CINXE.COM
Search results for: piezoelectric motors
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: piezoelectric motors</title> <meta name="description" content="Search results for: piezoelectric motors"> <meta name="keywords" content="piezoelectric motors"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="piezoelectric motors" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="piezoelectric motors"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 412</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: piezoelectric motors</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Yi">Chao Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cunyue%20Lu"> Cunyue Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingwei%20Quan"> Lingwei Quan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20stack" title="piezoelectric stack">piezoelectric stack</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20motor" title=" linear motor"> linear motor</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20clamping" title=" rigid clamping"> rigid clamping</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptical%20trajectory" title=" elliptical trajectory"> elliptical trajectory</a> </p> <a href="https://publications.waset.org/abstracts/112842/design-and-analysis-of-a-piezoelectric-linear-motor-based-on-rigid-clamping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Variable Frequency Converter Fed Induction Motors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulatif%20Abdulsalam%20Mohamed%20Shaban">Abdulatif Abdulsalam Mohamed Shaban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A.C motors, in general, have superior performance characteristics to their d.c. counterparts. However, despite these advantage a.c. motors lack the controllability and simplicity and so d.c. motors retain a competitive edge where precise control is required. As part of an overall project to develop an improved cycloconverter control strategy for induction motors. Simulation and modelling techniques have been developed. This contribution describes a method used to simulate an induction motor drive using the SIMULINK toolbox within MATLAB software. The cycloconverter fed induction motor is principally modelled using the d-q axis equations. Results of the simulation for a given set of induction motor parameters are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=converter" title=" converter"> converter</a>, <a href="https://publications.waset.org/abstracts/search?q=motor" title=" motor"> motor</a>, <a href="https://publications.waset.org/abstracts/search?q=cycloconverter" title=" cycloconverter"> cycloconverter</a> </p> <a href="https://publications.waset.org/abstracts/21497/variable-frequency-converter-fed-induction-motors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">609</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Defect Modes in Multilayered Piezoelectric Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20G.%20Piliposyan">D. G. Piliposyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation of electro-elastic waves in a piezoelectric waveguide with finite stacks and a defect layer is studied using a modified transfer matrix method. The dispersion equation for a periodic structure consisting of unit cells made up from two piezoelectric materials with metallized interfaces is obtained. An analytical expression, for the transmission coefficient for a waveguide with finite stacks and a defect layer, that is found can be used to accurately detect and control the position of the passband within a stopband. The result can be instrumental in constructing a tunable waveguide made of layers of different or identical piezoelectric crystals and separated by metallized interfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20layered%20structure" title="piezoelectric layered structure">piezoelectric layered structure</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20phononic%20crystal" title=" periodic phononic crystal"> periodic phononic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=bandgap" title=" bandgap"> bandgap</a>, <a href="https://publications.waset.org/abstracts/search?q=bloch%20waves" title=" bloch waves"> bloch waves</a> </p> <a href="https://publications.waset.org/abstracts/55400/defect-modes-in-multilayered-piezoelectric-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> Functionally Graded MEMS Piezoelectric Energy Harvester with Magnetic Tip Mass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Derayatifar">M. Derayatifar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Packirisamy"> M. Packirisamy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.B.%20Bhat"> R.B. Bhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Role of piezoelectric energy harvesters has gained interest in supplying power for micro devices such as health monitoring sensors. In this study, in order to enhance the piezoelectric energy harvesting in capturing energy from broader range of excitation and to improve the mechanical and electrical responses, bimorph piezoelectric energy harvester beam with magnetic mass attached at the end is presented. In view of overcoming the brittleness of piezo-ceramics, functionally graded piezoelectric layers comprising of both piezo-ceramic and piezo-polymer is employed. The nonlinear equations of motions are derived using energy method and then solved analytically using perturbation scheme. The frequency responses of the forced vibration case are obtained for the near resonance case. The nonlinear dynamic responses of the MEMS scaled functionally graded piezoelectric energy harvester in this paper may be utilized in different design scenarios to increase the efficiency of the harvester. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title="energy harvesting">energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20piezoelectric%20material" title=" functionally graded piezoelectric material"> functionally graded piezoelectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20force" title=" magnetic force"> magnetic force</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20%28micro-electro-mechanical%20systems%29%20piezoelectric" title=" MEMS (micro-electro-mechanical systems) piezoelectric"> MEMS (micro-electro-mechanical systems) piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=perturbation%20method" title=" perturbation method"> perturbation method</a> </p> <a href="https://publications.waset.org/abstracts/83297/functionally-graded-mems-piezoelectric-energy-harvester-with-magnetic-tip-mass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> Target-Triggered DNA Motors and their Applications to Biosensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongquan%20Zhang">Hongquan Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by endogenous protein motors, researchers have constructed various synthetic DNA motors based on the specificity and predictability of Watson-Crick base pairing. However, the application of DNA motors to signal amplification and biosensing is limited because of low mobility and difficulty in real-time monitoring of the walking process. The objective of our work was to construct a new type of DNA motor termed target-triggered DNA motors that can walk for hundreds of steps in response to a single target binding event. To improve the mobility and processivity of DNA motors, we used gold nanoparticles (AuNPs) as scaffolds to build high-density, three-dimensional tracks. Hundreds of track strands are conjugated to a single AuNP. To enable DNA motors to respond to specific protein and nucleic acid targets, we adapted the binding-induced DNA assembly into the design of the target-triggered DNA motors. In response to the binding of specific target molecules, DNA motors are activated to autonomously walk along AuNP, which is powered by a nicking endonuclease or DNAzyme-catalyzed cleavage of track strands. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of DNA motors in real time. The motors can translate a single binding event into the generation of hundreds of oligonucleotides from a single nanoparticle. The motors have been applied to amplify the detection of proteins and nucleic acids in test tubes and live cells. The motors were able to detect low pM concentrations of specific protein and nucleic acid targets in homogeneous solutions without the need for separation. Target-triggered DNA motors are significant for broadening applications of DNA motors to molecular sensing, cell imagining, molecular interaction monitoring, and controlled delivery and release of therapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20motors" title=" DNA motors"> DNA motors</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20amplification" title=" signal amplification"> signal amplification</a> </p> <a href="https://publications.waset.org/abstracts/165780/target-triggered-dna-motors-and-their-applications-to-biosensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">407</span> Optimal Design of Polymer Based Piezoelectric Actuator with Varying Thickness and Length Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vineet%20Tiwari">Vineet Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Dwivedi"> R. K. Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Geetika%20Srivastava"> Geetika Srivastava </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric cantilevers are exploited for their use in sensors and actuators. In this study, a unimorph cantilever beam is considered as a study element with a piezoelectric polymer Polyvinylidene fluoride (PVDF) layer bonded to a substrate layer. The different substrates like polysilicon, stainless steel and silicon nitride are tried for the study. An effort has been made to optimize and study the effect of the various parameters of the device in order to achieve maximum tip deflection. The variation of the tip displacement of the cantilever with respect to the length ratio of the nonpiezoelectric layer to the piezoelectric layer has been studied. The electric response of this unimorph cantilever beam is simulated with the help of finite element analysis software COMSOL Multiphysics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuators" title="actuators">actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=cantilever" title=" cantilever"> cantilever</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a> </p> <a href="https://publications.waset.org/abstracts/24051/optimal-design-of-polymer-based-piezoelectric-actuator-with-varying-thickness-and-length-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">406</span> Nonlinear Modelling and Analysis of Piezoelectric Smart Thin-Walled Structures in Supersonic Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu-Yang%20Zhang">Shu-Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang"> Shun-Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhan-Xi%20Wang"> Zhan-Xi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xian-Sheng%20Qin"> Xian-Sheng Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin-walled structures are used more and more widely in modern aircrafts and some other structures in aerospace field nowadays. Accompanied by the wider applications, the vibration of the structures has been a bigger problem. Because of the direct and converse piezoelectric effect, piezoelectric materials combined to host thin-walled structures, named as piezoelectric smart structures, can be an effective way to suppress the vibration. So, an accurate model for piezoelectric thin-walled structures in air flow is necessary and important. In our recent work, an electromechanical coupling nonlinear aerodynamic finite element model of piezoelectric smart thin-walled structures is built based on the Reissner-Mindlin plate theory and first-order piston theory for aerodynamic pressure of supersonic flow. Von Kármán type nonlinearity is considered in the present model. Finally, the model is validated by experimental and numerical results from the literature, which can describe the vibration of the structures in supersonic flow precisely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures" title="piezoelectric smart structures">piezoelectric smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title=" aerodynamic"> aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinearity" title=" geometric nonlinearity"> geometric nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/72915/nonlinear-modelling-and-analysis-of-piezoelectric-smart-thin-walled-structures-in-supersonic-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">405</span> Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Kim">J. H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Kwon"> J. H. Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Park"> J. S. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20J.%20Lim"> K. J. Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper has investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuator" title="actuator">actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=unimorph" title=" unimorph "> unimorph </a> </p> <a href="https://publications.waset.org/abstracts/14060/prediction-of-the-performance-of-a-bar-type-piezoelectric-vibration-actuator-depending-on-the-frequency-using-an-equivalent-circuit-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">404</span> Electromechanical-Traffic Model of Compression-Based Piezoelectric Energy Harvesting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Gareh">Saleh Gareh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Kok"> B. C. Kok</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20Goh"> H. H. Goh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric energy harvesting has advantages over other alternative sources due to its large power density, ease of applications, and capability to be fabricated at different scales: macro, micro, and nano. This paper presents an electromechanical-traffic model for roadway compression-based piezoelectric energy harvesting system. A two-degree-of-freedom (2-DOF) electromechanical model has been developed for the piezoelectric energy harvesting unit to define its performance in power generation under a number of external excitations on road surface. Lead Zirconate Titanate (PZT-5H) is selected as the piezoelectric material to be used in this paper due to its high Piezoelectric Charge Constant (d) and Piezoelectric Voltage Constant (g) values. The main source of vibration energy that has been considered in this paper is the moving vehicle on the road. The effect of various frequencies on possible generated power caused by different vibration characteristics of moving vehicle has been studied. A single unit of circle-shape Piezoelectric Cymbal Transducer (PCT) with diameter of 32 mm and thickness of 0.3 mm be able to generate about 0.8 mW and 3 mW of electric power under 4 Hz and 20 Hz of excitation, respectively. The estimated power to be generated for multiple arrays of PCT is approximately 150 kW/ km. Thus, the developed electromechanical-traffic model has enormous potential to be used in estimating the macro scale of roadway power generation system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20energy%20harvesting" title="piezoelectric energy harvesting">piezoelectric energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=cymbal%20transducer" title=" cymbal transducer"> cymbal transducer</a>, <a href="https://publications.waset.org/abstracts/search?q=PZT%20%28lead%20zirconate%20titanate%29" title=" PZT (lead zirconate titanate)"> PZT (lead zirconate titanate)</a>, <a href="https://publications.waset.org/abstracts/search?q=2-DOF" title=" 2-DOF"> 2-DOF</a> </p> <a href="https://publications.waset.org/abstracts/45299/electromechanical-traffic-model-of-compression-based-piezoelectric-energy-harvesting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">403</span> Influence of Rotation on Rayleigh-Type Wave in Piezoelectric Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soniya%20Chaudhary">Soniya Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Sahu"> Sanjeev Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propagation of Rayleigh-type waves in a rotating piezoelectric plate is investigated. The materials are assumed to be transversely isotropic crystals. The frequency equation have been derived for electrically open and short cases. Effect of rotation and piezoelectricity have been shown. It is also found that piezoelectric material properties have an important effect on Rayleigh wave propagation. The result is relevant to the analysis and design of various acoustic surface wave devices constructed from piezoelectric materials also in SAW devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotation" title="rotation">rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20equation" title=" frequency equation"> frequency equation</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectricity" title=" piezoelectricity"> piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=rayleigh-type%20wave" title=" rayleigh-type wave"> rayleigh-type wave</a> </p> <a href="https://publications.waset.org/abstracts/60606/influence-of-rotation-on-rayleigh-type-wave-in-piezoelectric-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">402</span> Piezoelectric based Passive Vibration Control of Composite Turbine Blade using Shunt Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kouider%20Bendine">Kouider Bendine</a>, <a href="https://publications.waset.org/abstracts/search?q=Zouaoui%20Satla"> Zouaoui Satla</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukhoulda%20Farouk%20Benallel"> Boukhoulda Farouk Benallel</a>, <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang"> Shun-Qi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbine blades are subjected to a variety of loads, lead to an undesirable vibration. Such vibration can cause serious damages or even lead to a total failure of the blade. The present paper addresses the vibration control of turbine blade. The study aims to propose a passive vibration control using piezoelectric material. the passive control is effectuated by shunting an RL circuit to the piezoelectric patch in a parallel configuration. To this end, a Finite element model for the blade with the piezoelectric patch is implemented in ANSYS APDL. The model is then subjected to a harmonic frequency-based analysis for the case of control on and off. The results show that the proposed methodology was able to reduce blade vibration by 18%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20piezoelectric%20vibration%20control" title=" active piezoelectric vibration control"> active piezoelectric vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element." title=" finite element."> finite element.</a>, <a href="https://publications.waset.org/abstracts/search?q=shunt%20circuit" title=" shunt circuit"> shunt circuit</a> </p> <a href="https://publications.waset.org/abstracts/165603/piezoelectric-based-passive-vibration-control-of-composite-turbine-blade-using-shunt-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">401</span> Parameter Estimation of Induction Motors by PSO Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammadi">A. Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Asghari"> S. Asghari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aien"> M. Aien</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rashidinejad"> M. Rashidinejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title="induction motor">induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20parameter%20estimation" title=" motor parameter estimation"> motor parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO%20algorithm" title=" PSO algorithm"> PSO algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20method" title=" analytical method"> analytical method</a> </p> <a href="https://publications.waset.org/abstracts/15433/parameter-estimation-of-induction-motors-by-pso-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">400</span> Reduced Vibration in a Levitating Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kazadi">S. Kazadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20An"> A. An</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Shen"> B. Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the fitness of a male and female permanent magnetic levitation support for use as an axle on a rotor for a levitating motor. The support enables passive thrust and axial support for the axle as a result of the unique arrangement of permanent magnets. As the axial and thrust bearing aspects are derived from magnetic repulsion, it is not immediately clear that the repulsion is stiff enough to enable even low power motors. This paper describes the design and performance of two low power motors based on the magnetic levitation support. We find that our low power motors, with rotational speeds of 618 and 833 rpms, exhibit performance free from excess vibrations that might hinder performance. This means that the actuation of the motors is adequately stabilized by the axle and results in motors capable of being utilized despite the levitation support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=levitating%20motor" title="levitating motor">levitating motor</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20levitation%20support" title=" magnetic levitation support"> magnetic levitation support</a>, <a href="https://publications.waset.org/abstracts/search?q=fitness" title=" fitness"> fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=axle" title=" axle"> axle</a> </p> <a href="https://publications.waset.org/abstracts/24674/reduced-vibration-in-a-levitating-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">399</span> Electrospun Zinc Oxide Nanowires as Highly Sensitive Piezoelectric Transduction Elements for Nano-Scale Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Brince%20Paul">K. Brince Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagendra%20Pratap%20Singh"> Nagendra Pratap Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiv%20Govind%20Singh"> Shiv Govind Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20Rama%20Krishna%20Vanjari"> Siva Rama Krishna Vanjari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report optimized procedure for synthesizing highly oriented, horizontally aligned, Zinc oxide (ZnO) nanowires targeted towards developing highly sensitive piezoelectric transduction elements. The synthesis was carried out using Electrospinning technique, a facile, robust, low cost technique for producing nanowires. The as-synthesized ZnO nanowires were characterized by X-ray powder diffraction (XRD), Field Emission scanning electron microscopy (FESEM) and Energy-dispersive X-ray spectroscopy (EDX).The Piezoelectric behavior of these nanowires was characterized using Peizoelectric Force microscopy (PFM). A very high d33 coefficient of 23.1 pm/V obtained through the PFM measurements is an indicative of its potential application towards developing miniaturized piezoelectric transduction elements for nanoscale devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=technique" title=" technique"> technique</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/42232/electrospun-zinc-oxide-nanowires-as-highly-sensitive-piezoelectric-transduction-elements-for-nano-scale-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">398</span> Numerical Modelling of Laminated Shells Made of Functionally Graded Elastic and Piezoelectric Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gennady%20M.%20Kulikov">Gennady M. Kulikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20V.%20Plotnikova"> Svetlana V. Plotnikova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on implementation of the sampling surfaces (SaS) method for the three-dimensional (3D) stress analysis of functionally graded (FG) laminated elastic and piezoelectric shells. The SaS formulation is based on choosing inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the electric potentials and displacements of these surfaces as basic shell variables. Such choice of unknowns permits the presentation of the proposed FG piezoelectric shell formulation in a very compact form. The SaS are located inside each layer at Chebyshev polynomial nodes that improves the convergence of the SaS method significantly. As a result, the SaS formulation can be applied efficiently to 3D solutions for FG piezoelectric laminated shells, which asymptotically approach the exact solutions of piezoelectricity as the number of SaS In goes to infinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroelasticity" title="electroelasticity">electroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20material" title=" functionally graded material"> functionally graded material</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20piezoelectric%20shell" title=" laminated piezoelectric shell"> laminated piezoelectric shell</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20surfaces%20method" title=" sampling surfaces method"> sampling surfaces method</a> </p> <a href="https://publications.waset.org/abstracts/18393/numerical-modelling-of-laminated-shells-made-of-functionally-graded-elastic-and-piezoelectric-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">689</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">397</span> Electrical Properties of Cement-Based Piezoelectric Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Shawkey">Moustafa Shawkey</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20G.%20El-Deen"> Ahmed G. El-Deen</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Mahmoud"> H. M. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rashad"> M. M. Rashad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric based cement nanocomposite is a promising technology for generating an electric charge upon mechanical stress of concrete structure. Moreover, piezoelectric nanomaterials play a vital role for providing accurate system of structural health monitoring (SHM) of the concrete structure. In light of increasing awareness of environmental protection and energy crises, generating renewable and green energy form cement based on piezoelectric nanomaterials attracts the attention of the researchers. Herein, we introduce a facial synthesis for bismuth ferrite nanoparticles (BiFeO3 NPs) as piezoelectric nanomaterial via sol gel strategy. The fabricated piezoelectric nanoparticles are uniformly distributed to cement-based nanomaterials with different ratios. The morphological shape was characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) as well as the crystal structure has been confirmed using X-ray diffraction (XRD). The ferroelectric and magnetic behaviours of BiFeO3 NPs have been investigated. Then, dielectric constant for the prepared cement samples nanocomposites (εr) is calculated. Intercalating BiFeO3 NPs into cement materials achieved remarkable results as piezoelectric cement materials, distinct enhancement in ferroelectric and magnetic properties. Overall, this present study introduces an effective approach to improve the electrical properties based cement applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20nanomaterials" title="piezoelectric nanomaterials">piezoelectric nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20technology" title=" cement technology"> cement technology</a>, <a href="https://publications.waset.org/abstracts/search?q=bismuth%20ferrite%20nanoparticles" title=" bismuth ferrite nanoparticles"> bismuth ferrite nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric" title=" dielectric"> dielectric</a> </p> <a href="https://publications.waset.org/abstracts/84654/electrical-properties-of-cement-based-piezoelectric-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">396</span> Piezoelectric Micro-generator Characterization for Energy Harvesting Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20E.%20Q.%20Souza">José E. Q. Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcio%20Fontana"> Marcio Fontana</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20C.%20C.%20Lima"> Antonio C. C. Lima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4μW (linear mass position = 25mm) and an average power of 543.3μW (angular mass position = 35°). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title="piezoelectric">piezoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-generator" title=" micro-generator"> micro-generator</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=cantilever%20beam" title=" cantilever beam"> cantilever beam</a> </p> <a href="https://publications.waset.org/abstracts/88034/piezoelectric-micro-generator-characterization-for-energy-harvesting-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">395</span> Numerical Simulations for Nitrogen Flow in Piezoelectric Valve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Flaszynski">Pawel Flaszynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Doerffer"> Piotr Doerffer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Holnicki-Szulc"> Jan Holnicki-Szulc</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Mikulowski"> Grzegorz Mikulowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Results of numerical simulations for transonic flow in a piezoelectric valve are presented. The valve is the main part of an adaptive pneumatic shock absorber. Flow structure in the valve domain and the influence of the flow non-uniformity in the valve on a mass flow rate is investigated. Numerical simulation results are compared with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20valve" title="pneumatic valve">pneumatic valve</a>, <a href="https://publications.waset.org/abstracts/search?q=transonic%20flow" title=" transonic flow"> transonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20valve" title=" piezoelectric valve"> piezoelectric valve</a> </p> <a href="https://publications.waset.org/abstracts/29877/numerical-simulations-for-nitrogen-flow-in-piezoelectric-valve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">394</span> Fabrication of Periodic Graphene-Like Structure of Zinc Oxide Piezoelectric Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zi-Gui%20Huang">Zi-Gui Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shen-Hsien%20Hu"> Shen-Hsien Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes a fabrication of phononic-crystal acoustic wave device. A graphene-like atomic structure was adopted as the main research subject, and a graphene-like structure was designed using piezoelectric material zinc oxide and its periodic boundary conditions were defined using the finite element method. The effects of a hexagonal honeycomb structure were investigated regarding the band gap phenomenon. The use of micro-electromechanical systems process technology to make the film etched micron graphics, designed to produce four kinds of different piezoelectric structure (plat, periodic, single defect and double defects). Frequency response signals and phase change were also measured in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=phononic%20crystal" title=" phononic crystal"> phononic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20material" title=" piezoelectric material"> piezoelectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=Zinc%20oxide" title=" Zinc oxide"> Zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/26268/fabrication-of-periodic-graphene-like-structure-of-zinc-oxide-piezoelectric-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">393</span> Design and Fabrication of an Array Microejector Driven by a Shear-Mode Piezoelectric Actuator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiang-Ho%20Cheng">Chiang-Ho Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Yih%20Cheng"> Hong-Yih Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=An-Shik%20Yang"> An-Shik Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tung-Hsun%20Hsu"> Tung-Hsun Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports a novel actuating design that uses the shear deformation of a piezoelectric actuator to deflect a bulge-diaphragm for driving an array microdroplet ejector. In essence, we employed a circular-shaped actuator poled radial direction with remnant polarization normal to the actuating electric field for inducing the piezoelectric shear effect. The array microdroplet ejector consists of a shear type piezoelectric actuator, a vibration plate, two chamber plates, two channel plates and a nozzle plate. The vibration, chamber and nozzle plate components are fabricated using nickel electroforming technology, whereas the channel plate is fabricated by etching of stainless steel. The diaphragm displacement was measured by the laser two-dimensional scanning vibrometer. The ejected droplets of the microejector were also observed via an optic visualization system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuator" title="actuator">actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=microejector" title=" microejector"> microejector</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a> </p> <a href="https://publications.waset.org/abstracts/26870/design-and-fabrication-of-an-array-microejector-driven-by-a-shear-mode-piezoelectric-actuator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">392</span> Three-Dimensional Vibration Characteristics of Piezoelectric Semi-Spherical Shell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsi%20Huang">Yu-Hsi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Der%20Tsai"> Ying-Der Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric circular plates can provide out-of-plane vibrational displacements on low frequency and in-plane vibrational displacements on high frequency. Piezoelectric semi-spherical shell, which is double-curvature structure, can induce three-dimensional vibrational displacements over a large frequency range. In this study, three-dimensional vibrational characteristics of piezoelectric semi-spherical shells with free boundary conditions are investigated using three experimental methods and finite element numerical modeling. For the experimental measurements, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to obtain resonant frequencies and radial and azimuthal mode shapes. This optical technique utilizes a full-field and non-contact optical system that measures both the natural frequency and corresponding vibration mode shape simultaneously in real time. The second experimental technique used, laser displacement meter is a point-wise displacement measurement method that determines the resonant frequencies of the piezoelectric shell. An impedance analyzer is used to determine the in-plane resonant frequencies of the piezoelectric semi-spherical shell. The experimental results of the resonant frequencies and mode shapes for the piezoelectric shell are verified with the result from finite element analysis. Excellent agreement between the experimental measurements and numerical calculation is presented on the three-dimensional vibrational characteristics of the piezoelectric semi-spherical shell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20semi-spherical%20shell" title="piezoelectric semi-spherical shell">piezoelectric semi-spherical shell</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shape" title=" mode shape"> mode shape</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20frequency" title=" resonant frequency"> resonant frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20speckle%20pattern%20interferometry" title=" electronic speckle pattern interferometry"> electronic speckle pattern interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20vibration" title=" radial vibration"> radial vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=azimuthal%20vibration" title=" azimuthal vibration"> azimuthal vibration</a> </p> <a href="https://publications.waset.org/abstracts/81423/three-dimensional-vibration-characteristics-of-piezoelectric-semi-spherical-shell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">391</span> Finite Element Analysis of Piezolaminated Structures with Both Geometric and Electroelastic Material Nonlinearities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang">Shun-Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Yang%20Zhang"> Shu-Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Bai">Jing Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric laminated smart structures can be subjected to the strong driving electric field, which may result in large displacements and rotations. In one hand, piezoelectric materials usually behave very significant material nonlinear effects under strong electric fields. On the other hand, thin-walled structures undergoing large displacements and rotations exist nonnegligible geometric nonlinearity. In order to give a precise prediction of piezo laminated smart structures under the large electric field, this paper develops a finite element (FE) model accounting for material nonlinearity (piezoelectric part) and geometric nonlinearity based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is first validated by both experimental and numerical examples from the literature. Afterwards, it is applied to simulate for plate and shell structures with multiple piezoelectric patches under the strong applied electric field. From the simulation results, it shows that large discrepancies occur between linear and nonlinear predictions for piezoelectric laminated structures driving at the strong electric field. Therefore, both material and geometric nonlinearities should be taken into account for piezoelectric structures under strong electric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures" title="piezoelectric smart structures">piezoelectric smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinearity" title=" geometric nonlinearity"> geometric nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=electroelastic%20material%20nonlinearities" title=" electroelastic material nonlinearities"> electroelastic material nonlinearities</a> </p> <a href="https://publications.waset.org/abstracts/72720/finite-element-analysis-of-piezolaminated-structures-with-both-geometric-and-electroelastic-material-nonlinearities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">390</span> Electrical and Piezoelectric Properties of Vanadium-Modified Lead-Free (K₀.₅Na₀.₅)NbO₃ Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhapiyari%20Laishram">Radhapiyari Laishram</a>, <a href="https://publications.waset.org/abstracts/search?q=Chongtham%20Jiten"> Chongtham Jiten</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Chandramani%20Singh"> K. Chandramani Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade, there has been a significant growth in developing lead-free piezoelectric ceramics which have the potential to replace the currently dominant but highly superior lead-based piezoelectric materials such as PZT. Among the lead-free piezoelectrics, (K0.5Na0.5)NbO3 - based piezoceramics are promising candidates due to their superior piezoelectric properties and high Curie temperatures. In this work, (K0.5Na0.5)(Nb1-xVx)O3 powders with x varying the range 0 to 0.05 were synthesized from the raw materials K2CO3, Na2CO3, Nb2O5, and V2O5. These powders were ball milled with high-energy Retsch PM 100 ball mill using isopropanol as the medium at the speed of 200rpm for a duration of 8h. The milled powders were sintered at 1080oC for 1h. The crystalline phase of all the calcined powders and corresponding ceramics prepared was found to be perovskite with orthorhombic symmetry. The ceramic with V5+ content of x=0.03 exhibits the maximum values in density of 4.292 g/cc, room temperature dielectric constant (εr) of 432, and piezoelectric charge constant (d33) of 93pC/N. For this sample, the dielectric tan δ loss remains relatively low over a wide temperature range. The temperature dependence of P-E hysteresis loops has been investigated for the ceramic composition with x = 0.03. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title="dielectric properties">dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ferroelectric%20properties" title=" ferroelectric properties"> ferroelectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskie" title=" perovskie"> perovskie</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20properties" title=" piezoelectric properties"> piezoelectric properties</a> </p> <a href="https://publications.waset.org/abstracts/65057/electrical-and-piezoelectric-properties-of-vanadium-modified-lead-free-k05na05nbo3-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">389</span> Performance Analysis of BLDC Motors for Flywheel Energy Storage Applications with Nonmagnetic vs. Magnetic Core Stator using Finite Element Time Stepping Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Kumar%20Pasa">Alok Kumar Pasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Krs%20Raghavan"> Krs Raghavan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparative analysis of Brushless DC (BLDC) motors for flywheel applications with a focus on the choice of stator core materials. The study employs a Finite Element Method (FEM) in time domain to investigate the performance characteristics of BLDC motors equipped with nonmagnetic and magnetic type stator core materials. Preliminary results reveal significant differences in motor efficiency, torque production, and electromagnetic properties between the two configurations. This research sheds light on the advantages of utilizing nonmagnetic materials in BLDC motors for flywheel applications, offering potential advantages in terms of efficiency, weight reduction and cost-effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20time%20stepping%20method" title="finite element time stepping method">finite element time stepping method</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20BLDC%20motor" title=" high-speed BLDC motor"> high-speed BLDC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=flywheel%20energy%20storage%20system" title=" flywheel energy storage system"> flywheel energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=coreless%20BLDC%20motors" title=" coreless BLDC motors"> coreless BLDC motors</a> </p> <a href="https://publications.waset.org/abstracts/194935/performance-analysis-of-bldc-motors-for-flywheel-energy-storage-applications-with-nonmagnetic-vs-magnetic-core-stator-using-finite-element-time-stepping-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">388</span> Single Chip Controller Design for Piezoelectric Actuators with Mixed Signal FPGA </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han-Bin%20Park">Han-Bin Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Taesam%20Kang"> Taesam Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=SunKi%20Hong"> SunKi Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Hoi%20Gu"> Jeong Hoi Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The piezoelectric material is being used widely for actuators due to its large power density with simple structure. It can generate a larger force than the conventional actuators with the same size. Furthermore, the response time of piezoelectric actuators is very short, and thus, it can be used for very fast system applications with compact size. To control the piezoelectric actuator, we need analog signal conditioning circuits as well as digital microcontrollers. Conventional microcontrollers are not equipped with analog parts and thus the control system becomes bulky compared with the small size of the piezoelectric devices. To overcome these weaknesses, we are developing one-chip micro controller that can handle analog and digital signals simultaneously using mixed signal FPGA technology. We used the SmartFusion™ FPGA device that integrates ARM®Cortex-M3, analog interface and FPGA fabric in a single chip and offering full customization. It gives more flexibility than traditional fixed-function microcontrollers with the excessive cost of soft processor cores on traditional FPGAs. In this paper we introduce the design of single chip controller using mixed signal FPGA, SmartFusion™[1] device. To demonstrate its performance, we implemented a PI controller for power driving circuit and a 5th order H-infinity controller for the system with piezoelectric actuator in the FPGA fabric. We also demonstrated the regulation of a power output and the operation speed of a 5th order H-infinity controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed%20signal%20FPGA" title="mixed signal FPGA">mixed signal FPGA</a>, <a href="https://publications.waset.org/abstracts/search?q=PI%20control" title=" PI control"> PI control</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20actuator" title=" piezoelectric actuator"> piezoelectric actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=SmartFusion%E2%84%A2" title=" SmartFusion™"> SmartFusion™</a> </p> <a href="https://publications.waset.org/abstracts/11815/single-chip-controller-design-for-piezoelectric-actuators-with-mixed-signal-fpga" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">387</span> Enhancing the Piezoelectric, Thermal, and Structural Properties of the PVDF-HFP/PZT/GO Composite for Improved Mechanical Energy Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salesabil%20Labihi">Salesabil Labihi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Eddiai"> Adil Eddiai</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20El%20Achaby"> Mounir El Achaby</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Meddad"> Mounir Meddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Cherkaoui"> Omar Cherkaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M%E2%80%99hammed%20Mazroui"> M’hammed Mazroui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piezoelectric materials provide a promising renewable energy source by converting mechanical energy into electrical energy through pressure and vibration. This study focuses on improving the conversion performance of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) by incorporating graphene oxide (GO) and lead zirconate titanate (PZT). The dispersion of PZT and GO within the PVDF-HFP matrix was found to be homogeneous, resulting in high piezoelectric performance with an increase in the β-phase content. The thermal stability of the PVDF-HFP polymer also improved with the addition of PZT/GO. However, as the percentage of PZT/GO increased, the young's modulus of the composite decreased significantly. The developed composite demonstrated promising performance as a potential candidate for energy harvesting applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title="energy harvesting">energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20conversion" title=" mechanical conversion"> mechanical conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20composite" title=" piezoelectric composite"> piezoelectric composite</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20casting%20method" title=" solvent casting method"> solvent casting method</a> </p> <a href="https://publications.waset.org/abstracts/180539/enhancing-the-piezoelectric-thermal-and-structural-properties-of-the-pvdf-hfppztgo-composite-for-improved-mechanical-energy-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">386</span> Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafdaoui%20Hichem">Hafdaoui Hichem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehadjebia%20Cherifa"> Mehadjebia Cherifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Benatia%20Djamel"> Benatia Djamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20material" title="piezoelectric material">piezoelectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29" title=" probabilistic neural network (PNN)"> probabilistic neural network (PNN)</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20microwaves" title=" acoustic microwaves"> acoustic microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20waves" title=" bulk waves"> bulk waves</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20attenuation%20coefficient" title=" the attenuation coefficient"> the attenuation coefficient</a> </p> <a href="https://publications.waset.org/abstracts/43264/using-probabilistic-neural-network-pnn-for-extracting-acoustic-microwaves-bulk-acoustic-waves-in-piezoelectric-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">385</span> Effect of Rotation on Love Wave Propagation in Piezoelectric Medium with Corrugation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soniya%20Chaudhary">Soniya Chaudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study analyses the propagation of Love wave in rotating piezoelectric layer lying over an elastic substrate with corrugated boundaries. The appropriate solutions in the considered medium satisfy the required boundary conditions to obtain the dispersion relation of Love wave for charge free as well as electrically shorted cases. The effects of rotation are shown by graphically on the non-dimensional speed of the Love wave. In addition to classical case, some existing results have been deduced as particular case of the present study. The present study may be useful in rotation sensor and SAW devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugation" title="corrugation">corrugation</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20relation" title=" dispersion relation"> dispersion relation</a>, <a href="https://publications.waset.org/abstracts/search?q=love%20wave" title=" love wave"> love wave</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a> </p> <a href="https://publications.waset.org/abstracts/58153/effect-of-rotation-on-love-wave-propagation-in-piezoelectric-medium-with-corrugation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> Comparison of Techniques for Detection and Diagnosis of Eccentricity in the Air-Gap Fault in Induction Motors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abrah%C3%A3o%20S.%20Fontes">Abrahão S. Fontes</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20A.%20V.%20Cardoso"> Carlos A. V. Cardoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Levi%20P.%20B.%20Oliveira"> Levi P. B. Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this article, these techniques are applied and compared on a real motor, which has the fault of eccentricity in the air-gap. It was used as a theoretical model of an electric induction motor without fault in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the fault of eccentricity in the air gap, whose comparison between these showed the suitability of each one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentricity%20in%20the%20air-gap" title="eccentricity in the air-gap">eccentricity in the air-gap</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motors" title=" induction motors"> induction motors</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20maintenance" title=" predictive maintenance"> predictive maintenance</a> </p> <a href="https://publications.waset.org/abstracts/62315/comparison-of-techniques-for-detection-and-diagnosis-of-eccentricity-in-the-air-gap-fault-in-induction-motors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Development of Piezoelectric Gas Micropumps with the PDMS Check Valve Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiang-Ho%20Cheng">Chiang-Ho Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=An-Shik%20Yang"> An-Shik Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hon-Yi%20Cheng"> Hon-Yi Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Yu%20Lai"> Ming-Yu Lai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micropump with check valve having the advantages of miniature size, light weight and low power consumption. The micropump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micropump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump and the displacement of the piezoelectric actuator, simultaneously. The gas micropump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micropump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PDMS" title="PDMS">PDMS</a>, <a href="https://publications.waset.org/abstracts/search?q=check%20valve" title=" check valve"> check valve</a>, <a href="https://publications.waset.org/abstracts/search?q=micropump" title=" micropump"> micropump</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a> </p> <a href="https://publications.waset.org/abstracts/24822/development-of-piezoelectric-gas-micropumps-with-the-pdms-check-valve-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20motors&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20motors&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20motors&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20motors&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20motors&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20motors&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20motors&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20motors&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20motors&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20motors&page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20motors&page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=piezoelectric%20motors&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>