CINXE.COM
Search results for: Sara Diamond
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Sara Diamond</title> <meta name="description" content="Search results for: Sara Diamond"> <meta name="keywords" content="Sara Diamond"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Sara Diamond" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Sara Diamond"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 506</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Sara Diamond</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">506</span> Property of Diamond Coated Tools for Lapping Single-Crystal Sapphire Wafer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Wei">Feng Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Wenzhuang"> Lu Wenzhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cai%20Wenjun"> Cai Wenjun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Yaping"> Yu Yaping</a>, <a href="https://publications.waset.org/abstracts/search?q=Basnet%20Rabin"> Basnet Rabin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuo%20Dunwen"> Zuo Dunwen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diamond coatings were prepared on cemented carbide by hot filament chemical vapor deposition (HFCVD) method. Lapping experiment of single-crystal sapphire wafer was carried out using the prepared diamond coated tools. The diamond coatings and machined surface of the sapphire wafer were evaluated by SEM, laser confocal microscope and Raman spectrum. The results indicate that the lapping sapphire chips are small irregular debris and long thread-like debris. There is graphitization of diamond crystal during the lapping process. A low surface roughness can be obtained using a spherical grain diamond coated tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lapping" title="lapping">lapping</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-micro%20crystalline%20diamond%20coating" title=" nano-micro crystalline diamond coating"> nano-micro crystalline diamond coating</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectrum" title=" Raman spectrum"> Raman spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=sapphire" title=" sapphire"> sapphire</a> </p> <a href="https://publications.waset.org/abstracts/21218/property-of-diamond-coated-tools-for-lapping-single-crystal-sapphire-wafer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">505</span> Retention Properties of the Matrix Material Fe-Mn-Cu-Sn-C in Relation to Diamond Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%C5%BCbieta%20Cygan-B%C4%85czek">Elżbieta Cygan-Bączek</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Wy%C5%BCga"> Piotr Wyżga</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C5%82awomir%20Cygan"> Sławomir Cygan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the presented work, the main goal was to investigate the retention properties, defined as the ability of the matrix material to hold diamond particles in relation to metallized (Ti, Si, Cr, Co, Cu, Ni) and non-metallized diamond crystals. For this purpose, diamond-impregnated specimens were tested for wear rate on abrasive sandstone using a test rig specially designed to simulate tool application conditions. The tests that involved 3- and 2-body abrasion ranked the alloys in different orders. The ability of the matrix to retain diamond crystals was determined using the electron microskopy (SEM, TEM). The specimens were also characterized by X-ray diffraction (XRD) and hardness. The conducted research has shown that Si and Ti metallized diamonds, apart from mechanical jamming in the matrix, are also connected in a metallurgical manner, ensuring the improvement of the retention properties of the matrix material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamond" title="diamond">diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic-diamond%20segments" title=" metallic-diamond segments"> metallic-diamond segments</a>, <a href="https://publications.waset.org/abstracts/search?q=retention" title=" retention"> retention</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasive%20wear%20resistance" title=" abrasive wear resistance"> abrasive wear resistance</a> </p> <a href="https://publications.waset.org/abstracts/148145/retention-properties-of-the-matrix-material-fe-mn-cu-sn-c-in-relation-to-diamond-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">504</span> Modeling and Simulation of Pad Surface Topography by Diamond Dressing in Chemical-Mechanical Polishing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Chen%20Chao-Chang">A.Chen Chao-Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Phong%20Pham-Quoc"> Phong Pham-Quoc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical-mechanical polishing (CMP) process has been widely applied on fabricating integrated circuits (IC) with a soft polishing pad combined with slurry composed of micron or nano-scaled abrasives for generating chemical reaction to remove substrate or film materials from wafer. During CMP process, pad uniformity usually works as a datum surface of wafer planarization and pad asperities can dominate the microscopic pad-slurry-wafer interaction. However, pad topography can be changed by related mechanism factors of CMP and it needs to be re-conditioned or dressed by a diamond dresser of well-distributed diamond grits on a disc surface. It is still very complicated to analyze and understand kinematic of diamond dressing process under the effects of input variables including oscillatory of diamond dresser and rotation speed ratio between the pad and the diamond dresser. This paper has developed a generic geometric model to clarify the kinematic modeling of diamond dressing processes such as dresser/pad motion, pad cutting locus, the relative velocity of the diamond abrasive grits on pad surface, and overlap of cutting for prediction of pad surface topography. Simulation results focus on comparing and analysis kinematics of the diamond dressing on certain CMP tools. Results have shown the significant parameters for diamond dressing process and also discussed. Future study can apply on diamond dresser design and experimental verification of pad dressing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematic%20modeling" title="kinematic modeling">kinematic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond%20dresser" title=" diamond dresser"> diamond dresser</a>, <a href="https://publications.waset.org/abstracts/search?q=pad%20cutting%20locus" title=" pad cutting locus"> pad cutting locus</a>, <a href="https://publications.waset.org/abstracts/search?q=CMP" title=" CMP"> CMP</a> </p> <a href="https://publications.waset.org/abstracts/50957/modeling-and-simulation-of-pad-surface-topography-by-diamond-dressing-in-chemical-mechanical-polishing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">503</span> Computational Quantum Mechanics Study of Oxygen as Substitutional Atom in Diamond</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Etmimi">K. M. Etmimi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Sghayer"> A. A. Sghayer</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Gsiea"> A. M. Gsiea</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Abutruma"> A. M. Abutruma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relatively few chemical species can be incorporated into diamond during CVD growth, and until recently the uptake of oxygen was thought to be low perhaps as a consequence of a short surface residence time. Within the literature, there is speculation regarding spectroscopic evidence for O in diamond, but no direct evidence. For example, the N3 and OK1 EPR centres have been tentatively assigned models made up from complexes of substitutional N and substitutional oxygen. In this study, we report density-functional calculations regarding the stability, electronic structures, geometry and hyperfine interaction of substitutional oxygen in diamond and show that the C2v, S=1 configuration very slightly lower in energy than the other configurations (C3v, Td, and C2v with S=0). The electronic structure of O in diamond generally gives rise to two defect-related energy states in the band gap one a non-degenerate a1 state lying near the middle of the energy gap and the other a threefold-degenerate t2 state located close to the conduction band edges. The anti-bonding a1 and t2 states will be occupied by one to three electrons for O+, O and O− respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond" title=" diamond"> diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperfine" title=" hyperfine"> hyperfine</a> </p> <a href="https://publications.waset.org/abstracts/19564/computational-quantum-mechanics-study-of-oxygen-as-substitutional-atom-in-diamond" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">502</span> Nitrogen-Doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Coaxial Arc Plasma Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Zkria">Abdelrahman Zkria</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Yoshitake"> Tsuyoshi Yoshitake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diamond is one of the most interesting semiconducting carbon materials owing to its unique physical and chemical properties, yet its application in electronic devices is limited due to the difficulty of realizing n-type conduction by nitrogen doping. In contrast Ultrananocrystalline diamond with diamond grains of about 3–5 nm in diameter have attracted much attention for device-oriented applications because they may enable the realization of n-type doping with nitrogen. In this study, nitrogen-doped Ultra-Nanocrystalline diamond films were prepared by coaxial arc plasma deposition (CAPD) method, the nitrogen content was estimated by X-ray photoemission spectroscopy (XPS). The electrical conductivity increased with increasing nitrogen contents. Heterojunction diodes with p-type Si were fabricated and evaluated based on current–voltage (I–V) and capacitance–voltage (C–V) characteristics measured in dark at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterojunction%20diodes" title="heterojunction diodes">heterojunction diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=hopping%20conduction%20mechanism" title=" hopping conduction mechanism"> hopping conduction mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen-doping" title=" nitrogen-doping"> nitrogen-doping</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-nanocrystalline%20diamond" title=" ultra-nanocrystalline diamond"> ultra-nanocrystalline diamond</a> </p> <a href="https://publications.waset.org/abstracts/44205/nitrogen-doped-ultrananocrystalline-diamondhydrogenated-amorphous-carbon-composite-films-prepared-by-coaxial-arc-plasma-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">501</span> Cyclic Etching Process Using Inductively Coupled Plasma for Polycrystalline Diamond on AlGaN/GaN Heterostructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haolun%20Sun">Haolun Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Wang"> Ping Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei%20Wu"> Mei Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Zhang"> Meng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Hou"> Bin Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20Yang"> Ling Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohua%20Ma"> Xiaohua Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Hao"> Yue Hao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gallium nitride (GaN) is an attractive material for next-generation power devices. It is noted that the performance of GaN-based high electron mobility transistors (HEMTs) is always limited by the self-heating effect. In response to the problem, integrating devices with polycrystalline diamond (PCD) has been demonstrated to be an efficient way to alleviate the self-heating issue of the GaN-based HEMTs. Among all the heat-spreading schemes, using PCD to cap the epitaxial layer before the HEMTs process is one of the most effective schemes. Now, the mainstream method of fabricating the PCD-capped HEMTs is to deposit the diamond heat-spreading layer on the AlGaN surface, which is covered by a thin nucleation dielectric/passivation layer. To achieve the pattern etching of the diamond heat spreader and device preparation, we selected SiN as the hard mask for diamond etching, which was deposited by plasma-enhanced chemical vapor deposition (PECVD). The conventional diamond etching method first uses F-based etching to remove the SiN from the special window region, followed by using O₂/Ar plasma to etch the diamond. However, the results of the scanning electron microscope (SEM) and focused ion beam microscopy (FIB) show that there are lots of diamond pillars on the etched diamond surface. Through our study, we found that it was caused by the high roughness of the diamond surface and the existence of the overlap between the diamond grains, which makes the etching of the SiN hard mask insufficient and leaves micro-masks on the diamond surface. Thus, a cyclic etching method was proposed to solve the problem of the residual SiN, which was left in the F-based etching. We used F-based etching during the first step to remove the SiN hard mask in the specific region; then, the O₂/Ar plasma was introduced to etch the diamond in the corresponding region. These two etching steps were set as one cycle. After the first cycle, we further used cyclic etching to clear the pillars, in which the F-based etching was used to remove the residual SiN, and then the O₂/Ar plasma was used to etch the diamond. Whether to take the next cyclic etching depends on whether there are still SiN micro-masks left. By using this method, we eventually achieved the self-terminated etching of the diamond and the smooth surface after the etching. These results demonstrate that the cyclic etching method can be successfully applied to the integrated preparation of polycrystalline diamond thin films and GaN HEMTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN%20heterojunction" title="AlGaN/GaN heterojunction">AlGaN/GaN heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=O%E2%82%82%2FAr%20plasma" title=" O₂/Ar plasma"> O₂/Ar plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20etching" title=" cyclic etching"> cyclic etching</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20diamond" title=" polycrystalline diamond"> polycrystalline diamond</a> </p> <a href="https://publications.waset.org/abstracts/159880/cyclic-etching-process-using-inductively-coupled-plasma-for-polycrystalline-diamond-on-algangan-heterostructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">500</span> Carbon Nanofilms on Diamond for All-Carbon Chemical Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Kumar">Vivek Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20M.%20Zaitsev"> Alexander M. Zaitsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study on chemical sensing properties of carbon nanofilms on diamond for developing all-carbon chemical sensors is presented. The films were obtained by high temperature graphitization of diamond followed by successive plasma etchings. Characterization of the films was done by Raman spectroscopy, atomic force microscopy, and electrical measurements. Fast and selective response to common organic vapors as seen as sensitivity of electrical conductance was observed. The phenomenological description of the chemical sensitivity is proposed as a function of the surface and bulk material properties of the films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20sensor" title="chemical sensor">chemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanofilm" title=" carbon nanofilm"> carbon nanofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=graphitization%20of%20diamond" title=" graphitization of diamond"> graphitization of diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20etching" title=" plasma etching"> plasma etching</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy" title=" atomic force microscopy"> atomic force microscopy</a> </p> <a href="https://publications.waset.org/abstracts/20783/carbon-nanofilms-on-diamond-for-all-carbon-chemical-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">499</span> Effect of Microstructure on Wear Resistance of Polycrystalline Diamond Composite Cutter of Bit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fanyuan%20Shao">Fanyuan Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liu"> Wei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Deli%20Gao"> Deli Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycrystalline diamond composite (PDC) cutter is made of diamond powder as raw material, cobalt metal or non-metallic elements as a binder, mixed with WC cemented carbide matrix assembly, through high temperature and high-pressure sintering. PDC bits with PDC cutters are widely used in oil and gas drilling because of their high hardness, good wear resistance and excellent impact toughness. And PDC cutter is the main cutting tool of bit, which seriously affects the service of the PDC bit. The wear resistance of the PDC cutter is measured by cutting granite with a vertical turret lathe (VTL). This experiment can achieve long-distance cutting to obtain the relationship between the wear resistance of the PDC cutter and cutting distance, which is more closely to the real drilling situation. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively, which can also characterize the damage and wear of the PDC cutter. PDC cutters were cut via electrical discharge machining (EDM) and then flattened and polished. A scanning electron microscope (SEM) was used to observe the distribution of binder cobalt and the size of diamond particles in a diamond PDC cutter. The cutting experimental results show that the wear area of the PDC cutter has a good linear relationship with the cutting distance. Simultaneously, the larger the wear area is and the greater the cutting forces are required to maintain the same cutting state. The size and distribution of diamond particles in the polycrystalline diamond layer have a great influence on the wear resistance of the diamond layer. And PDC cutter with fine diamond grains shows more wear resistance than that with coarse grains. The deep leaching process is helpful to reduce the effect of binder cobalt on the wear resistance of the polycrystalline diamond layer. The experimental study can provide an important basis for the application of PDC cutters in oil and gas drilling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20diamond%20compact" title="polycrystalline diamond compact">polycrystalline diamond compact</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20distance" title=" cutting distance"> cutting distance</a> </p> <a href="https://publications.waset.org/abstracts/139046/effect-of-microstructure-on-wear-resistance-of-polycrystalline-diamond-composite-cutter-of-bit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">498</span> Movement of Metallic Inclusions in the Volume of Synthetic Diamonds at High Pressure and High Temperature in the Temperature Gradient Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20I.%20Yachevskaya">P. I. Yachevskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Terentiev"> S. A. Terentiev</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Kuznetsov"> M. S. Kuznetsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several synthetic HPHT diamonds with metal inclusions have been studied. To have possibility of investigate the movement and transformation of the inclusions in the volume of the diamond the samples parallele-piped like shape has been made out of diamond crystals. The calculated value of temperature gradient in the samples of diamond which was placed in high-pressure cell was about 5-10 grad/mm. Duration of the experiments was in range 2-16 hours. All samples were treated several times. It has been found that the volume (dimensions) of inclusions, temperature, temperature gradient and the crystallographic orientation of the samples in the temperature field affects the movement speed of inclusions. Maximum speed of inclusions’ movement reached a value 150 µm/h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamond" title="diamond">diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusions" title=" inclusions"> inclusions</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20gradient" title=" temperature gradient"> temperature gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=HPHT" title=" HPHT"> HPHT</a> </p> <a href="https://publications.waset.org/abstracts/19108/movement-of-metallic-inclusions-in-the-volume-of-synthetic-diamonds-at-high-pressure-and-high-temperature-in-the-temperature-gradient-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">497</span> Possible Sulfur Induced Superconductivity in Nano-Diamond</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Mona">J. Mona</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20da%20Silva"> R. R. da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=C.-L.Cheng"> C.-L.Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Kopelevich"> Y. Kopelevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report on a possible occurrence of superconductivity in 5 nm particle size diamond powders treated with sulfur (S) at 500 o C for 10 hours in ~10-2 Torr vacuum. Superconducting-like magnetization hysteresis loops M(H) have been measured up to ~ 50 K by means of the SQUID magnetometer (Quantum Design). Both X-ray (Θ-2Θ geometry) and Raman spectroscopy analyses revealed no impurity or additional phases. Nevertheless, the measured Raman spectra are characteristic to the diamond with embedded disordered carbon and/or graphitic fragments suggesting a link to the previous reports of the local or surface superconductivity in graphite- and amorphous carbon–sulfur composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanodiamond" title="nanodiamond">nanodiamond</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur" title=" sulfur"> sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=superconductivity" title=" superconductivity"> superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy "> Raman spectroscopy </a> </p> <a href="https://publications.waset.org/abstracts/14990/possible-sulfur-induced-superconductivity-in-nano-diamond" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">496</span> Production of Metal Matrix Composites with Diamond for Abrasive Cutting Resistance by Gas Infiltration Casting </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haydar%20S.%20Al%20Shabbani">Haydar S. Al Shabbani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Marshall"> M. Marshall</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Goodall"> R. Goodall </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal matrix composites (MMCs) have been explored for many applications for many decades. Recently, this includes investigations for thermal applications associated with electronics, such as in heat sinks. Here, to promote thermal conductivity, composites of a metal matrix with diamond particles are used. However, this class of composites has not yet been extensively examined for mechanical and tribological behavior, especially for applications that require extreme mechanical and tribological strength, such as the resistance to abrasive cutting. Therefore, this research seeks to develop a composite material with metal matrix and diamond particles which resist abrasive and cutting forces. The development progresses through a series of steps, exploring methods to process the material, understanding the mechanics of abrasive behavior and optimizing the composite structure to resist abrasive cutting. In processing, infiltration casting under gas pressure has been applied to molten aluminum to obtain a significant penetration of the metal into a preform of diamond particles. Different diamond particle sizes were used with different surface modifications (coated/uncoated), and to compare resulting composites with the same particle sizes. Al-1 wt.% Mg as a matrix alloy was utilised to investigate the possible effect of Mg on bonding phases during the infiltration process. The mechanical behavior and microstructure of the materials produced have been characterised. These tests showed that the surface modification of the diamond particles with a reactive material (Ti-coating) has an important role for enhancing the bonding between the aluminium matrix and diamond reinforcement as apparent under SEM observation. The effect of this improved bond is seen in the cutting resistance of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium" title="aluminium">aluminium</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond" title=" diamond"> diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-coated" title=" Ti-coated"> Ti-coated</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/73320/production-of-metal-matrix-composites-with-diamond-for-abrasive-cutting-resistance-by-gas-infiltration-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">495</span> An Analysis of New Service Interchange Designs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20E.%20Hummer">Joseph E. Hummer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An efficient freeway system will be essential to the development of Africa, and interchanges are a key to that efficiency. Around the world, many interchanges between freeways and surface streets, called service interchanges, are of the diamond configuration, and interchanges using roundabouts or loop ramps are also popular. However, many diamond interchanges have serious operational problems, interchanges with roundabouts fail at high demand levels, and loops use lots of expensive land. Newer service interchange designs provide other options. The most popular new interchange design in the US at the moment is the double crossover diamond (DCD), also known as the diverging diamond. The DCD has enormous potential, but also has several significant limitations. The objectives of this paper are to review new service interchange options and to highlight some of the main features of those alternatives. The paper tests four conventional and seven unconventional designs using seven measures related to efficiency, cost, and safety. The results show that there is no superior design in all measures investigated. The DCD is better than most designs tested on most measures examined. However, the DCD was only superior to all other designs for bridge width. The DCD performed relatively poorly for capacity and for serving pedestrians. Based on the results, African freeway designers are encouraged to investigate the full range of alternatives that could work at the spot of interest. Diamonds and DCDs have their niches, but some of the other designs investigated could be optimum at some spots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interchange" title="interchange">interchange</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond" title=" diamond"> diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=diverging%20diamond" title=" diverging diamond"> diverging diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a> </p> <a href="https://publications.waset.org/abstracts/12953/an-analysis-of-new-service-interchange-designs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">494</span> Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaozhi%20Liu">Zhaozhi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Xu"> Feng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhua%20Xu"> Junhua Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolong%20Tang"> Xiaolong Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Liu"> Ying Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunwen%20Zuo"> Dunwen Zuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cemented%20carbide%20with%20high%20cobalt%20content" title="cemented carbide with high cobalt content">cemented carbide with high cobalt content</a>, <a href="https://publications.waset.org/abstracts/search?q=CVD%20boron-doped%20diamond" title=" CVD boron-doped diamond"> CVD boron-doped diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20test" title=" cutting test"> cutting test</a>, <a href="https://publications.waset.org/abstracts/search?q=drill" title=" drill"> drill</a> </p> <a href="https://publications.waset.org/abstracts/20081/preparation-and-cutting-performance-of-boron-doped-diamond-coating-on-cemented-carbide-cutting-tools-with-high-cobalt-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">493</span> Assessment of Work Postures and Prevalence of Musculoskeletal Disorders among Diamond Polishers in Botswana: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oanthata%20Jester%20Sealetsa">Oanthata Jester Sealetsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Richie%20Moalosi"> Richie Moalosi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Musculoskeletal Disorders (MSDs) are reported to be amongst the leading contributing factors of low productivity in many industries across the world, and the most affected being New Emerging Economies (NEC) such as Botswana. This is due to lack of expertise and resources to deal with existing ergonomics challenges. This study was aimed to evaluate occupational postures and the prevalence of musculoskeletal disorders among diamond polishers in a diamond company in Botswana. A case study was conducted with about 106 diamond polishers in Gaborone, Botswana. A case study was chosen because it can investigate and explore an issue thoroughly and deeply, and record behaviour over time so changes in behaviour can be identified. The Corlett and Bishop Body Map was used to determine frequency of MSDs symptoms in different body parts of the workers. This was then followed by the use of the Rapid Entire Body Assessment (REBA) to evaluate the occupational postural risks of MSDs. Descriptive statistics, chi square, and logistic regression were used for data analysis. The results of the study reveal that workers experienced pain in the upper back, lower back, shoulders, neck, and wrists with the most pain reported in the upper back (44.6%) and lower back (44.2%). However, the mean REBA score of 6.07 suggests that sawing, bruiting and polishing were the most dangerous processes in diamond polishing. The study recommends that a redesign of the diamond polishing workstations is necessary to accommodate the anthropometry characteristic of Batswana (people from Botswana) to prevent the development of MSDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Botswana" title=" Botswana"> Botswana</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond%20polishing" title=" diamond polishing"> diamond polishing</a>, <a href="https://publications.waset.org/abstracts/search?q=ergonomics" title=" ergonomics"> ergonomics</a>, <a href="https://publications.waset.org/abstracts/search?q=musculoskeletal%20disorders" title=" musculoskeletal disorders"> musculoskeletal disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20postural%20risks" title=" occupational postural risks"> occupational postural risks</a> </p> <a href="https://publications.waset.org/abstracts/92275/assessment-of-work-postures-and-prevalence-of-musculoskeletal-disorders-among-diamond-polishers-in-botswana-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">492</span> Cutting Performance of BDD Coating on WC-Co Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Xu">Feng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaozhi%20Liu"> Zhaozhi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhua%20Xu"> Junhua Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolong%20Tang"> Xiaolong Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunwen%20Zuo"> Dunwen Zuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cemented%20carbide%20with%20high%20cobalt%20content" title="cemented carbide with high cobalt content">cemented carbide with high cobalt content</a>, <a href="https://publications.waset.org/abstracts/search?q=CVD%20boron-doped%20diamond" title=" CVD boron-doped diamond"> CVD boron-doped diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20test" title=" cutting test"> cutting test</a>, <a href="https://publications.waset.org/abstracts/search?q=drill" title=" drill"> drill</a> </p> <a href="https://publications.waset.org/abstracts/23174/cutting-performance-of-bdd-coating-on-wc-co-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">491</span> A Parasitic Resonator-Based Diamond Shape Microstrip Antenna for Ultra-Wide-Band Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Zulfiker%20Mahmud">M. Zulfiker Mahmud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naimur%20Rahman"> M. Naimur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20%20Bin%20Ashraf"> Farhad Bin Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbahiah%20Misran"> Norbahiah Misran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tariqul%20Islam"> Mohammad Tariqul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes a diamond-shaped microstrip patch antenna for ultra-wideband applications. The antenna is made up of a diamond shape radiating patch, partial ground plane, and three asterisk-shaped parasitic elements. The parasitic elements are positioned above the ground plane to enhance the bandwidth and gain. The proposed antenna has a compact dimension of 30 x 25 x 1.6 mm3 and achieves an overall bandwidth (S11<-10dB) is 5.8 GHz from 2.7 GHz to 8.5 GHz. The antenna attains more than 4 dBi realized the gain and 80% efficiency over the bandwidth with omnidirectional radiation pattern. The design and simulation of the proposed antenna are performed in Computer Simulation Technology (CST) Microwave Studio. The observation during the analysis of the simulated data reveals that the proposed antenna is suitable for Ultra wide-band (UWB) applications where high gain is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamond-shaped%20antenna" title="diamond-shaped antenna">diamond-shaped antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20antenna" title=" microstrip antenna"> microstrip antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=parasitic%20resonator" title=" parasitic resonator"> parasitic resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=UWB%20applications" title=" UWB applications"> UWB applications</a> </p> <a href="https://publications.waset.org/abstracts/91476/a-parasitic-resonator-based-diamond-shape-microstrip-antenna-for-ultra-wide-band-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">490</span> Anal Repair and Diamond Flap in Moderate Anal Stenosis Patient After an Open Hemorrhoidectomy Surgery: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andriana%20Purnama">Andriana Purnama</a>, <a href="https://publications.waset.org/abstracts/search?q=Reno%20Rudiman"> Reno Rudiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Kezia%20Christy"> Kezia Christy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anal stenosis which develops due to anoderm scarring usually caused by secondary to surgical trauma, has become common, causing significant decrease patient’s quality of life. Even though mild anal stenosis was treated with non-surgical treatment, but surgical reconstruction in unavoidable for moderate to severe anal stenosis that cause distressing, severe anal pain and inability to defecate. In our study, we intend to share our result with the use of diamond flap in treatment of anal stenosis. This case report illustrates a 57-year-old male patient who presented with difficulty and discomfort in defecation caused by anal stenosis after 2 years of open hemorrhoidectomy surgery. At physical examination, there was requirement of forceful dilatation when the index finger was inserted or precisely 6mm as measured by hegar dilator (moderate anal stenosis). Blood test result was within normal limits. The patient underwent anal repair and diamond flap where the scar tissue at 6 and 9 o’clock directions was excised and diamond graft was incised carefully while paying attention to the vascular supply. Finally, the graft was fixated without any tension to the anal canal, resulting in diameter of 2 cm after operation. After 2 days post operation, the patient was in stable condition, without any complication, and discharged. There was no abnormality concerning the stool. Ten days after the operation, diamond flap was in normal condition and without any complication. He was scheduled for futher follow up at the Digestive Surgery Department. Anal stenosis due to overzealous hemorrhoidectomy is a complication that is preventable when performed in experienced hands. Diamond flap was one of the options for the anal stenosis treatment with less complication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anal%20stenosis" title="anal stenosis">anal stenosis</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond%20flap" title=" diamond flap"> diamond flap</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20hemorrhoidectomy" title=" post hemorrhoidectomy"> post hemorrhoidectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=anal%20repair" title=" anal repair"> anal repair</a> </p> <a href="https://publications.waset.org/abstracts/159843/anal-repair-and-diamond-flap-in-moderate-anal-stenosis-patient-after-an-open-hemorrhoidectomy-surgery-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">489</span> Performance Evaluation of Diverging Diamond Interchange Compared to Single Point Diamond Interchange in Riyadh City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maged%20A.%20Mogalli">Maged A. Mogalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20I.%20Al-Mansour"> Abdullah I. Al-Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongkwan%20Mark%20Lee"> Seongkwan Mark Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decades, population growth has gradually exceeded transportation infrastructure growth, and today’s transportation professionals are facing challenge on how to meet the mobility needs of a rising population especially in the absence of adequate public transport, as is the case in Saudi Arabia. The traffic movement congestion can be decreased by carrying out some appropriate alternative designs of interchanges such as diverging diamond interchange (DDI) and single diamond interchange (SPDI). In this paper, evaluation of newly implemented DDIs at the interchange of Makkah road with Prince Turki road and the interchange of King Khaled road with Prince Saud Ibn Mohammed Ibn Mugrin road in Riyadh city was carried out. The comparison between the DDI and SPDI is conducted by evaluating different measures of effectiveness (MOE) such as stop delay, average queue length, and number of stops. In this connection, each interchange type was evaluated for traffic flow at peak hours using micro-simulation program namely 'Synchro/SimTarffic' to measure its effectiveness such as stop delay, average queue length, and number of stops. The results of this study show that DDI provides a better result when compared with SPDI in terms of stope delay, average queue length, and number of stops. The stop delay for the SPDI is greater than DDI by three times. Also, the average queue length is approximately twice that of the SPDI when compared to the DDI. Furthermore, the number of stops for the SPDI is about twice as the DDI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20point%20diamond%20interchange" title="single point diamond interchange">single point diamond interchange</a>, <a href="https://publications.waset.org/abstracts/search?q=diverging%20diamond%20interchange" title=" diverging diamond interchange"> diverging diamond interchange</a>, <a href="https://publications.waset.org/abstracts/search?q=measures%20of%20effectiveness" title=" measures of effectiveness"> measures of effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/105752/performance-evaluation-of-diverging-diamond-interchange-compared-to-single-point-diamond-interchange-in-riyadh-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">488</span> Theoretical Study of Substitutional Phosphorus and Nitrogen Pairs in Diamond</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahani%20Amutairi">Tahani Amutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20May"> Paul May</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Allan"> Neil Allan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many properties of semiconductor materials (mechanical, electronic, magnetic, and optical) can be significantly modified by introducing a point defect. Diamond offers extraordinary properties as a semiconductor, and doping seems to be a viable method of solving the problem associated with the fabrication of diamond-based electronic devices in order to exploit those properties. The dopants are believed to play a significant role in reducing the energy barrier to conduction and controlling the mobility of the carriers and the resistivity of the film. Although it has been proven that the n-type diamond semiconductor can be obtained with phosphorus doping, the resulting ionisation energy and mobility are still inadequate for practical application. Theoretical studies have revealed that this is partly because the effects of the many phosphorus atoms incorporated in the diamond lattice are compensated by acceptor states. Using spin-polarised hybrid density functional theory and a supercell approach, we explored the effects of bonding one N atom to a P in adjacent substitutional sites in diamond. A range of hybrid functional, including HSE06, B3LYP, PBE0, PBEsol0, and PBE0-13, were used to calculate the formation, binding, and ionisation energies, in order to explore the solubility and stability of the point defect. The equilibrium geometry and the magnetic and electronic structures were analysed and presented in detail. The defect introduces a unique reconstruction in a diamond where one of the C atoms coordinated with the N atom involved in the elongated C-N bond and creates a new bond with the P atom. The simulated infrared spectra of phosphorus-nitrogen defects were investigated with different supercell sizes and found to contain two sharp peaks at the edges of the spectrum, one at a high frequency 1,379 cm⁻¹ and the second appearing at the end range, 234 cm⁻¹, as obtained with the largest supercell (216). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=HSE06" title=" HSE06"> HSE06</a>, <a href="https://publications.waset.org/abstracts/search?q=B3LYP" title=" B3LYP"> B3LYP</a>, <a href="https://publications.waset.org/abstracts/search?q=PBE0" title=" PBE0"> PBE0</a>, <a href="https://publications.waset.org/abstracts/search?q=PBEsol0" title=" PBEsol0"> PBEsol0</a>, <a href="https://publications.waset.org/abstracts/search?q=PBE0-13" title=" PBE0-13"> PBE0-13</a> </p> <a href="https://publications.waset.org/abstracts/141366/theoretical-study-of-substitutional-phosphorus-and-nitrogen-pairs-in-diamond" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">487</span> Effect of Hydrogen Content and Structure in Diamond-Like Carbon Coatings on Hydrogen Permeation Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Motonori%20Tamura">Motonori Tamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrogen barrier properties of the coatings of diamond-like carbon (DLC) were evaluated. Using plasma chemical vapor deposition and sputtering, DLC coatings were deposited on Type 316L stainless steels. The hydrogen permeation rate was reduced to 1/1000 or lower by the DLC coatings. The DLC coatings with high hydrogen content had high hydrogen barrier function. For hydrogen diffusion in coatings, the movement of atoms through hydrogen trap sites such as pores in coatings, and crystal defects such as dislocations, is important. The DLC coatings are amorphous, and there are both sp3 and sp2 bonds, and excess hydrogen could be found in the interstitial space and the hydrogen trap sites. In the DLC coatings with high hydrogen content, these hydrogen trap sites are likely already filled with hydrogen atoms, and the movement of new hydrogen atoms could be limited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20permeation" title="hydrogen permeation">hydrogen permeation</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steels" title=" stainless steels"> stainless steels</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond-like%20carbon" title=" diamond-like carbon"> diamond-like carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20trap%20sites" title=" hydrogen trap sites"> hydrogen trap sites</a> </p> <a href="https://publications.waset.org/abstracts/63201/effect-of-hydrogen-content-and-structure-in-diamond-like-carbon-coatings-on-hydrogen-permeation-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">486</span> Mechanical Properties of Diamond Reinforced Ni Nanocomposite Coatings Made by Co-Electrodeposition with Glycine as Additive </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanheng%20Zhang">Yanheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Feng"> Lu Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilan%20Kang"> Yilan Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Donghui%20Fu"> Donghui Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Zhang"> Qian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiu%20Li"> Qiu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Qiu"> Wei Qiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diamond-reinforced Ni matrix composite has been widely applied in engineering for coating large-area structural parts owing to its high hardness, good wear resistance and corrosion resistance compared with those features of pure nickel. The mechanical properties of Ni-diamond composite coating can be promoted by the high incorporation and uniform distribution of diamond particles in the nickel matrix, while the distribution features of particles are affected by electrodeposition process parameters, especially the additives in the plating bath. Glycine has been utilized as an organic additive during the preparation of pure nickel coating, which can effectively increase the coating hardness. Nevertheless, to author’s best knowledge, no research about the effects of glycine on the Ni-diamond co-deposition has been reported. In this work, the diamond reinforced Ni nanocomposite coatings were fabricated by a co-electrodeposition technique from a modified Watt’s type bath in the presence of glycine. After preparation, the SEM morphology of the composite coatings was observed combined with energy dispersive X-ray spectrometer, and the diamond incorporation was analyzed. The surface morphology and roughness were obtained by a three-dimensional profile instrument. 3D-Debye rings formed by XRD were analyzed to characterize the nickel grain size and orientation in the coatings. The average coating thickness was measured by a digital micrometer to deduce the deposition rate. The microhardness was tested by automatic microhardness tester. The friction coefficient and wear volume were measured by reciprocating wear tester to characterize the coating wear resistance and cutting performance. The experimental results confirmed that the presence of glycine effectively improved the surface morphology and roughness of the composite coatings. By optimizing the glycine concentration, the incorporation of diamond particles was increased, while the nickel grain size decreased with increasing glycine. The hardness of the composite coatings was increased as the glycine concentration increased. The friction and wear properties were evaluated as the glycine concentration was optimized, showing a decrease in the wear volume. The wear resistance of the composite coatings increased as the glycine content was increased to an optimum value, beyond which the wear resistance decreased. Glycine complexation contributed to the nickel grain refinement and improved the diamond dispersion in the coatings, both of which made a positive contribution to the amount and uniformity of embedded diamond particles, thus enhancing the microhardness, reducing the friction coefficient, and hence increasing the wear resistance of the composite coatings. Therefore, additive glycine can be used during the co-deposition process to improve the mechanical properties of protective coatings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-electrodeposition" title="co-electrodeposition">co-electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=glycine" title=" glycine"> glycine</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni-diamond%20nanocomposite%20coatings" title=" Ni-diamond nanocomposite coatings"> Ni-diamond nanocomposite coatings</a> </p> <a href="https://publications.waset.org/abstracts/105213/mechanical-properties-of-diamond-reinforced-ni-nanocomposite-coatings-made-by-co-electrodeposition-with-glycine-as-additive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">485</span> Microstructure and Mechanical Properties of Nb: Si: (a-C) Thin Films Prepared Using Balanced Magnetron Sputtering System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Khamseh">Sara Khamseh</a>, <a href="https://publications.waset.org/abstracts/search?q=Elahe%20Sharifi"> Elahe Sharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 321 alloy steel is austenitic stainless steel with high oxidation resistance and is commonly used to fabricate heat exchangers and steam generators. However, the low hardness and weak tribological performance can cause dangerous failures during industrial operations. The well-designed protective coatings on 321 alloy steel surfaces with high hardness and good tribological performance can guarantee their safe applications. The surface protection of metal substrates using protective coatings showed high efficiency in prevailing these problems. Carbon-based multicomponent coatings, such as metal-added amorphous carbon coatings, are crucially necessary because of their remarkable mechanical and tribological performances. In the current study, (Nb: Si: a-C) multicomponent coatings (a-C: amorphous carbon) were coated on 321 alloys using a balanced magnetron (BM) sputtering system at room temperature. The effects of the Si/Nb ratio on microstructure, mechanical and tribological characteristics of (Nb: Si: a-C) composite coatings were investigated. The XRD and Raman analysis results showed that the coatings formed a composite structure of cubic diamond (C-D), NbC, and graphite-like carbon (GLC). The NbC phase's abundance decreased when the C-D phase's affluence increased with an increasing Si/Nb ratio. The coatings' indentation hardness and plasticity index (H³/E² ratio) increased with an increasing Si/Nb ratio. The better mechanical properties of the coatings with higher Si content can be attributed to the higher cubic diamond (C-D) content. The cubic diamond (C-D) is a challenging phase and can positively affect the mechanical performance of the coatings. It is well documented that in hard protective coatings, Si encourages amorphization. In addition, THE studies showed that Nb and Mo can act as a catalyst for nucleation and growth of hard cubic (C-D) and hexagonal (H-D) diamond phases in a-C coatings. In the current study, it seems that fully arranged nanocomposite coatings contain hard C-D and NbC phases that embedded in the amorphous carbon (GLC) phase is formed. This unique structure decreased grain boundary density and defects and resulted in high hardness and H³/E² ratio. Moreover, the COF and wear rate of the coatings decreased with increasing Si/Nb ratio. This can be attributed to the good mechanical properties of the coatings and the formation of graphite-like carbon (GLC) structure with lamellae arrangement in the coatings. The complex and self-lubricant coatings are successfully formed on the surface of 321 alloys. The results of the present study clarified that Si addition to (Nb: a-C) coatings improve the mechanical and tribological performance of the coatings on 321 alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COF" title="COF">COF</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=%28Nb%3A%20Si%3A%20a-C%29%20coatings" title=" (Nb: Si: a-C) coatings"> (Nb: Si: a-C) coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=Wear%20rate" title=" Wear rate"> Wear rate</a> </p> <a href="https://publications.waset.org/abstracts/163283/microstructure-and-mechanical-properties-of-nb-si-a-c-thin-films-prepared-using-balanced-magnetron-sputtering-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">484</span> A Novel Search Pattern for Motion Estimation in High Efficiency Video Coding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phong%20Nguyen">Phong Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Phap%20Nguyen"> Phap Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Thang%20Nguyen"> Thang Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High Efficiency Video Coding (HEVC) or H.265 Standard fulfills the demand of high resolution video storage and transmission since it achieves high compression ratio. However, it requires a huge amount of calculation. Since Motion Estimation (ME) block composes about 80 % of calculation load of HEVC, there are a lot of researches to reduce the computation cost. In this paper, we propose a new algorithm to lower the number of Motion Estimation’s searching points. The number of computing points in search pattern is down from 77 for Diamond Pattern and 81 for Square Pattern to only 31. Meanwhile, the Peak Signal to Noise Ratio (PSNR) and bit rate are almost equal to those of conventional patterns. The motion estimation time of new algorithm reduces by at 68.23%, 65.83%compared to the recommended search pattern of diamond pattern, square pattern, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion%20estimation" title="motion estimation">motion estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=wide%20diamond" title=" wide diamond"> wide diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=search%20pattern" title=" search pattern"> search pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=H.265" title=" H.265"> H.265</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20zone%20search" title=" test zone search"> test zone search</a>, <a href="https://publications.waset.org/abstracts/search?q=HM%20software" title=" HM software"> HM software</a> </p> <a href="https://publications.waset.org/abstracts/22368/a-novel-search-pattern-for-motion-estimation-in-high-efficiency-video-coding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">483</span> Experimental Study of Impregnated Diamond Bit Wear During Sharpening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Huang">Rui Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Richard"> Thomas Richard</a>, <a href="https://publications.waset.org/abstracts/search?q=Masood%20Mostofi"> Masood Mostofi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lifetime of impregnated diamond bits and their drilling efficiency are in part governed by the bit wear conditions, not only the extent of the diamonds’ wear but also their exposure or protrusion out of the matrix bonding. As much as individual diamonds wear, the bonding matrix does also wear through two-body abrasion (direct matrix-rock contact) and three-body erosion (cuttings trapped in the space between rock and matrix). Although there is some work dedicated to the study of diamond bit wear, there is still a lack of understanding on how matrix erosion and diamond exposure relate to the bit drilling response and drilling efficiency, as well as no literature on the process that governs bit sharpening a procedure commonly implemented by drillers when the extent of diamond polishing yield extremely low rate of penetration. The aim of this research is (i) to derive a correlation between the wear state of the bit and the drilling performance but also (ii) to gain a better understanding of the process associated with tool sharpening. The research effort combines specific drilling experiments and precise mapping of the tool-cutting face (impregnated diamond bits and segments). Bit wear is produced by drilling through a rock sample at a fixed rate of penetration for a given period of time. Before and after each wear test, the bit drilling response and thus efficiency is mapped out using a tailored design experimental protocol. After each drilling test, the bit or segment cutting face is scanned with an optical microscope. The test results show that, under the fixed rate of penetration, diamond exposure increases with drilling distance but at a decreasing rate, up to a threshold exposure that corresponds to the optimum drilling condition for this feed rate. The data further shows that the threshold exposure scale with the rate of penetration up to a point where exposure reaches a maximum beyond which no more matrix can be eroded under normal drilling conditions. The second phase of this research focuses on the wear process referred as bit sharpening. Drillers rely on different approaches (increase feed rate or decrease flow rate) with the aim of tearing worn diamonds away from the bit matrix, wearing out some of the matrix, and thus exposing fresh sharp diamonds and recovering a higher rate of penetration. Although a common procedure, there is no rigorous methodology to sharpen the bit and avoid excessive wear or bit damage. This paper aims to gain some insight into the mechanisms that accompany bit sharpening by carefully tracking diamond fracturing, matrix wear, and erosion and how they relate to drilling parameters recorded while sharpening the tool. The results show that there exist optimal conditions (operating parameters and duration of the procedure) for sharpening that minimize overall bit wear and that the extent of bit sharpening can be monitored in real-time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bit%20sharpening" title="bit sharpening">bit sharpening</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond%20exposure" title=" diamond exposure"> diamond exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20response" title=" drilling response"> drilling response</a>, <a href="https://publications.waset.org/abstracts/search?q=impregnated%20diamond%20bit" title=" impregnated diamond bit"> impregnated diamond bit</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20erosion" title=" matrix erosion"> matrix erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a> </p> <a href="https://publications.waset.org/abstracts/159972/experimental-study-of-impregnated-diamond-bit-wear-during-sharpening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">482</span> Characterization and Analysis of Airless Tire in Mountain Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Rafiq">Sadia Rafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Ashab%20Siddique%20Zaki"> Md. Ashab Siddique Zaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Roy"> Ananya Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mountain cycling is a type of off-road bicycle racing that typically takes place on rocky, arid, or other challenging terrains on specially-made mountain cycles. Professional cyclists race while attempting to stay on their bikes in a variety of locales across the world. For safety measures in mountain cycling, as there we have a high chance of injury in case of tire puncture, it’s a preferable way to use an airless tire instead of a pneumatic tire. As airless tire does not tend to go flat, it needs to be replaced less frequently. The airless tire replaces the pneumatic tire, wheel, and tire system with a single unit. It consists of a stiff hub connected to a shear band by flexible, pliable spokes, which is made of poly-composite and a tread band, all of which work together as a single unit to replace all of the components of a normal radial tire. In this paper, an analysis of airless tires in the mountain cycle is shown along with structure and material study. We will be taking the Honeycomb and Diamond Structure of spokes to compare the deformation in both cases and choose our preferable structure. As we know, the tread and spokes deform with the surface roughness and impact. So, the tire tread thickness and the design of spokes can control how much the tire can distort. Through the simulation, we can come to the conclusion that the diamond structure deforms less than the honeycomb structure. So, the diamond structure is more preferable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airless%20tire" title="airless tire">airless tire</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond%20structure" title=" diamond structure"> diamond structure</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20structure" title=" honeycomb structure"> honeycomb structure</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a> </p> <a href="https://publications.waset.org/abstracts/164546/characterization-and-analysis-of-airless-tire-in-mountain-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">481</span> Ultra-High Precision Diamond Turning of Infrared Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Abou-El-Hossein">Khaled Abou-El-Hossein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presentation will address the features of two IR convex lenses that have been manufactured using an ultra-high precision machining centre based on single-point diamond turning. The lenses are made from silicon and germanium with a radius of curvature of 500 mm. Because of the brittle nature of silicon and germanium, machining parameters were selected in such a way that ductile regime was achieved. The cutting speed was 800 rpm while the feed rate and depth cut were 20 mm/min and 20 um, respectively. Although both materials comprise a mono-crystalline microstructure and are quite similar in terms of optical properties, machining of silicon was accompanied with more difficulties in terms of form accuracy compared to germanium machining. The P-V error of the silicon profile was 0.222 um while it was only 0.055 um for the germanium lens. This could be attributed to the accelerated wear that takes place on the tool edge when turning mono-crystalline silicon. Currently, we are using other ranges of the machining parameters in order to determine their optimal range that could yield satisfactory performance in terms of form accuracy when fabricating silicon lenses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamond%20turning" title="diamond turning">diamond turning</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20surfaces" title=" optical surfaces"> optical surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20machining" title=" precision machining"> precision machining</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/61253/ultra-high-precision-diamond-turning-of-infrared-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">480</span> Experimental Study on Slicing of Sapphire with Fixed Abrasive Diamond Wire Saw</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengjun%20Zhang">Mengjun Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuli%20Sun"> Yuli Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunwen%20Zuo"> Dunwen Zuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunxiang%20Xie"> Chunxiang Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunming%20Zhang"> Chunming Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental study on slicing of sapphire with fixed abrasive diamond wire saw was conducted in this paper. The process parameters were optimized through orthogonal experiment of three factors and four levels. The effects of wire speed, feed speed and tension pressure on the surface roughness were analyzed. Surface roughness in cutting direction and feed direction were both detected. The results show that feed speed plays the most significant role on the surface roughness of sliced sapphire followed by wire speed and tension pressure. The optimized process parameters are as follows: wire speed 1.9 m/s, feed speed 0.187 mm/min and tension pressure 0.18 MPa. In the end, the results were verified by analysis of variance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fixed%20abrasive" title="fixed abrasive">fixed abrasive</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond%20wire%20saw" title=" diamond wire saw"> diamond wire saw</a>, <a href="https://publications.waset.org/abstracts/search?q=slicing" title=" slicing"> slicing</a>, <a href="https://publications.waset.org/abstracts/search?q=sapphire" title=" sapphire"> sapphire</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20experiment" title=" orthogonal experiment"> orthogonal experiment</a> </p> <a href="https://publications.waset.org/abstracts/19615/experimental-study-on-slicing-of-sapphire-with-fixed-abrasive-diamond-wire-saw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">479</span> Tailoring Polycrystalline Diamond for Increasing Earth-Drilling Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Chen">Jie Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Cheng"> Chris Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Zhang"> Kai Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycrystalline diamond compact (PDC) cutters with a polycrystalline diamond (PCD) table supported by a cemented tungsten carbide substrate have been widely used for earth-drilling tools in the oil and gas industry. Both wear and impact resistances are key figure of merits of PDC cutters, and they are closely related to the microstructure of the PCD table. As oil and gas exploration enters deeper, harder, and more complex formations, plus increasing requirement of accelerated downhole drilling speed and drilling cost reduction, current PDC cutters face unprecedented challenges for maintaining a longer drilling life than ever. Excessive wear on uneven hard formations, spalling, chipping, and premature fracture due to impact loads are common failure modes of PDC cutters in the field. Tailoring microstructure of the PCD table is one of the effective approaches to improve the wear and impact resistances of PDC cutters, along with other factors such as cutter geometry and bit design. In this research, cross-sectional microstructure, fracture surface, wear surface, and elemental composition of PDC cutters were analyzed using scanning electron microscopy (SEM) with both backscattered electron and secondary electron detectors, and energy dispersive X-ray spectroscopy (EDS). The microstructure and elemental composition were further correlated with the wear and impact resistances of corresponding PDC cutters. Wear modes and impact toughening mechanisms of state-of-the-art PDCs were identified. Directions to further improve the wear and impact resistances of PDC cutters were proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20surface" title="fracture surface">fracture surface</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20diamond" title=" polycrystalline diamond"> polycrystalline diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=PDC" title=" PDC"> PDC</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20surface" title=" wear surface"> wear surface</a> </p> <a href="https://publications.waset.org/abstracts/178914/tailoring-polycrystalline-diamond-for-increasing-earth-drilling-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">478</span> Texture Identification Using Vision System: A Method to Predict Functionality of a Component</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varsha%20Singh">Varsha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shraddha%20Prajapati"> Shraddha Prajapati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Kiran"> M. B. Kiran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamond%20stylus" title="diamond stylus">diamond stylus</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20process" title=" manufacturing process"> manufacturing process</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20identification" title=" texture identification"> texture identification</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20system" title=" vision system"> vision system</a> </p> <a href="https://publications.waset.org/abstracts/61722/texture-identification-using-vision-system-a-method-to-predict-functionality-of-a-component" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">477</span> Metallic-Diamond Tools with Increased Abrasive Wear Resistance for Grinding Industrial Floor Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%C5%BCbieta%20Cygan">Elżbieta Cygan</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C4%85czek"> Bączek</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Wy%C5%BCga"> Piotr Wyżga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of research on the physical, mechanical, and tribological properties of materials constituting the matrix in sintered metallic-diamond tools. The ground powders based on the Fe-Mn-Cu-Sn-C system were modified with micro-sized particles of the ceramic phase: SiC, Al₂O₃ and consolidated using the SPS (spark plasma sintering) method to a relative density of over 98% at 850-950°C, at a pressure of 35 MPa and time 10 min. After sintering, an analysis of the microstructure was conducted using scanning electron microscopy. The resulting materials were tested for the apparent density determined by Archimedes’ method, Rockwell hardness (scale B), Young’s modulus, as well as for technological properties. The performance results of obtained diamond composites were compared with the base material (Fe–Mn–Cu–Sn–C) and the commercial alloy Co-20% WC. The hardness of composites has achieved the maximum at a temperature of 900°C; therefore, it should be considered that at this temperature it was obtained optimal physical and mechanical properties of the subjects' composites were. Research on tribological properties showed that the composites modified with micro-sized particles of the ceramic phase are characterized by more than twice higher wear resistance in comparison with base materials and the commercial alloy Co-20% WC. Composites containing Al₂O₃ phase particles in the matrix material were composites containing Al₂O₃ phase particles in the matrix material were characterized by the lowest abrasion wear resistance. The manufacturing technology presented in the paper is economically justified and can be successfully used in the production process of the matrix in sintered diamond-impregnated tools used for the machining of an industrial floor system. Acknowledgment: The study was performed under LIDER IX Research Project No. LIDER/22/0085/L-9/17/NCBR/2018 entitled “Innovative metal-diamond tools without the addition of critical raw materials for applications in the process of grinding industrial floor systems” funded by the National Centre for Research and Development of Poland, Warsaw. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrasive%20wear%20resistance" title="abrasive wear resistance">abrasive wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20matrix%20composites" title=" metal matrix composites"> metal matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=sintered%20diamond%20tools" title=" sintered diamond tools"> sintered diamond tools</a>, <a href="https://publications.waset.org/abstracts/search?q=Spark%20Plasma%20Sintering" title=" Spark Plasma Sintering"> Spark Plasma Sintering</a> </p> <a href="https://publications.waset.org/abstracts/146963/metallic-diamond-tools-with-increased-abrasive-wear-resistance-for-grinding-industrial-floor-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sara%20Diamond&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sara%20Diamond&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sara%20Diamond&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sara%20Diamond&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sara%20Diamond&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sara%20Diamond&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sara%20Diamond&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sara%20Diamond&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sara%20Diamond&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sara%20Diamond&page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sara%20Diamond&page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sara%20Diamond&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>