CINXE.COM
Row echelon form - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Row echelon form - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"b1302222-f8e1-4e73-9c58-e8a11ef72e74","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Row_echelon_form","wgTitle":"Row echelon form","wgCurRevisionId":1253776875,"wgRevisionId":1253776875,"wgArticleId":330215,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Articles with example pseudocode","Numerical linear algebra"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Row_echelon_form","wgRelevantArticleId":330215,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Reduced_row_echelon_form","wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgInternalRedirectTargetUrl":"/wiki/Row_echelon_form#Reduced_row_echelon_form","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2091296","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled": false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Row echelon form - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Row_echelon_form#Reduced_row_echelon_form"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Row_echelon_form&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Row_echelon_form#Reduced_row_echelon_form"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Row_echelon_form rootpage-Row_echelon_form skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Row+echelon+form" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Row+echelon+form" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Row+echelon+form" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Row+echelon+form" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-(General)_row_echelon_form" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#(General)_row_echelon_form"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>(General) row echelon form</span> </div> </a> <ul id="toc-(General)_row_echelon_form-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reduced_row_echelon_form" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Reduced_row_echelon_form"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Reduced row echelon form</span> </div> </a> <ul id="toc-Reduced_row_echelon_form-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Systems_of_linear_equations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Systems_of_linear_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Systems of linear equations</span> </div> </a> <ul id="toc-Systems_of_linear_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transformation_to_row_echelon_form" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Transformation_to_row_echelon_form"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Transformation to row echelon form</span> </div> </a> <ul id="toc-Transformation_to_row_echelon_form-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Affine_spaces_of_reduced_echelon_forms" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Affine_spaces_of_reduced_echelon_forms"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Affine spaces of reduced echelon forms</span> </div> </a> <ul id="toc-Affine_spaces_of_reduced_echelon_forms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Maximal_rank:_Schubert_cells" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Maximal_rank:_Schubert_cells"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Maximal rank: Schubert cells</span> </div> </a> <ul id="toc-Maximal_rank:_Schubert_cells-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Row echelon form</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 18 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-18" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">18 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Matriu_esglaonada" title="Matriu esglaonada – Catalan" lang="ca" hreflang="ca" data-title="Matriu esglaonada" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D0%B0%D1%80%D1%82%D0%BB%D0%B0%C3%A7%D0%BB%D0%B0_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0" title="Картлаçла матрица – Chuvash" lang="cv" hreflang="cv" data-title="Картлаçла матрица" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Lineares_Gleichungssystem#Stufenform,_Treppenform" title="Lineares Gleichungssystem – German" lang="de" hreflang="de" data-title="Lineares Gleichungssystem" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9A%CE%BB%CE%B9%CE%BC%CE%B1%CE%BA%CF%89%CF%84%CE%AE_%CE%BC%CE%BF%CF%81%CF%86%CE%AE" title="Κλιμακωτή μορφή – Greek" lang="el" hreflang="el" data-title="Κλιμακωτή μορφή" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Matriz_escalonada" title="Matriz escalonada – Spanish" lang="es" hreflang="es" data-title="Matriz escalonada" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B4%DA%A9%D9%84_%D8%B3%D8%B7%D8%B1%DB%8C_%D9%BE%D9%84%DA%A9%D8%A7%D9%86%DB%8C" title="شکل سطری پلکانی – Persian" lang="fa" hreflang="fa" data-title="شکل سطری پلکانی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Matrice_%C3%A9chelonn%C3%A9e" title="Matrice échelonnée – French" lang="fr" hreflang="fr" data-title="Matrice échelonnée" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%82%AC%EB%8B%A4%EB%A6%AC%EA%BC%B4%ED%96%89%EB%A0%AC" title="사다리꼴행렬 – Korean" lang="ko" hreflang="ko" data-title="사다리꼴행렬" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Stalla%C3%B0_form" title="Stallað form – Icelandic" lang="is" hreflang="is" data-title="Stallað form" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Echelonvorm" title="Echelonvorm – Dutch" lang="nl" hreflang="nl" data-title="Echelonvorm" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%A1%8C%E9%9A%8E%E6%AE%B5%E5%BD%A2" title="行階段形 – Japanese" lang="ja" hreflang="ja" data-title="行階段形" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Macierz_schodkowa" title="Macierz schodkowa – Polish" lang="pl" hreflang="pl" data-title="Macierz schodkowa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D1%83%D0%BF%D0%B5%D0%BD%D1%87%D0%B0%D1%82%D1%8B%D0%B9_%D0%B2%D0%B8%D0%B4_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D1%8B" title="Ступенчатый вид матрицы – Russian" lang="ru" hreflang="ru" data-title="Ступенчатый вид матрицы" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Trappstegsform" title="Trappstegsform – Swedish" lang="sv" hreflang="sv" data-title="Trappstegsform" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Sat%C4%B1r_basamak_formu" title="Satır basamak formu – Turkish" lang="tr" hreflang="tr" data-title="Satır basamak formu" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D1%8F%D0%B4%D0%BA%D0%BE%D0%B2%D0%B0_%D1%81%D1%82%D1%83%D0%BF%D1%96%D0%BD%D1%87%D0%B0%D1%81%D1%82%D0%B0_%D1%84%D0%BE%D1%80%D0%BC%D0%B0" title="Рядкова ступінчаста форма – Ukrainian" lang="uk" hreflang="uk" data-title="Рядкова ступінчаста форма" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/D%E1%BA%A1ng_h%C3%A0ng_b%E1%BA%ADc_thang" title="Dạng hàng bậc thang – Vietnamese" lang="vi" hreflang="vi" data-title="Dạng hàng bậc thang" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%98%B6%E6%A2%AF%E5%BD%A2%E7%9F%A9%E9%98%B5" title="阶梯形矩阵 – Chinese" lang="zh" hreflang="zh" data-title="阶梯形矩阵" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2091296#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Row_echelon_form" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Row_echelon_form" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Row_echelon_form"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Row_echelon_form&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Row_echelon_form&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Row_echelon_form"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Row_echelon_form&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Row_echelon_form&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Row_echelon_form" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Row_echelon_form" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Row_echelon_form&oldid=1253776875" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Row_echelon_form&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Row_echelon_form&id=1253776875&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRow_echelon_form%23Reduced_row_echelon_form"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRow_echelon_form%23Reduced_row_echelon_form"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Row_echelon_form&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Row_echelon_form&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2091296" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Reduced_row_echelon_form&redirect=no" class="mw-redirect" title="Reduced row echelon form">Reduced row echelon form</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Possible form of a matrix</div> <p>In <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, a <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> is in <b>row echelon form</b> if it can be obtained as the result of <a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a>. Every matrix can be put in row echelon form by applying a sequence of <a href="/wiki/Elementary_row_operation" class="mw-redirect" title="Elementary row operation">elementary row operations</a>. The term <i>echelon</i> comes from the French <i>échelon</i> ("level" or step of a ladder), and refers to the fact that the nonzero entries of a matrix in row echelon form look like an inverted staircase. </p><p>For <a href="/wiki/Square_matrices" class="mw-redirect" title="Square matrices">square matrices</a>, an <a href="/wiki/Upper_triangular_matrix" class="mw-redirect" title="Upper triangular matrix">upper triangular matrix</a> with nonzero entries on the diagonal is in row echelon form, and a matrix in row echelon form is (weakly) upper triangular. Thus, the row echelon form can be viewed as a generalization of upper triangular form for rectangular matrices. </p><p>A matrix is in <b>reduced row echelon form</b> if it is in row echelon form, with the additional property that the first nonzero entry of each row is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> and is the only nonzero entry of its column. The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of <a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a> that transforms a matrix to reduced row echelon form is sometimes called <a href="/wiki/Gauss%E2%80%93Jordan_elimination" class="mw-redirect" title="Gauss–Jordan elimination">Gauss–Jordan elimination</a>. </p><p>A matrix is in <b>column echelon form</b> if its <a href="/wiki/Transpose" title="Transpose">transpose</a> is in row echelon form. Since all properties of column echelon forms can therefore immediately be deduced from the corresponding properties of row echelon forms, <i>only row echelon forms are considered in the remainder of the article.</i> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="(General)_row_echelon_form"><span id=".28General.29_row_echelon_form"></span>(General) row echelon form</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Row_echelon_form&action=edit&section=1" title="Edit section: (General) row echelon form"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="rref"></span> A matrix is in <b>row echelon form</b> if </p> <ul><li>All rows having only zero entries are at the bottom.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></li> <li>The <a href="/wiki/Leading_entry" class="mw-redirect" title="Leading entry">leading entry</a> (that is, the left-most nonzero entry) of every nonzero row, called the <b>pivot</b>, is on the right of the leading entry of every row above.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></li></ul> <p>Some texts add the condition that the leading coefficient must be 1<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> while others require this only in <a href="#Reduced_row_echelon_form">reduced row echelon form</a>. </p><p>These two conditions imply that all entries in a column below a leading coefficient are zeros.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>The following is an example of a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4\times 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mo>×<!-- × --></mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4\times 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d3f0ca1f315958ac341cbabab3a87f75e1eddf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.165ex; height:2.176ex;" alt="{\displaystyle 4\times 5}"></span> matrix in row echelon form, but not in reduced row echelon form (see below): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\begin{array}{ccccc}1&a_{0}&a_{1}&a_{2}&a_{3}\\0&0&2&a_{4}&a_{5}\\0&0&0&1&a_{6}\\0&0&0&0&0\end{array}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center center center" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\begin{array}{ccccc}1&a_{0}&a_{1}&a_{2}&a_{3}\\0&0&2&a_{4}&a_{5}\\0&0&0&1&a_{6}\\0&0&0&0&0\end{array}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86e85e21efde51c3403d9d42efdc659460d9a2e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:23.441ex; height:12.509ex;" alt="{\displaystyle \left[{\begin{array}{ccccc}1&a_{0}&a_{1}&a_{2}&a_{3}\\0&0&2&a_{4}&a_{5}\\0&0&0&1&a_{6}\\0&0&0&0&0\end{array}}\right]}"></span></dd></dl> <p>Many properties of matrices may be easily deduced from their row echelon form, such as the <a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">rank</a> and the <a href="/wiki/Kernel_(linear_algebra)" title="Kernel (linear algebra)">kernel</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Reduced_row_echelon_form"><span class="anchor" id="rref"></span>Reduced row echelon form</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Row_echelon_form&action=edit&section=2" title="Edit section: Reduced row echelon form"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A matrix is in <b>reduced row echelon form</b> (also called <b>row canonical form</b>) if it satisfies the following conditions:<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <ul><li>It is in row echelon form.</li> <li>The leading entry in each nonzero row is <span class="texhtml">1</span> (called a leading one).</li> <li>Each column containing a leading <span class="texhtml">1</span> has zeros in all its other entries.</li></ul> <p>If the first two conditions are verified, the last condition is equivalent to: </p> <ul><li>Each column containing a leading <span class="texhtml">1</span> has zeros in all entries above the leading <span class="texhtml">1</span>.</li></ul> <p>While a matrix may have several echelon forms, its reduced echelon form is unique. </p><p>Given a matrix in reduced row echelon form, if one permutes the columns in order to have the leading <span class="texhtml">1</span> of the <span class="texhtml mvar" style="font-style:italic;">i</span>th row in the <span class="texhtml mvar" style="font-style:italic;">i</span>th column, one gets a matrix of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}I&X\\0&0\end{pmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>I</mi> </mtd> <mtd> <mi>X</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}I&X\\0&0\end{pmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cef72e1d6051f873e979923210063ec21812019d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:10.294ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}I&X\\0&0\end{pmatrix}},}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">I</span> is the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> of dimension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span> equal to the rank of the entire matrix, <span class="texhtml mvar" style="font-style:italic;">X</span> is a matrix with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span> rows and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/269edeaa14506481081d4f11144c9ae3c4496e0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.193ex; height:2.509ex;" alt="{\displaystyle n-j}"></span> columns, and the two <span class="texhtml">0</span>'s are <a href="/wiki/Zero_matrix" title="Zero matrix">zero matrices</a> of appropriate size. Since a permutation of columns is not a row operation, the resulting matrix is inequivalent under elementary row operations. In the Gaussian elimination method, this corresponds to a permutation of the unknowns in the original linear system that allows a linear parametrization of the row space, in which the first <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span> coefficients are unconstrained, and the remaining <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/269edeaa14506481081d4f11144c9ae3c4496e0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.193ex; height:2.509ex;" alt="{\displaystyle n-j}"></span> are determined as linear combinations of these. </p> <div class="mw-heading mw-heading2"><h2 id="Systems_of_linear_equations">Systems of linear equations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Row_echelon_form&action=edit&section=3" title="Edit section: Systems of linear equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/System_of_linear_equations" title="System of linear equations">system of linear equations</a> is said to be in <i>row echelon form</i> if its <a href="/wiki/Augmented_matrix" title="Augmented matrix">augmented matrix</a> is in row echelon form. Similarly, a system of linear equations is said to be in <i>reduced row echelon form</i> or in <i>canonical form</i> if its augmented matrix is in reduced row echelon form. </p><p>The canonical form may be viewed as an explicit solution of the linear system. In fact, the system is <a href="/wiki/System_of_linear_equations#Consistency" title="System of linear equations">inconsistent</a> if and only if one of the equations of the canonical form is reduced to 0 = 1; that is if there is a leading <span class="texhtml mvar" style="font-style:italic;">1</span> in the column of the constant terms.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Otherwise, regrouping in the right hand side all the terms of the equations but the leading ones, expresses the variables corresponding to the pivots as constants or linear functions of the other variables, if any. </p> <div class="mw-heading mw-heading2"><h2 id="Transformation_to_row_echelon_form">Transformation to row echelon form</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Row_echelon_form&action=edit&section=4" title="Edit section: Transformation to row echelon form"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a></div> <p>Gaussian elimination is the main algorithm for transforming every matrix into a matrix in row echelon form. A variant, sometimes called <a href="/wiki/Gauss%E2%80%93Jordan_elimination" class="mw-redirect" title="Gauss–Jordan elimination">Gauss–Jordan elimination</a> produces a reduced row echelon form. Both consist of a finite sequence of <a href="/wiki/Elementary_row_operation" class="mw-redirect" title="Elementary row operation">elementary row operations</a>; the number of required elementary row operations is at most <span class="texhtml mvar" style="font-style:italic;">mn</span> for an <span class="texhtml mvar" style="font-style:italic;">m</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrix.<sup id="cite_ref-:0_7-0" class="reference"><a href="#cite_note-:0-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> For a given matrix, despite the row echelon form not being unique, all row echelon forms, including the reduced row echelon form, have the same number of zero rows and the pivots are located in the same positions.<sup id="cite_ref-:0_7-1" class="reference"><a href="#cite_note-:0-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p><p>This is an example of a matrix in reduced row echelon form, which shows that the left part of the matrix is not always an <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\begin{array}{ccccc}1&0&a_{1}&0&b_{1}\\0&1&a_{2}&0&b_{2}\\0&0&0&1&b_{3}\end{array}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center center center" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\begin{array}{ccccc}1&0&a_{1}&0&b_{1}\\0&1&a_{2}&0&b_{2}\\0&0&0&1&b_{3}\end{array}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cbe2a26712d3e37787d46b087e97748740b553e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:20.966ex; height:9.176ex;" alt="{\displaystyle \left[{\begin{array}{ccccc}1&0&a_{1}&0&b_{1}\\0&1&a_{2}&0&b_{2}\\0&0&0&1&b_{3}\end{array}}\right]}"></span></dd></dl> <p>For a matrix with <a href="/wiki/Integer" title="Integer">integer</a> coefficients, the <a href="/wiki/Hermite_normal_form" title="Hermite normal form">Hermite normal form</a> is a row echelon form that can be calculated without introducing any denominator, by using <a href="/wiki/Euclidean_division" title="Euclidean division">Euclidean division</a> or <a href="/wiki/B%C3%A9zout%27s_identity" title="Bézout's identity">Bézout's identity</a>. The reduced echelon form of a matrix with integer entries generally contains non-integer entries, because of the need of dividing by its leading coefficient each row of the echelon form. </p><p>The non-uniqueness of the row echelon form of a matrix follows from the fact that some elementary row operations transform a matrix in row echelon form into another (<a href="/wiki/Row_equivalence" title="Row equivalence">equivalent</a>) matrix that is also in row echelon form. These elementary row operations include the multiplication of a row by a nonzero scalar and the addition of a scalar multiple of a row to one of the rows above it. For example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}1&3&-1\\0&1&7\\\end{bmatrix}}{\xrightarrow {\text{add row 2 to row 1}}}{\begin{bmatrix}1&4&6\\0&1&7\\\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>→</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mtext>add row 2 to row 1</mtext> </mpadded> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>4</mn> </mtd> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}1&3&-1\\0&1&7\\\end{bmatrix}}{\xrightarrow {\text{add row 2 to row 1}}}{\begin{bmatrix}1&4&6\\0&1&7\\\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/800fdf29a857719df45fb40fb1e44ed0b536ae56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.422ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}1&3&-1\\0&1&7\\\end{bmatrix}}{\xrightarrow {\text{add row 2 to row 1}}}{\begin{bmatrix}1&4&6\\0&1&7\\\end{bmatrix}}.}"></span></dd></dl> <p>In this example, the unique reduced row echelon form can be obtained by subtracting three times the second row from the first row : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}1&3&-1\\0&1&7\\\end{bmatrix}}\xrightarrow {{\text{subtract 3}}\times {\text{(row 2) from row 1}}} {\begin{bmatrix}1&0&-22\\0&1&7\\\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mover> <mo>→</mo> <mpadded width="+0.611em" lspace="0.278em" voffset=".15em"> <mrow class="MJX-TeXAtom-ORD"> <mtext>subtract 3</mtext> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>(row 2) from row 1</mtext> </mrow> </mpadded> </mover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>22</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}1&3&-1\\0&1&7\\\end{bmatrix}}\xrightarrow {{\text{subtract 3}}\times {\text{(row 2) from row 1}}} {\begin{bmatrix}1&0&-22\\0&1&7\\\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4379f6dba0bd772813a8d250b0118ae8cd72a7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-top: -0.302ex; width:53.241ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}1&3&-1\\0&1&7\\\end{bmatrix}}\xrightarrow {{\text{subtract 3}}\times {\text{(row 2) from row 1}}} {\begin{bmatrix}1&0&-22\\0&1&7\\\end{bmatrix}}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Affine_spaces_of_reduced_echelon_forms">Affine spaces of reduced echelon forms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Row_echelon_form&action=edit&section=5" title="Edit section: Affine spaces of reduced echelon forms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In this section and the following one, we denote the location of the columns containing the leading entries of the successive rows of a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e173885ca0f29dd406df781144cd635276c68e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.446ex; height:2.176ex;" alt="{\displaystyle k\times n}"></span> matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> in reduced row echelon form (the pivots) as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (L_{1},\dots ,L_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (L_{1},\dots ,L_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d58d297983fc871b7dc4b6b1354769a640294fed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.117ex; height:3.009ex;" alt="{\displaystyle (L_{1},\dots ,L_{j})}"></span>, with </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0<L_{1}\cdots <L_{j}\leq n,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo><</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <mo><</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <mi>n</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0<L_{1}\cdots <L_{j}\leq n,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afde1c4402de642972225faca4172718a7c603be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.739ex; height:2.843ex;" alt="{\displaystyle 0<L_{1}\cdots <L_{j}\leq n,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j\leq k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j\leq k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92f39ddd5ca00e7daa67a5ff8b5de690f1344aee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:5.294ex; height:2.509ex;" alt="{\displaystyle j\leq k}"></span> is the dimension of the <a href="/wiki/Row_space" class="mw-redirect" title="Row space">row space</a> of the matrix. The data <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (k,n,L_{1},\ldots ,L_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (k,n,L_{1},\ldots ,L_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f443c589e690d1d38d8133e1047d15ef345253c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.791ex; height:3.009ex;" alt="{\displaystyle (k,n,L_{1},\ldots ,L_{j})}"></span> will be called the <i>shape</i> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, which has leading non-zero entries <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{A_{i,L_{i}}=1\}_{i=1,\dots ,j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mn>1</mn> <msub> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{A_{i,L_{i}}=1\}_{i=1,\dots ,j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8ab85fc73dfd4b510ef8a83094a4e5fb5511063" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.748ex; height:3.009ex;" alt="{\displaystyle \{A_{i,L_{i}}=1\}_{i=1,\dots ,j}}"></span>, the entries in the column <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbbedf9f5f71ca52f8f24392c3cc18fca6c420dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.383ex; height:2.509ex;" alt="{\displaystyle L_{i}}"></span> above and below it vanish, and so do all those to the left of it within the same row, as well as all entries in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>th row for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i>j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>></mo> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i>j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2886c2c870767297c5efcf319aa2bf68a31cb4b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.859ex; height:2.509ex;" alt="{\displaystyle i>j}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}A_{i,L_{i}}=1\qquad &{\text{for }}i=1,\dots ,j,\\A_{l,L_{i}}=0\qquad &{\text{for }}l\neq i,\\A_{i,l}=0\qquad &{\text{for }}l<L_{i},\\A_{i,l}=0\qquad &{\text{for }}i>j\end{aligned}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mspace width="2em" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for </mtext> </mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>j</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mspace width="2em" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for </mtext> </mrow> <mi>l</mi> <mo>≠<!-- ≠ --></mo> <mi>i</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mspace width="2em" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for </mtext> </mrow> <mi>l</mi> <mo><</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mspace width="2em" /> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for </mtext> </mrow> <mi>i</mi> <mo>></mo> <mi>j</mi> </mtd> </mtr> </mtable> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}A_{i,L_{i}}=1\qquad &{\text{for }}i=1,\dots ,j,\\A_{l,L_{i}}=0\qquad &{\text{for }}l\neq i,\\A_{i,l}=0\qquad &{\text{for }}l<L_{i},\\A_{i,l}=0\qquad &{\text{for }}i>j\end{aligned}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2737fef30688e891d079349af521e90fec8812f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:30.262ex; height:12.843ex;" alt="{\displaystyle {\begin{aligned}A_{i,L_{i}}=1\qquad &{\text{for }}i=1,\dots ,j,\\A_{l,L_{i}}=0\qquad &{\text{for }}l\neq i,\\A_{i,l}=0\qquad &{\text{for }}l<L_{i},\\A_{i,l}=0\qquad &{\text{for }}i>j\end{aligned}}.}"></span></dd></dl> <p>Since all other entries are arbitrary elements of the base field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>, the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(k,n,L_{1},\ldots ,L_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(k,n,L_{1},\ldots ,L_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a6bbc8c56ff3182c23643a61b940074b4fa5c50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.534ex; height:3.009ex;" alt="{\displaystyle A(k,n,L_{1},\ldots ,L_{j})}"></span> of all reduced echelon form matrices with shape <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (k,n,L_{1},\ldots ,L_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (k,n,L_{1},\ldots ,L_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f443c589e690d1d38d8133e1047d15ef345253c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.791ex; height:3.009ex;" alt="{\displaystyle (k,n,L_{1},\ldots ,L_{j})}"></span> is a <span class="texhtml mvar" style="font-style:italic;">K</span>-affine space of dimension<sup id="cite_ref-Fu_8-0" class="reference"><a href="#cite_note-Fu-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KL_9-0" class="reference"><a href="#cite_note-KL-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{dim}}(A(k,n,L_{1},\dots ,L_{j}))=nj-{\frac {1}{2}}j(j-1)-\sum _{i=1}^{j}L_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>dim</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mi>j</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>j</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munderover> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{dim}}(A(k,n,L_{1},\dots ,L_{j}))=nj-{\frac {1}{2}}j(j-1)-\sum _{i=1}^{j}L_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53211bec5210f579a7f37c72aea57ddd1d816d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:51.849ex; height:7.343ex;" alt="{\displaystyle {\text{dim}}(A(k,n,L_{1},\dots ,L_{j}))=nj-{\frac {1}{2}}j(j-1)-\sum _{i=1}^{j}L_{i}.}"></span></dd></dl> <p>To see this, note that, of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle nj}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle nj}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbb9e771f0366971c5f80c9f057f8137903f1262" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.353ex; height:2.509ex;" alt="{\displaystyle nj}"></span> possible matrix entries within the first <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span> rows, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a6491dd93525723ddf12c98448e8e8bd3022122" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:2.039ex; height:3.009ex;" alt="{\displaystyle j^{2}}"></span> are determined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>'s and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>'s because they are in the columns <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (L_{1},\dots ,L_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (L_{1},\dots ,L_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d58d297983fc871b7dc4b6b1354769a640294fed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.117ex; height:3.009ex;" alt="{\displaystyle (L_{1},\dots ,L_{j})}"></span> containing the pivots. A further <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{j}(L_{i}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{j}(L_{i}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ccfb094f51ae0115fbee57e2e963752c714bdc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.55ex; height:7.343ex;" alt="{\displaystyle \sum _{i=1}^{j}(L_{i}-1)}"></span> are also required to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>, because they are to the left of the pivots, but of these, </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=0}^{j-1}i={\frac {1}{2}}j(j-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>i</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>j</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=0}^{j-1}i={\frac {1}{2}}j(j-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6680baa0c2a73231f203dca4bc50940568f09651" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.37ex; height:7.343ex;" alt="{\displaystyle \sum _{i=0}^{j-1}i={\frac {1}{2}}j(j-1)}"></span></dd></dl></dd></dl> <p>are also in the columns <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (L_{1},\dots ,L_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (L_{1},\dots ,L_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d58d297983fc871b7dc4b6b1354769a640294fed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.117ex; height:3.009ex;" alt="{\displaystyle (L_{1},\dots ,L_{j})}"></span>. Therefore, the total number of entries that are not fixed to be equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> is </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle nj-j^{2}+{\frac {1}{2}}j(j-1)-\sum _{i=1}^{j}L_{i}+j=nj-{\frac {1}{2}}j(j-1)-\sum _{i=1}^{j}L_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>j</mi> <mo>−<!-- − --></mo> <msup> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>j</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munderover> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mi>j</mi> <mo>=</mo> <mi>n</mi> <mi>j</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>j</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </munderover> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle nj-j^{2}+{\frac {1}{2}}j(j-1)-\sum _{i=1}^{j}L_{i}+j=nj-{\frac {1}{2}}j(j-1)-\sum _{i=1}^{j}L_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2977675c4ff002ac0a7e396ccc691ef733511e2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:60.167ex; height:7.343ex;" alt="{\displaystyle nj-j^{2}+{\frac {1}{2}}j(j-1)-\sum _{i=1}^{j}L_{i}+j=nj-{\frac {1}{2}}j(j-1)-\sum _{i=1}^{j}L_{i}.}"></span></dd></dl></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Maximal_rank:_Schubert_cells">Maximal rank: Schubert cells</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Row_echelon_form&action=edit&section=6" title="Edit section: Maximal rank: Schubert cells"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The row echelon form can be used to give a concrete description of the <a href="/wiki/Schubert_cell" class="mw-redirect" title="Schubert cell">Schubert cells</a> associated with the <a href="/wiki/Grassmannian" title="Grassmannian">Grassmannian</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-dimensional subspaces of a <a href="/wiki/Vector_space" title="Vector space">vector space</a>. </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j=k\leq n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>=</mo> <mi>k</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j=k\leq n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da3452437a5594731e4e663b7c2849789156da40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:9.788ex; height:2.509ex;" alt="{\displaystyle j=k\leq n}"></span>, the matrices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in A(k,n,L_{1},\dots ,L_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in A(k,n,L_{1},\dots ,L_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e910002a29d5584ad2e987acdc891233f60b889" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.297ex; height:2.843ex;" alt="{\displaystyle A\in A(k,n,L_{1},\dots ,L_{k})}"></span> are of maximal rank <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>, and determine <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-dimensional subspaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w\subset V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>⊂<!-- ⊂ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w\subset V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7253e8a5a085021770487f72107de1ca4ae47e00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.55ex; height:2.176ex;" alt="{\displaystyle w\subset V}"></span> of the free <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>-module <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V:=K^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>:=</mo> <msup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V:=K^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18c22e8d4480890312a2c7bc8e8035a92a17532e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.845ex; height:2.343ex;" alt="{\displaystyle V:=K^{n}}"></span>, as the span </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w={\text{span}}\{W_{1},\dots ,W_{k}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>span</mtext> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w={\text{span}}\{W_{1},\dots ,W_{k}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c523b9ff8d33946f1932fb41294ce7c3475d68a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.46ex; height:2.843ex;" alt="{\displaystyle w={\text{span}}\{W_{1},\dots ,W_{k}\}}"></span></dd></dl></dd></dl> <p>of linear combinations </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W_{i}:=\sum _{l=1}^{n}A_{il}e_{l},\quad i=1,\dots ,k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>:=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>l</mi> </mrow> </msub> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W_{i}:=\sum _{l=1}^{n}A_{il}e_{l},\quad i=1,\dots ,k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23b929f4d8ecb5a85a089bf1b2d00bbe4655ac7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.129ex; height:6.843ex;" alt="{\displaystyle W_{i}:=\sum _{l=1}^{n}A_{il}e_{l},\quad i=1,\dots ,k}"></span></dd></dl></dd></dl> <p>of the elementary basis vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (e_{1},\dots ,e_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (e_{1},\dots ,e_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83ccf3398cfc17c5754c3ad49d1cb98191660797" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.427ex; height:2.843ex;" alt="{\displaystyle (e_{1},\dots ,e_{n})}"></span>, with coefficients equal to the row vectors. In this case, the affine space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(k,n,L_{1},\dots ,L_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(k,n,L_{1},\dots ,L_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/702004aa70df93c10bdd1dcd6557e6cb82be8086" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.713ex; height:2.843ex;" alt="{\displaystyle A(k,n,L_{1},\dots ,L_{k})}"></span> is the <a href="/wiki/Schubert_calculus" title="Schubert calculus">Schubert cell</a><sup id="cite_ref-Fu_8-1" class="reference"><a href="#cite_note-Fu-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-KL_9-1" class="reference"><a href="#cite_note-KL-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{\lambda }({\mathcal {V}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{\lambda }({\mathcal {V}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f834e66bf7ce7670eab5166a13949c319a1e0657" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.454ex; height:2.843ex;" alt="{\displaystyle X_{\lambda }({\mathcal {V}})}"></span> of the <a href="/wiki/Grassmannian" title="Grassmannian">Grassmannian</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Gr} _{k}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">G</mi> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Gr} _{k}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a57eaeec48808b07db149e0b92c733644364289" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.888ex; height:2.843ex;" alt="{\displaystyle \mathbf {Gr} _{k}(V)}"></span>, consisting of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-dimensional subspaces of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> corresponding to the <a href="/wiki/Integer_partition" title="Integer partition">integer partition</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda =(\lambda _{1}\geq \cdots \geq \lambda _{k}\geq 0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>≥<!-- ≥ --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>≥<!-- ≥ --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>≥<!-- ≥ --></mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda =(\lambda _{1}\geq \cdots \geq \lambda _{k}\geq 0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e305d28dec5e8800bb35a1a06d204228ceb41433" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.297ex; height:2.843ex;" alt="{\displaystyle \lambda =(\lambda _{1}\geq \cdots \geq \lambda _{k}\geq 0)}"></span></dd></dl> <p>with parts equal to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{i}:=n-k-L_{i}+i,\quad 1\leq j\leq k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>:=</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>−<!-- − --></mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mo>,</mo> <mspace width="1em" /> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{i}:=n-k-L_{i}+i,\quad 1\leq j\leq k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/690a68a98cdfd6f851ef7157f66937bf2e11264b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:33.744ex; height:2.509ex;" alt="{\displaystyle \lambda _{i}:=n-k-L_{i}+i,\quad 1\leq j\leq k,}"></span></dd></dl> <p>relative to the <a href="/wiki/Flag_manifold" class="mw-redirect" title="Flag manifold">complete flag</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {V}}=(V_{1}\subset V_{2}\cdots \subset V_{n}=V),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⊂<!-- ⊂ --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <mo>⊂<!-- ⊂ --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {V}}=(V_{1}\subset V_{2}\cdots \subset V_{n}=V),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cc28b06584261fc939020ba1d29da0148919f6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.67ex; height:2.843ex;" alt="{\displaystyle {\mathcal {V}}=(V_{1}\subset V_{2}\cdots \subset V_{n}=V),}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{i}={\text{span}}\{e_{1},\dots ,e_{i}\},\quad i=1,\dots n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>span</mtext> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mspace width="1em" /> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{i}={\text{span}}\{e_{1},\dots ,e_{i}\},\quad i=1,\dots n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/657fa752095eb3973151459bb3c45b6addc2b7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.047ex; height:2.843ex;" alt="{\displaystyle V_{i}={\text{span}}\{e_{1},\dots ,e_{i}\},\quad i=1,\dots n.}"></span></dd></dl> <p>This means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{\lambda }({\mathcal {V}})\subset \mathbf {Gr} _{k}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>⊂<!-- ⊂ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">G</mi> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{\lambda }({\mathcal {V}})\subset \mathbf {Gr} _{k}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9975005e2c2933c45a36dd59b98d74e9a41dc63d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.44ex; height:2.843ex;" alt="{\displaystyle X_{\lambda }({\mathcal {V}})\subset \mathbf {Gr} _{k}(V)}"></span> consists of those <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-dimensional subspaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w\subset V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>⊂<!-- ⊂ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w\subset V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7253e8a5a085021770487f72107de1ca4ae47e00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.55ex; height:2.176ex;" alt="{\displaystyle w\subset V}"></span> whose intersections with the subspaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{V_{j}\}_{j=1,\dots ,n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{V_{j}\}_{j=1,\dots ,n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b2c3b6303e63a2b472557c060cb060188149a11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.427ex; height:3.009ex;" alt="{\displaystyle \{V_{j}\}_{j=1,\dots ,n}}"></span> have dimensions </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{dim}}(w\cap V_{j})=i,\ {\text{for }}n-k-\lambda _{i}+i\leq j\leq n-k-\lambda _{i+1}+i,\quad i=1,\dots ,k.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>dim</mtext> </mrow> <mo stretchy="false">(</mo> <mi>w</mi> <mo>∩<!-- ∩ --></mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>i</mi> <mo>,</mo> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mtext>for </mtext> </mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>−<!-- − --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mo>≤<!-- ≤ --></mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>−<!-- − --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mo>,</mo> <mspace width="1em" /> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>k</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{dim}}(w\cap V_{j})=i,\ {\text{for }}n-k-\lambda _{i}+i\leq j\leq n-k-\lambda _{i+1}+i,\quad i=1,\dots ,k.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edc15fc81dd884f40742f8e6ee1553aae2d4cd5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:73.959ex; height:3.009ex;" alt="{\displaystyle {\text{dim}}(w\cap V_{j})=i,\ {\text{for }}n-k-\lambda _{i}+i\leq j\leq n-k-\lambda _{i+1}+i,\quad i=1,\dots ,k.}"></span></dd></dl></dd></dl> <p>Its dimension is then equal to the weight <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\lambda |=\sum _{i=1}^{k}\lambda _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\lambda |=\sum _{i=1}^{k}\lambda _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fc4dd4d214d4fe276a9d05eeae2d402fdcfd3de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.644ex; height:7.343ex;" alt="{\displaystyle |\lambda |=\sum _{i=1}^{k}\lambda _{i}}"></span> of the partition<sup id="cite_ref-Fu_8-2" class="reference"><a href="#cite_note-Fu-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \dim({X_{\lambda }({\mathcal {V}})})=|\lambda |.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \dim({X_{\lambda }({\mathcal {V}})})=|\lambda |.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2634f77da1660ce0b6f6b8664222f4168185f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.532ex; height:2.843ex;" alt="{\displaystyle \dim({X_{\lambda }({\mathcal {V}})})=|\lambda |.}"></span></dd></dl> <p>An equivalent, but simpler characterization of the Schubert cell <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{\lambda }({\mathcal {V}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{\lambda }({\mathcal {V}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f834e66bf7ce7670eab5166a13949c319a1e0657" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.454ex; height:2.843ex;" alt="{\displaystyle X_{\lambda }({\mathcal {V}})}"></span> may be given in terms of the <a href="/wiki/Flag_manifold" class="mw-redirect" title="Flag manifold"> dual complete flag</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\mathcal {V}}}=({\tilde {V}}_{1}\subset {\tilde {V}}_{2}\cdots \subset {\tilde {V}}_{n}=V),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>V</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⊂<!-- ⊂ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>V</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <mo>⊂<!-- ⊂ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>V</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\mathcal {V}}}=({\tilde {V}}_{1}\subset {\tilde {V}}_{2}\cdots \subset {\tilde {V}}_{n}=V),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/712d81086f9390e05584ab410fbcc89ba74b9eda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.966ex; height:3.176ex;" alt="{\displaystyle {\tilde {\mathcal {V}}}=({\tilde {V}}_{1}\subset {\tilde {V}}_{2}\cdots \subset {\tilde {V}}_{n}=V),}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {V}}_{i}={\text{span}}\{e_{n},\dots ,e_{n-i+1}\},\quad i=1,\dots n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>V</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>span</mtext> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> <mo>,</mo> <mspace width="1em" /> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {V}}_{i}={\text{span}}\{e_{n},\dots ,e_{n-i+1}\},\quad i=1,\dots n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181045e845da0b3c0247b970217c2968d5eb0bb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.008ex; height:3.176ex;" alt="{\displaystyle {\tilde {V}}_{i}={\text{span}}\{e_{n},\dots ,e_{n-i+1}\},\quad i=1,\dots n.}"></span></dd></dl> <p>Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{\lambda }({\mathcal {V}})\subset \mathbf {Gr} _{k}(V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">V</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>⊂<!-- ⊂ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">G</mi> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{\lambda }({\mathcal {V}})\subset \mathbf {Gr} _{k}(V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9975005e2c2933c45a36dd59b98d74e9a41dc63d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.44ex; height:2.843ex;" alt="{\displaystyle X_{\lambda }({\mathcal {V}})\subset \mathbf {Gr} _{k}(V)}"></span> consists of those <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>-dimensional subspaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w\subset V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> <mo>⊂<!-- ⊂ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w\subset V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7253e8a5a085021770487f72107de1ca4ae47e00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.55ex; height:2.176ex;" alt="{\displaystyle w\subset V}"></span> that have a basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\tilde {W}}_{1},\dots ,{\tilde {W}}_{k})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>W</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>W</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\tilde {W}}_{1},\dots ,{\tilde {W}}_{k})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad30584e0c1e7db8c0fb902c413862282e31c485" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.001ex; height:3.176ex;" alt="{\displaystyle ({\tilde {W}}_{1},\dots ,{\tilde {W}}_{k})}"></span> consisting of elements </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {W}}_{i}\in {\tilde {V}}_{n-L_{i}+1}={\tilde {V}}_{k+\lambda _{i}-i+1},\quad i=1,\dots ,k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>W</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>V</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>V</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {W}}_{i}\in {\tilde {V}}_{n-L_{i}+1}={\tilde {V}}_{k+\lambda _{i}-i+1},\quad i=1,\dots ,k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0828897aa0256432d90efaa5c11e795a213c7c90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:41.796ex; height:3.343ex;" alt="{\displaystyle {\tilde {W}}_{i}\in {\tilde {V}}_{n-L_{i}+1}={\tilde {V}}_{k+\lambda _{i}-i+1},\quad i=1,\dots ,k}"></span></dd></dl></dd></dl> <p>of the subspaces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{{\tilde {V}}_{k+\lambda _{i}-i+1}\}_{i=1,\dots ,k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>V</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{{\tilde {V}}_{k+\lambda _{i}-i+1}\}_{i=1,\dots ,k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2deebf45a90b7e8740cb24a019f1fcdb35c9d354" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.606ex; height:3.343ex;" alt="{\displaystyle \{{\tilde {V}}_{k+\lambda _{i}-i+1}\}_{i=1,\dots ,k}}"></span> which, relative to the standard basis, are the row vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (W_{k},\dots ,W_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (W_{k},\dots ,W_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab21bd4e5ffb2310e1178f84ee69fae9d593ad9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.518ex; height:2.843ex;" alt="{\displaystyle (W_{k},\dots ,W_{1})}"></span> of the row echelon form, written in reverse order. </p> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Row_echelon_form&action=edit&section=7" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Phrased in terms of each individual zero row in <a href="#CITEREFLeon2010">Leon (2010</a>, p. 13):"A matrix is said to be in <strong>row echelon form</strong> ... (iii) If there are rows whose entries are all zero, they are below the rows having nonzero entries."</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFLeon2010">Leon (2010</a>, p. 13):"A matrix is said to be in <strong>row echelon form</strong> ... (ii) If row <span class="texhtml mvar" style="font-style:italic;">k</span> does not consist entirely of zeros, the number of leading zero entries in row <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/552a558062ed4c0486297b5b5531c5ee044dbd9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.214ex; height:2.343ex;" alt="{\displaystyle k+1}"></span> is greater than the number of leading zero entries in row <span class="texhtml mvar" style="font-style:italic;">k</span>."</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">See, for instance, the first clause of the definition of row echelon form in <a href="#CITEREFLeon2010">Leon (2010</a>, p. 13): "A matrix is said to be in <strong>row echelon form</strong> (i) If the first nonzero entry in each nonzero row is 1."</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFMeyer2000">Meyer 2000</a>, p. 44</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a href="#CITEREFMeyer2000">Meyer 2000</a>, p. 48</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCheneyKincaid2010" class="citation book cs1">Cheney, Ward; Kincaid, David R. (2010-12-29). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=S0imN2tl1qwC"><i>Linear Algebra: Theory and Applications</i></a>. Jones & Bartlett Publishers. pp. 47–50. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781449613525" title="Special:BookSources/9781449613525"><bdi>9781449613525</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+Algebra%3A+Theory+and+Applications&rft.pages=47-50&rft.pub=Jones+%26+Bartlett+Publishers&rft.date=2010-12-29&rft.isbn=9781449613525&rft.aulast=Cheney&rft.aufirst=Ward&rft.au=Kincaid%2C+David+R.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DS0imN2tl1qwC&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARow+echelon+form" class="Z3988"></span></span> </li> <li id="cite_note-:0-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAntonRorres2013" class="citation book cs1">Anton, Howard; Rorres, Chris (2013-10-23). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=loRbAgAAQBAJ"><i>Elementary Linear Algebra: Applications Version, 11th Edition</i></a>. Wiley Global Education. p. 21. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781118879160" title="Special:BookSources/9781118879160"><bdi>9781118879160</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elementary+Linear+Algebra%3A+Applications+Version%2C+11th+Edition&rft.pages=21&rft.pub=Wiley+Global+Education&rft.date=2013-10-23&rft.isbn=9781118879160&rft.aulast=Anton&rft.aufirst=Howard&rft.au=Rorres%2C+Chris&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DloRbAgAAQBAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARow+echelon+form" class="Z3988"></span></span> </li> <li id="cite_note-Fu-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Fu_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Fu_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Fu_8-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFulton1997" class="citation book cs1">Fulton, William (1997). <i>Young Tableaux. With Applications to Representation Theory and Geometry, Chapt. 9.4</i>. London Mathematical Society Student Texts. Vol. 35. Cambridge, U.K.: Cambridge University Press. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FCBO9780511626241">10.1017/CBO9780511626241</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780521567244" title="Special:BookSources/9780521567244"><bdi>9780521567244</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Young+Tableaux.+With+Applications+to+Representation+Theory+and+Geometry%2C+Chapt.+9.4&rft.place=Cambridge%2C+U.K.&rft.series=London+Mathematical+Society+Student+Texts&rft.pub=Cambridge+University+Press&rft.date=1997&rft_id=info%3Adoi%2F10.1017%2FCBO9780511626241&rft.isbn=9780521567244&rft.aulast=Fulton&rft.aufirst=William&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARow+echelon+form" class="Z3988"></span> </span> </li> <li id="cite_note-KL-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-KL_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KL_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleimanLaksov1972" class="citation journal cs1">Kleiman, S.L.; Laksov, Dan (1972). "Schubert Calculus". <i>American Mathematical Monthly</i>. <b>79</b> (10). American Mathematical Society: 1061–1082. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00029890.1972.11993188">10.1080/00029890.1972.11993188</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0377-9017">0377-9017</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=Schubert+Calculus&rft.volume=79&rft.issue=10&rft.pages=1061-1082&rft.date=1972&rft_id=info%3Adoi%2F10.1080%2F00029890.1972.11993188&rft.issn=0377-9017&rft.aulast=Kleiman&rft.aufirst=S.L.&rft.au=Laksov%2C+Dan&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARow+echelon+form" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Row_echelon_form&action=edit&section=8" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeon2010" class="citation cs2">Leon, Steven J. (2010), Lynch, Deirdre; Hoffman, William; Celano, Caroline (eds.), <i>Linear Algebra with Applications</i> (8th ed.), Pearson, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-13-600929-0" title="Special:BookSources/978-0-13-600929-0"><bdi>978-0-13-600929-0</bdi></a>, <q>A matrix is said to be in <strong>row echelon form</strong> (i) If the first nonzero entry in each nonzero row is 1. (ii) If row <span class="texhtml mvar" style="font-style:italic;">k</span> does not consist entirely of zeros, the number of leading zero entries in row <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/552a558062ed4c0486297b5b5531c5ee044dbd9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.214ex; height:2.343ex;" alt="{\displaystyle k+1}"></span> is greater than the number of leading zero entries in row <span class="texhtml mvar" style="font-style:italic;">k</span>. (iii) If there are rows whose entries are all zero, they are below the rows having nonzero entries.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+Algebra+with+Applications&rft.edition=8th&rft.pub=Pearson&rft.date=2010&rft.isbn=978-0-13-600929-0&rft.aulast=Leon&rft.aufirst=Steven+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARow+echelon+form" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeyer2000" class="citation cs2">Meyer, Carl D. (2000), <a rel="nofollow" class="external text" href="http://www.matrixanalysis.com/"><i>Matrix Analysis and Applied Linear Algebra</i></a>, <a href="/wiki/Society_for_Industrial_and_Applied_Mathematics" title="Society for Industrial and Applied Mathematics">SIAM</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-89871-454-8" title="Special:BookSources/978-0-89871-454-8"><bdi>978-0-89871-454-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+Analysis+and+Applied+Linear+Algebra&rft.pub=SIAM&rft.date=2000&rft.isbn=978-0-89871-454-8&rft.aulast=Meyer&rft.aufirst=Carl+D.&rft_id=http%3A%2F%2Fwww.matrixanalysis.com%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ARow+echelon+form" class="Z3988"></span>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Row_echelon_form&action=edit&section=9" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">The Wikibook <i><a href="https://en.wikibooks.org/wiki/Linear_Algebra" class="extiw" title="wikibooks:Linear Algebra">Linear Algebra</a></i> has a page on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Linear_Algebra/Row_Reduction_and_Echelon_Forms" class="extiw" title="wikibooks:Linear Algebra/Row Reduction and Echelon Forms">Row Reduction and Echelon Forms</a></b></i></div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://people.revoledu.com/kardi/tutorial/LinearAlgebra/RREF.html">Interactive Row Echelon Form with rational output</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Matrix_classes" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Matrix_classes" title="Template:Matrix classes"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Matrix_classes" title="Template talk:Matrix classes"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Matrix_classes" title="Special:EditPage/Template:Matrix classes"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Matrix_classes" style="font-size:114%;margin:0 4em"><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a> classes</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Explicitly constrained entries</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alternant_matrix" title="Alternant matrix">Alternant</a></li> <li><a href="/wiki/Anti-diagonal_matrix" title="Anti-diagonal matrix">Anti-diagonal</a></li> <li><a href="/wiki/Skew-Hermitian_matrix" title="Skew-Hermitian matrix">Anti-Hermitian</a></li> <li><a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">Anti-symmetric</a></li> <li><a href="/wiki/Arrowhead_matrix" title="Arrowhead matrix">Arrowhead</a></li> <li><a href="/wiki/Band_matrix" title="Band matrix">Band</a></li> <li><a href="/wiki/Bidiagonal_matrix" title="Bidiagonal matrix">Bidiagonal</a></li> <li><a href="/wiki/Bisymmetric_matrix" title="Bisymmetric matrix">Bisymmetric</a></li> <li><a href="/wiki/Block-diagonal_matrix" class="mw-redirect" title="Block-diagonal matrix">Block-diagonal</a></li> <li><a href="/wiki/Block_matrix" title="Block matrix">Block</a></li> <li><a href="/wiki/Block_tridiagonal_matrix" class="mw-redirect" title="Block tridiagonal matrix">Block tridiagonal</a></li> <li><a href="/wiki/Boolean_matrix" title="Boolean matrix">Boolean</a></li> <li><a href="/wiki/Cauchy_matrix" title="Cauchy matrix">Cauchy</a></li> <li><a href="/wiki/Centrosymmetric_matrix" title="Centrosymmetric matrix">Centrosymmetric</a></li> <li><a href="/wiki/Conference_matrix" title="Conference matrix">Conference</a></li> <li><a href="/wiki/Complex_Hadamard_matrix" title="Complex Hadamard matrix">Complex Hadamard</a></li> <li><a href="/wiki/Copositive_matrix" title="Copositive matrix">Copositive</a></li> <li><a href="/wiki/Diagonally_dominant_matrix" title="Diagonally dominant matrix">Diagonally dominant</a></li> <li><a href="/wiki/Diagonal_matrix" title="Diagonal matrix">Diagonal</a></li> <li><a href="/wiki/DFT_matrix" title="DFT matrix">Discrete Fourier Transform</a></li> <li><a href="/wiki/Elementary_matrix" title="Elementary matrix">Elementary</a></li> <li><a href="/wiki/Equivalent_matrix" class="mw-redirect" title="Equivalent matrix">Equivalent</a></li> <li><a href="/wiki/Frobenius_matrix" title="Frobenius matrix">Frobenius</a></li> <li><a href="/wiki/Generalized_permutation_matrix" title="Generalized permutation matrix">Generalized permutation</a></li> <li><a href="/wiki/Hadamard_matrix" title="Hadamard matrix">Hadamard</a></li> <li><a href="/wiki/Hankel_matrix" title="Hankel matrix">Hankel</a></li> <li><a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian</a></li> <li><a href="/wiki/Hessenberg_matrix" title="Hessenberg matrix">Hessenberg</a></li> <li><a href="/wiki/Hollow_matrix" title="Hollow matrix">Hollow</a></li> <li><a href="/wiki/Integer_matrix" title="Integer matrix">Integer</a></li> <li><a href="/wiki/Logical_matrix" title="Logical matrix">Logical</a></li> <li><a href="/wiki/Matrix_unit" title="Matrix unit">Matrix unit</a></li> <li><a href="/wiki/Metzler_matrix" title="Metzler matrix">Metzler</a></li> <li><a href="/wiki/Moore_matrix" title="Moore matrix">Moore</a></li> <li><a href="/wiki/Nonnegative_matrix" title="Nonnegative matrix">Nonnegative</a></li> <li><a href="/wiki/Pentadiagonal_matrix" class="mw-redirect" title="Pentadiagonal matrix">Pentadiagonal</a></li> <li><a href="/wiki/Permutation_matrix" title="Permutation matrix">Permutation</a></li> <li><a href="/wiki/Persymmetric_matrix" title="Persymmetric matrix">Persymmetric</a></li> <li><a href="/wiki/Polynomial_matrix" title="Polynomial matrix">Polynomial</a></li> <li><a href="/wiki/Quaternionic_matrix" title="Quaternionic matrix">Quaternionic</a></li> <li><a href="/wiki/Signature_matrix" title="Signature matrix">Signature</a></li> <li><a href="/wiki/Skew-Hermitian_matrix" title="Skew-Hermitian matrix">Skew-Hermitian</a></li> <li><a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">Skew-symmetric</a></li> <li><a href="/wiki/Skyline_matrix" title="Skyline matrix">Skyline</a></li> <li><a href="/wiki/Sparse_matrix" title="Sparse matrix">Sparse</a></li> <li><a href="/wiki/Sylvester_matrix" title="Sylvester matrix">Sylvester</a></li> <li><a href="/wiki/Symmetric_matrix" title="Symmetric matrix">Symmetric</a></li> <li><a href="/wiki/Toeplitz_matrix" title="Toeplitz matrix">Toeplitz</a></li> <li><a href="/wiki/Triangular_matrix" title="Triangular matrix">Triangular</a></li> <li><a href="/wiki/Tridiagonal_matrix" title="Tridiagonal matrix">Tridiagonal</a></li> <li><a href="/wiki/Vandermonde_matrix" title="Vandermonde matrix">Vandermonde</a></li> <li><a href="/wiki/Walsh_matrix" title="Walsh matrix">Walsh</a></li> <li><a href="/wiki/Z-matrix_(mathematics)" title="Z-matrix (mathematics)">Z</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Constant</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Exchange_matrix" title="Exchange matrix">Exchange</a></li> <li><a href="/wiki/Hilbert_matrix" title="Hilbert matrix">Hilbert</a></li> <li><a href="/wiki/Identity_matrix" title="Identity matrix">Identity</a></li> <li><a href="/wiki/Lehmer_matrix" title="Lehmer matrix">Lehmer</a></li> <li><a href="/wiki/Matrix_of_ones" title="Matrix of ones">Of ones</a></li> <li><a href="/wiki/Pascal_matrix" title="Pascal matrix">Pascal</a></li> <li><a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli</a></li> <li><a href="/wiki/Redheffer_matrix" title="Redheffer matrix">Redheffer</a></li> <li><a href="/wiki/Shift_matrix" title="Shift matrix">Shift</a></li> <li><a href="/wiki/Zero_matrix" title="Zero matrix">Zero</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Conditions on <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvalues or eigenvectors</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Companion_matrix" title="Companion matrix">Companion</a></li> <li><a href="/wiki/Convergent_matrix" title="Convergent matrix">Convergent</a></li> <li><a href="/wiki/Defective_matrix" title="Defective matrix">Defective</a></li> <li><a href="/wiki/Definite_matrix" title="Definite matrix">Definite</a></li> <li><a href="/wiki/Diagonalizable_matrix" title="Diagonalizable matrix">Diagonalizable</a></li> <li><a href="/wiki/Hurwitz-stable_matrix" title="Hurwitz-stable matrix">Hurwitz-stable</a></li> <li><a href="/wiki/Positive-definite_matrix" class="mw-redirect" title="Positive-definite matrix">Positive-definite</a></li> <li><a href="/wiki/Stieltjes_matrix" title="Stieltjes matrix">Stieltjes</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Satisfying conditions on <a href="/wiki/Matrix_product" class="mw-redirect" title="Matrix product">products</a> or <a href="/wiki/Inverse_of_a_matrix" class="mw-redirect" title="Inverse of a matrix">inverses</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Matrix_congruence" title="Matrix congruence">Congruent</a></li> <li><a href="/wiki/Idempotent_matrix" title="Idempotent matrix">Idempotent</a> or <a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">Projection</a></li> <li><a href="/wiki/Invertible_matrix" title="Invertible matrix">Invertible</a></li> <li><a href="/wiki/Involutory_matrix" title="Involutory matrix">Involutory</a></li> <li><a href="/wiki/Nilpotent_matrix" title="Nilpotent matrix">Nilpotent</a></li> <li><a href="/wiki/Normal_matrix" title="Normal matrix">Normal</a></li> <li><a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">Orthogonal</a></li> <li><a href="/wiki/Unimodular_matrix" title="Unimodular matrix">Unimodular</a></li> <li><a href="/wiki/Unipotent" title="Unipotent">Unipotent</a></li> <li><a href="/wiki/Unitary_matrix" title="Unitary matrix">Unitary</a></li> <li><a href="/wiki/Totally_unimodular_matrix" class="mw-redirect" title="Totally unimodular matrix">Totally unimodular</a></li> <li><a href="/wiki/Weighing_matrix" title="Weighing matrix">Weighing</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">With specific applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjugate_matrix" title="Adjugate matrix">Adjugate</a></li> <li><a href="/wiki/Alternating_sign_matrix" title="Alternating sign matrix">Alternating sign</a></li> <li><a href="/wiki/Augmented_matrix" title="Augmented matrix">Augmented</a></li> <li><a href="/wiki/B%C3%A9zout_matrix" title="Bézout matrix">Bézout</a></li> <li><a href="/wiki/Carleman_matrix" title="Carleman matrix">Carleman</a></li> <li><a href="/wiki/Cartan_matrix" title="Cartan matrix">Cartan</a></li> <li><a href="/wiki/Circulant_matrix" title="Circulant matrix">Circulant</a></li> <li><a href="/wiki/Cofactor_matrix" class="mw-redirect" title="Cofactor matrix">Cofactor</a></li> <li><a href="/wiki/Commutation_matrix" title="Commutation matrix">Commutation</a></li> <li><a href="/wiki/Confusion_matrix" title="Confusion matrix">Confusion</a></li> <li><a href="/wiki/Coxeter_matrix" class="mw-redirect" title="Coxeter matrix">Coxeter</a></li> <li><a href="/wiki/Distance_matrix" title="Distance matrix">Distance</a></li> <li><a href="/wiki/Duplication_and_elimination_matrices" title="Duplication and elimination matrices">Duplication and elimination</a></li> <li><a href="/wiki/Euclidean_distance_matrix" title="Euclidean distance matrix">Euclidean distance</a></li> <li><a href="/wiki/Fundamental_matrix_(linear_differential_equation)" title="Fundamental matrix (linear differential equation)">Fundamental (linear differential equation)</a></li> <li><a href="/wiki/Generator_matrix" title="Generator matrix">Generator</a></li> <li><a href="/wiki/Gram_matrix" title="Gram matrix">Gram</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian</a></li> <li><a href="/wiki/Householder_transformation" title="Householder transformation">Householder</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a></li> <li><a href="/wiki/Moment_matrix" title="Moment matrix">Moment</a></li> <li><a href="/wiki/Payoff_matrix" class="mw-redirect" title="Payoff matrix">Payoff</a></li> <li><a href="/wiki/Pick_matrix" class="mw-redirect" title="Pick matrix">Pick</a></li> <li><a href="/wiki/Random_matrix" title="Random matrix">Random</a></li> <li><a href="/wiki/Rotation_matrix" title="Rotation matrix">Rotation</a></li> <li><a href="/wiki/Routh%E2%80%93Hurwitz_matrix" title="Routh–Hurwitz matrix">Routh-Hurwitz</a></li> <li><a href="/wiki/Seifert_matrix" class="mw-redirect" title="Seifert matrix">Seifert</a></li> <li><a href="/wiki/Shear_matrix" class="mw-redirect" title="Shear matrix">Shear</a></li> <li><a href="/wiki/Similarity_matrix" class="mw-redirect" title="Similarity matrix">Similarity</a></li> <li><a href="/wiki/Symplectic_matrix" title="Symplectic matrix">Symplectic</a></li> <li><a href="/wiki/Totally_positive_matrix" title="Totally positive matrix">Totally positive</a></li> <li><a href="/wiki/Transformation_matrix" title="Transformation matrix">Transformation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Used in <a href="/wiki/Statistics" title="Statistics">statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Centering_matrix" title="Centering matrix">Centering</a></li> <li><a href="/wiki/Correlation_matrix" class="mw-redirect" title="Correlation matrix">Correlation</a></li> <li><a href="/wiki/Covariance_matrix" title="Covariance matrix">Covariance</a></li> <li><a href="/wiki/Design_matrix" title="Design matrix">Design</a></li> <li><a href="/wiki/Doubly_stochastic_matrix" title="Doubly stochastic matrix">Doubly stochastic</a></li> <li><a href="/wiki/Fisher_information_matrix" class="mw-redirect" title="Fisher information matrix">Fisher information</a></li> <li><a href="/wiki/Projection_matrix" title="Projection matrix">Hat</a></li> <li><a href="/wiki/Precision_(statistics)" title="Precision (statistics)">Precision</a></li> <li><a href="/wiki/Stochastic_matrix" title="Stochastic matrix">Stochastic</a></li> <li><a href="/wiki/Stochastic_matrix" title="Stochastic matrix">Transition</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Used in <a href="/wiki/Graph_theory" title="Graph theory">graph theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency</a></li> <li><a href="/wiki/Biadjacency_matrix" class="mw-redirect" title="Biadjacency matrix">Biadjacency</a></li> <li><a href="/wiki/Degree_matrix" title="Degree matrix">Degree</a></li> <li><a href="/wiki/Edmonds_matrix" title="Edmonds matrix">Edmonds</a></li> <li><a href="/wiki/Incidence_matrix" title="Incidence matrix">Incidence</a></li> <li><a href="/wiki/Laplacian_matrix" title="Laplacian matrix">Laplacian</a></li> <li><a href="/wiki/Seidel_adjacency_matrix" title="Seidel adjacency matrix">Seidel adjacency</a></li> <li><a href="/wiki/Tutte_matrix" title="Tutte matrix">Tutte</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Used in science and engineering</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix" title="Cabibbo–Kobayashi–Maskawa matrix">Cabibbo–Kobayashi–Maskawa</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density</a></li> <li><a href="/wiki/Fundamental_matrix_(computer_vision)" title="Fundamental matrix (computer vision)">Fundamental (computer vision)</a></li> <li><a href="/wiki/Fuzzy_associative_matrix" title="Fuzzy associative matrix">Fuzzy associative</a></li> <li><a href="/wiki/Gamma_matrices" title="Gamma matrices">Gamma</a></li> <li><a href="/wiki/Gell-Mann_matrices" title="Gell-Mann matrices">Gell-Mann</a></li> <li><a href="/wiki/Hamiltonian_matrix" title="Hamiltonian matrix">Hamiltonian</a></li> <li><a href="/wiki/Irregular_matrix" title="Irregular matrix">Irregular</a></li> <li><a href="/wiki/Overlap_matrix" class="mw-redirect" title="Overlap matrix">Overlap</a></li> <li><a href="/wiki/S-matrix" title="S-matrix">S</a></li> <li><a href="/wiki/State-transition_matrix" title="State-transition matrix">State transition</a></li> <li><a href="/wiki/Substitution_matrix" title="Substitution matrix">Substitution</a></li> <li><a href="/wiki/Z-matrix_(chemistry)" title="Z-matrix (chemistry)">Z (chemistry)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related terms</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Jordan_normal_form" title="Jordan normal form">Jordan normal form</a></li> <li><a href="/wiki/Linear_independence" title="Linear independence">Linear independence</a></li> <li><a href="/wiki/Matrix_exponential" title="Matrix exponential">Matrix exponential</a></li> <li><a href="/wiki/Matrix_representation_of_conic_sections" title="Matrix representation of conic sections">Matrix representation of conic sections</a></li> <li><a href="/wiki/Perfect_matrix" title="Perfect matrix">Perfect matrix</a></li> <li><a href="/wiki/Pseudoinverse" class="mw-redirect" title="Pseudoinverse">Pseudoinverse</a></li> <li><a class="mw-selflink selflink">Row echelon form</a></li> <li><a href="/wiki/Wronskian" title="Wronskian">Wronskian</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></b></li> <li><a href="/wiki/List_of_matrices" class="mw-redirect" title="List of matrices">List of matrices</a></li> <li><a href="/wiki/Category:Matrices" title="Category:Matrices">Category:Matrices</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐znn46 Cached time: 20241124164744 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.542 seconds Real time usage: 0.793 seconds Preprocessor visited node count: 1763/1000000 Post‐expand include size: 44739/2097152 bytes Template argument size: 1354/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 36292/5000000 bytes Lua time usage: 0.299/10.000 seconds Lua memory usage: 5488154/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 476.410 1 -total 37.62% 179.221 1 Template:Reflist 26.05% 124.097 1 Template:Matrix_classes 25.34% 120.706 1 Template:Navbox 23.30% 111.014 3 Template:Cite_book 16.43% 78.284 1 Template:Short_description 10.85% 51.690 2 Template:Pagetype 7.10% 33.833 3 Template:Harvtxt 6.26% 29.837 1 Template:Wikibooks 5.81% 27.680 1 Template:Sister_project --> <!-- Saved in parser cache with key enwiki:pcache:idhash:330215-0!canonical and timestamp 20241124164744 and revision id 1253776875. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Row_echelon_form&oldid=1253776875#Reduced_row_echelon_form">https://en.wikipedia.org/w/index.php?title=Row_echelon_form&oldid=1253776875#Reduced_row_echelon_form</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Numerical_linear_algebra" title="Category:Numerical linear algebra">Numerical linear algebra</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Articles_with_example_pseudocode" title="Category:Articles with example pseudocode">Articles with example pseudocode</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 27 October 2024, at 20:46<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Row_echelon_form&mobileaction=toggle_view_mobile#Reduced_row_echelon_form" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-z7tkg","wgBackendResponseTime":134,"wgPageParseReport":{"limitreport":{"cputime":"0.542","walltime":"0.793","ppvisitednodes":{"value":1763,"limit":1000000},"postexpandincludesize":{"value":44739,"limit":2097152},"templateargumentsize":{"value":1354,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":36292,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 476.410 1 -total"," 37.62% 179.221 1 Template:Reflist"," 26.05% 124.097 1 Template:Matrix_classes"," 25.34% 120.706 1 Template:Navbox"," 23.30% 111.014 3 Template:Cite_book"," 16.43% 78.284 1 Template:Short_description"," 10.85% 51.690 2 Template:Pagetype"," 7.10% 33.833 3 Template:Harvtxt"," 6.26% 29.837 1 Template:Wikibooks"," 5.81% 27.680 1 Template:Sister_project"]},"scribunto":{"limitreport-timeusage":{"value":"0.299","limit":"10.000"},"limitreport-memusage":{"value":5488154,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAntonRorres2013\"] = 1,\n [\"CITEREFCheneyKincaid2010\"] = 1,\n [\"CITEREFFulton1997\"] = 1,\n [\"CITEREFKleimanLaksov1972\"] = 1,\n [\"CITEREFLeon2010\"] = 1,\n [\"CITEREFMeyer2000\"] = 1,\n [\"rref\"] = 2,\n}\ntemplate_list = table#1 {\n [\"Anchor\"] = 2,\n [\"Citation\"] = 2,\n [\"Cite book\"] = 3,\n [\"Cite journal\"] = 1,\n [\"Harvnb\"] = 2,\n [\"Harvtxt\"] = 3,\n [\"Main\"] = 1,\n [\"Math\"] = 6,\n [\"Matrix classes\"] = 1,\n [\"Mvar\"] = 13,\n [\"Reflist\"] = 1,\n [\"Short description\"] = 1,\n [\"Wikibooks\"] = 1,\n}\narticle_whitelist = table#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-znn46","timestamp":"20241124164744","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Row echelon form","url":"https:\/\/en.wikipedia.org\/wiki\/Row_echelon_form#Reduced_row_echelon_form","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2091296","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2091296","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-09-28T13:44:13Z","dateModified":"2024-10-27T20:46:33Z","headline":"possible form of a matrix"}</script> </body> </html>