We find the higher the substrate temperature during deposition, the higher the value of the refractive index and extinction coefficient has been observed. In all our superconducting thin films ALD-deposited NbN films possess the highest critical temperature (~12 K) compared to sputtered (~8 K) and plasma pro-ASP (~5 K). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20communication" title="optical communication">optical communication</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=superconductivity" title=" superconductivity"> superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20layer%20deposition%20%28ALD%29" title=" atomic layer deposition (ALD)"> atomic layer deposition (ALD)</a>, <a href="https://publications.waset.org/abstracts/search?q=niobium%20nitride%20%28NbN%29" title=" niobium nitride (NbN)"> niobium nitride (NbN)</a>, <a href="https://publications.waset.org/abstracts/search?q=niobium%20titanium%20nitride%20%28NbTiN%29" title=" niobium titanium nitride (NbTiN)"> niobium titanium nitride (NbTiN)</a>, <a href="https://publications.waset.org/abstracts/search?q=SNSPD" title=" SNSPD"> SNSPD</a>, <a href="https://publications.waset.org/abstracts/search?q=superconducting%20detector" title=" superconducting detector"> superconducting detector</a>, <a href="https://publications.waset.org/abstracts/search?q=photon-counting." title=" photon-counting."> photon-counting.</a> </p> <a href="https://publications.waset.org/abstracts/190213/analysis-of-superconducting-and-optical-properties-in-atomic-layer-deposition-and-sputtered-thin-films-for-next-generation-single-photon-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1809</span> Study of Fork Marks on Sapphire Wafers in Plasma Enhanced Chemical Vapor Deposition Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiao%20Pei%20Wen">Qiao Pei Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ng%20Seng%20Lee"> Ng Seng Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sae%20Tae%20Veera"> Sae Tae Veera</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiu%20Ah%20Fong"> Chiu Ah Fong</a>, <a href="https://publications.waset.org/abstracts/search?q=Loke%20Weng%20Onn"> Loke Weng Onn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin film thickness uniformity is crucial to get consistent film etch rate and device yield across the wafer. In the capacitive-coupled parallel plate PECVD system; the film thickness uniformity can be affected by many factors such as the heater temperature uniformity, the spacing between top and bottom electrode, RF power, pressure, gas flows and etc. In this paper, we studied how the PECVD SiN film thickness uniformity is affected by the substrate electrical conductivity and the RF power coupling efficiency. PECVD SiN film was deposited on 150-mm sapphire wafers in 200-mm Lam Sequel tool, fork marks were observed on the wafers. On the fork marks area SiN film thickness is thinner than that on the non-fork area. The forks are the wafer handler inside the process chamber to move the wafers from one station to another. The sapphire wafers and the ceramic forks both are insulator. The high resistivity of the sapphire wafers and the forks inhibits the RF power coupling efficiency during PECVD deposition, thereby reducing the deposition rate. Comparing between the high frequency and low frequency RF power (HFRF and LFRF respectively), the LFRF power coupling effect on the sapphire wafers is more dominant than the HFRF power on the film thickness. This paper demonstrated that the SiN thickness uniformity on sapphire wafers can be improved by depositing a thin TiW layer on the wafer before the SiN deposition. The TiW layer can be on the wafer surface, bottom or any layer before SiN deposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PECVD%20SiN%20deposition" title="PECVD SiN deposition">PECVD SiN deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=sapphire%20wafer" title=" sapphire wafer"> sapphire wafer</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate%20electrical%20conductivity" title=" substrate electrical conductivity"> substrate electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20power%20coupling" title=" RF power coupling"> RF power coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20RF%20power" title=" high frequency RF power"> high frequency RF power</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20frequency%20RF%20power" title=" low frequency RF power"> low frequency RF power</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20deposition%20rate" title=" film deposition rate"> film deposition rate</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness%20uniformity" title=" thickness uniformity"> thickness uniformity</a> </p> <a href="https://publications.waset.org/abstracts/36353/study-of-fork-marks-on-sapphire-wafers-in-plasma-enhanced-chemical-vapor-deposition-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1808</span> Micro-Arc Oxidation Titanium and Post Treatment by Cold Plasma and Graft Polymerization of Acrylic Acid for Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu-Chuan%20Liao">Shu-Chuan Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ti%20Chang"> Chia-Ti Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ko-Shao%20Chen"> Ko-Shao Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium and its alloy are widely used in many fields such as dentistry or orthopaedics. Due to their high strength low elastic modulus that chemical inertness and bio inert. The micro-arc oxidation used to formation a micro porous ceramic oxide layer film on Titanium surface and also to improve the resistance corrosion. For improving the biocompatibility, micro-arc oxidation surfaces bio-inert need to introduce reactive group. We introduced boundary layer by used plasma enhanced chemical vapor deposition of hexamethyldisilazane (HMDS) and organic active layer by UV light graft reactive monomer acrylic acid (AAc) therefore we can immobilize Chondroitin sulphate on surface easily by crosslinking EDC/NHS. The surface properties and composition of the modified layer were measured by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and water contact angle. Water contact angle of the plasma-treated Ti surface decreases from 60° to 38°, which is an indication of hydrophilicity. The results of electrochemical polarization analysis showed that the sample plasma treated at micro-arc oxidation after plasma treatment has the best corrosion resistance. The result showed that we can immobilize chondroitin sulfate successful by a series of modification and MTT assay indicated the biocompatibility has been improved in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MAO" title="MAO">MAO</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=graft%20polymerization" title=" graft polymerization"> graft polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20application" title=" biomedical application"> biomedical application</a> </p> <a href="https://publications.waset.org/abstracts/43159/micro-arc-oxidation-titanium-and-post-treatment-by-cold-plasma-and-graft-polymerization-of-acrylic-acid-for-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1807</span> The Effects of Spark Plasma on Infectious Wound Healing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erfan%20Ghasemi">Erfan Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Khani"> Mohammadreza Khani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Mahmoudi"> Hamidreza Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Nilforoushzadeh"> Mohammad Ali Nilforoushzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Shokri"> Babak Shokri</a>, <a href="https://publications.waset.org/abstracts/search?q=Pouria%20Akbartehrani"> Pouria Akbartehrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the global significance of treating infectious wounds, the goal of this study is to use spark plasma as a new treatment for infectious wounds. To generate spark plasma, a high-voltage (7 kV) and high-frequency (75 kHz) source was used. Infectious wounds in the peritoneum of mice were divided into control and plasma-treated groups at random. The plasma-treated animals received plasma radiation every 4 days for 12 days, for 60 seconds each time. On the 15th day after the first session, the wound in the plasma-treated group had completely healed. The spectra of spark plasma emission and tissue properties were studied. The mechanical resistance of the wound healed in the plasma treatment group was considerably higher than in the control group (p<0.05), according to the findings. Furthermore, histological evidence suggests that wound re-epithelialization is faster in comparison to controls. Angiogenesis and fibrosis (collagen production) were also dramatically boosted in the plasma-treated group, whereas the stage of wound healing inflammation was significantly reduced. Plasma therapy accelerated wound healing by causing considerable wound constriction. The results of this investigation show that spark plasma has an influence on the treatment of infectious wounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infectious%20wounds" title="infectious wounds">infectious wounds</a>, <a href="https://publications.waset.org/abstracts/search?q=mice" title=" mice"> mice</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma" title=" spark plasma"> spark plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/140938/the-effects-of-spark-plasma-on-infectious-wound-healing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1806</span> Atmospheric Pressure Microwave Plasma System and Its Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waqas%20A.%20Toor">Waqas A. Toor</a>, <a href="https://publications.waset.org/abstracts/search?q=Anis%20U.%20Baig"> Anis U. Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuaman%20Shafqat"> Nuaman Shafqat</a>, <a href="https://publications.waset.org/abstracts/search?q=Raafia%20Irfan"> Raafia Irfan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ashraf"> Muhammad Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 2.45GHz microwave plasma system and its few applications have been developed. Argon and helium plasma is produced by metallic nozzle and also in a quartz tube at atmospheric pressure, using WR-340 waveguide and its tapered version. The waveguide applicator is also simulated in HFSS and field patterns are analyzed for maximum power absorption in the load. The system is tuned to operate at less than 10% reflected power. Various experimental techniques are used to initiate and sustain the plasma at atmospheric pressure. Plasma of atmospheric air is also produced without using any other shielding gas. The plasma flame is also characterized by its spectrum. Spectral analyses of plasma flame can be used for online analysis of combustion gases produced in industry. The applications of the system include glass and quartz processing, vitrification, emission spectroscopy, plasma coating. Low pressure plasma applications of the system include intense UV light for water purification and ozone generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HFSS%20high%20frequency%20structure%20simulator" title="HFSS high frequency structure simulator">HFSS high frequency structure simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=Microwave%20plasma" title=" Microwave plasma"> Microwave plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20ultraviolet" title=" UV ultraviolet"> UV ultraviolet</a>, <a href="https://publications.waset.org/abstracts/search?q=WR%20rectangular%20waveguide" title=" WR rectangular waveguide"> WR rectangular waveguide</a> </p> <a href="https://publications.waset.org/abstracts/91066/atmospheric-pressure-microwave-plasma-system-and-its-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1805</span> Interesting Behavior of Non-Thermal Plasma Photonic Crystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mousavi">A. Mousavi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sadegzadeh"> S. Sadegzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the effect of non-thermal micro plasma with non-Maxwellian distribution function on the one dimensional plasma photonic crystals containing alternate plasma-dielectric layers, has been studied. By using Kronig Penny model, the dispersion relation of electromagnetic modes for such a periodic structure is obtained. In this study we take two plasma photonic crystals with different dielectric layers: the first one with Silicon monoxide named PPCI, and the second one with Tellurium dioxide named PPCII. The effects of the plasma layer thickness and the material of the dielectric layer on the plasma photonic crystal band gaps have been illustrated in the dispersion relation and the group velocity figures. Results revealed that in such a system, the non-thermal plasma exerts stronger limit on the wave’s propagation. In another word, for the non-thermal plasma photonic crystals (NPPC), there are two distinct regions in the dispersion plot. The upper region consists of alternate band gaps in such a way that both width and length of the bands decrease gradually as the band gaps order increases. Whereas in the lower region where v_ph > 20 c (for PPCI), waves will not be allowed to propagate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20gap" title="band gap">band gap</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20relation" title=" dispersion relation"> dispersion relation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-thermal%20plasma" title=" non-thermal plasma"> non-thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20photonic%20crystal" title=" plasma photonic crystal"> plasma photonic crystal</a> </p> <a href="https://publications.waset.org/abstracts/24618/interesting-behavior-of-non-thermal-plasma-photonic-crystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1804</span> The Evolution of the Strategic Plasma Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ghasemi">Zahra Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Babaei"> Fatemeh Babaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma-derived medicinal products are vital categories of biological therapies. These products are used to treat rare, chronic, severe, and life-threatening conditions, such as bleeding disorders (Hemophilia A and B), hemolytic disease of the fetus and newborn, severe infections, burns and liver diseases, and other diseases caused by the absence or malfunction of certain proteins. In addition, they improve the patient’s quality of life. The process of producing plasma-derived medicinal products begins with the collection of human plasma from healthy donors. This initial stage is complex and is monitored with high precision and sensitivity by global authorities to maintain the quality and safety of the final products as well as the health of the donors. The amount of manufactured plasma-derived medicinal products depends on the availability of its raw material, human plasma, so collecting enough plasma for fractionation is essential. Therefore, adopting a suitable national policy regarding plasma donation, establishing collection centers, and increasing public awareness of the importance of plasma donation will improve any country’s conditions regarding the timely and sufficient supply of these medicines. In this study, we tried to briefly examine the importance of sustainability of the plasma industry and its situation in our beloved country of Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20plasma" title=" source plasma"> source plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma-derived%20medicinal%20products" title=" plasma-derived medicinal products"> plasma-derived medicinal products</a>, <a href="https://publications.waset.org/abstracts/search?q=fractionation" title=" fractionation"> fractionation</a> </p> <a href="https://publications.waset.org/abstracts/158132/the-evolution-of-the-strategic-plasma-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1803</span> Wear Resistance of 20MnCr5 Steel Nitrided by Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okba%20Belahssen">Okba Belahssen</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Benramache"> Said Benramache</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents wear behavior of the plasma-nitrided 20MnCr5 steel. Untreated and plasma nitrided samples were tested. The morphology was observed by scanning electron microscopy (SEM). The plasma nitriding behaviors of 20MnCr5 steel have been assessed by evaluating tribological properties and surface hardness by using a pin-on-disk wear machine and microhardness tester. Experimental results showed that the nitrides ε-Fe2−3N and γ′-Fe4N present in the white layer improve the wear resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma-nitriding" title="plasma-nitriding">plasma-nitriding</a>, <a href="https://publications.waset.org/abstracts/search?q=alloy%2020mncr5" title=" alloy 20mncr5"> alloy 20mncr5</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/31284/wear-resistance-of-20mncr5-steel-nitrided-by-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1802</span> Temperature Calculation for an Atmospheric Pressure Plasma Jet by Optical Emission Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Lee">H. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr."> Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bo-ot"> L. Bo-ot</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Tumlos"> R. Tumlos</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ramos"> H. Ramos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study is to be able to calculate excitation and vibrational temperatures of a 2.45 GHz microwave-induced atmospheric pressure plasma jet. The plasma jet utilizes Argon gas as a primary working gas, while Nitrogen is utilized as a shroud gas for protecting the quartz tube from the plasma discharge. Through Optical Emission Spectroscopy (OES), various emission spectra were acquired from the plasma discharge. Selected lines from Ar I and N2 I emissions were used for the Boltzmann plot technique. The Boltzmann plots yielded values for the excitation and vibrational temperatures. The various values for the temperatures were plotted against varying parameters such as the gas flow rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20jet" title="plasma jet">plasma jet</a>, <a href="https://publications.waset.org/abstracts/search?q=OES" title=" OES"> OES</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20plots" title=" Boltzmann plots"> Boltzmann plots</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational%20temperatures" title=" vibrational temperatures"> vibrational temperatures</a> </p> <a href="https://publications.waset.org/abstracts/12879/temperature-calculation-for-an-atmospheric-pressure-plasma-jet-by-optical-emission-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">713</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1801</span> Effects of Plasma Treatment on Seed Germination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Ho%20Jeon">Yong Ho Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Youn%20Mi%20Lee"> Youn Mi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Yoon%20Lee"> Yong Yoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of cold plasma treatment on various plant seed germination were studied. The seeds of hot pepper, cucumber, tomato and arabidopsis were exposed to plasma and the plasma was generated in various devices. The germination speed was evaluated compared to an unexposed control. A positive effect on germination speed was observed in all tested seeds but the effects strongly depended on the type of the used plasma device (Argon-DBD, surface-DBD or MARX generator), time of exposure (6s~10min or 1~10shots) and kind of seeds. The SEM images showed that arrays of gold particles along the cell wall were observed on the surface of cucumber seeds showed a germination-accelerating effect by plasma treatment, which was the same as untreated. However, when treated with the high dose plasma, gold particles were not arrayed at the seed surface, it seems that due to the surface etching. This may suggest that the germination is not promoted by etching or damage of surface caused by the plasma treatment. Seedling growth improvement was also observed by indirect plasma treatment. These lead to an important conclusion that the effect of charged particles on plasma play the essential role in plant germination and indirect plasma treatment offers new perspectives for large scale application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20plasma" title="cold plasma">cold plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=cucumber" title=" cucumber"> cucumber</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM "> SEM </a> </p> <a href="https://publications.waset.org/abstracts/49540/effects-of-plasma-treatment-on-seed-germination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1800</span> Coated Chromium Thin Film on Zirconium for Corrosion Resistance of Nuclear Fuel Rods by Plasma Focus Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Raeisdana">Amir Raeisdana</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Sohrabi"> Davood Sohrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Nohekhan"> Mojtaba Nohekhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameneh%20Kargarian"> Ameneh Kargarian</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Ghapanvari"> Maryam Ghapanvari</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Aslezaeem"> Alireza Aslezaeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improvement of zirconium properties by chromium coating and nitrogen implantation is ideal to protect the nuclear fuel rods against corrosion and secondary hydrogenation. Metallic chromium (Cr) has attracted attention as a potential coating material on zirconium alloys, to limit external cladding corrosion. In this research, high energy plasma focus device was used to coat the chromium and implant the nitrogen ions in the zirconium substrate. This device emits high-energy nitrogen ions of 10 keV-1 MeV and with a flux of 10^16 ions/cm^2 in each shot toward the target so it is attractive for implantation on the substrate materials at the room temperature. Six zirconium samples in 2cm×2cm dimensions with 1mm thickness were located at a distance of 20cm from the place where the pinch is formed. The experiments are carried out in 0.5 mbar of the nitrogen gas pressure and 15 kV of the charging voltage. Pure Cr disc was installed on the anode head for sputtering of the chromium and deposition on zirconium substrate. When the pinch plasma column decays due to various instabilities, intense and high-energy N2 ions are accelerated towards the zirconium substrate also sputtered Cr is deposited on the zirconium substrate. XRD and XRF analysis were used to study the structural properties of the samples. XRF analysis indicates 77.1% of Zr and 11.1% of Cr in the surface of the sample. XRD spectra shows the formation of ZrN, CrN and CrZr composites after nitrogen implantation and chromium coating. XRD spectra shows the chromium peak height equal to 152.80 a.u. for the major sample (θ=0֯) and 92.99 a.u. for the minor sample (θ=6֯), so implantation and coating along the main axis of the device is significantly more than other directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZrN%20and%20CrN%20and%20CrZr%20composites" title="ZrN and CrN and CrZr composites">ZrN and CrN and CrZr composites</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20distribution%20for%20Cr%20deposition%20rate" title=" angular distribution for Cr deposition rate"> angular distribution for Cr deposition rate</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconium%20corrosion%20resistance" title=" zirconium corrosion resistance"> zirconium corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel%20rods" title=" nuclear fuel rods"> nuclear fuel rods</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20focus%20device" title=" plasma focus device"> plasma focus device</a> </p> <a href="https://publications.waset.org/abstracts/190103/coated-chromium-thin-film-on-zirconium-for-corrosion-resistance-of-nuclear-fuel-rods-by-plasma-focus-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1799</span> Enhancing the CO2 Photoreduction of SnFe2O4 by Surface Modification Through Acid Treatment and Au Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najmul%20Hasan">Najmul Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiping%20Li"> Shiping Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunli%20Liu"> Chunli Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synergy effect of surface modifications using the acid treatment and noble metal (Au) deposition on the efficiency of SnFe2O4 (SFO) nano-octahedron photocatalyst has been investigated. Inorganic acids (H2SO4 and HNO3) were employed to compare the effects of different acids. It has been found that after corrosion treatment using H2SO4 and deposition of Au nanoparticles, SnFe2O4 nano-octahedron (Au-S-SFO) showed significantly enhanced photocatalytic activity under simulated light irradiation. Au-S-SFO was characterized by XRD, XPS, EDS, FTIR, Uv-vis-DRS, SEM, PL, and EIS analysis. The mechanism for CO2 reduction was investigated by scavenger tests. The stability of Au-S-SFO was confirmed by continuously repeated tests followed by XRD analysis. The surface corrosion treatment of SFO octahedron with H2SO4 could produce hydroxyl group (-OH) and sulfonic acid group (-SO3H) as reaction sites. These active sites not only enhanced the Au nanoparticles deposition to the acid treated SFO surface but also acted as the Brønsted acid sites that enhance the water adsorption and provide protons for CTC degradation and CO2 reduction. These effects improved the carrier separation and transfer efficiency. In addition, the photocatalytic efficiency was further enhanced by the surface plasmon resonance (SPR) effect of Au nanoparticles deposited on the surface of acid-treated SFO. As a result of the synergy of both acid treatment and SPR effect from the Au NPs, Au-S-SFO exhibited the highest CO2 reduction activity with 2.81, 1.92, and 2.69 times higher evolution rates for CO, CH4, and H2, respectively than that of pure SFO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title="surface modification">surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20reduction" title=" CO2 reduction"> CO2 reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Au%20deposition" title=" Au deposition"> Au deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Gas-liquid%20interfacial%20plasma" title=" Gas-liquid interfacial plasma"> Gas-liquid interfacial plasma</a> </p> <a href="https://publications.waset.org/abstracts/152546/enhancing-the-co2-photoreduction-of-snfe2o4-by-surface-modification-through-acid-treatment-and-au-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20deposition&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20deposition&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20deposition&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20deposition&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20deposition&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20deposition&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20deposition&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20deposition&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20deposition&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20deposition&page=60">60</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20deposition&page=61">61</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20deposition&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>