CINXE.COM

Número primo – Wikipédia, a enciclopédia livre

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="pt" dir="ltr"> <head> <meta charset="UTF-8"> <title>Número primo – Wikipédia, a enciclopédia livre</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )ptwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","janeiro","fevereiro","março","abril","maio","junho","julho","agosto","setembro","outubro","novembro","dezembro"],"wgRequestId":"5deebbd4-6ee1-435c-a3cc-4a9e59ade6de","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Número_primo","wgTitle":"Número primo","wgCurRevisionId":68953932,"wgRevisionId":68953932,"wgArticleId":13149,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["!CS1 inglês-fontes em língua (en)","!CS1 francês-fontes em língua (fr)","!Artigos que carecem de notas de rodapé desde julho de 2018","!Artigos que carecem de notas de rodapé sem indicação de tema","!Artigos a revisar desde julho de 2018","!Artigos a revisar sem indicação de tema","!Páginas a reciclar desde julho de 2018","!Páginas a reciclar sem indicação de tema","!Artigos contendo afirmações potencialmente datadas","!Páginas que usam hiperligações mágicas ISBN", "Números primos","Sequências de números inteiros"],"wgPageViewLanguage":"pt","wgPageContentLanguage":"pt","wgPageContentModel":"wikitext","wgRelevantPageName":"Número_primo","wgRelevantArticleId":13149,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"pt","pageLanguageDir":"ltr","pageVariantFallbacks":"pt"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q49008","wgCheckUserClientHintsHeadersJsApi":["brands","architecture", "bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":true,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgSiteNoticeId":"2.30"};RLSTATE={"ext.gadget.FeedbackHighlight-base":"ready","ext.gadget.keepPDU":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","mediawiki.page.gallery.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=[ "ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.Topicon","ext.gadget.Metacaixa","ext.gadget.TitleRewrite","ext.gadget.ElementosOcultaveis","ext.gadget.FeedbackHighlight","ext.gadget.ReferenceTooltips","ext.gadget.NewVillagePump","ext.gadget.wikibugs","ext.gadget.charinsert","ext.gadget.requestForAdminship","ext.gadget.WikiMiniAtlas","ext.gadget.PagesForDeletion","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession", "oojs-ui.styles.icons-media","oojs-ui-core.icons","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=pt&amp;modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=pt&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=pt&amp;modules=ext.gadget.FeedbackHighlight-base%2CkeepPDU&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=pt&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Primes-vs-composites_pt.svg/1200px-Primes-vs-composites_pt.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1687"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Primes-vs-composites_pt.svg/800px-Primes-vs-composites_pt.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1125"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Primes-vs-composites_pt.svg/640px-Primes-vs-composites_pt.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="900"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Número primo – Wikipédia, a enciclopédia livre"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//pt.m.wikipedia.org/wiki/N%C3%BAmero_primo"> <link rel="alternate" type="application/x-wiki" title="Editar" href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (pt)"> <link rel="EditURI" type="application/rsd+xml" href="//pt.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://pt.wikipedia.org/wiki/N%C3%BAmero_primo"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.pt"> <link rel="alternate" type="application/atom+xml" title="&#039;&#039;Feed&#039;&#039; Atom Wikipédia" href="/w/index.php?title=Especial:Mudan%C3%A7as_recentes&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Número_primo rootpage-Número_primo skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Saltar para o conteúdo</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="&#039;&#039;Site&#039;&#039;"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Menu principal" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">mover para a barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">ocultar</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navegação </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:P%C3%A1gina_principal" title="Visitar a página principal [z]" accesskey="z"><span>Página principal</span></a></li><li id="n-featuredcontent" class="mw-list-item"><a href="/wiki/Portal:Conte%C3%BAdo_destacado"><span>Conteúdo destacado</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Eventos_atuais" title="Informação temática sobre eventos atuais"><span>Eventos atuais</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Esplanada"><span>Esplanada</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Especial:Aleat%C3%B3ria" title="Carregar página aleatória [x]" accesskey="x"><span>Página aleatória</span></a></li><li id="n-portals" class="mw-list-item"><a href="/wiki/Portal:%C3%8Dndice"><span>Portais</span></a></li><li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Informe_um_erro"><span>Informar um erro</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginas_especiais"><span>Páginas especiais</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Colaboração </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-welcome" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Boas-vindas"><span>Boas-vindas</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Ajuda:P%C3%A1gina_principal" title="Um local reservado para auxílio."><span>Ajuda</span></a></li><li id="n-Páginas-de-testes-públicas" class="mw-list-item"><a href="/wiki/Ajuda:P%C3%A1gina_de_testes"><span>Páginas de testes públicas</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Portal_comunit%C3%A1rio" title="Sobre o projeto"><span>Portal comunitário</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Especial:Mudan%C3%A7as_recentes" title="Uma lista de mudanças recentes nesta wiki [r]" accesskey="r"><span>Mudanças recentes</span></a></li><li id="n-maintenance" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Manuten%C3%A7%C3%A3o"><span>Manutenção</span></a></li><li id="n-createpage" class="mw-list-item"><a href="/wiki/Ajuda:Guia_de_edi%C3%A7%C3%A3o/Como_come%C3%A7ar_uma_p%C3%A1gina"><span>Criar página</span></a></li><li id="n-newpages-description" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginas_novas"><span>Páginas novas</span></a></li><li id="n-contact-description" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Contato"><span>Contato</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikip%C3%A9dia:P%C3%A1gina_principal" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-pt.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Especial:Pesquisar" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Pesquisar na Wikipédia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Busca</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Pesquisar na Wikipédia" aria-label="Pesquisar na Wikipédia" autocapitalize="sentences" title="Pesquisar na Wikipédia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Especial:Pesquisar"> </div> <button class="cdx-button cdx-search-input__end-button">Pesquisar</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Ferramentas pessoais"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Aspeto"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Aspeto" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Aspeto</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=pt.wikipedia.org&amp;uselang=pt" class=""><span>Donativos</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Criar_conta&amp;returnto=N%C3%BAmero+primo" title="É encorajado a criar uma conta e iniciar sessão; no entanto, não é obrigatório" class=""><span>Criar uma conta</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Entrar&amp;returnto=N%C3%BAmero+primo" title="Aconselhamos-lhe a criar uma conta na Wikipédia, embora tal não seja obrigatório. [o]" accesskey="o" class=""><span>Entrar</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Mais opções" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Ferramentas pessoais" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Ferramentas pessoais</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu do utilizador" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=pt.wikipedia.org&amp;uselang=pt"><span>Donativos</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Criar_conta&amp;returnto=N%C3%BAmero+primo" title="É encorajado a criar uma conta e iniciar sessão; no entanto, não é obrigatório"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Criar uma conta</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Entrar&amp;returnto=N%C3%BAmero+primo" title="Aconselhamos-lhe a criar uma conta na Wikipédia, embora tal não seja obrigatório. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Entrar</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Páginas para editores sem sessão iniciada <a href="/wiki/Ajuda:Introduction" aria-label="Saiba mais sobre edição"><span>saber mais</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Especial:Minhas_contribui%C3%A7%C3%B5es" title="Uma lista de edições feitas a partir deste endereço IP [y]" accesskey="y"><span>Contribuições</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Especial:Minha_discuss%C3%A3o" title="Discussão sobre edições feitas a partir deste endereço IP [n]" accesskey="n"><span>Discussão</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Eocultar\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"anonnotice\" lang=\"pt\" dir=\"ltr\"\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="&#039;&#039;Site&#039;&#039;"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Conteúdo" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Conteúdo</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">mover para a barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">ocultar</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Início</div> </a> </li> <li id="toc-Definição_e_exemplos" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definição_e_exemplos"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definição e exemplos</span> </div> </a> <ul id="toc-Definição_e_exemplos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-História" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#História"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>História</span> </div> </a> <button aria-controls="toc-História-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Alternar a subsecção História</span> </button> <ul id="toc-História-sublist" class="vector-toc-list"> <li id="toc-Primalidade_do_um" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Primalidade_do_um"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Primalidade do um</span> </div> </a> <ul id="toc-Primalidade_do_um-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Os_átomos_da_aritmética" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Os_átomos_da_aritmética"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Os átomos da aritmética</span> </div> </a> <button aria-controls="toc-Os_átomos_da_aritmética-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Alternar a subsecção Os átomos da aritmética</span> </button> <ul id="toc-Os_átomos_da_aritmética-sublist" class="vector-toc-list"> <li id="toc-Teoria_dos_números" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Teoria_dos_números"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Teoria dos números</span> </div> </a> <ul id="toc-Teoria_dos_números-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Grupos_e_sequências_de_números_primos" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Grupos_e_sequências_de_números_primos"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Grupos e sequências de números primos</span> </div> </a> <ul id="toc-Grupos_e_sequências_de_números_primos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Aproximações_para_o_n-ésimo_primo" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Aproximações_para_o_n-ésimo_primo"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Aproximações para o n-ésimo primo</span> </div> </a> <ul id="toc-Aproximações_para_o_n-ésimo_primo-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Maior_número_primo_conhecido" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Maior_número_primo_conhecido"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Maior número primo conhecido</span> </div> </a> <ul id="toc-Maior_número_primo_conhecido-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Outras_Aplicações" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Outras_Aplicações"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Outras Aplicações</span> </div> </a> <button aria-controls="toc-Outras_Aplicações-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Alternar a subsecção Outras Aplicações</span> </button> <ul id="toc-Outras_Aplicações-sublist" class="vector-toc-list"> <li id="toc-Biologia" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Biologia"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Biologia</span> </div> </a> <ul id="toc-Biologia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mecânica_quântica" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mecânica_quântica"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Mecânica quântica</span> </div> </a> <ul id="toc-Mecânica_quântica-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Ver_também" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ver_também"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Ver também</span> </div> </a> <ul id="toc-Ver_também-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notas" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notas"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notas</span> </div> </a> <ul id="toc-Notas-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referências" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Referências"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Referências</span> </div> </a> <ul id="toc-Referências-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliografia" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliografia"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Bibliografia</span> </div> </a> <ul id="toc-Bibliografia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ligações_externas" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ligações_externas"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Ligações externas</span> </div> </a> <ul id="toc-Ligações_externas-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Conteúdo" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Índice" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Alternar o índice" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Alternar o índice</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Número primo</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ir para um artigo noutra língua. Disponível em 138 línguas" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-138" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">138 línguas</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Priemgetal" title="Priemgetal — africanês" lang="af" hreflang="af" data-title="Priemgetal" data-language-autonym="Afrikaans" data-language-local-name="africanês" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Primzahl" title="Primzahl — alemão suíço" lang="gsw" hreflang="gsw" data-title="Primzahl" data-language-autonym="Alemannisch" data-language-local-name="alemão suíço" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Numero_primero" title="Numero primero — aragonês" lang="an" hreflang="an" data-title="Numero primero" data-language-autonym="Aragonés" data-language-local-name="aragonês" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ang mw-list-item"><a href="https://ang.wikipedia.org/wiki/Frumt%C3%A6l" title="Frumtæl — inglês antigo" lang="ang" hreflang="ang" data-title="Frumtæl" data-language-autonym="Ænglisc" data-language-local-name="inglês antigo" class="interlanguage-link-target"><span>Ænglisc</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%A3%D9%88%D9%84%D9%8A" title="عدد أولي — árabe" lang="ar" hreflang="ar" data-title="عدد أولي" data-language-autonym="العربية" data-language-local-name="árabe" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D8%B9%D8%A7%D8%AF%D8%A7%D8%AF_%D9%84%D9%88%D9%84%D9%8A" title="عاداد لولي — Moroccan Arabic" lang="ary" hreflang="ary" data-title="عاداد لولي" data-language-autonym="الدارجة" data-language-local-name="Moroccan Arabic" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%A7%D9%88%D9%84%D9%89" title="عدد اولى — Egyptian Arabic" lang="arz" hreflang="arz" data-title="عدد اولى" data-language-autonym="مصرى" data-language-local-name="Egyptian Arabic" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%AE%E0%A7%8C%E0%A6%B2%E0%A6%BF%E0%A6%95_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="মৌলিক সংখ্যা — assamês" lang="as" hreflang="as" data-title="মৌলিক সংখ্যা" data-language-autonym="অসমীয়া" data-language-local-name="assamês" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/N%C3%BAmberu_primu" title="Númberu primu — asturiano" lang="ast" hreflang="ast" data-title="Númberu primu" data-language-autonym="Asturianu" data-language-local-name="asturiano" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Sad%C9%99_%C9%99d%C9%99d" title="Sadə ədəd — azerbaijano" lang="az" hreflang="az" data-title="Sadə ədəd" data-language-autonym="Azərbaycanca" data-language-local-name="azerbaijano" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%B3%D8%A7%D8%AF%D9%87_%D8%B9%D8%AF%D8%AF" title="ساده عدد — South Azerbaijani" lang="azb" hreflang="azb" data-title="ساده عدد" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%AF%D0%B1%D0%B0%D0%B9_%D2%BB%D0%B0%D0%BD" title="Ябай һан — bashkir" lang="ba" hreflang="ba" data-title="Ябай һан" data-language-autonym="Башҡортса" data-language-local-name="bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bat-smg mw-list-item"><a href="https://bat-smg.wikipedia.org/wiki/P%C4%97rm%C4%97nis_skaitlios" title="Pėrmėnis skaitlios — Samogitian" lang="sgs" hreflang="sgs" data-title="Pėrmėnis skaitlios" data-language-autonym="Žemaitėška" data-language-local-name="Samogitian" class="interlanguage-link-target"><span>Žemaitėška</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D1%8B_%D0%BB%D1%96%D0%BA" title="Просты лік — bielorrusso" lang="be" hreflang="be" data-title="Просты лік" data-language-autonym="Беларуская" data-language-local-name="bielorrusso" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D1%8B_%D0%BB%D1%96%D0%BA" title="Просты лік — Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Просты лік" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Просто число — búlgaro" lang="bg" hreflang="bg" data-title="Просто число" data-language-autonym="Български" data-language-local-name="búlgaro" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AE%E0%A7%8C%E0%A6%B2%E0%A6%BF%E0%A6%95_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="মৌলিক সংখ্যা — bengalês" lang="bn" hreflang="bn" data-title="মৌলিক সংখ্যা" data-language-autonym="বাংলা" data-language-local-name="bengalês" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Niver_kentael" title="Niver kentael — bretão" lang="br" hreflang="br" data-title="Niver kentael" data-language-autonym="Brezhoneg" data-language-local-name="bretão" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Prost_broj" title="Prost broj — bósnio" lang="bs" hreflang="bs" data-title="Prost broj" data-language-autonym="Bosanski" data-language-local-name="bósnio" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Nombre_primer" title="Nombre primer — catalão" lang="ca" hreflang="ca" data-title="Nombre primer" data-language-autonym="Català" data-language-local-name="catalão" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%98%D9%85%D8%A7%D8%B1%DB%95%DB%8C_%D8%B3%DB%95%D8%B1%DB%95%D8%AA%D8%A7%DB%8C%DB%8C" title="ژمارەی سەرەتایی — curdo central" lang="ckb" hreflang="ckb" data-title="ژمارەی سەرەتایی" data-language-autonym="کوردی" data-language-local-name="curdo central" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Prvo%C4%8D%C3%ADslo" title="Prvočíslo — checo" lang="cs" hreflang="cs" data-title="Prvočíslo" data-language-autonym="Čeština" data-language-local-name="checo" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%90%D0%BD%D1%81%D0%B0%D1%82_%D1%85%D0%B8%D1%81%D0%B5%D0%BF" title="Ансат хисеп — chuvash" lang="cv" hreflang="cv" data-title="Ансат хисеп" data-language-autonym="Чӑвашла" data-language-local-name="chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Rhif_cysefin" title="Rhif cysefin — galês" lang="cy" hreflang="cy" data-title="Rhif cysefin" data-language-autonym="Cymraeg" data-language-local-name="galês" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Primtal" title="Primtal — dinamarquês" lang="da" hreflang="da" data-title="Primtal" data-language-autonym="Dansk" data-language-local-name="dinamarquês" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Primzahl" title="Primzahl — alemão" lang="de" hreflang="de" data-title="Primzahl" data-language-autonym="Deutsch" data-language-local-name="alemão" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Amaro_primal" title="Amaro primal — Dimli" lang="diq" hreflang="diq" data-title="Amaro primal" data-language-autonym="Zazaki" data-language-local-name="Dimli" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CF%81%CF%8E%CF%84%CE%BF%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Πρώτος αριθμός — grego" lang="el" hreflang="el" data-title="Πρώτος αριθμός" data-language-autonym="Ελληνικά" data-language-local-name="grego" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/N%C3%B9mer_prim" title="Nùmer prim — Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Nùmer prim" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en badge-Q17437798 badge-goodarticle mw-list-item" title="artigo bom"><a href="https://en.wikipedia.org/wiki/Prime_number" title="Prime number — inglês" lang="en" hreflang="en" data-title="Prime number" data-language-autonym="English" data-language-local-name="inglês" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Primo" title="Primo — esperanto" lang="eo" hreflang="eo" data-title="Primo" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es badge-Q17437798 badge-goodarticle mw-list-item" title="artigo bom"><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_primo" title="Número primo — espanhol" lang="es" hreflang="es" data-title="Número primo" data-language-autonym="Español" data-language-local-name="espanhol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Algarv" title="Algarv — estónio" lang="et" hreflang="et" data-title="Algarv" data-language-autonym="Eesti" data-language-local-name="estónio" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zenbaki_lehen" title="Zenbaki lehen — basco" lang="eu" hreflang="eu" data-title="Zenbaki lehen" data-language-autonym="Euskara" data-language-local-name="basco" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%A7%D9%88%D9%84" title="عدد اول — persa" lang="fa" hreflang="fa" data-title="عدد اول" data-language-autonym="فارسی" data-language-local-name="persa" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Alkuluku" title="Alkuluku — finlandês" lang="fi" hreflang="fi" data-title="Alkuluku" data-language-autonym="Suomi" data-language-local-name="finlandês" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Algarv" title="Algarv — Võro" lang="vro" hreflang="vro" data-title="Algarv" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fj mw-list-item"><a href="https://fj.wikipedia.org/wiki/Naba_taumada" title="Naba taumada — fijiano" lang="fj" hreflang="fj" data-title="Naba taumada" data-language-autonym="Na Vosa Vakaviti" data-language-local-name="fijiano" class="interlanguage-link-target"><span>Na Vosa Vakaviti</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Primtal" title="Primtal — feroês" lang="fo" hreflang="fo" data-title="Primtal" data-language-autonym="Føroyskt" data-language-local-name="feroês" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_premier" title="Nombre premier — francês" lang="fr" hreflang="fr" data-title="Nombre premier" data-language-autonym="Français" data-language-local-name="francês" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Primtaal" title="Primtaal — frísio setentrional" lang="frr" hreflang="frr" data-title="Primtaal" data-language-autonym="Nordfriisk" data-language-local-name="frísio setentrional" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Uimhir_phr%C3%ADomha" title="Uimhir phríomha — irlandês" lang="ga" hreflang="ga" data-title="Uimhir phríomha" data-language-autonym="Gaeilge" data-language-local-name="irlandês" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E8%B3%AA%E6%95%B8" title="質數 — gan" lang="gan" hreflang="gan" data-title="質數" data-language-autonym="贛語" data-language-local-name="gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Nonm_pr%C3%A9my%C3%A9" title="Nonm prémyé — Guianan Creole" lang="gcr" hreflang="gcr" data-title="Nonm prémyé" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/N%C3%BAmero_primo" title="Número primo — galego" lang="gl" hreflang="gl" data-title="Número primo" data-language-autonym="Galego" data-language-local-name="galego" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%85%E0%AA%B5%E0%AA%BF%E0%AA%AD%E0%AA%BE%E0%AA%9C%E0%AB%8D%E0%AA%AF_%E0%AA%B8%E0%AA%82%E0%AA%96%E0%AB%8D%E0%AA%AF%E0%AA%BE" title="અવિભાજ્ય સંખ્યા — guzerate" lang="gu" hreflang="gu" data-title="અવિભાજ્ય સંખ્યા" data-language-autonym="ગુજરાતી" data-language-local-name="guzerate" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-haw mw-list-item"><a href="https://haw.wikipedia.org/wiki/Helu_kumu" title="Helu kumu — havaiano" lang="haw" hreflang="haw" data-title="Helu kumu" data-language-autonym="Hawaiʻi" data-language-local-name="havaiano" class="interlanguage-link-target"><span>Hawaiʻi</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A1%D7%A4%D7%A8_%D7%A8%D7%90%D7%A9%D7%95%D7%A0%D7%99" title="מספר ראשוני — hebraico" lang="he" hreflang="he" data-title="מספר ראשוני" data-language-autonym="עברית" data-language-local-name="hebraico" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%85%E0%A4%AD%E0%A4%BE%E0%A4%9C%E0%A5%8D%E0%A4%AF_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="अभाज्य संख्या — hindi" lang="hi" hreflang="hi" data-title="अभाज्य संख्या" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Prosti_broj" title="Prosti broj — croata" lang="hr" hreflang="hr" data-title="Prosti broj" data-language-autonym="Hrvatski" data-language-local-name="croata" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hsb mw-list-item"><a href="https://hsb.wikipedia.org/wiki/Primowa_li%C4%8Dba" title="Primowa ličba — alto sorábio" lang="hsb" hreflang="hsb" data-title="Primowa ličba" data-language-autonym="Hornjoserbsce" data-language-local-name="alto sorábio" class="interlanguage-link-target"><span>Hornjoserbsce</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Nonm_premye" title="Nonm premye — haitiano" lang="ht" hreflang="ht" data-title="Nonm premye" data-language-autonym="Kreyòl ayisyen" data-language-local-name="haitiano" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Pr%C3%ADmsz%C3%A1mok" title="Prímszámok — húngaro" lang="hu" hreflang="hu" data-title="Prímszámok" data-language-autonym="Magyar" data-language-local-name="húngaro" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8A%D5%A1%D6%80%D5%A6_%D5%A9%D5%AB%D5%BE" title="Պարզ թիվ — arménio" lang="hy" hreflang="hy" data-title="Պարզ թիվ" data-language-autonym="Հայերեն" data-language-local-name="arménio" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hyw mw-list-item"><a href="https://hyw.wikipedia.org/wiki/%D5%8A%D5%A1%D6%80%D5%A6_%D5%A9%D5%AB%D6%82" title="Պարզ թիւ — Western Armenian" lang="hyw" hreflang="hyw" data-title="Պարզ թիւ" data-language-autonym="Արեւմտահայերէն" data-language-local-name="Western Armenian" class="interlanguage-link-target"><span>Արեւմտահայերէն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Numero_prime" title="Numero prime — interlíngua" lang="ia" hreflang="ia" data-title="Numero prime" data-language-autonym="Interlingua" data-language-local-name="interlíngua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Bilangan_prima" title="Bilangan prima — indonésio" lang="id" hreflang="id" data-title="Bilangan prima" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonésio" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Prima_nombro" title="Prima nombro — ido" lang="io" hreflang="io" data-title="Prima nombro" data-language-autonym="Ido" data-language-local-name="ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Frumtala" title="Frumtala — islandês" lang="is" hreflang="is" data-title="Frumtala" data-language-autonym="Íslenska" data-language-local-name="islandês" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it badge-Q17437796 badge-featuredarticle mw-list-item" title="artigo destacado"><a href="https://it.wikipedia.org/wiki/Numero_primo" title="Numero primo — italiano" lang="it" hreflang="it" data-title="Numero primo" data-language-autonym="Italiano" data-language-local-name="italiano" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%B4%A0%E6%95%B0" title="素数 — japonês" lang="ja" hreflang="ja" data-title="素数" data-language-autonym="日本語" data-language-local-name="japonês" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Praim_nomba" title="Praim nomba — Jamaican Creole English" lang="jam" hreflang="jam" data-title="Praim nomba" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/nalfendi_kacna%27u" title="nalfendi kacna&#039;u — lojban" lang="jbo" hreflang="jbo" data-title="nalfendi kacna&#039;u" data-language-autonym="La .lojban." data-language-local-name="lojban" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Wilangan_prima" title="Wilangan prima — javanês" lang="jv" hreflang="jv" data-title="Wilangan prima" data-language-autonym="Jawa" data-language-local-name="javanês" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%90%E1%83%A0%E1%83%A2%E1%83%98%E1%83%95%E1%83%98_%E1%83%A0%E1%83%98%E1%83%AA%E1%83%AE%E1%83%95%E1%83%98" title="მარტივი რიცხვი — georgiano" lang="ka" hreflang="ka" data-title="მარტივი რიცხვი" data-language-autonym="ქართული" data-language-local-name="georgiano" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%96%D0%B0%D0%B9_%D1%81%D0%B0%D0%BD" title="Жай сан — cazaque" lang="kk" hreflang="kk" data-title="Жай сан" data-language-autonym="Қазақша" data-language-local-name="cazaque" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%85%E1%9F%86%E1%9E%93%E1%9E%BD%E1%9E%93%E1%9E%94%E1%9E%8B%E1%9E%98" title="ចំនួនបឋម — khmer" lang="km" hreflang="km" data-title="ចំនួនបឋម" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%85%E0%B2%B5%E0%B2%BF%E0%B2%AD%E0%B2%BE%E0%B2%9C%E0%B3%8D%E0%B2%AF_%E0%B2%B8%E0%B2%82%E0%B2%96%E0%B3%8D%E0%B2%AF%E0%B3%86" title="ಅವಿಭಾಜ್ಯ ಸಂಖ್ಯೆ — canarim" lang="kn" hreflang="kn" data-title="ಅವಿಭಾಜ್ಯ ಸಂಖ್ಯೆ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="canarim" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%86%8C%EC%88%98_(%EC%88%98%EB%A1%A0)" title="소수 (수론) — coreano" lang="ko" hreflang="ko" data-title="소수 (수론)" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Hejmar%C3%AAn_h%C3%AEm%C3%AE" title="Hejmarên hîmî — curdo" lang="ku" hreflang="ku" data-title="Hejmarên hîmî" data-language-autonym="Kurdî" data-language-local-name="curdo" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-kw mw-list-item"><a href="https://kw.wikipedia.org/wiki/Pennriv" title="Pennriv — córnico" lang="kw" hreflang="kw" data-title="Pennriv" data-language-autonym="Kernowek" data-language-local-name="córnico" class="interlanguage-link-target"><span>Kernowek</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%96%D3%A9%D0%BD%D3%A9%D0%BA%D3%A9%D0%B9_%D1%81%D0%B0%D0%BD" title="Жөнөкөй сан — quirguiz" lang="ky" hreflang="ky" data-title="Жөнөкөй сан" data-language-autonym="Кыргызча" data-language-local-name="quirguiz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Numerus_primus" title="Numerus primus — latim" lang="la" hreflang="la" data-title="Numerus primus" data-language-autonym="Latina" data-language-local-name="latim" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lb mw-list-item"><a href="https://lb.wikipedia.org/wiki/Primzuel" title="Primzuel — luxemburguês" lang="lb" hreflang="lb" data-title="Primzuel" data-language-autonym="Lëtzebuergesch" data-language-local-name="luxemburguês" class="interlanguage-link-target"><span>Lëtzebuergesch</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Priemgetaal" title="Priemgetaal — limburguês" lang="li" hreflang="li" data-title="Priemgetaal" data-language-autonym="Limburgs" data-language-local-name="limburguês" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lmo badge-Q17437796 badge-featuredarticle mw-list-item" title="artigo destacado"><a href="https://lmo.wikipedia.org/wiki/Numer_primm" title="Numer primm — lombardo" lang="lmo" hreflang="lmo" data-title="Numer primm" data-language-autonym="Lombard" data-language-local-name="lombardo" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Pirminis_skai%C4%8Dius" title="Pirminis skaičius — lituano" lang="lt" hreflang="lt" data-title="Pirminis skaičius" data-language-autonym="Lietuvių" data-language-local-name="lituano" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Pirmskaitlis" title="Pirmskaitlis — letão" lang="lv" hreflang="lv" data-title="Pirmskaitlis" data-language-autonym="Latviešu" data-language-local-name="letão" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Isa_tsy_azo_tsinjaraina" title="Isa tsy azo tsinjaraina — malgaxe" lang="mg" hreflang="mg" data-title="Isa tsy azo tsinjaraina" data-language-autonym="Malagasy" data-language-local-name="malgaxe" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82_%D0%B1%D1%80%D0%BE%D1%98" title="Прост број — macedónio" lang="mk" hreflang="mk" data-title="Прост број" data-language-autonym="Македонски" data-language-local-name="macedónio" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%85%E0%B4%AD%E0%B4%BE%E0%B4%9C%E0%B5%8D%E0%B4%AF%E0%B4%B8%E0%B4%82%E0%B4%96%E0%B5%8D%E0%B4%AF" title="അഭാജ്യസംഖ്യ — malaiala" lang="ml" hreflang="ml" data-title="അഭാജ്യസംഖ്യ" data-language-autonym="മലയാളം" data-language-local-name="malaiala" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%90%D0%BD%D1%85%D0%BD%D1%8B_%D1%82%D0%BE%D0%BE" title="Анхны тоо — mongol" lang="mn" hreflang="mn" data-title="Анхны тоо" data-language-autonym="Монгол" data-language-local-name="mongol" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AE%E0%A5%82%E0%A4%B3_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="मूळ संख्या — marata" lang="mr" hreflang="mr" data-title="मूळ संख्या" data-language-autonym="मराठी" data-language-local-name="marata" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Nombor_perdana" title="Nombor perdana — malaio" lang="ms" hreflang="ms" data-title="Nombor perdana" data-language-autonym="Bahasa Melayu" data-language-local-name="malaio" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Numru_l-ewwel" title="Numru l-ewwel — maltês" lang="mt" hreflang="mt" data-title="Numru l-ewwel" data-language-autonym="Malti" data-language-local-name="maltês" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%9E%E1%80%AF%E1%80%92%E1%80%B9%E1%80%93%E1%80%80%E1%80%AD%E1%80%94%E1%80%BA%E1%80%B8" title="သုဒ္ဓကိန်း — birmanês" lang="my" hreflang="my" data-title="သုဒ္ဓကိန်း" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="birmanês" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Primtall" title="Primtall — baixo-alemão" lang="nds" hreflang="nds" data-title="Primtall" data-language-autonym="Plattdüütsch" data-language-local-name="baixo-alemão" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%BE%E0%A4%87%E0%A4%AE_%E0%A4%B8%E0%A4%99%E0%A5%8D%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="प्राइम सङ्ख्या — nepalês" lang="ne" hreflang="ne" data-title="प्राइम सङ्ख्या" data-language-autonym="नेपाली" data-language-local-name="nepalês" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Priemgetal" title="Priemgetal — neerlandês" lang="nl" hreflang="nl" data-title="Priemgetal" data-language-autonym="Nederlands" data-language-local-name="neerlandês" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Primtal" title="Primtal — norueguês nynorsk" lang="nn" hreflang="nn" data-title="Primtal" data-language-autonym="Norsk nynorsk" data-language-local-name="norueguês nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Primtall" title="Primtall — norueguês bokmål" lang="nb" hreflang="nb" data-title="Primtall" data-language-autonym="Norsk bokmål" data-language-local-name="norueguês bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Nombre_primi%C3%A8r" title="Nombre primièr — occitano" lang="oc" hreflang="oc" data-title="Nombre primièr" data-language-autonym="Occitan" data-language-local-name="occitano" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%AE%E0%AD%8C%E0%AC%B3%E0%AC%BF%E0%AC%95_%E0%AC%B8%E0%AC%82%E0%AC%96%E0%AD%8D%E0%AD%9F%E0%AC%BE" title="ମୌଳିକ ସଂଖ୍ୟା — oriá" lang="or" hreflang="or" data-title="ମୌଳିକ ସଂଖ୍ୟା" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="oriá" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%85%E0%A8%AD%E0%A8%BE%E0%A8%9C_%E0%A8%B8%E0%A9%B0%E0%A8%96%E0%A8%BF%E0%A8%86" title="ਅਭਾਜ ਸੰਖਿਆ — panjabi" lang="pa" hreflang="pa" data-title="ਅਭਾਜ ਸੰਖਿਆ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="panjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Liczby_pierwsze" title="Liczby pierwsze — polaco" lang="pl" hreflang="pl" data-title="Liczby pierwsze" data-language-autonym="Polski" data-language-local-name="polaco" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/N%C3%B9mer_prim" title="Nùmer prim — Piedmontese" lang="pms" hreflang="pms" data-title="Nùmer prim" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%BE%D8%B1%D8%A7%D8%A6%D9%85_%D9%86%D9%85%D8%A8%D8%B1" title="پرائم نمبر — Western Punjabi" lang="pnb" hreflang="pnb" data-title="پرائم نمبر" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Num%C4%83r_prim" title="Număr prim — romeno" lang="ro" hreflang="ro" data-title="Număr prim" data-language-autonym="Română" data-language-local-name="romeno" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Простое число — russo" lang="ru" hreflang="ru" data-title="Простое число" data-language-autonym="Русский" data-language-local-name="russo" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Простое число — sakha" lang="sah" hreflang="sah" data-title="Простое число" data-language-autonym="Саха тыла" data-language-local-name="sakha" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/N%C3%B9mmuru_primu" title="Nùmmuru primu — siciliano" lang="scn" hreflang="scn" data-title="Nùmmuru primu" data-language-autonym="Sicilianu" data-language-local-name="siciliano" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Prost_broj" title="Prost broj — servo-croata" lang="sh" hreflang="sh" data-title="Prost broj" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="servo-croata" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-shi mw-list-item"><a href="https://shi.wikipedia.org/wiki/Am%E1%B8%8Dan_amnzu" title="Amḍan amnzu — tachelhit" lang="shi" hreflang="shi" data-title="Amḍan amnzu" data-language-autonym="Taclḥit" data-language-local-name="tachelhit" class="interlanguage-link-target"><span>Taclḥit</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%B4%E0%B7%8A%E2%80%8D%E0%B6%BB%E0%B6%AE%E0%B6%B8%E0%B6%9A_%E0%B7%83%E0%B6%82%E0%B6%9B%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F" title="ප්‍රථමක සංඛ්‍යා — cingalês" lang="si" hreflang="si" data-title="ප්‍රථමක සංඛ්‍යා" data-language-autonym="සිංහල" data-language-local-name="cingalês" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Prime_number" title="Prime number — Simple English" lang="en-simple" hreflang="en-simple" data-title="Prime number" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Prvo%C4%8D%C3%ADslo" title="Prvočíslo — eslovaco" lang="sk" hreflang="sk" data-title="Prvočíslo" data-language-autonym="Slovenčina" data-language-local-name="eslovaco" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Pra%C5%A1tevilo" title="Praštevilo — esloveno" lang="sl" hreflang="sl" data-title="Praštevilo" data-language-autonym="Slovenščina" data-language-local-name="esloveno" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Thiin_mutuxan" title="Thiin mutuxan — somali" lang="so" hreflang="so" data-title="Thiin mutuxan" data-language-autonym="Soomaaliga" data-language-local-name="somali" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Numri_i_thjesht%C3%AB" title="Numri i thjeshtë — albanês" lang="sq" hreflang="sq" data-title="Numri i thjeshtë" data-language-autonym="Shqip" data-language-local-name="albanês" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82_%D0%B1%D1%80%D0%BE%D1%98" title="Прост број — sérvio" lang="sr" hreflang="sr" data-title="Прост број" data-language-autonym="Српски / srpski" data-language-local-name="sérvio" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Primtal" title="Primtal — sueco" lang="sv" hreflang="sv" data-title="Primtal" data-language-autonym="Svenska" data-language-local-name="sueco" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Namba_tasa" title="Namba tasa — suaíli" lang="sw" hreflang="sw" data-title="Namba tasa" data-language-autonym="Kiswahili" data-language-local-name="suaíli" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Pjyrszo_n%C5%AFmera" title="Pjyrszo nůmera — silesiano" lang="szl" hreflang="szl" data-title="Pjyrszo nůmera" data-language-autonym="Ślůnski" data-language-local-name="silesiano" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AA%E0%AE%95%E0%AE%BE_%E0%AE%8E%E0%AE%A3%E0%AF%8D" title="பகா எண் — tâmil" lang="ta" hreflang="ta" data-title="பகா எண்" data-language-autonym="தமிழ்" data-language-local-name="tâmil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%AA%E0%B1%8D%E0%B0%B0%E0%B0%A7%E0%B0%BE%E0%B0%A8_%E0%B0%B8%E0%B0%82%E0%B0%96%E0%B1%8D%E0%B0%AF" title="ప్రధాన సంఖ్య — telugu" lang="te" hreflang="te" data-title="ప్రధాన సంఖ్య" data-language-autonym="తెలుగు" data-language-local-name="telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%90%D0%B4%D0%B0%D0%B4%D2%B3%D0%BE%D0%B8_%D1%81%D0%BE%D0%B4%D0%B0" title="Ададҳои сода — tajique" lang="tg" hreflang="tg" data-title="Ададҳои сода" data-language-autonym="Тоҷикӣ" data-language-local-name="tajique" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%88%E0%B8%B3%E0%B8%99%E0%B8%A7%E0%B8%99%E0%B9%80%E0%B8%89%E0%B8%9E%E0%B8%B2%E0%B8%B0" title="จำนวนเฉพาะ — tailandês" lang="th" hreflang="th" data-title="จำนวนเฉพาะ" data-language-autonym="ไทย" data-language-local-name="tailandês" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Pangunahing_bilang" title="Pangunahing bilang — tagalo" lang="tl" hreflang="tl" data-title="Pangunahing bilang" data-language-autonym="Tagalog" data-language-local-name="tagalo" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Asal_say%C4%B1" title="Asal sayı — turco" lang="tr" hreflang="tr" data-title="Asal sayı" data-language-autonym="Türkçe" data-language-local-name="turco" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-ug mw-list-item"><a href="https://ug.wikipedia.org/wiki/%D8%AA%DB%88%D9%BE_%D8%B3%D8%A7%D9%86" title="تۈپ سان — uigur" lang="ug" hreflang="ug" data-title="تۈپ سان" data-language-autonym="ئۇيغۇرچە / Uyghurche" data-language-local-name="uigur" class="interlanguage-link-target"><span>ئۇيغۇرچە / Uyghurche</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%81%D1%82%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Просте число — ucraniano" lang="uk" hreflang="uk" data-title="Просте число" data-language-autonym="Українська" data-language-local-name="ucraniano" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D9%81%D8%B1%D8%AF_%D8%B9%D8%AF%D8%AF" title="مفرد عدد — urdu" lang="ur" hreflang="ur" data-title="مفرد عدد" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Tub_son" title="Tub son — usbeque" lang="uz" hreflang="uz" data-title="Tub son" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="usbeque" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vec mw-list-item"><a href="https://vec.wikipedia.org/wiki/N%C3%B9maro_primo" title="Nùmaro primo — véneto" lang="vec" hreflang="vec" data-title="Nùmaro primo" data-language-autonym="Vèneto" data-language-local-name="véneto" class="interlanguage-link-target"><span>Vèneto</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Palatoi_lugu" title="Palatoi lugu — Veps" lang="vep" hreflang="vep" data-title="Palatoi lugu" data-language-autonym="Vepsän kel’" data-language-local-name="Veps" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi badge-Q17437798 badge-goodarticle mw-list-item" title="artigo bom"><a href="https://vi.wikipedia.org/wiki/S%E1%BB%91_nguy%C3%AAn_t%E1%BB%91" title="Số nguyên tố — vietnamita" lang="vi" hreflang="vi" data-title="Số nguyên tố" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Priemgetal" title="Priemgetal — West Flemish" lang="vls" hreflang="vls" data-title="Priemgetal" data-language-autonym="West-Vlams" data-language-local-name="West Flemish" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-wa mw-list-item"><a href="https://wa.wikipedia.org/wiki/Nombe_prum%C3%AE" title="Nombe prumî — valão" lang="wa" hreflang="wa" data-title="Nombe prumî" data-language-autonym="Walon" data-language-local-name="valão" class="interlanguage-link-target"><span>Walon</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Panguna_nga_ihap" title="Panguna nga ihap — waray" lang="war" hreflang="war" data-title="Panguna nga ihap" data-language-autonym="Winaray" data-language-local-name="waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E8%B4%A8%E6%95%B0" title="质数 — wu" lang="wuu" hreflang="wuu" data-title="质数" data-language-autonym="吴语" data-language-local-name="wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%AD%D0%BA%D0%BD_%D1%82%D0%BE%D0%B9%D0%B3" title="Экн тойг — kalmyk" lang="xal" hreflang="xal" data-title="Экн тойг" data-language-autonym="Хальмг" data-language-local-name="kalmyk" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A4%D7%A8%D7%99%D7%9E%D7%A6%D7%90%D7%9C" title="פרימצאל — iídiche" lang="yi" hreflang="yi" data-title="פרימצאל" data-language-autonym="ייִדיש" data-language-local-name="iídiche" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo mw-list-item"><a href="https://yo.wikipedia.org/wiki/N%E1%BB%8D%CC%81mb%C3%A0_%C3%A0k%E1%BB%8D%CC%81k%E1%BB%8D%CC%81" title="Nọ́mbà àkọ́kọ́ — ioruba" lang="yo" hreflang="yo" data-title="Nọ́mbà àkọ́kọ́" data-language-autonym="Yorùbá" data-language-local-name="ioruba" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zgh mw-list-item"><a href="https://zgh.wikipedia.org/wiki/%E2%B4%B0%E2%B5%8E%E2%B4%B9%E2%B4%B0%E2%B5%8F_%E2%B4%B0%E2%B5%8E%E2%B5%8F%E2%B5%A3%E2%B5%93" title="ⴰⵎⴹⴰⵏ ⴰⵎⵏⵣⵓ — tamazight marroquino padrão" lang="zgh" hreflang="zgh" data-title="ⴰⵎⴹⴰⵏ ⴰⵎⵏⵣⵓ" data-language-autonym="ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ" data-language-local-name="tamazight marroquino padrão" class="interlanguage-link-target"><span>ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%B4%A8%E6%95%B0" title="质数 — chinês" lang="zh" hreflang="zh" data-title="质数" data-language-autonym="中文" data-language-local-name="chinês" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E8%B3%AA%E6%95%B8" title="質數 — Literary Chinese" lang="lzh" hreflang="lzh" data-title="質數" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/S%C3%B2%CD%98-s%C3%B2%CD%98" title="Sò͘-sò͘ — min nan" lang="nan" hreflang="nan" data-title="Sò͘-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="min nan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%B3%AA%E6%95%B8" title="質數 — cantonês" lang="yue" hreflang="yue" data-title="質數" data-language-autonym="粵語" data-language-local-name="cantonês" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q49008#sitelinks-wikipedia" title="Editar hiperligações interlínguas" class="wbc-editpage">Editar hiperligações</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espaços nominais"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/N%C3%BAmero_primo" title="Ver a página de conteúdo [c]" accesskey="c"><span>Artigo</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discuss%C3%A3o:N%C3%BAmero_primo" rel="discussion" title="Discussão sobre o conteúdo da página [t]" accesskey="t"><span>Discussão</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Mudar a variante da língua" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">português</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Vistas"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/N%C3%BAmero_primo"><span>Ler</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit" title="Editar esta página [v]" accesskey="v"><span>Editar</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit" title="Editar o código-fonte desta página [e]" accesskey="e"><span>Editar código-fonte</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=history" title="Edições anteriores desta página. [h]" accesskey="h"><span>Ver histórico</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Ferramentas de página"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Ferramentas" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Ferramentas</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Ferramentas</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">mover para a barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">ocultar</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Mais opções" > <div class="vector-menu-heading"> Operações </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/N%C3%BAmero_primo"><span>Ler</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit" title="Editar esta página [v]" accesskey="v"><span>Editar</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit" title="Editar o código-fonte desta página [e]" accesskey="e"><span>Editar código-fonte</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=history"><span>Ver histórico</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Geral </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginas_afluentes/N%C3%BAmero_primo" title="Lista de todas as páginas que contêm hiperligações para esta [j]" accesskey="j"><span>Páginas afluentes</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Especial:Altera%C3%A7%C3%B5es_relacionadas/N%C3%BAmero_primo" rel="nofollow" title="Mudanças recentes nas páginas para as quais esta contém hiperligações [k]" accesskey="k"><span>Alterações relacionadas</span></a></li><li id="t-upload" class="mw-list-item"><a href="//pt.wikipedia.org/wiki/Wikipedia:Carregar_ficheiro" title="Carregar ficheiros [u]" accesskey="u"><span>Carregar ficheiro</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=N%C3%BAmero_primo&amp;oldid=68953932" title="Hiperligação permanente para esta revisão desta página"><span>Hiperligação permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=info" title="Mais informações sobre esta página"><span>Informações da página</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Especial:Citar&amp;page=N%C3%BAmero_primo&amp;id=68953932&amp;wpFormIdentifier=titleform" title="Informação sobre como citar esta página"><span>Citar esta página</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Especial:UrlShortener&amp;url=https%3A%2F%2Fpt.wikipedia.org%2Fwiki%2FN%25C3%25BAmero_primo"><span>Obter URL encurtado</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Especial:QrCode&amp;url=https%3A%2F%2Fpt.wikipedia.org%2Fwiki%2FN%25C3%25BAmero_primo"><span>Descarregar código QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimir/exportar </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Especial:Livro&amp;bookcmd=book_creator&amp;referer=N%C3%BAmero+primo"><span>Criar um livro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Especial:DownloadAsPdf&amp;page=N%C3%BAmero_primo&amp;action=show-download-screen"><span>Descarregar como PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=N%C3%BAmero_primo&amp;printable=yes" title="Versão para impressão desta página [p]" accesskey="p"><span>Versão para impressão</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Noutros projetos </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Prime_numbers" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikifunctions mw-list-item"><a href="https://www.wikifunctions.org/wiki/Z12427" hreflang="en"><span>Wikifunctions</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q49008" title="Hiperligação para o elemento do repositório de dados [g]" accesskey="g"><span>Elemento Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Ferramentas de página"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Aspeto"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Aspeto</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">mover para a barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">ocultar</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Origem: Wikipédia, a enciclopédia livre.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="pt" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r68971778">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}.mw-parser-output .cmbox{margin:3px 0;border-collapse:collapse;border:1px solid #a2a9b1;background-color:#dfe8ff;box-sizing:border-box;color:var(--color-base)}.mw-parser-output .cmbox-speedy{border:4px solid #b32424;background-color:#ffdbdb}.mw-parser-output .cmbox-delete{background-color:#ffdbdb}.mw-parser-output .cmbox-content{background-color:#ffe7ce}.mw-parser-output .cmbox-style{background-color:#fff9db}.mw-parser-output .cmbox-move{background-color:#e4d8ff}.mw-parser-output .cmbox-protection{background-color:#efefe1}.mw-parser-output .cmbox .mbox-text{border:none;padding:0.25em 0.9em;width:100%}.mw-parser-output .cmbox .mbox-image{border:none;padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .cmbox .mbox-imageright{border:none;padding:2px 0.9em 2px 0;text-align:center}.mw-parser-output .cmbox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .cmbox .mbox-invalid-type{text-align:center}@media(min-width:720px){.mw-parser-output .cmbox{margin:3px 10%}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .cmbox{background-color:#0d1a27}html.skin-theme-clientpref-night .mw-parser-output .cmbox-speedy,html.skin-theme-clientpref-night .mw-parser-output .cmbox-delete{background-color:#300}html.skin-theme-clientpref-night .mw-parser-output .cmbox-content{background-color:#331a00}html.skin-theme-clientpref-night .mw-parser-output .cmbox-style{background-color:#332b00}html.skin-theme-clientpref-night .mw-parser-output .cmbox-move{background-color:#08001a}html.skin-theme-clientpref-night .mw-parser-output .cmbox-protection{background-color:#212112}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cmbox{background-color:#0d1a27}html.skin-theme-clientpref-os .mw-parser-output .cmbox-speedy,html.skin-theme-clientpref-os .mw-parser-output .cmbox-delete{background-color:#300}html.skin-theme-clientpref-os .mw-parser-output .cmbox-content{background-color:#331a00}html.skin-theme-clientpref-os .mw-parser-output .cmbox-style{background-color:#332b00}html.skin-theme-clientpref-os .mw-parser-output .cmbox-move{background-color:#08001a}html.skin-theme-clientpref-os .mw-parser-output .cmbox-protection{background-color:#212112}}.mw-parser-output .fmbox{clear:both;margin:0.2em 0;width:100%;border:1px solid #a2a9b1;background-color:var(--background-color-interactive-subtle,#f8f9fa);box-sizing:border-box;color:var(--color-base,#202122)}.mw-parser-output .fmbox-warning{border:1px solid #bb7070;background-color:#ffdbdb}.mw-parser-output .fmbox-editnotice{background-color:transparent}.mw-parser-output .fmbox .mbox-text{border:none;padding:0.25em 0.9em;width:100%}.mw-parser-output .fmbox .mbox-image{border:none;padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .fmbox .mbox-imageright{border:none;padding:2px 0.9em 2px 0;text-align:center}.mw-parser-output .fmbox .mbox-invalid-type{text-align:center}@media screen{html.skin-theme-clientpref-night .mw-parser-output .fmbox-warning{background-color:#683131}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .fmbox-warning{background-color:#683131}}.mw-parser-output .imbox{margin:4px 0;border-collapse:collapse;border:3px solid #36c;background-color:var(--background-color-interactive-subtle,#f8f9fa);box-sizing:border-box}.mw-parser-output .imbox .mbox-text .imbox{margin:0 -0.5em;display:block}.mw-parser-output .imbox-speedy{border:3px solid #b32424;background-color:#fee7e6}.mw-parser-output .imbox-delete{border:3px solid #b32424}.mw-parser-output .imbox-content{border:3px solid #f28500}.mw-parser-output .imbox-style{border:3px solid #fc3}.mw-parser-output .imbox-move{border:3px solid #9932cc}.mw-parser-output .imbox-protection{border:3px solid #a2a9b1}.mw-parser-output .imbox-license{border:3px solid #88a}.mw-parser-output .imbox-featured{border:3px solid #cba135}.mw-parser-output .imbox .mbox-text{border:none;padding:0.25em 0.9em;width:100%}.mw-parser-output .imbox .mbox-image{border:none;padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .imbox .mbox-imageright{border:none;padding:2px 0.9em 2px 0;text-align:center}.mw-parser-output .imbox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .imbox .mbox-invalid-type{text-align:center}@media(min-width:720px){.mw-parser-output .imbox{margin:4px 10%}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .imbox-speedy{background-color:#310402}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .imbox-speedy{background-color:#310402}}.mw-parser-output .ombox{margin:4px 0;border-collapse:collapse;background-color:var(--background-color-neutral-subtle,#f8f9fa);box-sizing:border-box;border:1px solid #a2a9b1;color:var(--color-base,#202122)}.mw-parser-output .ombox.mbox-small{font-size:88%;line-height:1.25em}.mw-parser-output .ombox-speedy{border:2px solid #b32424;background-color:#fee7e6}.mw-parser-output .ombox-delete{border:2px solid #b32424}.mw-parser-output .ombox-content{border:1px solid #f28500}.mw-parser-output .ombox-style{border:1px solid #fc3}.mw-parser-output .ombox-move{border:1px solid #9932cc}.mw-parser-output .ombox-protection{border:2px solid #a2a9b1}.mw-parser-output .ombox .mbox-text{border:none;padding:0.25em 0.9em;width:100%}.mw-parser-output .ombox .mbox-image{border:none;padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .ombox .mbox-imageright{border:none;padding:2px 0.9em 2px 0;text-align:center}.mw-parser-output .ombox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ombox .mbox-invalid-type{text-align:center}@media(min-width:720px){.mw-parser-output .ombox{margin:4px 10%}.mw-parser-output .ombox.mbox-small{clear:right;float:right;margin:4px 0 4px 1em;width:238px}}body.skin--responsive .mw-parser-output table.ombox img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .ombox-speedy{background-color:#310402}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .ombox-speedy{background-color:#310402}}.mw-parser-output .tmbox{margin:4px 0;border-collapse:collapse;border:1px solid #c0c090;background-color:#f8eaba;box-sizing:border-box}.mw-parser-output .tmbox.mbox-small{font-size:88%;line-height:1.25em}.mw-parser-output .tmbox-speedy{border:2px solid #b32424;background-color:#fee7e6}.mw-parser-output .tmbox-delete{border:2px solid #b32424}.mw-parser-output .tmbox-content{border:1px solid #c0c090}.mw-parser-output .tmbox-style{border:2px solid #fc3}.mw-parser-output .tmbox-move{border:2px solid #9932cc}.mw-parser-output .tmbox .mbox-text{border:none;padding:0.25em 0.9em;width:100%}.mw-parser-output .tmbox .mbox-image{border:none;padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .tmbox .mbox-imageright{border:none;padding:2px 0.9em 2px 0;text-align:center}.mw-parser-output .tmbox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .tmbox .mbox-invalid-type{text-align:center}@media(min-width:720px){.mw-parser-output .tmbox{margin:4px 10%}.mw-parser-output .tmbox.mbox-small{clear:right;float:right;margin:4px 0 4px 1em;width:238px}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmbox{background-color:#2e2505}html.skin-theme-clientpref-night .mw-parser-output .tmbox-speedy{background-color:#310402}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmbox{background-color:#2e2505}html.skin-theme-clientpref-os .mw-parser-output .tmbox-speedy{background-color:#310402}}body.skin--responsive .mw-parser-output table.tmbox img{max-width:none!important}</style><table class="plainlinks metadata ambox ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><div style="width:52px"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Ambox_important.svg/40px-Ambox_important.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Ambox_important.svg/60px-Ambox_important.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Ambox_important.svg/80px-Ambox_important.svg.png 2x" data-file-width="40" data-file-height="40" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span"><div class="mw-collapsible" style="width:95%; margin: 0.2em 0;">Foram assinalados vários problemas nesta página ou se(c)ção:<span class="hide-when-compact"> <div class="mw-collapsible-content" style="margin-top: 0.3em;"> <ul><li>As fontes <b>não <a href="/wiki/Wikip%C3%A9dia:Livro_de_estilo/Cite_as_fontes" title="Wikipédia:Livro de estilo/Cite as fontes">cobrem todo o texto</a></b>.</li> <li>Texto necessita de <b><a href="/wiki/Wikip%C3%A9dia:Revis%C3%A3o" title="Wikipédia:Revisão">revisão</a></b>, devido a inconsistências e/ou dados de confiabilidade duvidosa.</li> <li>Necessita ser <b><a href="/wiki/Wikip%C3%A9dia:Reciclagem" title="Wikipédia:Reciclagem">reciclada</a></b> de acordo com o <b><a href="/wiki/Wikip%C3%A9dia:Livro_de_estilo" title="Wikipédia:Livro de estilo">livro de estilo</a></b>.</li></ul> </div></span></div></div></td></tr></tbody></table> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Ficheiro:Primes-vs-composites_pt.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Primes-vs-composites_pt.svg/220px-Primes-vs-composites_pt.svg.png" decoding="async" width="220" height="309" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Primes-vs-composites_pt.svg/330px-Primes-vs-composites_pt.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Primes-vs-composites_pt.svg/440px-Primes-vs-composites_pt.svg.png 2x" data-file-width="468" data-file-height="658" /></a><figcaption>Os <a href="/wiki/N%C3%BAmeros_compostos" class="mw-redirect" title="Números compostos">números compostos</a> podem ser organizados em retângulos, já os números primos não.</figcaption></figure> <p>Um <b>número primo</b> é um <a href="/wiki/N%C3%BAmero_natural" title="Número natural">número natural</a> maior que 1 que não pode ser formado pela multiplicação de outros dois naturais menores. Um número natural maior que 1 que não é primo é chamado de <a href="/wiki/N%C3%BAmero_composto" title="Número composto">número composto</a>. Por exemplo, 5 é primo porque as únicas maneiras de escrevê-lo como um produto, <span style="white-space:nowrap;">1 × 5</span> ou <span style="white-space:nowrap;">5 × 1</span>, envolvem o próprio 5. No entanto, 4 é composto porque é um produto (2&#160;×&#160;2) no qual ambos os números são menores que 4. Os primos são centrais na <a href="/wiki/Teoria_dos_n%C3%BAmeros" title="Teoria dos números">teoria dos números</a> devido ao <a href="/wiki/Teorema_fundamental_da_aritm%C3%A9tica" title="Teorema fundamental da aritmética">teorema fundamental da aritmética</a>: todo número natural maior que 1 é ou um primo, ou pode ser <a href="/wiki/Fatora%C3%A7%C3%A3o" title="Fatoração">fatorado</a> como um produto de primos de maneira única, <a href="/wiki/Salvo_(matem%C3%A1tica)" title="Salvo (matemática)">salvo</a> pela ordem dos fatores. </p><p>A propriedade de ser primo é chamada <b>primalidade</b>. Um método simples, mas lento, de <a href="/wiki/Teste_de_primalidade" title="Teste de primalidade">verificar a primalidade</a> de um número dado <span class="texhtml mvar" style="font-style:italic;">n</span>, chamado de divisão por tentativa, testa se <span class="texhtml mvar" style="font-style:italic;">n</span> é um múltiplo de qualquer inteiro entre 2 e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a2994734eae382ce30100fb17b9447fd8e99f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.331ex; height:3.009ex;" alt="{\displaystyle {\sqrt {n}}}"></span>. Algoritmos mais rápidos incluem o <a href="/wiki/Teste_de_primalidade_de_Miller-Rabin" class="mw-redirect" title="Teste de primalidade de Miller-Rabin">teste de primalidade de Miller-Rabin</a>, que é rápido, mas tem uma pequena chance de erro, e o <a href="/wiki/Teste_de_primalidade_AKS" title="Teste de primalidade AKS">teste de primalidade AKS</a>, que sempre produz a resposta correta em <a href="/wiki/Tempo_polinomial" class="mw-redirect" title="Tempo polinomial">tempo polinomial</a>, mas é muito lento para ser prático. Métodos particularmente rápidos estão disponíveis para números de formas especiais, como números de Mersenne. Em outubro de 2024<sup class="plainlinks noprint asof-tag update" style="display:none;"><a class="external text" href="https://pt.wikipedia.org/w/index.php?title=N%C3%BAmero_primo&amp;action=edit">&#91;update&#93;</a></sup>, o <a href="/wiki/Maior_n%C3%BAmero_primo_conhecido" title="Maior número primo conhecido">maior número primo conhecido</a> é um número <a href="/wiki/Primo_de_Mersenne" title="Primo de Mersenne">primo de Mersenne</a> com 41&#160;024&#160;320 <a href="/wiki/Algarismo" title="Algarismo">algarismos</a>.<sup id="cite_ref-GIMPS-2024_1-0" class="reference"><a href="#cite_note-GIMPS-2024-1"><span>[</span>1<span>]</span></a></sup><sup id="cite_ref-GIMPS-2018_2-0" class="reference"><a href="#cite_note-GIMPS-2018-2"><span>[</span>2<span>]</span></a></sup> </p><p>Há <a href="/wiki/Conjunto_infinito" title="Conjunto infinito">infinitos</a> números primos, como <a href="/wiki/Teorema_de_Euclides" title="Teorema de Euclides">demonstrado por Euclides</a> por volta de 300&#160;a.C. Não existe uma fórmula simples conhecida que distinga números primos de números compostos. No entanto, a distribuição de números primos nos números naturais em geral pode ser modelada estatisticamente. O primeiro resultado nessa direção é o <a href="/wiki/Teorema_dos_n%C3%BAmeros_primos" title="Teorema dos números primos">teorema dos números primos</a>, provado no final do século&#160;XIX, que afirma que a <a href="/wiki/Probabilidade" title="Probabilidade">probabilidade</a> de um número grande escolhido aleatoriamente ser primo é inversamente <a href="/wiki/Proporcionalidade" title="Proporcionalidade">proporcional</a> ao número de seus dígitos, ou seja, ao seu <a href="/wiki/Logaritmo" title="Logaritmo">logaritmo</a>. </p><p>Várias questões históricas relacionadas a números primos continuam sem solução. Estas incluem a <a href="/wiki/Conjectura_de_Goldbach" class="mw-redirect" title="Conjectura de Goldbach">conjectura de Goldbach</a>, que afirma que todo número inteiro par maior que 2 pode ser expresso como a soma de dois números primos, e a conjectura dos <a href="/wiki/N%C3%BAmeros_primos_g%C3%AAmeos" class="mw-redirect" title="Números primos gêmeos">números primos gêmeos</a>, que diz que existem infinitos pares de números primos cuja diferença é igual a dois. Tais questões estimularam o desenvolvimento de várias áreas da teoria dos números, concentrando-se em aspectos <a href="/wiki/Teoria_anal%C3%ADtica_dos_n%C3%BAmeros" title="Teoria analítica dos números">analíticos</a> ou <a href="/wiki/Teoria_alg%C3%A9brica_dos_n%C3%BAmeros" title="Teoria algébrica dos números">algébricos</a> dos números. Números primos são utilizados em diversos procedimentos na <a href="/wiki/Tecnologia_da_informa%C3%A7%C3%A3o" title="Tecnologia da informação">tecnologia da informação</a>, como na <a href="/wiki/Criptografia_de_chave_p%C3%BAblica" title="Criptografia de chave pública">criptografia de chave pública</a>, que depende da dificuldade de decompor números grandes em seus fatores primos. Na <a href="/wiki/%C3%81lgebra_abstrata" title="Álgebra abstrata">álgebra abstrata</a>, objetos que se comportam de maneira generalizada como números primos incluem <a href="/wiki/Elemento_primo" title="Elemento primo">elementos primos</a> e <a href="/wiki/Ideal_primo" title="Ideal primo">ideais primos</a>. </p><p><br /> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definição_e_exemplos"><span id="Defini.C3.A7.C3.A3o_e_exemplos"></span>Definição e exemplos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=1" title="Editar secção: Definição e exemplos" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=1" title="Editar código-fonte da secção: Definição e exemplos"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r69236695">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/17px-Magnifying_glass_01.svg.png" decoding="async" width="17" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/26px-Magnifying_glass_01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/34px-Magnifying_glass_01.svg.png 2x" data-file-width="663" data-file-height="659" /></span></span> Ver artigo principal: <a href="/wiki/Lista_de_n%C3%BAmeros_primos" title="Lista de números primos">Lista de números primos</a></div> <p>Um <a href="/wiki/N%C3%BAmero_natural" title="Número natural">número natural</a> (1, 2, 3, 4, 5, 6 etc.) é chamado de <i>número primo</i> se é maior que 1 e não pode ser escrito como o produto de dois números naturais menores. Os números maiores que 1 que não são primos são chamados de <a href="/wiki/N%C3%BAmeros_compostos" class="mw-redirect" title="Números compostos">números compostos</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span>[</span>3<span>]</span></a></sup> Noutras palavras, <span class="texhtml mvar" style="font-style:italic;">n</span> é primo se <span class="texhtml mvar" style="font-style:italic;">n</span> elementos não podem ser divididos em grupos menores, porém maior que apenas um, de mesma quantidade,<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span>[</span>4<span>]</span></a></sup> ou não é possível organizar <span class="texhtml mvar" style="font-style:italic;">n</span> pontos em uma grade retangular que possui mais de um ponto de altura ou largura.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span>[</span>5<span>]</span></a></sup> Por exemplo, entre os números de 1 a 6, os números 2, 3 e 5 são primos,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span>[</span>6<span>]</span></a></sup> visto que não há nenhum outro número que os divida igualmente (sem deixar resto). 1 não é primo, pois é especificadamente excluído da definição. <span style="white-space:nowrap;">4 = 2 × 2</span> e <span style="white-space:nowrap;">6 = 2 × 3</span> são ambos compostos. </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/Ficheiro:Prime_number_Cuisenaire_rods_7.png" class="mw-file-description"><img alt="consulte a legenda" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Prime_number_Cuisenaire_rods_7.png/260px-Prime_number_Cuisenaire_rods_7.png" decoding="async" width="260" height="174" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Prime_number_Cuisenaire_rods_7.png/390px-Prime_number_Cuisenaire_rods_7.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Prime_number_Cuisenaire_rods_7.png/520px-Prime_number_Cuisenaire_rods_7.png 2x" data-file-width="580" data-file-height="388" /></a><figcaption>Demonstração, com hastes de Cuisenaire, que 7 é primo, pois 2, 3, 4, 5 nem 6 divide-o igualmente</figcaption></figure> <p>Os <a href="/wiki/Divisor" title="Divisor">divisores</a> de um número natural <span class="texhtml mvar" style="font-style:italic;">n</span> são os números naturais que dividem igualmente <span class="texhtml mvar" style="font-style:italic;">n</span>. Todo número natural tem tanto 1 quanto ele mesmo como divisores. Se ele possuir qualquer outro divisor além desses dois, então não será primo. Isso leva a uma definição equivalente de número primo: são os números que possuem exatamente dois divisores positivos. Esses dois números são justamente 1 e ele mesmo. Como 1 possui apenas um único divisor, ele mesmo, não é primo por definição.<sup id="cite_ref-FOOTNOTEDudley1978&#91;https&#58;//books.google.com/books?id=tr7SzBTsk1UC&amp;pg=PA10_Seção_2,_p._10&#93;_7-0" class="reference"><a href="#cite_note-FOOTNOTEDudley1978[https://books.google.com/books?id=tr7SzBTsk1UC&amp;pg=PA10_Seção_2,_p._10]-7"><span>[</span>7<span>]</span></a></sup> Ainda, outra maneira de expressar a mesma coisa, é que um número <span class="texhtml mvar" style="font-style:italic;">n</span> é primo se é maior que um e nenhum dos números <span class="texhtml">2, 3, ... , <i>n</i> &#8722; 1</span> divide igualmente <span class="texhtml mvar" style="font-style:italic;">n</span>.<sup id="cite_ref-FOOTNOTESierpiński1988&#91;https&#58;//books.google.com/books?id=ktCZ2MvgN3MC&amp;pg=PA113_113&#93;_8-0" class="reference"><a href="#cite_note-FOOTNOTESierpiński1988[https://books.google.com/books?id=ktCZ2MvgN3MC&amp;pg=PA113_113]-8"><span>[</span>8<span>]</span></a></sup> </p><p>Os primeiros 25 números primos (todos os primos menores que 100) são:<sup id="cite_ref-ziegler_9-0" class="reference"><a href="#cite_note-ziegler-9"><span>[</span>9<span>]</span></a></sup> </p> <dl><dd><a href="/wiki/Dois" title="Dois">2</a>, <a href="/wiki/Tr%C3%AAs" title="Três">3</a>, <a href="/wiki/Cinco" title="Cinco">5</a>, <a href="/wiki/Sete" title="Sete">7</a>, <a href="/wiki/Onze" title="Onze">11</a>, <a href="/wiki/Treze" title="Treze">13</a>, <a href="/wiki/Dezessete" class="mw-redirect" title="Dezessete">17</a>, <a href="/wiki/Dezanove" title="Dezanove">19</a>, <a href="/wiki/Vinte_e_tr%C3%AAs" title="Vinte e três">23</a>, 29, 31, <a href="/wiki/Trinta_e_sete" title="Trinta e sete">37</a>, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 (sequência <span style="white-space:nowrap;"><a href="//oeis.org/A000040" class="extiw" title="oeis:A000040">A000040</a></span> na <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" class="mw-redirect" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>)</dd></dl> <p>Nenhum <a href="/wiki/N%C3%BAmero_par" class="mw-redirect" title="Número par">número par</a> <span class="texhtml mvar" style="font-style:italic;">n</span> maior que 2 é primo, visto que tal número pode ser expresso como o produto <span class="texhtml">2 × <i>n</i>/2</span>. Portanto, Todo número primo além do 2 é um <a href="/wiki/N%C3%BAmero_impar" class="mw-redirect" title="Número impar">número impar</a>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span>[</span>10<span>]</span></a></sup> Similarmente, quando escrito no <a href="/wiki/Sistema_decimal" class="mw-redirect" title="Sistema decimal">sistema decimal</a> usual, todos os números primos maiores que 5 terminam em 1, 3, 7 ou 9. Os números que terminam com os outros dígitos são sempre compostos: um número decimal terminado nos dígitos 0, 2, 4, 6 ou 8 são pares, e os números decimais que terminam em 0 ou 5 são divisíveis por 5.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span>[</span>11<span>]</span></a></sup> </p><p>O <a href="/wiki/Conjunto" title="Conjunto">conjunto</a> de todos os primos é às vezes denotado pela letra <span class="texhtml"><b>P</b></span> (uma letra P maiúscula em <a href="/wiki/Negrito" title="Negrito">negrito</a>)<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span>[</span>12<span>]</span></a></sup> ou por <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {P} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {P} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1053af9e662ceaf56c4455f90e0f67273422eded" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.42ex; height:2.176ex;" alt="{\displaystyle \mathbb {P} }"></span> (uma letra P maiúscula em <i><a href="/wiki/Blackboard_bold" title="Blackboard bold">blackboard bold</a></i>)<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span>[</span>13<span>]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="História"><span id="Hist.C3.B3ria"></span>História</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=2" title="Editar secção: História" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=2" title="Editar código-fonte da secção: História"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Ficheiro:IshangoColumnA.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ef/IshangoColumnA.png/280px-IshangoColumnA.png" decoding="async" width="280" height="63" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/e/ef/IshangoColumnA.png 1.5x" data-file-width="400" data-file-height="90" /></a><figcaption>Terceira coluna do <a href="/wiki/Osso_de_Ishango" title="Osso de Ishango">osso de Ishango</a>, que contém os números primos entre 10 e 20.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Ficheiro:Rhind_Mathematical_Papyrus.jpg" class="mw-file-description"><img alt="Consultar legenda." src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Rhind_Mathematical_Papyrus.jpg/220px-Rhind_Mathematical_Papyrus.jpg" decoding="async" width="220" height="132" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Rhind_Mathematical_Papyrus.jpg/330px-Rhind_Mathematical_Papyrus.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Rhind_Mathematical_Papyrus.jpg/440px-Rhind_Mathematical_Papyrus.jpg 2x" data-file-width="750" data-file-height="449" /></a><figcaption>O <a href="/wiki/Papiro_de_Rhind" title="Papiro de Rhind">Papiro de Rhind</a></figcaption></figure> <p>A origem do conceito número primo é incerta, todavia, há um indício de consciência desses números demonstrado pelo <a href="/wiki/Osso_de_Ishango" title="Osso de Ishango">osso de Ishango</a>, um achado osseo datado do <a href="/wiki/Paleol%C3%ADtico_Superior" title="Paleolítico Superior">Paleolítico Superior</a>, no qual aparecem sinais representando os números primos entre 10 e 20,<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span>[</span>14<span>]</span></a></sup> mas isso pode ser apenas uma coincidência.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span>[</span>15<span>]</span></a></sup> Outro indício pode ser observado na mesopotâmia no <a href="/wiki/Segundo_mil%C3%AAnio_a.C." class="mw-redirect" title="Segundo milênio a.C.">segundo milênio&#160;a.C.</a>, onde há tábuas contendo soluções para alguns problemas aritméticos relativos que, para serem solucionados, requerem um conhecimento de fatoração em números primos.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span>[</span>16<span>]</span></a></sup> No mesmo milênio, datado de aproximadamente 1550&#160;a.C., o <a href="/wiki/Papiro_de_Rhind" title="Papiro de Rhind">Papiro de Rhind</a> tem expansões de <a href="/wiki/Fra%C3%A7%C3%B5es_eg%C3%ADpcias" title="Frações egípcias">frações egípcias</a> de diferentes formas para números primos e compostos.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span>[</span>17<span>]</span></a></sup> As expansões de números que compartilham o menor dos seus fatores são semelhantes, sugerindo que os egípcios estavam pelo menos cientes da diferença entre números primos e compostos.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span>[</span>18<span>]</span></a></sup> </p><p>Entretanto, o primeiro registro sobrevivente do estudo de números primos vem dos <a href="/wiki/Matem%C3%A1tica_da_Gr%C3%A9cia_Antiga" title="Matemática da Grécia Antiga">matemáticos da Grécia Antiga</a>, que os chamaram de <i><span lang="grc-Latn" title="grc transliteration" class="Unicode" style="white-space:normal; text-decoration: none">prōtos arithmòs</span></i> (<span lang="el" class="politonico">πρῶτος ἀριθμὸς</span>). <i><a href="/wiki/Os_Elementos" title="Os Elementos">Os Elementos</a></i> de <a href="/wiki/Euclides" title="Euclides">Euclides</a> prova a <a href="/wiki/Teorema_de_Euclides" title="Teorema de Euclides">infinidade dos números primos</a> e o <a href="/wiki/Teorema_fundamental_da_aritm%C3%A9tica" title="Teorema fundamental da aritmética">teorema fundamental da aritmética</a>, e mostra como construir um <a href="/wiki/N%C3%BAmero_perfeito" title="Número perfeito">número perfeito</a> a partir de um <a href="/wiki/Primo_de_Mersenne" title="Primo de Mersenne">primo de Mersenne</a>.<sup id="cite_ref-stillwell-2010-p40_19-0" class="reference"><a href="#cite_note-stillwell-2010-p40-19"><span>[</span>19<span>]</span></a></sup> Outra invenção grega, o <a href="/wiki/Crivo_de_Erat%C3%B3stenes" title="Crivo de Eratóstenes">crivo de Eratóstenes</a>, ainda é utilizado para construir listas de primos.<sup id="cite_ref-pomerance-sciam_20-0" class="reference"><a href="#cite_note-pomerance-sciam-20"><span>[</span>20<span>]</span></a></sup><sup id="cite_ref-mollin_21-0" class="reference"><a href="#cite_note-mollin-21"><span>[</span>21<span>]</span></a></sup> Os séculos seguintes foram marcados por um certo desinteresse pelo estudo dos números primos, sem haver resultados relevantes neste tópico.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span>[</span>22<span>]</span></a></sup> </p><p>Por volta de 1000&#160;d.C., o matemático <a href="/wiki/Matem%C3%A1tica_isl%C3%A2mica" title="Matemática islâmica">islâmico</a> <a href="/wiki/Alhaz%C3%A9m" title="Alhazém">Alhazém</a> enunciou o <a href="/wiki/Teorema_de_Wilson" title="Teorema de Wilson">teorema de Wilson</a>, caracterizando os números primos como os números <span class="texhtml mvar" style="font-style:italic;">n</span> dividem igualmente <span class="texhtml">(<i>n</i> &#8722; 1)! + 1</span>. Ele também conjecturou que todo número perfeito par vêm da construção de Euclides usando primos de Mersenne, mas não conseguiu prová-la.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span>[</span>23<span>]</span></a></sup> Outro matemático islâmico, <a href="/wiki/Ibne_Albana_de_Marraquexe" title="Ibne Albana de Marraquexe">Ibne Albana de Marraquexe</a>, observou que o crivo de Eratóstenes pode ser agilizado considerando apenas os divisores primos até a raiz quadrada da cota superior.<sup id="cite_ref-mollin_21-1" class="reference"><a href="#cite_note-mollin-21"><span>[</span>21<span>]</span></a></sup> <a href="/wiki/Fibonacci" class="mw-redirect" title="Fibonacci">Fibonacci</a> levou as inovações dos matemáticos islâmicos à Europa. No seu livro <i><a href="/wiki/Liber_Abaci" title="Liber Abaci">Liber Abaci</a></i> (1202), foi o primeiro a descrever a <a href="/wiki/Divis%C3%A3o_por_tentativa" title="Divisão por tentativa">divisão por tentativa</a> para realizar o teste de primalidade, novamente utilizando divisores somente até à raiz quadrada do número a ser realizado o teste.<sup id="cite_ref-mollin_21-2" class="reference"><a href="#cite_note-mollin-21"><span>[</span>21<span>]</span></a></sup> </p><p>Em 1640, Pierre de Fermat afirmou (sem provar) o <a href="/wiki/Pequeno_teorema_de_Fermat" title="Pequeno teorema de Fermat">pequeno teorema de Fermat</a> (que posteriormente foi provado por <a href="/wiki/Leibniz" class="mw-redirect" title="Leibniz">Leibniz</a> e <a href="/wiki/Euler" class="mw-redirect" title="Euler">Euler</a>)<sup id="cite_ref-FOOTNOTESandifer2007&#91;https&#58;//books.google.com/books?id=sohHs7ExOsYC&amp;pg=PA45_45&#93;_24-0" class="reference"><a href="#cite_note-FOOTNOTESandifer2007[https://books.google.com/books?id=sohHs7ExOsYC&amp;pg=PA45_45]-24"><span>[</span>24<span>]</span></a></sup> e o <a href="/w/index.php?title=Teorema_de_Fermat_sobre_somas_de_dois_quadrados&amp;action=edit&amp;redlink=1" class="new" title="Teorema de Fermat sobre somas de dois quadrados (página não existe)">teorema de Fermat sobre somas de dois quadrados</a> (provado por Euler).<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span>[</span>25<span>]</span></a></sup> Fermat também investigou a primalidade dos <a href="/wiki/N%C3%BAmeros_de_Fermat" class="mw-redirect" title="Números de Fermat">números de Fermat</a> <span class="texhtml">2<sup>2<sup><i>n</i></sup></sup> + 1</span>,<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span>[</span>26<span>]</span></a></sup> e <a href="/wiki/Marin_Mersenne" title="Marin Mersenne">Marin Mersenne</a> estudou os <a href="/wiki/Primos_de_Mersenne" class="mw-redirect" title="Primos de Mersenne">primos de Mersenne</a>, primos da forma <span class="texhtml">2<sup><i>p</i></sup> &#8722; 1</span> com <span class="texhtml mvar" style="font-style:italic;">p</span> primo.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span>[</span>27<span>]</span></a></sup> <a href="/wiki/Christian_Goldbach" title="Christian Goldbach">Christian Goldbach</a> formulou a <a href="/wiki/Conjectura_de_Goldbach" class="mw-redirect" title="Conjectura de Goldbach">conjectura de Goldbach</a>, que todo número par é a soma de primos, numa carta de 1742 para Euler.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span>[</span>28<span>]</span></a></sup> Euler provou a conjectura de Alhazém (agora chamado de <a href="/w/index.php?title=Teorema_de_Euclides%E2%80%93Euler&amp;action=edit&amp;redlink=1" class="new" title="Teorema de Euclides–Euler (página não existe)">teorema de Euclides–Euler</a>&#160;<small style="font-style:normal; position:relative; top:-0.2em;">&#91;<a href="https://en.wikipedia.org/wiki/Euclid%E2%80%93Euler_theorem" class="extiw" title="en:Euclid–Euler theorem"><span title="&quot;Euclid–Euler theorem&quot; na Wikipédia em English">en</span></a>&#93;</small>) que dizia que todo número perfeito par pode ser construido a partir de primos de Mersenne.<sup id="cite_ref-stillwell-2010-p40_19-1" class="reference"><a href="#cite_note-stillwell-2010-p40-19"><span>[</span>19<span>]</span></a></sup> Ele introduziu métodos da <a href="/wiki/An%C3%A1lise_matem%C3%A1tica" title="Análise matemática">análise matemática</a> a esta área nas suas provas da infinitude dos números primos e a divergência da <a href="/wiki/S%C3%A9rie_dos_inversos_dos_primos" title="Série dos inversos dos primos">série dos inversos dos primos</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{5}}+{\tfrac {1}{7}}+{\tfrac {1}{11}}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>5</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>7</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>11</mn> </mfrac> </mstyle> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{5}}+{\tfrac {1}{7}}+{\tfrac {1}{11}}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e57e94d60efb5ad04a9ddebe807c98fff5d6d2a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:26.038ex; height:3.676ex;" alt="{\displaystyle {\tfrac {1}{2}}+{\tfrac {1}{3}}+{\tfrac {1}{5}}+{\tfrac {1}{7}}+{\tfrac {1}{11}}+\cdots }"></span>.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span>[</span>29<span>]</span></a></sup> No início do século&#160;XIX, Legendre e Gauss conjecturaram que conforme <span class="texhtml mvar" style="font-style:italic;">x</span> tende a infinito, o número de primos menores que <span class="texhtml mvar" style="font-style:italic;">x</span> é <a href="/wiki/An%C3%A1lise_assint%C3%B3tica" title="Análise assintótica">assintótico</a> a <span class="texhtml"><i>x</i>/log&#8201;<i>x</i></span>, onde <span class="texhtml">log&#8201;<i>x</i></span> é o <a href="/wiki/Logaritmo_natural" title="Logaritmo natural">logaritmo natural</a> de <span class="texhtml mvar" style="font-style:italic;">x</span>. Uma pequena consequência dessa alta densidade de primos era o <a href="/wiki/Postulado_de_Bertrand" title="Postulado de Bertrand">postulado de Bertrand</a>, que para todo <span class="texhtml"><i>n</i> &gt; 1</span>, existe pelo menos um primo entre <span class="texhtml mvar" style="font-style:italic;">n</span> e <span class="texhtml">2<i>n</i></span>, provado em 1852 por <a href="/wiki/Pafnuty_Chebyshev" class="mw-redirect" title="Pafnuty Chebyshev">Pafnuty Chebyshev</a>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span>[</span>30<span>]</span></a></sup> As ideias de <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a> no seu artigo de 1859 sobre a função zeta esboçaram uma prova da conjectura de Legendre e Gauss. Apesar de a <a href="/wiki/Hip%C3%B3tese_de_Riemann" title="Hipótese de Riemann">hipótese de Riemann</a>, intimamente relacionada, ainda não tenha sido comprovada, o esboço de Riemann foi concluído em 1896 por <a href="/wiki/Jacques_Hadamard" title="Jacques Hadamard">Hadamard</a> e <a href="/wiki/Charles-Jean_de_La_Vall%C3%A9e_Poussin" title="Charles-Jean de La Vallée Poussin">de la Vallée Poussin</a>, e agora o resultado é conhecido como o <a href="/wiki/Teorema_dos_n%C3%BAmeros_primos" title="Teorema dos números primos">teorema dos números primos</a>.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span>[</span>31<span>]</span></a></sup> Outro importante resultado do século&#160;XIX foi o <a href="/wiki/Teorema_de_Dirichlet_sobre_progress%C3%B5es_aritm%C3%A9ticas" title="Teorema de Dirichlet sobre progressões aritméticas">teorema de Dirichlet sobre progressões aritméticas</a>, que afirma que certas progressões aritméticas possuem infinitos números primos.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span>[</span>32<span>]</span></a></sup> </p><p>Diversos matemáticos trabalharam em <a href="/wiki/Testes_de_primalidade" class="mw-redirect" title="Testes de primalidade">testes de primalidade</a> para números demasiados grandes, os quais a divisão por tentativa torna-se inviável. Alguns métodos são restritos a algum tipo específico de número, como o <a href="/w/index.php?title=Teste_de_P%C3%A9pin&amp;action=edit&amp;redlink=1" class="new" title="Teste de Pépin (página não existe)">teste de Pépin</a> para números de Fermat (1877),<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span>[</span>33<span>]</span></a></sup> o <a href="/wiki/Primos_de_Proth" class="mw-redirect" title="Primos de Proth">teorema de Proth</a> (<abbr title="circa"><a href="/wiki/Circa" title="Circa">c.</a></abbr><span style="white-space:nowrap;">&#8201;1878</span>),<sup id="cite_ref-FOOTNOTERosen2000342_34-0" class="reference"><a href="#cite_note-FOOTNOTERosen2000342-34"><span>[</span>34<span>]</span></a></sup> o <a href="/w/index.php?title=Teste_de_primalidade_de_Lucas%E2%80%93Lehmer&amp;action=edit&amp;redlink=1" class="new" title="Teste de primalidade de Lucas–Lehmer (página não existe)">teste de primalidade de Lucas–Lehmer</a> (originalmente desenvolvido em 1878) e o <a href="/w/index.php?title=Teste_de_primalidade_de_Lucas&amp;action=edit&amp;redlink=1" class="new" title="Teste de primalidade de Lucas (página não existe)">teste de primalidade de Lucas</a> generalizado.<sup id="cite_ref-mollin_21-3" class="reference"><a href="#cite_note-mollin-21"><span>[</span>21<span>]</span></a></sup> Desde 1951, todos os <a href="/wiki/Maior_n%C3%BAmero_primo_conhecido" title="Maior número primo conhecido">maiores primos conhecidos</a> foram encontrados utilizando esses testes em computadores.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span>[</span>nota 1<span>]</span></a></sup> A pesquisa por números primos cada vez maiores gerou interesses fora do círculo da matemática pelo <a href="/wiki/Great_Internet_Mersenne_Prime_Search" title="Great Internet Mersenne Prime Search">Great Internet Mersenne Prime Search</a> e outros projetos de <a href="/wiki/Sistema_de_processamento_distribu%C3%ADdo" title="Sistema de processamento distribuído">processamento distribuído</a>.<sup id="cite_ref-ziegler_9-1" class="reference"><a href="#cite_note-ziegler-9"><span>[</span>9<span>]</span></a></sup><sup id="cite_ref-FOOTNOTERosen2000245_37-0" class="reference"><a href="#cite_note-FOOTNOTERosen2000245-37"><span>[</span>36<span>]</span></a></sup> A ideia de que os números primos tinham poucas aplicações fora da matemática pura<sup id="cite_ref-pura_40-0" class="reference"><a href="#cite_note-pura-40"><span>[</span>nota 2<span>]</span></a></sup> foi desfeita na década de 1970, quando a <a href="/wiki/Criptografia_de_chave_p%C3%BAblica" title="Criptografia de chave pública">criptografia de chave pública</a> e o sistema de criptografia <a href="/wiki/RSA" class="mw-redirect" title="RSA">RSA</a> foram inventados, usando números primos como base.<sup id="cite_ref-ent-7_41-0" class="reference"><a href="#cite_note-ent-7-41"><span>[</span>39<span>]</span></a></sup> </p><p>O aumento da importância prática dos testes de primalidade e da fatoração computadorizados levou ao desenvolvimento de métodos aprimorados capazes de lidar com um grande número de formas irrestritas.<sup id="cite_ref-pomerance-sciam_20-1" class="reference"><a href="#cite_note-pomerance-sciam-20"><span>[</span>20<span>]</span></a></sup><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span>[</span>40<span>]</span></a></sup><sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span>[</span>41<span>]</span></a></sup> A teoria matemática também avançou com o <a href="/wiki/Teorema_de_Green%E2%80%93Tao" title="Teorema de Green–Tao">teorema de Green–Tao</a> (2004), que afirma a existência de <a href="/wiki/Progress%C3%B5es_aritm%C3%A9ticas" class="mw-redirect" title="Progressões aritméticas">progressões aritméticas</a> comprimento arbitrário de números primos, e a prova de 2013 de <a href="/wiki/Yitang_Zhang" title="Yitang Zhang">Yitang Zhang</a> de que existem <a href="/wiki/Intervalo_entre_primos" title="Intervalo entre primos">intervalos entre primos</a> de tamanho limitado.<sup id="cite_ref-FOOTNOTENeale201718,_47_44-0" class="reference"><a href="#cite_note-FOOTNOTENeale201718,_47-44"><span>[</span>42<span>]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Primalidade_do_um">Primalidade do um</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=3" title="Editar secção: Primalidade do um" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=3" title="Editar código-fonte da secção: Primalidade do um"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A maioria dos antigos gregos nem consideravam 1 ser um número,<sup id="cite_ref-crxk-34_45-0" class="reference"><a href="#cite_note-crxk-34-45"><span>[</span>43<span>]</span></a></sup><sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span>[</span>44<span>]</span></a></sup> então eles nem consideravam a sua primalidade. Alguns estudiosos da tradição grega e da romana, incluindo <a href="/wiki/Nic%C3%B4maco_de_G%C3%A9rasa" title="Nicômaco de Gérasa">Nicômaco</a>, <a href="/wiki/J%C3%A2mblico" title="Jâmblico">Jâmblico</a>, <a href="/wiki/Bo%C3%A9cio" title="Boécio">Boécio</a> e <a href="/wiki/Cassiodoro" title="Cassiodoro">Cassiodoro</a>, consideravam os números primos como uma subdivisão dos números ímpares, então também não consideravam o 2 ser primo. No entanto, Euclides e a maioria dos outros matemáticos gregos consideravam 2 um número primo. Os <a href="/wiki/Matem%C3%A1tica_isl%C3%A2mica" title="Matemática islâmica">matemáticos islâmicos medievais</a> seguiram em grande parte os gregos ao considerar que 1 não era um número.<sup id="cite_ref-crxk-34_45-1" class="reference"><a href="#cite_note-crxk-34-45"><span>[</span>43<span>]</span></a></sup> Na Idade Média e Renascença, matemáticos começaram a tratar o 1 como um número, e alguns deles incluia-o como o primeiro número primo.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span>[</span>45<span>]</span></a></sup> Em meados do século&#160;XVIII, <a href="/wiki/Christian_Goldbach" title="Christian Goldbach">Christian Goldbach</a> listou 1 sendo primo em sua correspondência com <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>; porém, o próprio Euler não considerava 1 como primo.<sup id="cite_ref-FOOTNOTECaldwellReddickXiongKeller201215_48-0" class="reference"><a href="#cite_note-FOOTNOTECaldwellReddickXiongKeller201215-48"><span>[</span>46<span>]</span></a></sup> Ainda no século&#160;XIX, diversos matemáticos ainda consideravam 1 ser primo,<sup id="cite_ref-cx_49-0" class="reference"><a href="#cite_note-cx-49"><span>[</span>47<span>]</span></a></sup> e listas de números primos que incluíam 1 continuaram a ser publicadas até 1956.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span>[</span>48<span>]</span></a></sup><sup id="cite_ref-cg-bon-129-130_51-0" class="reference"><a href="#cite_note-cg-bon-129-130-51"><span>[</span>49<span>]</span></a></sup> </p><p>Se a definição de número primo fosse alterada para incluir o 1, diversas afirmações envolvendo números precisariam ser reformuladas de uma forma mais complicada. Por exemplo, o teorema fundamental da aritmética teria que ser reescrita para em termos de fatores maiores que 1, pois todo número poderia ter múltiplas decomposições com diferentes quantidades de cópias de 1.<sup id="cite_ref-cx_49-1" class="reference"><a href="#cite_note-cx-49"><span>[</span>47<span>]</span></a></sup> Similarmente, o <a href="/wiki/Crivo_de_Erat%C3%B3stenes" title="Crivo de Eratóstenes">crivo de Eratóstenes</a> não funcionaria adequadamente se 1 fosse tratado como primo, pois eliminaria todos os múltiplos de 1 (isto é, todos os outros números) e resultaria em apenas um único número 1.<sup id="cite_ref-cg-bon-129-130_51-1" class="reference"><a href="#cite_note-cg-bon-129-130-51"><span>[</span>49<span>]</span></a></sup> Algumas outras propriedades mais técnicas dos primos também não iria funcionar para o número 1: por exemplo, as fórmulas para a <a href="/wiki/Fun%C3%A7%C3%A3o_totiente_de_Euler" title="Função totiente de Euler">função totiente de Euler</a> ou para a <a href="/wiki/Fun%C3%A7%C3%A3o_soma_dos_divisores" class="mw-redirect" title="Função soma dos divisores">função soma dos divisores</a> são diferentes para números primos e para 1.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span>[</span>50<span>]</span></a></sup> No início do século&#160;XX, matemáticos começaram a concordar que 1 não deveria ser listado como primo, mas sim uma categoria própria especial chamada "<a href="/wiki/Unidade_(teoria_dos_an%C3%A9is)" title="Unidade (teoria dos anéis)">unidade</a>".<sup id="cite_ref-cx_49-2" class="reference"><a href="#cite_note-cx-49"><span>[</span>47<span>]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Os_átomos_da_aritmética"><span id="Os_.C3.A1tomos_da_aritm.C3.A9tica"></span>Os átomos da aritmética</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=4" title="Editar secção: Os átomos da aritmética" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=4" title="Editar código-fonte da secção: Os átomos da aritmética"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Os gregos foram os primeiros a perceber que qualquer número natural, exceto o <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cc5fd8163a83100c5330622e9e317fa4e872403" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.809ex; height:2.509ex;" alt="{\displaystyle 1,}"></span> pode ser gerado pela <a href="/wiki/Multiplica%C3%A7%C3%A3o" title="Multiplicação">multiplicação</a> de números primos, os chamados <i>"blocos de construção". </i>A primeira pessoa, até onde se sabe, que produziu tabelas de números primos foi <a href="/wiki/Erat%C3%B3stenes" title="Eratóstenes">Eratóstenes</a>, no terceiro século a.C. Ele escrevia inicialmente uma lista com todos os números de <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> </i>a <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 100.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>100.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 100.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3106b92cafde98b82339d005e4840a7cc2e59624" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.134ex; height:2.176ex;" alt="{\displaystyle 100.}"></span> </i>Em seguida escolhia o primeiro primo, <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/993d53082bc05c266933af9a892e1ce2128547cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.809ex; height:2.509ex;" alt="{\displaystyle 2,}"></span> </i>e eliminava da lista todos os seus <a href="/wiki/M%C3%BAltiplos" title="Múltiplos">múltiplos</a>. Passava ao número seguinte que não fora eliminado e procedia também eliminando todos os seus múltiplos. Desta forma Eratóstenes produziu tabelas de primos, mais tarde este procedimento passou a se chamar de <a href="/wiki/Crivo_de_Erat%C3%B3stenes" title="Crivo de Eratóstenes">crivo de Eratóstenes</a>. Observe a ilustração a seguir: </p> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 589px"> <div class="thumb" style="width: 584px; height: 475px;"><span typeof="mw:File"><a href="/wiki/Ficheiro:New_Animation_Sieve_of_Eratosthenes.gif" class="mw-file-description" title="Crivo de Eratóstenes"><img alt="Crivo de Eratóstenes" src="//upload.wikimedia.org/wikipedia/commons/8/8c/New_Animation_Sieve_of_Eratosthenes.gif" decoding="async" width="554" height="445" class="mw-file-element" data-file-width="554" data-file-height="445" /></a></span></div> <div class="gallerytext">Crivo de Eratóstenes</div> </li> </ul> <p>Assim obtemos: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, ... A partir desse procedimento podemos simplificar a descobertas de primos usando o lema: Se um número natural n &gt; 1 não é divisível por nenhum primo p tal que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef685027b97072ee63a8c738f395cd40f63767e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.313ex; height:3.009ex;" alt="{\displaystyle p^{2}}"></span> ≤ n, então ele é primo. (demonstrado adiante). Este lema fornece um teste de primalidade, pois, para verificar se um dado número n é primo, basta verificar que não é divisível por nenhum p que não supere <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be7c977a1bd3bf1c90a0cd12b25d9f9bc798dd14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.977ex; height:3.009ex;" alt="{\displaystyle {\sqrt {n}}.}"></span> </p><p>Durante o século XVII os matemáticos descobriram o que acreditavam ser um método infalível para determinar se um número <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> era primo: calcule <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901fc910c19990d0dbaaefe4726ceb1a4e217a0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 2}"></span> elevado a potência <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> e divida-o por <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2285a1804b7fdcac187d155af09aff63152dd56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.71ex; height:2.509ex;" alt="{\displaystyle N,}"></span> se o resto for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/993d53082bc05c266933af9a892e1ce2128547cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.809ex; height:2.509ex;" alt="{\displaystyle 2,}"></span> então o número será primo. Em termos da <a href="/wiki/Aritm%C3%A9tica_modular" title="Aritmética modular">calculadora-relógio</a> de <a href="/wiki/Gauss" class="mw-redirect" title="Gauss">Gauss</a>, esses matemáticos estavam tentando calcular <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3cc22b5fa0e34487c8a6153965408e004c6e253" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.854ex; height:2.676ex;" alt="{\displaystyle 2^{N}}"></span> em um relógio com <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> horas. Em 1819, o teste dos números primos foi eliminado, pois funciona para todos os números até <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 340,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>340</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 340,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c8db0a3b643ba651328d17b5ab65c9b3c169e63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.134ex; height:2.509ex;" alt="{\displaystyle 340,}"></span> mas falha para <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 341=11\times 31.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>341</mn> <mo>=</mo> <mn>11</mn> <mo>&#x00D7;<!-- × --></mo> <mn>31.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 341=11\times 31.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c44d874d5a753cc18aa1b84c12ae55c0c3076fc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.723ex; height:2.176ex;" alt="{\displaystyle 341=11\times 31.}"></span> Exceção descoberta com uma <a href="/wiki/Aritm%C3%A9tica_modular" title="Aritmética modular">calculadora-relógio</a> de Gauss contendo 341 horas utilizada para simplificar a análise de um número como <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{341}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>341</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{341}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7275373caecb25174b65d7f79b6ef4eee4bbdbe7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.507ex; height:2.676ex;" alt="{\displaystyle 2^{341}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Teoria_dos_números"><span id="Teoria_dos_n.C3.BAmeros"></span>Teoria dos números</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=5" title="Editar secção: Teoria dos números" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=5" title="Editar código-fonte da secção: Teoria dos números"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r69236695"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/17px-Magnifying_glass_01.svg.png" decoding="async" width="17" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/26px-Magnifying_glass_01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Magnifying_glass_01.svg/34px-Magnifying_glass_01.svg.png 2x" data-file-width="663" data-file-height="659" /></span></span> Ver artigo principal: <a href="/wiki/Teoria_dos_n%C3%BAmeros" title="Teoria dos números">Teoria dos números</a></div> <p>Sabe-se que, à medida que avançamos na sequência dos números inteiros, os primos tornam-se cada vez mais raros. Isto levanta duas questões: O conjunto dos números primos seria finito ou infinito? Dado um número natural <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397bfafc701afdf14c2743278a097f6f2957eabb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.042ex; height:2.009ex;" alt="{\displaystyle n,}"></span> qual é a proporção de números primos entre os números menores que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>? </p> <ul><li>A resposta à primeira questão é que o conjunto dos primos é <a href="/wiki/Infinito" title="Infinito">infinito</a>, um resultado conhecido na parte central dos <i><a href="/wiki/Os_Elementos" title="Os Elementos">Elementos</a></i> de <a href="/wiki/Euclides" title="Euclides">Euclides</a>, que lida com as propriedades dos números. Na proposição 20, Euclides explica uma verdade simples porém fundamental sobre os números primos: existe um número infinito deles. Pode-se demonstrar, em notação moderna, da seguinte forma:</li></ul> <dl><dd>Supondo que o número de primos seja finito e sejam <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1},\ p_{2},\ p_{3},\ ...,\ p_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mtext>&#xA0;</mtext> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1},\ p_{2},\ p_{3},\ ...,\ p_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/109b844f68fc55b170013be703215d1172d51291" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:18.708ex; height:2.009ex;" alt="{\displaystyle p_{1},\ p_{2},\ p_{3},\ ...,\ p_{n}}"></span> os primos. Seja <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> o número tal que</dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod _{i=1}^{n}p_{i}+1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prod _{i=1}^{n}p_{i}+1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/129dfc91bef2d998fdb4ca9546d4c4b7138d233a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:9.975ex; height:6.843ex;" alt="{\displaystyle \prod _{i=1}^{n}p_{i}+1,}"></span> onde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x220F;<!-- ∏ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prod }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a90a03f5558eba2072a554f4fc0e5c01f6b20a24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.969ex; height:3.843ex;" alt="{\displaystyle \prod }"></span> denota o <a href="/wiki/Produt%C3%B3rio" title="Produtório">produtório</a>. </p> <dl><dd>Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> é um número primo, é necessariamente diferente dos primos <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1},\ p_{2},\ p_{3},\ ...,\ p_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mtext>&#xA0;</mtext> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1},\ p_{2},\ p_{3},\ ...,\ p_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3242e93b9775a64f88b44ab722b45e52ae14236" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:19.355ex; height:2.009ex;" alt="{\displaystyle p_{1},\ p_{2},\ p_{3},\ ...,\ p_{n},}"></span> pois sua <a href="/wiki/Divis%C3%A3o" title="Divisão">divisão</a> por qualquer um deles tem um resto de 1.</dd></dl> <dl><dd>Por outro lado, se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> é composto, existe um número primo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> tal que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> é divisor de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49f4f085fcd14302f4f7a9bbdf77e816cccb3bc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.392ex; height:2.176ex;" alt="{\displaystyle P.}"></span></dd> <dd>Mas obviamente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\neq \ p_{1},\;p_{2},\;...,\;p_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&#x2260;<!-- ≠ --></mo> <mtext>&#xA0;</mtext> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mspace width="thickmathspace" /> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\neq \ p_{1},\;p_{2},\;...,\;p_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a7b3f4bc21dd56b412431db54819eadb7af7f75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.37ex; height:2.676ex;" alt="{\displaystyle q\neq \ p_{1},\;p_{2},\;...,\;p_{n}.}"></span> Logo existe um novo número primo.</dd></dl> <dl><dd>Há um novo número primo, seja <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> primo ou composto; este processo pode ser repetido indefinidamente, logo há um número infinito de números primos.</dd></dl> <dl><dd>Uma outra prova envolve considerar um número inteiro <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n&gt;1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&gt;</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n&gt;1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/590cc6dae7bc8470936e1f47e6df667458c7ea6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.302ex; height:2.176ex;" alt="{\displaystyle n&gt;1.}"></span> Temos <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a135e65a42f2d73cccbfc4569523996ca0036f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n+1}"></span> que, necessariamente, é <a href="/wiki/N%C3%BAmeros_coprimos" class="mw-redirect" title="Números coprimos">coprimo</a> de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> (números coprimos são os que não têm nenhum fator comum maior do que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>). Provamos isto imaginando que a divisão do menor pelo maior tem resultado <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> e resto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> e do maior pelo menor tem resultado <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span> e resto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af8c4e445819b13a052647aa3eb2be990b0a4b24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.809ex; height:2.176ex;" alt="{\displaystyle 1.}"></span> Assim, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n(n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n(n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c10677b9ae2003260e0b597a32cfd7ff4791e012" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.602ex; height:2.843ex;" alt="{\displaystyle n(n+1)}"></span> tem, necessariamente, ao menos dois factores primos.</dd></dl> <dl><dd>Tomemos o sucessor deste, que representamos como <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n(n+1)+1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n(n+1)+1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1908f459b23c00c92a573d372396e905ab84d630" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.251ex; height:2.843ex;" alt="{\displaystyle n(n+1)+1.}"></span> Pelo mesmo raciocínio, ele é coprimo a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n(n+1).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n(n+1).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac08fea343127f6b38db7bb9fa464ac5fefda717" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.248ex; height:2.843ex;" alt="{\displaystyle n(n+1).}"></span> Ao multiplicar os dois números, temos <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [n(n+1)]*[n(n+1)+1].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">[</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [n(n+1)]*[n(n+1)+1].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79a11065ce934f9158454797cfbdafd773aa3f89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.635ex; height:2.843ex;" alt="{\displaystyle [n(n+1)]*[n(n+1)+1].}"></span> Como um de seus fatores tem pelo menos dois factores primos diferentes e é coprimo ao outro, o resultado da multiplicação tem pelo menos três factores primos distintos. Este raciocínio também pode ser infinitamente estendido.</dd></dl> <ul><li>A resposta para a segunda pergunta acima é que essa proporção é aproximadamente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n}{\ln(n)}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n}{\ln(n)}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d7c2fb23da90c3baaa845aa62bf4a1014dfd295" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:6.626ex; height:5.509ex;" alt="{\displaystyle {\frac {n}{\ln(n)}},}"></span> onde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0de5ba4f372ede555d00035e70c50ed0b9625d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.939ex; height:2.176ex;" alt="{\displaystyle \ln }"></span> é o <a href="/wiki/Logaritmo_natural" title="Logaritmo natural">logaritmo natural</a>.</li> <li>Para qualquer número inteiro <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44e185ab9c990830d5055fa3ae698a4225ce67e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.858ex; height:2.509ex;" alt="{\displaystyle k,}"></span> existem <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> números inteiros consecutivos todos compostos.</li> <li>O produto de qualquer sequência de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> números inteiros consecutivos é divisível por <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>!</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/949e312c9bf9a9a5e641c1db1b1d7c6f0425b536" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.858ex; height:2.176ex;" alt="{\displaystyle k!}"></span></li> <li>Se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> não é primo, então <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> possui, necessariamente, um fator primo menor do que ou igual a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {k}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>k</mi> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {k}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64b4e7da5f389a1e12d08bfe9a6ecda6827921e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.794ex; height:3.009ex;" alt="{\displaystyle {\sqrt {k}}.}"></span></li> <li>Todo inteiro maior que 1 pode ser representado de maneira única como o produto de fatores primos</li></ul> <p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="Grupos_e_sequências_de_números_primos"><span id="Grupos_e_sequ.C3.AAncias_de_n.C3.BAmeros_primos"></span>Grupos e sequências de números primos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=6" title="Editar secção: Grupos e sequências de números primos" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=6" title="Editar código-fonte da secção: Grupos e sequências de números primos"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a> (1601-1665) descobriu que todo número primo da forma <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4n+1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4n+1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/079132d25a2ce2852a5043bf7909979d91a436fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.207ex; height:2.509ex;" alt="{\displaystyle 4n+1,}"></span> tal como <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5,13,17,29,37,41,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> <mo>,</mo> <mn>13</mn> <mo>,</mo> <mn>17</mn> <mo>,</mo> <mn>29</mn> <mo>,</mo> <mn>37</mn> <mo>,</mo> <mn>41</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5,13,17,29,37,41,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a8bfc775f754e10f62ae38e2fe2d6736983f961" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.604ex; height:2.509ex;" alt="{\displaystyle 5,13,17,29,37,41,}"></span> etc., é a soma de dois quadrados. Por exemplo: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5=1^{2}+2^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> <mo>=</mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5=1^{2}+2^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92b7d0d2e52c61eb9225ee36c61d29e80254a18b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.182ex; height:3.009ex;" alt="{\displaystyle 5=1^{2}+2^{2},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 13=2^{2}+3^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>13</mn> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 13=2^{2}+3^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f35049db9248d390bc37d508335b4dbb1f9c0548" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.344ex; height:3.009ex;" alt="{\displaystyle 13=2^{2}+3^{2},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 17=1^{2}+4^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>17</mn> <mo>=</mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 17=1^{2}+4^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fca3bcd0b3a73aea185ff7d974e8d1a90846a53d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.344ex; height:3.009ex;" alt="{\displaystyle 17=1^{2}+4^{2},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 29=2^{2}+5^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>29</mn> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 29=2^{2}+5^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/131595c010c956a1c9fce24d09bf5b1e664aec89" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.344ex; height:3.009ex;" alt="{\displaystyle 29=2^{2}+5^{2},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 37=1^{2}+6^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>37</mn> <mo>=</mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 37=1^{2}+6^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba50c0c925e5718a5fa5bef8020e38bb407af480" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.344ex; height:3.009ex;" alt="{\displaystyle 37=1^{2}+6^{2},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 41=4^{2}+5^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>41</mn> <mo>=</mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 41=4^{2}+5^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/521513e8af8be6ad43b3633e6cec8ff45a3aa50c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.344ex; height:2.843ex;" alt="{\displaystyle 41=4^{2}+5^{2}.}"></span> </p><p>Hoje são conhecidos dois grupos de números primos: </p> <ul><li><b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (4n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>4</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (4n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d18b0f0a91a43ccc00ddfa91b35eed27fec64c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.369ex; height:2.843ex;" alt="{\displaystyle (4n+1)}"></span></b> - que podem sempre ser escritos na forma (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f455605b597282c27d7cf2238821bc331479a7e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.439ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}}"></span>); e</li> <li><b><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (4n-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>4</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (4n-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddee7d47aa5353f85901de3b0c7cd9dfab264cfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.369ex; height:2.843ex;" alt="{\displaystyle (4n-1)}"></span></b> - nunca podem ser escritos na forma (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+y^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+y^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f455605b597282c27d7cf2238821bc331479a7e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.439ex; height:3.009ex;" alt="{\displaystyle x^{2}+y^{2}}"></span>).</li></ul> <p>Tratando-se de números primos é perigoso fazer uma generalização apenas com base numa observação, não solidamente comprovada matematicamente. Vejamos o exemplo: </p><p><a href="/wiki/Trinta_e_um" class="mw-redirect" title="Trinta e um"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 31}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>31</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 31}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3401a982f566c6555f8196ab4c4fea0e46012539" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 31}"></span></a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 331,3.331,33.331,333.331,3.333.331}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>331</mn> <mo>,</mo> <mn>3.331</mn> <mo>,</mo> <mn>33.331</mn> <mo>,</mo> <mn>333.331</mn> <mo>,</mo> <mn>3.333.331</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 331,3.331,33.331,333.331,3.333.331}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3caebed42ee7ccb2ac4a523327d502f0ee3eff70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:36.431ex; height:2.509ex;" alt="{\displaystyle 331,3.331,33.331,333.331,3.333.331}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 33.333.331}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>33.333.331</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 33.333.331}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78abc6cf81cdb87a13bfa3a57fd0bc48935da8c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.593ex; height:2.176ex;" alt="{\displaystyle 33.333.331}"></span> são primos mas <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 333.333.331}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>333.333.331</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 333.333.331}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a1f0e872a3a100bd54698d50201a9b9b0c9ab1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.756ex; height:2.176ex;" alt="{\displaystyle 333.333.331}"></span> não é, pois <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 333.333.331=17\times 19.607.843.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>333.333.331</mn> <mo>=</mo> <mn>17</mn> <mo>&#x00D7;<!-- × --></mo> <mn>19.607.843.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 333.333.331=17\times 19.607.843.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/193f7d2104a0cb07de8c9ef22d9bef3b4d953449" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:31.26ex; height:2.176ex;" alt="{\displaystyle 333.333.331=17\times 19.607.843.}"></span> </p><p>Um olhar mais atento na forma como se distribuem os números primos revela que não há uma regularidade nesta distribuição. Por exemplo existem longos <i>buracos</i> entre os números primos, o número <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 370.261}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>370.261</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 370.261}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e476abd7c1e00e9a1b7f46b0f0ab1c90533f2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.622ex; height:2.176ex;" alt="{\displaystyle 370.261}"></span> é seguido de <a href="/wiki/Cento_e_onze" class="mw-redirect" title="Cento e onze">cento e onze</a><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span>[</span>51<span>]</span></a></sup> números compostos e não existem<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span>[</span>52<span>]</span></a></sup> primos entre os números <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 20.831.323}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>20.831.323</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 20.831.323}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9d3da4ede839ae206c95240aac80d7e970a7acc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.593ex; height:2.176ex;" alt="{\displaystyle 20.831.323}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 20.831.533.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>20.831.533.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 20.831.533.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0270752f1fd65755f48eb2c2b7a0ccbffbba2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.24ex; height:2.176ex;" alt="{\displaystyle 20.831.533.}"></span> </p><p>Algumas fórmulas produzem muitos números primos, por exemplo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}-x+41}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo>+</mo> <mn>41</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}-x+41}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f733a009f4e35599f8f662406962d35095788ad3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.719ex; height:2.843ex;" alt="{\displaystyle x^{2}-x+41}"></span> fornece primos quando <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0,\ 1,\ 2,\ ...,\ 40.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mn>1</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mn>2</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <mn>40.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0,\ 1,\ 2,\ ...,\ 40.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fcf5ca884fb85c59ad2cf1398975e565d6d38f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.447ex; height:2.509ex;" alt="{\displaystyle x=0,\ 1,\ 2,\ ...,\ 40.}"></span> <sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span>[</span>53<span>]</span></a></sup><sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span>[</span>54<span>]</span></a></sup> Veja que para x = 41, a fórmula resulta em <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 41^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>41</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 41^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b0cf34d1d5adefa618cf1b90d066123fd7c363f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.379ex; height:2.676ex;" alt="{\displaystyle 41^{2}}"></span> que não é primo. </p><p>Não existe uma fórmula que forneça primos para todos os valores primos de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> de fato em 1752 <a href="/wiki/Goldbach" class="mw-redirect" title="Goldbach">Goldbach</a> provou que não há uma <a href="/wiki/Polin%C3%B3mio" class="mw-redirect" title="Polinómio">expressão polinomial</a> em <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> com coeficientes inteiros que possa fornecer primos para todos os valores de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07e9f568a88785ae48006ac3c4b951020f1699a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.977ex; height:1.676ex;" alt="{\displaystyle x.}"></span> </p><p>Não se sabe se há uma expressão polinomial <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax^{2}+bx+c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax^{2}+bx+c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/126c6935d3dd9f1c1da0c388ca2799be4f6f237c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.629ex; height:2.843ex;" alt="{\displaystyle ax^{2}+bx+c}"></span> com <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f455a7f96d74aa94573d8e32da3b240ab0aa294f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.491ex; height:2.676ex;" alt="{\displaystyle a\neq 0}"></span> que represente infinitos números primos. <a href="/wiki/Dirichlet" class="mw-redirect" title="Dirichlet">Dirichlet</a> usou métodos para provar que se <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f059f053fcf9f421b7c74362cf3bd5ed024e19d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.877ex; height:2.009ex;" alt="{\displaystyle a,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3da45af0250645a54cab2ef45483c4399e4a40df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.16ex; height:2.176ex;" alt="{\displaystyle 2b}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> não têm fator primo em comum, a expressão polinomial a duas variáveis <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax^{2}+2bxy+cy^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>b</mi> <mi>x</mi> <mi>y</mi> <mo>+</mo> <mi>c</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax^{2}+2bxy+cy^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d58e6f8336c5b77712677bac06318e20ca86a998" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.161ex; height:3.009ex;" alt="{\displaystyle ax^{2}+2bxy+cy^{2}}"></span> representa infinitos primos, quando <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> assumem valores positivos inteiros. </p><p><a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Fermat</a> pensou que a fórmula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2^{n}}+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2^{n}}+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b27f57a4191be088259902a790ef2fb093ffb812" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.184ex; height:2.843ex;" alt="{\displaystyle 2^{2^{n}}+1}"></span> forneceria números primos para <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=0,\ 1,\ 2,\ ....}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mn>1</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mn>2</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=0,\ 1,\ 2,\ ....}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8813239b02fdd3ce98c3482d239569f661ad9aef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.573ex; height:2.509ex;" alt="{\displaystyle n=0,\ 1,\ 2,\ ....}"></span> Este números são chamados de <a href="/wiki/N%C3%BAmero_de_Fermat" title="Número de Fermat">números de Fermat</a> e são comumente denotados por <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d05cad2fa0aa18d8cebce37161c8720285ddc21b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.36ex; height:2.509ex;" alt="{\displaystyle F_{n}.}"></span> Os cinco primeiros números são: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{0}=3,\;F_{1}=5,\;F_{2}=17,\;F_{3}=257\;e\;F_{4}=65.537,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>17</mn> <mo>,</mo> <mspace width="thickmathspace" /> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>257</mn> <mspace width="thickmathspace" /> <mi>e</mi> <mspace width="thickmathspace" /> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mn>65.537</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{0}=3,\;F_{1}=5,\;F_{2}=17,\;F_{3}=257\;e\;F_{4}=65.537,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e9adc7e59f9f5ba1556b1a0f18b175d2f05d453" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:50.891ex; height:2.509ex;" alt="{\displaystyle F_{0}=3,\;F_{1}=5,\;F_{2}=17,\;F_{3}=257\;e\;F_{4}=65.537,}"></span> sendo todos primos. </p> <div class="mw-heading mw-heading2"><h2 id="Aproximações_para_o_n-ésimo_primo"><span id="Aproxima.C3.A7.C3.B5es_para_o_n-.C3.A9simo_primo"></span>Aproximações para o n-ésimo primo</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=7" title="Editar secção: Aproximações para o n-ésimo primo" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=7" title="Editar código-fonte da secção: Aproximações para o n-ésimo primo"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Como consequência do <a href="/wiki/Teorema_do_n%C3%BAmero_primo" class="mw-redirect" title="Teorema do número primo">teorema do número primo</a>, uma expressão assintótica para o n-ésimo primo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f79dcba35ecde0d43fbb7c914165586166ce8c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.477ex; height:2.009ex;" alt="{\displaystyle p_{n}}"></span> é: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{n}\sim n\ln n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mi>n</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{n}\sim n\ln n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2112c3d8e4f3a87edde887e1f6f7b0342478add9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:11.726ex; height:2.509ex;" alt="{\displaystyle p_{n}\sim n\ln n.}"></span> </p><p>Uma aproximação melhor é: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {p_{n}=n\ln n+n\ln \ln n-n+{\frac {n}{\ln n}}\left(\ln \ln n-2\right)-{\frac {n\ln \ln n}{2(\ln n)^{2}}}\left(\ln \ln n-6\right)+O\left({\frac {n}{(\ln n)^{2}}}\right).}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi>n</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>+</mo> <mi>n</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {p_{n}=n\ln n+n\ln \ln n-n+{\frac {n}{\ln n}}\left(\ln \ln n-2\right)-{\frac {n\ln \ln n}{2(\ln n)^{2}}}\left(\ln \ln n-6\right)+O\left({\frac {n}{(\ln n)^{2}}}\right).}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec50c92d3384c70a49067598575cdffc80a77e41" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-left: -0.089ex; width:86.258ex; height:6.343ex;" alt="{\displaystyle {p_{n}=n\ln n+n\ln \ln n-n+{\frac {n}{\ln n}}\left(\ln \ln n-2\right)-{\frac {n\ln \ln n}{2(\ln n)^{2}}}\left(\ln \ln n-6\right)+O\left({\frac {n}{(\ln n)^{2}}}\right).}}"></span><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span>[</span>55<span>]</span></a></sup> </p><p>O <a href="/w/index.php?title=Teorema_de_Rosser&amp;action=edit&amp;redlink=1" class="new" title="Teorema de Rosser (página não existe)">teorema de Rosser</a> mostra que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f79dcba35ecde0d43fbb7c914165586166ce8c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.477ex; height:2.009ex;" alt="{\displaystyle p_{n}}"></span> é maior que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\ln n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\ln n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/149d89f2e771d45a02eb56ced8a4b1893711565f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.15ex; height:2.176ex;" alt="{\displaystyle n\ln n.}"></span> É possível melhorar esta aproximação com os limites<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span>[</span>56<span>]</span></a></sup><sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span>[</span>57<span>]</span></a></sup>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\ln n+n(\ln \ln n-1)&lt;p_{n}&lt;n\ln n+n\ln \ln n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>+</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&lt;</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&lt;</mo> <mi>n</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo>+</mo> <mi>n</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\ln n+n(\ln \ln n-1)&lt;p_{n}&lt;n\ln n+n\ln \ln n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6f64dab2ea237b2c940278d79672b12bc9f7ac6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.356ex; height:2.843ex;" alt="{\displaystyle n\ln n+n(\ln \ln n-1)&lt;p_{n}&lt;n\ln n+n\ln \ln n}"></span>, para <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq 6.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>6.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq 6.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b69c4d0273815b4faef3cfb0666032500f9350a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.302ex; height:2.343ex;" alt="{\displaystyle n\geq 6.}"></span> <span id="Maior_número_primo_já_calculado"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Maior_número_primo_conhecido"><span id="Maior_n.C3.BAmero_primo_conhecido"></span>Maior número primo conhecido</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=8" title="Editar secção: Maior número primo conhecido" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=8" title="Editar código-fonte da secção: Maior número primo conhecido"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Em Janeiro de 2013, foi divulgado o maior número primo já calculado até então. Tem 17.425.170 dígitos e, se fosse escrito por extenso, ocuparia 3,4 mil páginas impressas com cinco mil caracteres cada. É o número <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{57885161}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>57885161</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{57885161}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8595d85e6463acfe00df46e0b3b6ea44f089cfa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.973ex; height:2.843ex;" alt="{\displaystyle 2^{57885161}-1}"></span>. Foi descoberto por Curtis Cooper, da <a href="/w/index.php?title=Universidade_Central_do_Missouri&amp;action=edit&amp;redlink=1" class="new" title="Universidade Central do Missouri (página não existe)">Universidade Central do Missouri</a> em Warrensburg, EUA, como parte do <a href="/wiki/Great_Internet_Mersenne_Prime_Search" title="Great Internet Mersenne Prime Search">Great Internet Mersenne Prime Search</a> (GIMPS), um projeto internacional de computação compartilhada desenhado para encontrar números primos de Mersene.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span>[</span>58<span>]</span></a></sup> </p><p>Em janeiro de 2016, um grupo de matemáticos da mesma universidade descobriu um número primo com 22.338.618 dígitos, que recebeu o nome "M74207281".<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span>[</span>59<span>]</span></a></sup> É o número <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{74207281}-1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>74207281</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{74207281}-1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31404ea7d9b2a8b8d6f2e4c39e32da74280f952d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.62ex; height:3.009ex;" alt="{\displaystyle 2^{74207281}-1,}"></span> que tem 5 milhões de dígitos a mais que o último conhecido.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span>[</span>60<span>]</span></a></sup> O achado foi divulgado pelo programa GIMPS. </p><p>Em dezembro de 2017 um engenheiro eletrotécnico da empresa de entregas FedEx descobriu um número primo ainda maior: “M77232917”, como foi batizado, tem mais de 23 milhões de dígitos. O homem que o descobriu chama-se Jonathan Pace, tem 51 anos, é norte-americano e também participa do GIMPS.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span>[</span>61<span>]</span></a></sup> Em dezembro de 2018 uma nova marca de maior número primo foi registrada, alcançando a quantidade de 24 milhões de dígitos. </p><p>Em 2024, foi descoberto o maior número primo, 2<sup>136 279 841</sup> – 1, com 41 milhões de dígitos (um <a href="/wiki/Primo_de_Mersenne" title="Primo de Mersenne">primo de Mersenne</a>). A descoberta de Luke Durant foi feita com recurso a software gratuito conhecido como Great Internet Mersenne Prime Search (GIMPS). A descoberta envolveu a coordenação de milhares de unidades de processamento gráfico (GPUs) em 24 centros de dados em 17 países.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span>[</span>62<span>]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Outras_Aplicações"><span id="Outras_Aplica.C3.A7.C3.B5es"></span>Outras Aplicações</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=9" title="Editar secção: Outras Aplicações" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=9" title="Editar código-fonte da secção: Outras Aplicações"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Biologia">Biologia</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=10" title="Editar secção: Biologia" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=10" title="Editar código-fonte da secção: Biologia"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>A estratégia evolutiva usada por <a href="/wiki/Cigarra" title="Cigarra">cigarras</a> do gênero "<i>Magicicada</i>" faz uso de números primos. Evolutivamente, à medida que algumas espécies foram alongando seus períodos de "hibernação", também os de seus predadores naturais foram se alongando. Foram favorecidas aquelas que só emergiam após número primo de anos (13, 17), pois isso reduz ao máximo as chances de encontrar seus predadores naturais.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span>[</span>63<span>]</span></a></sup> Um exemplo para entender isso é: Imagine uma espécie de cigarra que vire ninfa a cada 2 anos, e uma outra a cada 4. Um predador natural de cigarras que fique hibernando 4 anos, quando sair de sua hibernação, terá como fonte de alimentação ambas espécies, aumentando a quantidade de comida disponível. Já com as cigarras que ficam hibernando um número primo de anos, seus predadores naturais terão que hibernar esse período de temp também, e terão menos opções de comida.</li></ul> <ul><li>Há uma espécie de <a href="/wiki/Bambu" title="Bambu">bambu</a>, "Phyllostachys bambusoides", que tem sua florada a cada 23 anos.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span>[</span>64<span>]</span></a></sup> Cientistas acreditam que esse "número primo de tempo" para cada floração é um diferencial evolutivo dessa espécie frente as demais.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Mecânica_quântica"><span id="Mec.C3.A2nica_qu.C3.A2ntica"></span>Mecânica quântica</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=11" title="Editar secção: Mecânica quântica" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=11" title="Editar código-fonte da secção: Mecânica quântica"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Começando com o trabalho de Hugh Montgomery e <a href="/wiki/Freeman_Dyson" title="Freeman Dyson">Freeman Dyson</a> na década de 1970, matemáticos e físicos especularam que os zeros da função zeta Riemann estão conectados aos níveis de energia dos sistemas quânticos.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span>[</span>65<span>]</span></a></sup><sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span>[</span>66<span>]</span></a></sup> Os números primos também são significativos na ciência da informação quântica, graças a estruturas matemáticas como bases mutuamente imparciales e medidas de valor positivo de operadores positivos.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span>[</span>67<span>]</span></a></sup><sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span>[</span>68<span>]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Ver_também"><span id="Ver_tamb.C3.A9m"></span>Ver também</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=12" title="Editar secção: Ver também" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=12" title="Editar código-fonte da secção: Ver também"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <div style="-moz-column-count: 2; -webkit-column-count: 2; column-count: 2;"> <ul><li><a href="/wiki/Crivo_de_Erat%C3%B3stenes" title="Crivo de Eratóstenes">Crivo de Eratóstenes</a></li> <li><a href="/wiki/N%C3%BAmeros_primos_g%C3%AAmeos" class="mw-redirect" title="Números primos gêmeos">Números primos gêmeos</a></li> <li><a href="/wiki/Elemento_Primo" class="mw-redirect" title="Elemento Primo">Elemento Primo</a></li> <li><a href="/wiki/Elemento_Irredutivel" class="mw-redirect" title="Elemento Irredutivel">Elemento Irredutível</a></li> <li><a href="/wiki/Fun%C3%A7%C3%A3o_de_contagem_de_n%C3%BAmeros_primos" title="Função de contagem de números primos">Função de contagem de números primos</a></li> <li><a href="/wiki/Teorema_do_n%C3%BAmero_primo" class="mw-redirect" title="Teorema do número primo">Teorema do número primo</a></li> <li><a href="/wiki/Teste_de_primalidade" title="Teste de primalidade">Teste de primalidade</a></li> <li><a href="/wiki/Certificado_de_Primalidade" class="mw-redirect" title="Certificado de Primalidade">Certificado de Primalidade</a></li> <li><a href="/wiki/Fun%C3%A7%C3%A3o_total_de_fatores_primos_n%C3%A3o_repetidos" title="Função total de fatores primos não repetidos">Função total de fatores primos não repetidos</a></li> <li><a href="/wiki/Coprimo" class="mw-redirect" title="Coprimo">coprimo</a></li> <li><a href="/wiki/Primorial" title="Primorial">Primorial</a></li> <li><a href="/wiki/S%C3%A9rie_dos_inversos_dos_primos" title="Série dos inversos dos primos">Série dos inversos dos primos</a></li> <li><a href="/wiki/Demonstra%C3%A7%C3%A3o_de_Furstenberg_da_infinitude_dos_n%C3%BAmeros_primos" title="Demonstração de Furstenberg da infinitude dos números primos">Demonstração de Furstenberg da infinitude dos números primos</a></li> <li><a href="/wiki/Fator_primo" title="Fator primo">Fator primo</a></li> <li><a href="/wiki/PrimeGrid" title="PrimeGrid">PrimeGrid</a></li> <li><a href="/wiki/Hip%C3%B3tese_de_Riemann" title="Hipótese de Riemann">Hipótese de Riemann sobre os números primos</a></li></ul> </div> <h2 id="Notas" style="cursor: help;" title="Esta seção foi configurada para não ser editável diretamente. Edite a página toda ou a seção anterior em vez disso.">Notas</h2> <div class="reflist" style="list-style-type: decimal;"><div class="mw-references-wrap"><ol class="references"> <li id="cite_note-36"><span class="mw-cite-backlink"><a href="#cite_ref-36">↑</a></span> <span class="reference-text">Um número primo de 44 dígitos encontrado em 1951 por Aimé Ferrier com uma calculadora mecânica continua a ser o maior primo encontrado sem o auxílio de computadores eletrônicos.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span>[</span>35<span>]</span></a></sup></span> </li> <li id="cite_note-pura-40"><span class="mw-cite-backlink"><a href="#cite_ref-pura_40-0">↑</a></span> <span class="reference-text">Por exemplo, Beiler escreve que o teórico dos números <a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Ernst Kummer</a> adorava seus números ideais, intimamente relacionados aos primos, "porque eles não haviam se sujado com nenhuma aplicação prática",<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span>[</span>37<span>]</span></a></sup> e Katz escreve que <a href="/wiki/Edmund_Landau" title="Edmund Landau">Edmund Landau</a>, conhecido por seu trabalho sobre a distribuição de primos, "detestava aplicações práticas da matemática" e, por essa razão, evitava assuntos como <a href="/wiki/Geometria" title="Geometria">geometria</a> que já haviam se mostrado úteis.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span>[</span>38<span>]</span></a></sup></span> </li> </ol></div></div> <div class="reflist" style="list-style-type: lower-alpha;"></div> <h2 id="Referências" style="cursor: help;" title="Esta seção foi configurada para não ser editável diretamente. Edite a página toda ou a seção anterior em vez disso."><span id="Refer.C3.AAncias"></span>Referências</h2> <div class="reflist" style="list-style-type: decimal;"><div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-GIMPS-2024-1"><span class="mw-cite-backlink"><a href="#cite_ref-GIMPS-2024_1-0">↑</a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://www.mersenne.org/primes/?press=M136279841">«GIMPS Discovers Largest Known Prime Number: 2<sup>136,279,841</sup> − 1»</a>. <i>Mersenne Research, Inc</i>. 21 de outubro de 2024<span class="reference-accessdate">. Consultado em 21 de outubro de 2024</span></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=GIMPS+Discovers+Largest+Known+Prime+Number%3A+2%3Csup%3E136%2C279%2C841%3C%2Fsup%3E+%88%92+1&amp;rft.date=2024-10-21&amp;rft.genre=unknown&amp;rft.jtitle=Mersenne+Research%2C+Inc.&amp;rft_id=https%3A%2F%2Fwww.mersenne.org%2Fprimes%2F%3Fpress%3DM136279841&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-GIMPS-2018-2"><span class="mw-cite-backlink"><a href="#cite_ref-GIMPS-2018_2-0">↑</a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://www.mersenne.org/primes/press/M82589933.html">«GIMPS Project Discovers Largest Known Prime Number: 2<sup>82,589,933</sup>-1»</a>. <i>Mersenne Research, Inc</i>. 21 de dezembro de 2018<span class="reference-accessdate">. Consultado em 22 de dezembro de 2018</span></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=GIMPS+Project+Discovers+Largest+Known+Prime+Number%3A+2%3Csup%3E82%2C589%2C933%3C%2Fsup%3E-1&amp;rft.date=2018-12-21&amp;rft.genre=unknown&amp;rft.jtitle=Mersenne+Research%2C+Inc.&amp;rft_id=https%3A%2F%2Fwww.mersenne.org%2Fprimes%2Fpress%2FM82589933.html&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><cite class="citation book">Gardiner, Anthony (1997). <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalolym1997gard"><i>The Mathematical Olympiad Handbook: An Introduction to Problem Solving Based on the First 32 British Mathematical Olympiads 1965–1996</i></a><span style="margin-left:0.1em"><span typeof="mw:File"><span title="Registo grátis requerido"><img alt="Registo grátis requerido" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Lock-yellow.svg/9px-Lock-yellow.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Lock-yellow.svg/14px-Lock-yellow.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Lock-yellow.svg/18px-Lock-yellow.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></span> (em inglês). Oxford, Reino Unido: Oxford University Press. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalolym1997gard/page/26">26</a>. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-19-850105-3" title="Especial:Fontes de livros/978-0-19-850105-3">978-0-19-850105-3</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Anthony&amp;rft.aulast=Gardiner&amp;rft.btitle=The+Mathematical+Olympiad+Handbook%3A+An+Introduction+to+Problem+Solving+Based+on+the+First+32+British+Mathematical+Olympiads+1965%931996&amp;rft.date=1997&amp;rft.genre=book&amp;rft.isbn=978-0-19-850105-3&amp;rft.pages=26&amp;rft.place=Oxford%2C+Reino+Unido&amp;rft.pub=Oxford+University+Press&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicalolym1997gard&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><cite class="citation book">Henderson, Anne (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=uy-yGVRUilMC&amp;pg=PA62"><i>Dyslexia, Dyscalculia and Mathematics: A practical guide</i></a> (em inglês) 2.ª ed. [S.l.]: Routledge. p.&#160;62. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-1-136-63662-2" title="Especial:Fontes de livros/978-1-136-63662-2">978-1-136-63662-2</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Anne&amp;rft.aulast=Henderson&amp;rft.btitle=Dyslexia%2C+Dyscalculia+and+Mathematics%3A+A+practical+guide&amp;rft.date=2014&amp;rft.edition=2.%AA&amp;rft.genre=book&amp;rft.isbn=978-1-136-63662-2&amp;rft.pages=62&amp;rft.pub=Routledge&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Duy-yGVRUilMC%26pg%3DPA62&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text"><cite class="citation book">Adler, Irving (1960). <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/giantgoldenbooko00adle"><i>The Giant Golden Book of Mathematics: Exploring the World of Numbers and Space</i></a><span style="margin-left:0.1em"><span typeof="mw:File"><span title="Registo grátis requerido"><img alt="Registo grátis requerido" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Lock-yellow.svg/9px-Lock-yellow.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Lock-yellow.svg/14px-Lock-yellow.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Lock-yellow.svg/18px-Lock-yellow.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></span> (em inglês). [S.l.]: Golden Press. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/giantgoldenbooko00adle/page/16">16</a>. <a href="/wiki/OCLC" class="mw-redirect" title="OCLC">OCLC</a>&#160;<a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/6975809">6975809</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Irving&amp;rft.aulast=Adler&amp;rft.btitle=The+Giant+Golden+Book+of+Mathematics%3A+Exploring+the+World+of+Numbers+and+Space&amp;rft.date=1960&amp;rft.genre=book&amp;rft.pages=16&amp;rft.pub=Golden+Press&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgiantgoldenbooko00adle&amp;rft_id=info%3Aoclcnum%2F6975809&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text"><cite class="citation book">Leff, Lawrence S. (2000). <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/barronsmathworkb00leff_0"><i>Math Workbook for the SAT I</i></a><span style="margin-left:0.1em"><span typeof="mw:File"><span title="Registo grátis requerido"><img alt="Registo grátis requerido" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Lock-yellow.svg/9px-Lock-yellow.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Lock-yellow.svg/14px-Lock-yellow.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Lock-yellow.svg/18px-Lock-yellow.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></span> (em inglês). [S.l.]: Barron's Educational Series. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/barronsmathworkb00leff_0/page/360">360</a>. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-7641-0768-9" title="Especial:Fontes de livros/978-0-7641-0768-9">978-0-7641-0768-9</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Lawrence+S.&amp;rft.aulast=Leff&amp;rft.btitle=Math+Workbook+for+the+SAT+I&amp;rft.date=2000&amp;rft.genre=book&amp;rft.isbn=978-0-7641-0768-9&amp;rft.pages=360&amp;rft.pub=Barron%27s+Educational+Series&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fbarronsmathworkb00leff_0&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-FOOTNOTEDudley1978&#91;https&#58;//books.google.com/books?id=tr7SzBTsk1UC&amp;pg=PA10_Seção_2,_p._10&#93;-7"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTEDudley1978[https://books.google.com/books?id=tr7SzBTsk1UC&amp;pg=PA10_Seção_2,_p._10]_7-0">↑</a></span> <span class="reference-text"><a href="#CITEREFDudley1978">Dudley 1978</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tr7SzBTsk1UC&amp;pg=PA10">Seção 2, p. 10</a>.</span> </li> <li id="cite_note-FOOTNOTESierpiński1988&#91;https&#58;//books.google.com/books?id=ktCZ2MvgN3MC&amp;pg=PA113_113&#93;-8"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTESierpiński1988[https://books.google.com/books?id=ktCZ2MvgN3MC&amp;pg=PA113_113]_8-0">↑</a></span> <span class="reference-text"><a href="#CITEREFSierpiński1988">Sierpiński 1988</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=ktCZ2MvgN3MC&amp;pg=PA113">113</a>.</span> </li> <li id="cite_note-ziegler-9"><span class="mw-cite-backlink">↑ <sup><i><b><a href="#cite_ref-ziegler_9-0">a</a></b></i></sup> <sup><i><b><a href="#cite_ref-ziegler_9-1">b</a></b></i></sup></span> <span class="reference-text"><cite class="citation journal"><a href="/wiki/G%C3%BCnter_M._Ziegler" class="mw-redirect" title="Günter M. Ziegler">Ziegler, Günter M.</a> (2004). «The great prime number record races». <i><a href="/wiki/Notices_of_the_American_Mathematical_Society" title="Notices of the American Mathematical Society">Notices of the American Mathematical Society</a></i> (em inglês). <b>51</b> (4): 414–416. <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=2039814">2039814</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=The+great+prime+number+record+races&amp;rft.aufirst=G%C3%BCnter+M.&amp;rft.aulast=Ziegler&amp;rft.date=2004&amp;rft.genre=article&amp;rft.issue=4&amp;rft.jtitle=Notices+of+the+American+Mathematical+Society&amp;rft.pages=414-416&amp;rft.volume=51&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D2039814&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/John_Stillwell" title="John Stillwell">Stillwell, John</a> (1997). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4elkHwVS0eUC&amp;pg=PA9"><i>Numbers and Geometry</i></a>. Col: Undergraduate Texts in Mathematics. [S.l.]: Springer. p.&#160;9. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-387-98289-2" title="Especial:Fontes de livros/978-0-387-98289-2">978-0-387-98289-2</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=John&amp;rft.aulast=Stillwell&amp;rft.btitle=Numbers+and+Geometry&amp;rft.date=1997&amp;rft.genre=book&amp;rft.isbn=978-0-387-98289-2&amp;rft.pages=9&amp;rft.pub=Springer&amp;rft.series=Undergraduate+Texts+in+Mathematics&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4elkHwVS0eUC%26pg%3DPA9&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><a href="#cite_ref-11">↑</a></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/Wac%C5%82aw_Sierpi%C5%84ski" title="Wacław Sierpiński">Sierpiński, Wacław</a> (1964). <a rel="nofollow" class="external text" href="https://archive.org/details/selectionproblem00sier"><i>A Selection of Problems in the Theory of Numbers</i></a> (em inglês). New York: Macmillan. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/selectionproblem00sier/page/n37">40</a>. <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=0170843">0170843</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Wac%C5%82aw&amp;rft.aulast=Sierpi%C5%84ski&amp;rft.btitle=A+Selection+of+Problems+in+the+Theory+of+Numbers&amp;rft.date=1964&amp;rft.genre=book&amp;rft.pages=40&amp;rft.place=New+York&amp;rft.pub=Macmillan&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D0170843&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fselectionproblem00sier&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><a href="#cite_ref-12">↑</a></span> <span class="reference-text"><cite class="citation book">Nathanson, Melvyn B. (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sE7lBwAAQBAJ&amp;pg=PP10">«Notations and Conventions»</a>. <i>Elementary Methods in Number Theory</i>. Col: Graduate Texts in Mathematics (em inglês). <b>195</b>. [S.l.]: Springer. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-387-22738-2" title="Especial:Fontes de livros/978-0-387-22738-2">978-0-387-22738-2</a>. <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=1732941">1732941</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=Notations+and+Conventions&amp;rft.aufirst=Melvyn+B.&amp;rft.aulast=Nathanson&amp;rft.btitle=Elementary+Methods+in+Number+Theory&amp;rft.date=2000&amp;rft.genre=bookitem&amp;rft.isbn=978-0-387-22738-2&amp;rft.pub=Springer&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D1732941&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DsE7lBwAAQBAJ%26pg%3DPP10&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><a href="#cite_ref-13">↑</a></span> <span class="reference-text"><cite class="citation book">Faticoni, Theodore G. (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=I433i_ZGxRsC&amp;pg=PA44"><i>The Mathematics of Infinity: A Guide to Great Ideas</i></a>. Col: Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts (em inglês). <b>111</b> 2.ª ed. [S.l.]: John Wiley &amp; Sons. p.&#160;44. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-1-118-24382-4" title="Especial:Fontes de livros/978-1-118-24382-4">978-1-118-24382-4</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Theodore+G.&amp;rft.aulast=Faticoni&amp;rft.btitle=The+Mathematics+of+Infinity%3A+A+Guide+to+Great+Ideas&amp;rft.date=2012&amp;rft.edition=2.%AA&amp;rft.genre=book&amp;rft.isbn=978-1-118-24382-4&amp;rft.pages=44&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.series=Pure+and+Applied+Mathematics%3A+A+Wiley+Series+of+Texts%2C+Monographs+and+Tracts&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DI433i_ZGxRsC%26pg%3DPA44&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><a href="#cite_ref-14">↑</a></span> <span class="reference-text"><cite class="citation book">Huylebrouck, Dirk (2019). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007/978-3-030-04037-6_9">«Missing Link»</a>. <i>Africa and Mathematics</i>. Col: Mathematics, Culture, and the Arts. Cham: Springer International Publishing. pp.&#160;153–166. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-3-030-04036-9" title="Especial:Fontes de livros/978-3-030-04036-9">978-3-030-04036-9</a>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2F978-3-030-04037-6_9">10.1007/978-3-030-04037-6_9</a><span class="reference-accessdate">. Consultado em 19 de outubro de 2021</span></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=Missing+Link&amp;rft.aufirst=Dirk&amp;rft.aulast=Huylebrouck&amp;rft.btitle=Africa+and+Mathematics&amp;rft.date=2019&amp;rft.genre=bookitem&amp;rft.isbn=978-3-030-04036-9&amp;rft.pages=153-166&amp;rft.place=Cham&amp;rft.pub=Springer+International+Publishing&amp;rft.series=Mathematics%2C+Culture%2C+and+the+Arts&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-3-030-04037-6_9&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-030-04037-6_9&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><a href="#cite_ref-15">↑</a></span> <span class="reference-text"><cite class="citation book">Everett, Caleb (2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=2f1aDgAAQBAJ&amp;pg=PA35"><i>Numbers and the Making of Us: Counting and the Course of Human Cultures</i></a>. [S.l.]: Harvard University Press. pp.&#160;35–36. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-674-50443-1" title="Especial:Fontes de livros/978-0-674-50443-1">978-0-674-50443-1</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Caleb&amp;rft.aulast=Everett&amp;rft.btitle=Numbers+and+the+Making+of+Us%3A+Counting+and+the+Course+of+Human+Cultures&amp;rft.date=2017&amp;rft.genre=book&amp;rft.isbn=978-0-674-50443-1&amp;rft.pages=35-36&amp;rft.pub=Harvard+University+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D2f1aDgAAQBAJ%26pg%3DPA35&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><a href="#cite_ref-16">↑</a></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/Otto_Neugebauer" title="Otto Neugebauer">Neugebauer, Otto</a> (1969). «Babylonian Mathematics». <i>The Exact Sciences In Antiquity</i> 2.ª ed. Nova Iorque, NY, EUA: Dover. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/0-486-22332-9" title="Especial:Fontes de livros/0-486-22332-9">0-486-22332-9</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=Babylonian+Mathematics&amp;rft.aufirst=Otto&amp;rft.aulast=Neugebauer&amp;rft.btitle=The+Exact+Sciences+In+Antiquity&amp;rft.date=1969&amp;rft.edition=2.%AA&amp;rft.genre=bookitem&amp;rft.isbn=0-486-22332-9&amp;rft.place=Nova+Iorque%2C+NY%2C+EUA&amp;rft.pub=Dover&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><a href="#cite_ref-17">↑</a></span> <span class="reference-text">Bruins, Evert Marie, análise em <i>Mathematical Reviews</i> de <cite class="citation journal">Gillings, R.J. (1974). «The recto of the Rhind Mathematical Papyrus. How did the ancient Egyptian scribe prepare it?». <i>Archive for History of Exact Sciences</i>. <b>12</b> (4): 291–298. <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=0497458">0497458</a>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2FBF01307175">10.1007/BF01307175</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=The+recto+of+the+Rhind+Mathematical+Papyrus.+How+did+the+ancient+Egyptian+scribe+prepare+it%3F&amp;rft.aufirst=R.J.&amp;rft.aulast=Gillings&amp;rft.date=1974&amp;rft.genre=article&amp;rft.issue=4&amp;rft.jtitle=Archive+for+History+of+Exact+Sciences&amp;rft.pages=291-298&amp;rft.volume=12&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D0497458&amp;rft_id=info%3Adoi%2F10.1007%2FBF01307175&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><a href="#cite_ref-18">↑</a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="http://mathpages.com/home/kmath340/kmath340.htm">«Egyptian Unit Fractions»</a>. <i>Mathpages</i> (em inglês)<span class="reference-accessdate">. Consultado em 14 de janeiro de 2011</span></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=Egyptian+Unit+Fractions&amp;rft.genre=unknown&amp;rft.jtitle=Mathpages&amp;rft_id=http%3A%2F%2Fmathpages.com%2Fhome%2Fkmath340%2Fkmath340.htm&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-stillwell-2010-p40-19"><span class="mw-cite-backlink">↑ <sup><i><b><a href="#cite_ref-stillwell-2010-p40_19-0">a</a></b></i></sup> <sup><i><b><a href="#cite_ref-stillwell-2010-p40_19-1">b</a></b></i></sup></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/John_Stillwell" title="John Stillwell">Stillwell, John</a> (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=V7mxZqjs5yUC&amp;pg=PA40"><i>Mathematics and Its History</i></a>. Col: Undergraduate Texts in Mathematics 3rd ed. [S.l.]: Springer. p.&#160;40. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-1-4419-6052-8" title="Especial:Fontes de livros/978-1-4419-6052-8">978-1-4419-6052-8</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=John&amp;rft.aulast=Stillwell&amp;rft.btitle=Mathematics+and+Its+History&amp;rft.date=2010&amp;rft.edition=3rd&amp;rft.genre=book&amp;rft.isbn=978-1-4419-6052-8&amp;rft.pages=40&amp;rft.pub=Springer&amp;rft.series=Undergraduate+Texts+in+Mathematics&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DV7mxZqjs5yUC%26pg%3DPA40&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-pomerance-sciam-20"><span class="mw-cite-backlink">↑ <sup><i><b><a href="#cite_ref-pomerance-sciam_20-0">a</a></b></i></sup> <sup><i><b><a href="#cite_ref-pomerance-sciam_20-1">b</a></b></i></sup></span> <span class="reference-text"><cite class="citation journal"><a href="/wiki/Carl_Pomerance" title="Carl Pomerance">Pomerance, Carl</a> (dezembro de 1982). «The Search for Prime Numbers». <i><a href="/wiki/Scientific_American" title="Scientific American">Scientific American</a></i>. <b>247</b> (6): 136–147. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="http://ui.adsabs.harvard.edu/abs/1982SciAm.247f.136P">1982SciAm.247f.136P</a>. <a href="/wiki/JSTOR" title="JSTOR">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="//www.jstor.org/stable/24966751">24966751</a>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1038%2Fscientificamerican1282-136">10.1038/scientificamerican1282-136</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=The+Search+for+Prime+Numbers&amp;rft.aufirst=Carl&amp;rft.aulast=Pomerance&amp;rft.date=1982-12&amp;rft.genre=article&amp;rft.issue=6&amp;rft.jtitle=Scientific+American&amp;rft.pages=136-147&amp;rft.volume=247&amp;rft_id=%2F%2Fwww.jstor.org%2Fstable%2F24966751&amp;rft_id=info%3Abibcode%2F1982SciAm.247f.136P&amp;rft_id=info%3Adoi%2F10.1038%2Fscientificamerican1282-136&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-mollin-21"><span class="mw-cite-backlink">↑ <sup><i><b><a href="#cite_ref-mollin_21-0">a</a></b></i></sup> <sup><i><b><a href="#cite_ref-mollin_21-1">b</a></b></i></sup> <sup><i><b><a href="#cite_ref-mollin_21-2">c</a></b></i></sup> <sup><i><b><a href="#cite_ref-mollin_21-3">d</a></b></i></sup></span> <span class="reference-text"><cite class="citation journal">Mollin, Richard A. (2002). «A brief history of factoring and primality testing B. C. (before computers)». <i>Mathematics Magazine</i>. <b>75</b> (1): 18–29. <a href="/wiki/JSTOR" title="JSTOR">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="//www.jstor.org/stable/3219180">3219180</a>. <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=2107288">2107288</a>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.2307%2F3219180">10.2307/3219180</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=A+brief+history+of+factoring+and+primality+testing+B.+C.+%28before+computers%29&amp;rft.aufirst=Richard+A.&amp;rft.aulast=Mollin&amp;rft.date=2002&amp;rft.genre=article&amp;rft.issue=1&amp;rft.jtitle=Mathematics+Magazine&amp;rft.pages=18-29&amp;rft.volume=75&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D2107288&amp;rft_id=%2F%2Fwww.jstor.org%2Fstable%2F3219180&amp;rft_id=info%3Adoi%2F10.2307%2F3219180&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><a href="#cite_ref-22">↑</a></span> <span class="reference-text"><cite id="CITEREFO&#39;ConnorRobertson" class="citation">O'Connor, John J.; <a href="/wiki/Edmund_Robertson" title="Edmund Robertson">Robertson, Edmund F.</a>, <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/HistTopics/Prime_numbers.html">«Prime numbers»</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_archive" title="MacTutor History of Mathematics archive">MacTutor History of Mathematics archive</a></i> (em inglês), <a href="/wiki/Universidade_de_St._Andrews" title="Universidade de St. Andrews">Universidade de St. Andrews</a><span class="reference-accessdate">, consultado em 7 de agosto de 2024</span></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=Prime+numbers&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft.aufirst=John+J.&amp;rft.aulast=O%27Connor&amp;rft.btitle=MacTutor+History+of+Mathematics+archive&amp;rft.genre=bookitem&amp;rft.pub=Universidade+de+St.+Andrews&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FHistTopics%2FPrime_numbers.html&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><a href="#cite_ref-23">↑</a></span> <span class="reference-text"><cite id="CITEREFO&#39;ConnorRobertson" class="citation">O'Connor, John J.; <a href="/wiki/Edmund_Robertson" title="Edmund Robertson">Robertson, Edmund F.</a>, <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Al-Haytham.html">«Abu Ali al-Hasan ibn al-Haytham»</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_archive" title="MacTutor History of Mathematics archive">MacTutor History of Mathematics archive</a></i> (em inglês), <a href="/wiki/Universidade_de_St._Andrews" title="Universidade de St. Andrews">Universidade de St. Andrews</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=Abu+Ali+al-Hasan+ibn+al-Haytham&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft.aufirst=John+J.&amp;rft.aulast=O%27Connor&amp;rft.btitle=MacTutor+History+of+Mathematics+archive&amp;rft.genre=bookitem&amp;rft.pub=Universidade+de+St.+Andrews&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FAl-Haytham.html&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-FOOTNOTESandifer2007&#91;https&#58;//books.google.com/books?id=sohHs7ExOsYC&amp;pg=PA45_45&#93;-24"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTESandifer2007[https://books.google.com/books?id=sohHs7ExOsYC&amp;pg=PA45_45]_24-0">↑</a></span> <span class="reference-text"><a href="#CITEREFSandifer2007">Sandifer 2007</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=sohHs7ExOsYC&amp;pg=PA45">45</a>.</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><a href="#cite_ref-25">↑</a></span> <span class="reference-text"><cite class="citation book">Burton, David M. (1980). «Representation of Integers as Sums of Squares». <i>Elementary Numbert Theory</i> (em inglês). Boston, MA, EUA: Allyn and Bacon. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/0-205-06965-7" title="Especial:Fontes de livros/0-205-06965-7">0-205-06965-7</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=Representation+of+Integers+as+Sums+of+Squares&amp;rft.aufirst=David+M.&amp;rft.aulast=Burton&amp;rft.btitle=Elementary+Numbert+Theory&amp;rft.date=1980&amp;rft.genre=bookitem&amp;rft.isbn=0-205-06965-7&amp;rft.place=Boston%2C+MA%2C+EUA&amp;rft.pub=Allyn+and+Bacon&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><a href="#cite_ref-26">↑</a></span> <span class="reference-text"><cite class="citation book">Sandifer, C. Edward (2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3c6iBQAAQBAJ&amp;pg=PA42"><i>How Euler Did Even More</i></a>. EUA: Mathematical Association of America. p.&#160;42. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-88385-584-3" title="Especial:Fontes de livros/978-0-88385-584-3">978-0-88385-584-3</a>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.5948%2F978161444519">10.5948/978161444519</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=C.+Edward&amp;rft.aulast=Sandifer&amp;rft.btitle=How+Euler+Did+Even+More&amp;rft.date=2015&amp;rft.genre=book&amp;rft.isbn=978-0-88385-584-3&amp;rft.pages=42&amp;rft.place=EUA&amp;rft.pub=Mathematical+Association+of+America&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3c6iBQAAQBAJ%26pg%3DPA42&amp;rft_id=info%3Adoi%2F10.5948%2F978161444519&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><a href="#cite_ref-27">↑</a></span> <span class="reference-text"><cite class="citation book">Koshy, Thomas (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=-9pg-4Pa19IC&amp;pg=PA369"><i>Elementary Number Theory with Applications</i></a>. [S.l.]: Academic Press. p.&#160;369. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-12-421171-1" title="Especial:Fontes de livros/978-0-12-421171-1">978-0-12-421171-1</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Thomas&amp;rft.aulast=Koshy&amp;rft.btitle=Elementary+Number+Theory+with+Applications&amp;rft.date=2002&amp;rft.genre=book&amp;rft.isbn=978-0-12-421171-1&amp;rft.pages=369&amp;rft.pub=Academic+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D-9pg-4Pa19IC%26pg%3DPA369&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><a href="#cite_ref-28">↑</a></span> <span class="reference-text"><cite class="citation book">Yuan, Wang (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=g4jVCgAAQBAJ&amp;pg=PA21"><i>Goldbach Conjecture</i></a>. Col: Series In Pure Mathematics (em inglês). <b>4</b> 2.ª ed. Singapura: World Scientific. p.&#160;21. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-981-4487-52-8" title="Especial:Fontes de livros/978-981-4487-52-8">978-981-4487-52-8</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Wang&amp;rft.aulast=Yuan&amp;rft.btitle=Goldbach+Conjecture&amp;rft.date=2002&amp;rft.edition=2.%AA&amp;rft.genre=book&amp;rft.isbn=978-981-4487-52-8&amp;rft.pages=21&amp;rft.place=Singapura&amp;rft.pub=World+Scientific&amp;rft.series=Series+In+Pure+Mathematics&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dg4jVCgAAQBAJ%26pg%3DPA21&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><a href="#cite_ref-29">↑</a></span> <span class="reference-text"><cite class="citation book">Narkiewicz, Wladyslaw (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=VVr3EuiHU0YC&amp;pg=PA11">«1.2 Sum of Reciprocals of Primes»</a>. <i>The Development of Prime Number Theory: From Euclid to Hardy and Littlewood</i>. Col: Springer Monographs in Mathematics (em inglês). [S.l.]: Springer. p.&#160;11. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-3-540-66289-1" title="Especial:Fontes de livros/978-3-540-66289-1">978-3-540-66289-1</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=1.2+Sum+of+Reciprocals+of+Primes&amp;rft.aufirst=Wladyslaw&amp;rft.aulast=Narkiewicz&amp;rft.btitle=The+Development+of+Prime+Number+Theory%3A+From+Euclid+to+Hardy+and+Littlewood&amp;rft.date=2000&amp;rft.genre=bookitem&amp;rft.isbn=978-3-540-66289-1&amp;rft.pages=11&amp;rft.pub=Springer&amp;rft.series=Springer+Monographs+in+Mathematics&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVVr3EuiHU0YC%26pg%3DPA11&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><a href="#cite_ref-30">↑</a></span> <span class="reference-text"><cite class="citation journal"><a href="/wiki/Pafnuty_Chebyshev" class="mw-redirect" title="Pafnuty Chebyshev">Tchebychev, P.</a> (1852). <a rel="nofollow" class="external text" href="http://sites.mathdoc.fr/JMPA/PDF/JMPA_1852_1_17_A19_0.pdf">«Mémoire sur les nombres premiers.»</a> <span style="font-size:85%;">(PDF)</span>. <i>Journal de mathématiques pures et appliquées</i>. Série 1 (em francês): 366–390</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=M%C3%A9moire+sur+les+nombres+premiers.&amp;rft.aufirst=P.&amp;rft.aulast=Tchebychev&amp;rft.date=1852&amp;rft.genre=article&amp;rft.jtitle=Journal+de+math%C3%A9matiques+pures+et+appliqu%C3%A9es&amp;rft.pages=366-390&amp;rft_id=http%3A%2F%2Fsites.mathdoc.fr%2FJMPA%2FPDF%2FJMPA_1852_1_17_A19_0.pdf&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span>. (Prova do postulado: 371–382). Ver também: Mémoires de l'Académie Impériale des Sciences de St. Pétersbourg, vol. 7, pp. 15–33, 1854</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><a href="#cite_ref-31">↑</a></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/Tom_M._Apostol" class="mw-redirect" title="Tom M. Apostol">Apostol, Tom M.</a> (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=aiDyBwAAQBAJ&amp;pg=PA1">«A centennial history of the prime number theorem»</a>. In: Bambah, R.P.; Dumir, V.C.; Hans-Gill, R.J. <i>Number Theory</i>. Col: Trends in Mathematics (em inglês). Basel: Birkhäuser. pp.&#160;1–14. <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=1764793">1764793</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=A+centennial+history+of+the+prime+number+theorem&amp;rft.aufirst=Tom+M.&amp;rft.aulast=Apostol&amp;rft.btitle=Number+Theory&amp;rft.date=2000&amp;rft.genre=bookitem&amp;rft.pages=1-14&amp;rft.place=Basel&amp;rft.pub=Birkh%C3%A4user&amp;rft.series=Trends+in+Mathematics&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D1764793&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DaiDyBwAAQBAJ%26pg%3DPA1&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><a href="#cite_ref-32">↑</a></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/Tom_M._Apostol" class="mw-redirect" title="Tom M. Apostol">Apostol, Tom M.</a> (1976). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3yoBCAAAQBAJ&amp;pg=PA146">«7. Dirichlet's Theorem on Primes in Arithmetical Progressions»</a>. <i>Introduction to Analytic Number Theory</i> (em inglês). New York; Heidelberg: Springer-Verlag. pp.&#160;146–156. <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=0434929">0434929</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=7.+Dirichlet%27s+Theorem+on+Primes+in+Arithmetical+Progressions&amp;rft.aufirst=Tom+M.&amp;rft.aulast=Apostol&amp;rft.btitle=Introduction+to+Analytic+Number+Theory&amp;rft.date=1976&amp;rft.genre=bookitem&amp;rft.pages=146-156&amp;rft.place=New+York%3B+Heidelberg&amp;rft.pub=Springer-Verlag&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D0434929&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3yoBCAAAQBAJ%26pg%3DPA146&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><a href="#cite_ref-33">↑</a></span> <span class="reference-text"><cite class="citation book">Chabert, Jean-Luc (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XcDqCAAAQBAJ&amp;pg=PA261"><i>A History of Algorithms: From the Pebble to the Microchip</i></a> (em inglês). [S.l.]: Springer. p.&#160;261. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-3-642-18192-4" title="Especial:Fontes de livros/978-3-642-18192-4">978-3-642-18192-4</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Jean-Luc&amp;rft.aulast=Chabert&amp;rft.btitle=A+History+of+Algorithms%3A+From+the+Pebble+to+the+Microchip&amp;rft.date=2012&amp;rft.genre=book&amp;rft.isbn=978-3-642-18192-4&amp;rft.pages=261&amp;rft.pub=Springer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXcDqCAAAQBAJ%26pg%3DPA261&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-FOOTNOTERosen2000342-34"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTERosen2000342_34-0">↑</a></span> <span class="reference-text"><a href="#CITEREFRosen2000">Rosen 2000</a>, p.&#160;342.</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><a href="#cite_ref-35">↑</a></span> <span class="reference-text"><cite class="citation book">Cooper, S. Barry; Hodges, Andrew (2016). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=h12cCwAAQBAJ&amp;pg=PA37"><i>The Once and Future Turing</i></a>. [S.l.]: Cambridge University Press. pp.&#160;37–38. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-1-107-01083-3" title="Especial:Fontes de livros/978-1-107-01083-3">978-1-107-01083-3</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.au=Hodges%2C+Andrew&amp;rft.aufirst=S.+Barry&amp;rft.aulast=Cooper&amp;rft.btitle=The+Once+and+Future+Turing&amp;rft.date=2016&amp;rft.genre=book&amp;rft.isbn=978-1-107-01083-3&amp;rft.pages=37-38&amp;rft.pub=Cambridge+University+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dh12cCwAAQBAJ%26pg%3DPA37&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-FOOTNOTERosen2000245-37"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTERosen2000245_37-0">↑</a></span> <span class="reference-text"><a href="#CITEREFRosen2000">Rosen 2000</a>, p.&#160;245.</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><a href="#cite_ref-38">↑</a></span> <span class="reference-text"><cite class="citation book">Beiler, Albert H. (1999) [1966]. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=NbbbL9gMJ88C&amp;pg=PA2"><i>Recreations in the Theory of Numbers: The Queen of Mathematics Entertains</i></a> (em inglês). [S.l.]: Dover. p.&#160;2. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-486-21096-4" title="Especial:Fontes de livros/978-0-486-21096-4">978-0-486-21096-4</a>. <a href="/wiki/OCLC" class="mw-redirect" title="OCLC">OCLC</a>&#160;<a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/444171535">444171535</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Albert+H.&amp;rft.aulast=Beiler&amp;rft.btitle=Recreations+in+the+Theory+of+Numbers%3A+The+Queen+of+Mathematics+Entertains&amp;rft.date=1999&amp;rft.genre=book&amp;rft.isbn=978-0-486-21096-4&amp;rft.pages=2&amp;rft.pub=Dover&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DNbbbL9gMJ88C%26pg%3DPA2&amp;rft_id=info%3Aoclcnum%2F444171535&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><a href="#cite_ref-39">↑</a></span> <span class="reference-text"><cite class="citation journal">Katz, Shaul (2004). «Berlin roots&#160;– Zionist incarnation: the ethos of pure mathematics and the beginnings of the Einstein Institute of Mathematics at the Hebrew University of Jerusalem». <i>Science in Context</i> (em inglês). <b>17</b> (1–2): 199–234. <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=2089305">2089305</a>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1017%2FS0269889704000092">10.1017/S0269889704000092</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=Berlin+roots+%93+Zionist+incarnation%3A+the+ethos+of+pure+mathematics+and+the+beginnings+of+the+Einstein+Institute+of+Mathematics+at+the+Hebrew+University+of+Jerusalem&amp;rft.aufirst=Shaul&amp;rft.aulast=Katz&amp;rft.date=2004&amp;rft.genre=article&amp;rft.issue=1%932&amp;rft.jtitle=Science+in+Context&amp;rft.pages=199-234&amp;rft.volume=17&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D2089305&amp;rft_id=info%3Adoi%2F10.1017%2FS0269889704000092&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-ent-7-41"><span class="mw-cite-backlink"><a href="#cite_ref-ent-7_41-0">↑</a></span> <span class="reference-text"><cite class="citation book">Kraft, James S.; Washington, Lawrence C. (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4NAqBgAAQBAJ&amp;pg=PA7"><i>Elementary Number Theory</i></a>. Col: Textbooks in mathematics (em inglês). [S.l.]: CRC Press. p.&#160;7. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-1-4987-0269-0" title="Especial:Fontes de livros/978-1-4987-0269-0">978-1-4987-0269-0</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.au=Washington%2C+Lawrence+C.&amp;rft.aufirst=James+S.&amp;rft.aulast=Kraft&amp;rft.btitle=Elementary+Number+Theory&amp;rft.date=2014&amp;rft.genre=book&amp;rft.isbn=978-1-4987-0269-0&amp;rft.pages=7&amp;rft.pub=CRC+Press&amp;rft.series=Textbooks+in+mathematics&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4NAqBgAAQBAJ%26pg%3DPA7&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><a href="#cite_ref-42">↑</a></span> <span class="reference-text"><cite class="citation book">Bauer, Craig P. (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=EBkEGAOlCDsC&amp;pg=PA468"><i>Secret History: The Story of Cryptology</i></a>. Col: Discrete Mathematics and Its Applications (em inglês). [S.l.]: CRC Press. p.&#160;468. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-1-4665-6186-1" title="Especial:Fontes de livros/978-1-4665-6186-1">978-1-4665-6186-1</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Craig+P.&amp;rft.aulast=Bauer&amp;rft.btitle=Secret+History%3A+The+Story+of+Cryptology&amp;rft.date=2013&amp;rft.genre=book&amp;rft.isbn=978-1-4665-6186-1&amp;rft.pages=468&amp;rft.pub=CRC+Press&amp;rft.series=Discrete+Mathematics+and+Its+Applications&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DEBkEGAOlCDsC%26pg%3DPA468&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><a href="#cite_ref-43">↑</a></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/Victor_Klee" title="Victor Klee">Klee, Victor</a>; Wagon, Stan (1991). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tRdoIhHh3moC&amp;pg=PA224"><i>Old and New Unsolved Problems in Plane Geometry and Number Theory</i></a>. Col: Dolciani mathematical expositions (em inglês). <b>11</b>. [S.l.]: Cambridge University Press. p.&#160;224. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-88385-315-3" title="Especial:Fontes de livros/978-0-88385-315-3">978-0-88385-315-3</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.au=Wagon%2C+Stan&amp;rft.aufirst=Victor&amp;rft.aulast=Klee&amp;rft.btitle=Old+and+New+Unsolved+Problems+in+Plane+Geometry+and+Number+Theory&amp;rft.date=1991&amp;rft.genre=book&amp;rft.isbn=978-0-88385-315-3&amp;rft.pages=224&amp;rft.pub=Cambridge+University+Press&amp;rft.series=Dolciani+mathematical+expositions&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DtRdoIhHh3moC%26pg%3DPA224&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-FOOTNOTENeale201718,_47-44"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTENeale201718,_47_44-0">↑</a></span> <span class="reference-text"><a href="#CITEREFNeale2017">Neale 2017</a>, pp.&#160;18, 47.</span> </li> <li id="cite_note-crxk-34-45"><span class="mw-cite-backlink">↑ <sup><i><b><a href="#cite_ref-crxk-34_45-0">a</a></b></i></sup> <sup><i><b><a href="#cite_ref-crxk-34_45-1">b</a></b></i></sup></span> <span class="reference-text"><a href="#CITEREFCaldwellReddickXiongKeller2012">Caldwell et al. 2012</a>, Artigo 12.9.8. Para uma seleção de citações e sobre as posições dos antigos gregos sobre a situação do 1 e 2, veja em particular pp. 3–4. Para os matemáticos islâmicos, veja p. 6.</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><a href="#cite_ref-46">↑</a></span> <span class="reference-text"><cite class="citation book">Tarán, Leonardo (1981). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cUPXqSb7V1wC&amp;pg=PA35"><i>Speusippus of Athens: A Critical Study With a Collection of the Related Texts and Commentary</i></a>. Col: Philosophia Antiqua&#160;: A Series of Monographs on Ancient Philosophy (em inglês). <b>39</b>. [S.l.]: Brill. pp.&#160;35–38. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-90-04-06505-5" title="Especial:Fontes de livros/978-90-04-06505-5">978-90-04-06505-5</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Leonardo&amp;rft.aulast=Tar%C3%A1n&amp;rft.btitle=Speusippus+of+Athens%3A+A+Critical+Study+With+a+Collection+of+the+Related+Texts+and+Commentary&amp;rft.date=1981&amp;rft.genre=book&amp;rft.isbn=978-90-04-06505-5&amp;rft.pages=35-38&amp;rft.pub=Brill&amp;rft.series=Philosophia+Antiqua+%3A+A+Series+of+Monographs+on+Ancient+Philosophy&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DcUPXqSb7V1wC%26pg%3DPA35&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><a href="#cite_ref-47">↑</a></span> <span class="reference-text"><a href="#CITEREFCaldwellReddickXiongKeller2012">Caldwell et al. 2012</a>, pp.&#160;7–13. Veja em particular as entradas de Stevin, Brancker, Wallis, e Prestet.</span> </li> <li id="cite_note-FOOTNOTECaldwellReddickXiongKeller201215-48"><span class="mw-cite-backlink"><a href="#cite_ref-FOOTNOTECaldwellReddickXiongKeller201215_48-0">↑</a></span> <span class="reference-text"><a href="#CITEREFCaldwellReddickXiongKeller2012">Caldwell et al. 2012</a>, p.&#160;15.</span> </li> <li id="cite_note-cx-49"><span class="mw-cite-backlink">↑ <sup><i><b><a href="#cite_ref-cx_49-0">a</a></b></i></sup> <sup><i><b><a href="#cite_ref-cx_49-1">b</a></b></i></sup> <sup><i><b><a href="#cite_ref-cx_49-2">c</a></b></i></sup></span> <span class="reference-text"><cite class="citation journal">Caldwell, Chris K.; Xiong, Yeng (2012). <a rel="nofollow" class="external text" href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell1/cald5.pdf">«What is the smallest prime?»</a> <span style="font-size:85%;">(PDF)</span>. <i><a href="/wiki/Journal_of_Integer_Sequences" title="Journal of Integer Sequences">Journal of Integer Sequences</a></i>. <b>15</b> (9): Article 12.9.7. <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=3005530">3005530</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=What+is+the+smallest+prime%3F&amp;rft.au=Xiong%2C+Yeng&amp;rft.aufirst=Chris+K.&amp;rft.aulast=Caldwell&amp;rft.date=2012&amp;rft.genre=article&amp;rft.issue=9&amp;rft.jtitle=Journal+of+Integer+Sequences&amp;rft.pages=Article+12.9.7&amp;rft.volume=15&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D3005530&amp;rft_id=https%3A%2F%2Fcs.uwaterloo.ca%2Fjournals%2FJIS%2FVOL15%2FCaldwell1%2Fcald5.pdf&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><a href="#cite_ref-50">↑</a></span> <span class="reference-text"><cite class="citation book">Riesel, Hans (1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ITvaBwAAQBAJ&amp;pg=PA36"><i>Prime Numbers and Computer Methods for Factorization</i></a> (em inglês) 2.ª ed. Basel, Switzerland: Birkhäuser. p.&#160;36. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-8176-3743-9" title="Especial:Fontes de livros/978-0-8176-3743-9">978-0-8176-3743-9</a>. <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=1292250">1292250</a>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2F978-1-4612-0251-6">10.1007/978-1-4612-0251-6</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Hans&amp;rft.aulast=Riesel&amp;rft.btitle=Prime+Numbers+and+Computer+Methods+for+Factorization&amp;rft.date=1994&amp;rft.edition=2.%AA&amp;rft.genre=book&amp;rft.isbn=978-0-8176-3743-9&amp;rft.pages=36&amp;rft.place=Basel%2C+Switzerland&amp;rft.pub=Birkh%C3%A4user&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D1292250&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DITvaBwAAQBAJ%26pg%3DPA36&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4612-0251-6&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-cg-bon-129-130-51"><span class="mw-cite-backlink">↑ <sup><i><b><a href="#cite_ref-cg-bon-129-130_51-0">a</a></b></i></sup> <sup><i><b><a href="#cite_ref-cg-bon-129-130_51-1">b</a></b></i></sup></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/John_Conway" title="John Conway">Conway, John Horton</a>; <a href="/wiki/Richard_Kenneth_Guy" title="Richard Kenneth Guy">Guy, Richard K.</a> (1996). <span class="plainlinks"><a rel="nofollow" class="external text" href="https://archive.org/details/bookofnumbers0000conw"><i>The Book of Numbers</i></a><span style="margin-left:0.1em"><span typeof="mw:File"><span title="Registo grátis requerido"><img alt="Registo grátis requerido" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Lock-yellow.svg/9px-Lock-yellow.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Lock-yellow.svg/14px-Lock-yellow.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b3/Lock-yellow.svg/18px-Lock-yellow.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></span> (em inglês). New York: Copernicus. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/bookofnumbers0000conw/page/129">129–130</a>. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-387-97993-9" title="Especial:Fontes de livros/978-0-387-97993-9">978-0-387-97993-9</a>. <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=1411676">1411676</a>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007%2F978-1-4612-4072-3">10.1007/978-1-4612-4072-3</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.au=Guy%2C+Richard+K.&amp;rft.aufirst=John+Horton&amp;rft.aulast=Conway&amp;rft.btitle=The+Book+of+Numbers&amp;rft.date=1996&amp;rft.genre=book&amp;rft.isbn=978-0-387-97993-9&amp;rft.pages=129-130&amp;rft.place=New+York&amp;rft.pub=Copernicus&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D1411676&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fbookofnumbers0000conw&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4612-4072-3&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><a href="#cite_ref-52">↑</a></span> <span class="reference-text">Para a função totiente, veja <a href="#CITEREFSierpiński1988">Sierpiński 1988</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=ktCZ2MvgN3MC&amp;pg=PA245">245</a>. Para a soma dos divisores, veja <a href="#CITEREFSandifer2007">Sandifer 2007</a>, p.&#160;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=sohHs7ExOsYC&amp;pg=PA59">59</a>.</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><a href="#cite_ref-53">↑</a></span> <span class="reference-text">Conforme <a rel="nofollow" class="external text" href="http://www.wolframalpha.com/input/?i=370261+%3C+x+%3C+NextPrime%28370261%29">cálculo feito</a> pelo <a href="/wiki/Wolfram_Alpha" class="mw-redirect" title="Wolfram Alpha">Wolfram Alpha</a>.</span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><a href="#cite_ref-54">↑</a></span> <span class="reference-text">Conforme <a rel="nofollow" class="external text" href="http://www.wolframalpha.com/input/?i=prime+from+20831323+to+20831533">cálculo feito</a> pelo <a href="/wiki/Wolfram_Alpha" class="mw-redirect" title="Wolfram Alpha">Wolfram Alpha</a>.</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><a href="#cite_ref-55">↑</a></span> <span class="reference-text">Hua (2009), <span class="plainlinks"><a rel="nofollow" class="external text" href="http://books.google.com/books?id=H1jFySMjBMEC&amp;pg=PA177&amp;dq=%2241+takes+on+prime+values%22">p. 176-177</a></span>"</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><a href="#cite_ref-56">↑</a></span> <span class="reference-text">Ver <a rel="nofollow" class="external text" href="http://www.wolframalpha.com/input/?i=evaluate+x^2%E2%88%92x%2B41+for+x+from+0..40">lista dos valores</a>, calculada pelo <a href="/wiki/Wolfram_Alpha" class="mw-redirect" title="Wolfram Alpha">Wolfram Alpha</a></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><a href="#cite_ref-57">↑</a></span> <span class="reference-text"><cite class="citation journal"><a href="/wiki/Ernesto_Ces%C3%A0ro" title="Ernesto Cesàro">Ernest Cesàro</a> (1894). <a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k30752">«Sur une formule empirique de M. Pervouchine»</a>. <i>Comptes rendus hebdomadaires des séances de l'Académie des sciences</i>. <b>119</b>: 848–849</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=Sur+une+formule+empirique+de+M.+Pervouchine&amp;rft.au=Ernest+Ces%C3%A0ro&amp;rft.date=1894&amp;rft.genre=article&amp;rft.jtitle=Comptes+rendus+hebdomadaires+des+s%C3%A9ances+de+l%27Acad%C3%A9mie+des+sciences&amp;rft.pages=848-849&amp;rft.volume=119&amp;rft_id=http%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k30752&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span> (em francês)</span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><a href="#cite_ref-58">↑</a></span> <span class="reference-text"><cite class="citation book"><a href="/w/index.php?title=Eric_Bach&amp;action=edit&amp;redlink=1" class="new" title="Eric Bach (página não existe)">Eric Bach</a>, <a href="/w/index.php?title=Jeffrey_Shallit&amp;action=edit&amp;redlink=1" class="new" title="Jeffrey Shallit (página não existe)">Jeffrey Shallit</a> (1996). <i>Algorithmic Number Theory</i>. <b>1</b>. [S.l.]: MIT Press. p.&#160;233. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/0-262-02405-5" title="Especial:Fontes de livros/0-262-02405-5">0-262-02405-5</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.au=Eric+Bach%2C+Jeffrey+Shallit&amp;rft.btitle=Algorithmic+Number+Theory&amp;rft.date=1996&amp;rft.genre=book&amp;rft.isbn=0-262-02405-5&amp;rft.pages=233&amp;rft.pub=MIT+Press&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><a href="#cite_ref-59">↑</a></span> <span class="reference-text"><cite class="citation journal"><a href="/w/index.php?title=Pierre_Dusart&amp;action=edit&amp;redlink=1" class="new" title="Pierre Dusart (página não existe)">Pierre Dusart</a> (1999). <a rel="nofollow" class="external text" href="http://www.ams.org/mcom/1999-68-225/S0025-5718-99-01037-6/S0025-5718-99-01037-6.pdf">«The <i>k</i>th prime is greater than <i>k(ln k + ln ln k-1)</i> for <i>k</i>&gt;=2»</a> <span style="font-size:85%;">(PDF)</span>. <i>Mathematics of Computation</i>. <b>68</b>: 411–415</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=The+kth+prime+is+greater+than+k%28ln+k+%2B+ln+ln+k-1%29+for+k%3E%3D2&amp;rft.au=Pierre+Dusart&amp;rft.date=1999&amp;rft.genre=article&amp;rft.jtitle=Mathematics+of+Computation&amp;rft.pages=411-415&amp;rft.volume=68&amp;rft_id=http%3A%2F%2Fwww.ams.org%2Fmcom%2F1999-68-225%2FS0025-5718-99-01037-6%2FS0025-5718-99-01037-6.pdf&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><a href="#cite_ref-60">↑</a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="http://www.foxnews.com/science/2013/02/05/worlds-largest-prime-number-discovered/">«World's largest prime number discovered -- all 17 million digits»</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.btitle=World%99s+largest+prime+number+discovered+--+all+17+million+digits&amp;rft.genre=unknown&amp;rft_id=http%3A%2F%2Fwww.foxnews.com%2Fscience%2F2013%2F02%2F05%2Fworlds-largest-prime-number-discovered%2F&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><a href="#cite_ref-61">↑</a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="http://www.smithsonianmag.com/smart-news/missouri-mathematicians-discover-new-prime-number-180957881/?utm_source=smithsoniandaily&amp;no-ist">«Missouri Mathematicians Discover New Prime Number»</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.btitle=Missouri+Mathematicians+Discover+New+Prime+Number&amp;rft.genre=unknown&amp;rft_id=http%3A%2F%2Fwww.smithsonianmag.com%2Fsmart-news%2Fmissouri-mathematicians-discover-new-prime-number-180957881%2F%3Futm_source%3Dsmithsoniandaily%26no-ist&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><a href="#cite_ref-62">↑</a></span> <span class="reference-text"><cite class="citation web"><a href="/wiki/BBC" title="BBC">BBC</a>. <a rel="nofollow" class="external text" href="https://www.bbc.com/news/technology-35361090">«Largest known prime number discovered in Missouri»</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.au=BBC&amp;rft.btitle=Largest+known+prime+number+discovered+in+Missouri&amp;rft.genre=unknown&amp;rft_id=http%3A%2F%2Fwww.bbc.com%2Fnews%2Ftechnology-35361090&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><a href="#cite_ref-63">↑</a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="http://observador.pt/2018/01/05/descoberto-o-maior-numero-primo-conhecido-tem-mais-de-23-milhoes-de-digitos/">«Descoberto o maior número primo conhecido. Tem mais de 23 milhões de dígitos»</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.btitle=Descoberto+o+maior+n%C3%BAmero+primo+conhecido.+Tem+mais+de+23+milh%C3%B5es+de+d%C3gitos&amp;rft.genre=unknown&amp;rft_id=http%3A%2F%2Fobservador.pt%2F2018%2F01%2F05%2Fdescoberto-o-maior-numero-primo-conhecido-tem-mais-de-23-milhoes-de-digitos%2F&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><a href="#cite_ref-64">↑</a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://www.livescience.com/physics-mathematics/mathematics/largest-known-prime-number-spanning-41-million-digits-discovered-by-amateur-mathematician-using-free-software">«Largest known prime number, spanning 41 million digits, discovered by amateur mathematician using free software»</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.btitle=Largest+known+prime+number%2C+spanning+41+million+digits%2C+discovered+by+amateur+mathematician+using+free+software&amp;rft.genre=unknown&amp;rft_id=https%3A%2F%2Fwww.livescience.com%2Fphysics-mathematics%2Fmathematics%2Flargest-known-prime-number-spanning-41-million-digits-discovered-by-amateur-mathematician-using-free-software&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><a href="#cite_ref-65">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://ideiasesquecidas.com/2020/05/27/cigarras-e-numeros-primos/">ideiasesquecidas.com/</a> <i>Cigarras e números primos</i></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><a href="#cite_ref-66">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.nationalgeographic.com/science/article/bamboo-mathematicians">nationalgeographic.com/</a> Zimmer, Carl (May 15, 2015). "Bamboo Mathematicians". Phenomena: The Loom. National Geographic. Retrieved February 22, 2018.</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><a href="#cite_ref-67">↑</a></span> <span class="reference-text"><cite class="citation web"><a href="/w/index.php?title=Ivars_Peterson&amp;action=edit&amp;redlink=1" class="new" title="Ivars Peterson (página não existe)">Peterson, Ivars</a> (28 de junho de 1999). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20071020141624/http://maa.org/mathland/mathtrek_6_28_99.html">«The Return of Zeta»</a>. <i>MAA Online</i><span class="reference-accessdate">. Consultado em 14 de março de 2008</span>. Arquivado do <a rel="nofollow" class="external text" href="http://www.maa.org/mathland/mathtrek_6_28_99.html">original</a> em 20 de outubro de 2007</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=The+Return+of+Zeta&amp;rft.aufirst=Ivars&amp;rft.aulast=Peterson&amp;rft.date=1999-06-28&amp;rft.genre=unknown&amp;rft.jtitle=MAA+Online&amp;rft_id=http%3A%2F%2Fwww.maa.org%2Fmathland%2Fmathtrek_6_28_99.html&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><a href="#cite_ref-68">↑</a></span> <span class="reference-text"><cite class="citation journal"><a href="/w/index.php?title=Brian_Hayes_(scientist)&amp;action=edit&amp;redlink=1" class="new" title="Brian Hayes (scientist) (página não existe)">Hayes, Brian</a> (2003). «Computing science: The spectrum of Riemannium». <i><a href="/w/index.php?title=American_Scientist&amp;action=edit&amp;redlink=1" class="new" title="American Scientist (página não existe)">American Scientist</a></i>. <b>91</b> (4): 296–300. <a href="/wiki/International_Standard_Serial_Number" title="International Standard Serial Number">ISSN</a>&#160;<a rel="nofollow" class="external text" href="//www.worldcat.org/issn/0003-0996">0003-0996</a>. <a href="/wiki/JSTOR" title="JSTOR">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="//www.jstor.org/stable/27858239">27858239</a>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1511%2F2003.26.3349">10.1511/2003.26.3349</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=Computing+science%3A+The+spectrum+of+Riemannium&amp;rft.aufirst=Brian&amp;rft.aulast=Hayes&amp;rft.date=2003&amp;rft.genre=article&amp;rft.issn=0003-0996&amp;rft.issue=4&amp;rft.jtitle=American+Scientist&amp;rft.pages=296-300&amp;rft.volume=91&amp;rft_id=%2F%2Fwww.jstor.org%2Fstable%2F27858239&amp;rft_id=info%3Adoi%2F10.1511%2F2003.26.3349&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><a href="#cite_ref-69">↑</a></span> <span class="reference-text"><cite class="citation book">Bengtsson, Ingemar; <a href="/w/index.php?title=Karol_%C5%BByczkowski&amp;action=edit&amp;redlink=1" class="new" title="Karol Życzkowski (página não existe)">Życzkowski, Karol</a> (2017). <i>Geometry of quantum states&#160;: an introduction to quantum entanglement</i> Second ed. Cambridge: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. pp.&#160;313–354. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-1-107-02625-4" title="Especial:Fontes de livros/978-1-107-02625-4">978-1-107-02625-4</a>. <a href="/wiki/OCLC" class="mw-redirect" title="OCLC">OCLC</a>&#160;<a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/967938939">967938939</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.au=%C5%BByczkowski%2C+Karol&amp;rft.aufirst=Ingemar&amp;rft.aulast=Bengtsson&amp;rft.btitle=Geometry+of+quantum+states+%3A+an+introduction+to+quantum+entanglement&amp;rft.date=2017&amp;rft.edition=Second&amp;rft.genre=book&amp;rft.isbn=978-1-107-02625-4&amp;rft.pages=313-354&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft_id=info%3Aoclcnum%2F967938939&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><a href="#cite_ref-70">↑</a></span> <span class="reference-text"><cite class="citation journal">Zhu, Huangjun (2010). <a rel="nofollow" class="external text" href="http://stacks.iop.org/1751-8121/43/i=30/a=305305?key=crossref.45cb006b9f3c7e510461594ea8dfa7f7">«SIC POVMs and Clifford groups in prime dimensions»</a>. <i>Journal of Physics A: Mathematical and Theoretical</i>. <b>43</b> (30). 305305&#160;páginas. <a href="/wiki/Bibcode" title="Bibcode">Bibcode</a>:<a rel="nofollow" class="external text" href="http://ui.adsabs.harvard.edu/abs/2010JPhA...43D5305Z">2010JPhA...43D5305Z</a>. <a href="/wiki/ArXiv" title="ArXiv">arXiv</a>:<span class="plainlinks"><a rel="nofollow" class="external text" href="//arxiv.org/abs/1003.3591">1003.3591</a><span style="margin-left:0.1em"><span typeof="mw:File"><span title="Acessível livremente"><img alt="Acessível livremente" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></span>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088%2F1751-8113%2F43%2F30%2F305305">10.1088/1751-8113/43/30/305305</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=SIC+POVMs+and+Clifford+groups+in+prime+dimensions&amp;rft.aufirst=Huangjun&amp;rft.aulast=Zhu&amp;rft.date=2010&amp;rft.genre=article&amp;rft.issue=30&amp;rft.jtitle=Journal+of+Physics+A%3A+Mathematical+and+Theoretical&amp;rft.volume=43&amp;rft_id=http%3A%2F%2Fstacks.iop.org%2F1751-8121%2F43%2Fi%3D30%2Fa%3D305305%3Fkey%3Dcrossref.45cb006b9f3c7e510461594ea8dfa7f7&amp;rft_id=info%3Aarxiv%2F1003.3591&amp;rft_id=info%3Abibcode%2F2010JPhA...43D5305Z&amp;rft_id=info%3Adoi%2F10.1088%2F1751-8113%2F43%2F30%2F305305&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Bibliografia">Bibliografia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=13" title="Editar secção: Bibliografia" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=13" title="Editar código-fonte da secção: Bibliografia"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation book">Hua, L. K. (2009). <a rel="nofollow" class="external text" href="http://www.ams.org/bookstore-getitem/item=MMONO/13.S"><i>Additive Theory of Prime Numbers</i></a>. Col: Translations of Mathematical Monographs. <b>13</b>. [S.l.]: AMS Bookstore. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-8218-4942-2" title="Especial:Fontes de livros/978-0-8218-4942-2">978-0-8218-4942-2</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=L.+K.&amp;rft.aulast=Hua&amp;rft.btitle=Additive+Theory+of+Prime+Numbers&amp;rft.date=2009&amp;rft.genre=book&amp;rft.isbn=978-0-8218-4942-2&amp;rft.pub=AMS+Bookstore&amp;rft.series=Translations+of+Mathematical+Monographs&amp;rft_id=http%3A%2F%2Fwww.ams.org%2Fbookstore-getitem%2Fitem%3DMMONO%2F13.S&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li>Marcus du Sautoy, <b>Os mistérios dos números: Uma viagem pelos grandes enigmas da matemática (que até hoje ninguém foi capaz de resolver)</b>, Jorge Zahar Editor Ltda, 2013 <a href="/wiki/Especial:Fontes_de_livros/8537810991" class="internal mw-magiclink-isbn">ISBN 8-537-81099-1</a></li> <li>Luogeng Hua, <b>Additive theory of prime numbers</b>, American Mathematical Soc. <a href="/wiki/Especial:Fontes_de_livros/0821897500" class="internal mw-magiclink-isbn">ISBN 0-821-89750-0</a> (em inglês)</li> <li>Mary Jane Sterling, <b>Álgebra I Para Leigos</b>, Alta Books Editora, 2013 <a href="/wiki/Especial:Fontes_de_livros/857608256X" class="internal mw-magiclink-isbn">ISBN 8-576-08256-X</a></li> <li>Edward S. Wall, <b>Teoria dos Números para Professores do Ensino Fundamental</b>, McGraw Hill Brasil, 2014 <a href="/wiki/Especial:Fontes_de_livros/8580553539" class="internal mw-magiclink-isbn">ISBN 8-580-55353-9</a></li> <li>PAULO BOUHID, <b>NÚMEROS CRUZADOS</b>, biblioteca24horas <a href="/wiki/Especial:Fontes_de_livros/857893055X" class="internal mw-magiclink-isbn">ISBN 8-578-93055-X</a></li> <li>LAURA LEMAY, ROGERS CADENHEAD, <b>APRENDA EM 21 DIAS JAVA 2</b> - TRADUÇÃO DA 4a ED. Elsevier Brasil <a href="/wiki/Especial:Fontes_de_livros/8535216855" class="internal mw-magiclink-isbn">ISBN 8-535-21685-5</a></li> <li><cite id="CITEREFCaldwellReddickXiongKeller2012" class="citation journal">Caldwell, Chris K.; Reddick, Angela; Xiong, Yeng; Keller, Wilfrid (2012). <a rel="nofollow" class="external text" href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell2/cald6.html">«The history of the primality of one: a selection of sources»</a>. <i><a href="/wiki/Journal_of_Integer_Sequences" title="Journal of Integer Sequences">Journal of Integer Sequences</a></i> (em inglês). <b>15</b> (9). <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=3005523">3005523</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=The+history+of+the+primality+of+one%3A+a+selection+of+sources&amp;rft.au=Keller%2C+Wilfrid&amp;rft.au=Reddick%2C+Angela&amp;rft.au=Xiong%2C+Yeng&amp;rft.aufirst=Chris+K.&amp;rft.aulast=Caldwell&amp;rft.date=2012&amp;rft.genre=article&amp;rft.issue=9&amp;rft.jtitle=Journal+of+Integer+Sequences&amp;rft.volume=15&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D3005523&amp;rft_id=https%3A%2F%2Fcs.uwaterloo.ca%2Fjournals%2FJIS%2FVOL15%2FCaldwell2%2Fcald6.html&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFDudley1978" class="citation book">Dudley, Underwood (1978). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=tr7SzBTsk1UC&amp;printsec=frontcover"><i>Elementary number theory</i></a> (em inglês) 2.ª ed. [S.l.]: W.H. Freeman and Co. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-7167-0076-0" title="Especial:Fontes de livros/978-0-7167-0076-0">978-0-7167-0076-0</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Underwood&amp;rft.aulast=Dudley&amp;rft.btitle=Elementary+number+theory&amp;rft.date=1978&amp;rft.edition=2.%AA&amp;rft.genre=book&amp;rft.isbn=978-0-7167-0076-0&amp;rft.pub=W.H.+Freeman+and+Co.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dtr7SzBTsk1UC%26printsec%3Dfrontcover&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFGuy2013" class="citation book"><a href="/wiki/Richard_Kenneth_Guy" title="Richard Kenneth Guy">Guy, Richard</a> (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1BnoBwAAQBAJ&amp;printsec=frontcover">«A1 Prime values of quadratic functions»</a>. <i>Unsolved Problems in Number Theory</i>. Col: Problem Books in Mathematics (em inglês) 3.ª ed. [S.l.]: Springer. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-387-26677-0" title="Especial:Fontes de livros/978-0-387-26677-0">978-0-387-26677-0</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=A1+Prime+values+of+quadratic+functions&amp;rft.aufirst=Richard&amp;rft.aulast=Guy&amp;rft.btitle=Unsolved+Problems+in+Number+Theory&amp;rft.date=2013&amp;rft.edition=3.%AA&amp;rft.genre=bookitem&amp;rft.isbn=978-0-387-26677-0&amp;rft.pub=Springer&amp;rft.series=Problem+Books+in+Mathematics&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1BnoBwAAQBAJ%26printsec%3Dfrontcover&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFNeale2017" class="citation book"><a href="/wiki/Vicky_Neale" title="Vicky Neale">Neale, Vicky</a> (2017). <i>Closing the Gap: The Quest to Understand Prime Numbers</i> (em inglês). [S.l.]: Oxford University Press. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-19-109243-5" title="Especial:Fontes de livros/978-0-19-109243-5">978-0-19-109243-5</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Vicky&amp;rft.aulast=Neale&amp;rft.btitle=Closing+the+Gap%3A+The+Quest+to+Understand+Prime+Numbers&amp;rft.date=2017&amp;rft.genre=book&amp;rft.isbn=978-0-19-109243-5&amp;rft.pub=Oxford+University+Press&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFRosen2000" class="citation book">Rosen, Kenneth H. (2000). «Theorem 9.20. Proth's Primality Test». <i>Elementary Number Theory and Its Applications</i> (em inglês) 4.ª ed. [S.l.]: Addison-Wesley. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-201-87073-2" title="Especial:Fontes de livros/978-0-201-87073-2">978-0-201-87073-2</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.atitle=Theorem+9.20.+Proth%27s+Primality+Test&amp;rft.aufirst=Kenneth+H.&amp;rft.aulast=Rosen&amp;rft.btitle=Elementary+Number+Theory+and+Its+Applications&amp;rft.date=2000&amp;rft.edition=4.%AA&amp;rft.genre=bookitem&amp;rft.isbn=978-0-201-87073-2&amp;rft.pub=Addison-Wesley&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFSandifer2007" class="citation book">Sandifer, C. Edward (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sohHs7ExOsYC&amp;printsec=frontcover"><i>How Euler Did It</i></a>. Col: MAA Spectrum. EUA: Mathematical Association of America. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-88385-563-8" title="Especial:Fontes de livros/978-0-88385-563-8">978-0-88385-563-8</a>. <a href="/wiki/Digital_object_identifier" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1090%2Fspec%2F052">10.1090/spec/052</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=C.+Edward&amp;rft.aulast=Sandifer&amp;rft.btitle=How+Euler+Did+It&amp;rft.date=2007&amp;rft.genre=book&amp;rft.isbn=978-0-88385-563-8&amp;rft.place=EUA&amp;rft.pub=Mathematical+Association+of+America&amp;rft.series=MAA+Spectrum&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DsohHs7ExOsYC%26printsec%3Dfrontcover&amp;rft_id=info%3Adoi%2F10.1090%2Fspec%2F052&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFSierpiński1988" class="citation book"><a href="/wiki/Wac%C5%82aw_Sierpi%C5%84ski" title="Wacław Sierpiński">Sierpiński, Wacław</a> (1988). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ktCZ2MvgN3MC&amp;printsec=frontcover"><i>Elementary Theory of Numbers</i></a>. Col: North-Holland Mathematical Library (em inglês). <b>31</b> 2.ª ed. [S.l.]: Elsevier. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-08-096019-7" title="Especial:Fontes de livros/978-0-08-096019-7">978-0-08-096019-7</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Wac%C5%82aw&amp;rft.aulast=Sierpi%C5%84ski&amp;rft.btitle=Elementary+Theory+of+Numbers&amp;rft.date=1988&amp;rft.edition=2.%AA&amp;rft.genre=book&amp;rft.isbn=978-0-08-096019-7&amp;rft.pub=Elsevier&amp;rft.series=North-Holland+Mathematical+Library&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DktCZ2MvgN3MC%26printsec%3Dfrontcover&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite id="CITEREFTao2009" class="citation book"><a href="/wiki/Terence_Tao" title="Terence Tao">Tao, Terence</a> (2009). <i>Poincaré's legacies, pages from year two of a mathematical blog. Part I</i>. Providence, RI: American Mathematical Society. <a href="/wiki/International_Standard_Book_Number" title="International Standard Book Number">ISBN</a>&#160;<a href="/wiki/Especial:Fontes_de_livros/978-0-8218-4883-8" title="Especial:Fontes de livros/978-0-8218-4883-8">978-0-8218-4883-8</a>. <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="//www.ams.org/mathscinet-getitem?mr=2523047">2523047</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fpt.wikipedia.org%3AN%C3%BAmero+primo&amp;rft.aufirst=Terence&amp;rft.aulast=Tao&amp;rft.btitle=Poincar%C3%A9%27s+legacies%2C+pages+from+year+two+of+a+mathematical+blog.+Part+I&amp;rft.date=2009&amp;rft.genre=book&amp;rft.isbn=978-0-8218-4883-8&amp;rft.place=Providence%2C+RI&amp;rft.pub=American+Mathematical+Society&amp;rft_id=%2F%2Fwww.ams.org%2Fmathscinet-getitem%3Fmr%3D2523047&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Ligações_externas"><span id="Liga.C3.A7.C3.B5es_externas"></span>Ligações externas</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;veaction=edit&amp;section=14" title="Editar secção: Ligações externas" class="mw-editsection-visualeditor"><span>editar</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=N%C3%BAmero_primo&amp;action=edit&amp;section=14" title="Editar código-fonte da secção: Ligações externas"><span>editar código-fonte</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r69325977">@media(max-width:768px){.mw-parser-output .mobile-stack{width:100%!important;float:none!important;margin:10px auto!important;text-align:center!important;box-sizing:border-box!important}.mw-parser-output .mobile-stack .image-container{float:none!important;display:inline-block;padding-bottom:10px}.mw-parser-output .mobile-stack .text-container{margin-left:0!important}}</style><div class="noprint mobile-stack" style="clear: right; border: solid #aaa 1px; margin: 0 0 1em 1em; font-size: 90%; background: var(--background-color-neutral-subtle, #f9f9f9); color: inherit; width: 238px; padding: 5px; spacing: 0; text-align: left; float: right;"> <div class="image-container" style="float: left; vertical-align:middle; margin: 0 10px 0 5px;"><figure class="mw-halign-none" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/38px-Wikibooks-logo.svg.png" decoding="async" width="38" height="38" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/57px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/76px-Wikibooks-logo.svg.png 2x" data-file-width="300" data-file-height="300" /></span><figcaption></figcaption></figure></div> <div class="text-container" style="margin-left: 30px; line-height:normal; vertical-align:middle;">O <a href="/wiki/Wikilivros" title="Wikilivros">Wikilivro</a> <i><a href="https://pt.wikibooks.org/wiki/Special:Search/Teoria_de_n%C3%BAmeros" class="extiw" title="b:Special:Search/Teoria de números">Teoria de números</a></i> tem uma página intitulada <i><b><a href="https://pt.wikibooks.org/wiki/Special:Search/Teoria_de_n%C3%BAmeros/N%C3%BAmeros_primos" class="extiw" title="b:Special:Search/Teoria de números/Números primos">Números primos</a></b></i> </div> </div> <ul><li><a rel="nofollow" class="external text" href="http://www.profcardy.com/artigos/mersenne.php">Primos de Mersenne de maneira didática</a></li> <li><a rel="nofollow" class="external text" href="http://primes.utm.edu/curios/">Prime curios</a>at the prime pages</li> <li><a rel="nofollow" class="external text" href="http://www.utm.edu/research/primes">The prime pages</a></li> <li><a rel="nofollow" class="external text" href="http://www-history.mcs.st-andrews.ac.uk/history/HistTopics/Prime_numbers.html">MacTutor history of prime numbers</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20050723210919/http://crypto.cs.mcgill.ca/~stiglic/PRIMES_P_FAQ.html">The "PRIMES is in P" FAQ</a></li> <li><a rel="nofollow" class="external text" href="http://www.primenumbers.net/prptop/prptop.php">Lista dos maiores números provavelmente primos</a></li> <li><a rel="nofollow" class="external text" href="http://www.primepuzzles.net/">The prime puzzles</a></li> <li><a rel="nofollow" class="external text" href="http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX20.html">Uma tradução para o inglês da demonstração de Euclides da infinitude dos primos</a></li> <li><a rel="nofollow" class="external text" href="http://wims.unice.fr/wims/wims.cgi?module=tool/number/primes.en">Primes</a>from WIMS is an online prime generator.</li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/PrimeSpiral.html">Prime Spiral pattern</a></li> <li><a rel="nofollow" class="external text" href="https://www.alpertron.com.ar/googolm1.pl?digits=12">12 digit primes</a>Known 12-digit prime factors of <a href="/wiki/Googolplex" title="Googolplex">Googolplex</a> - 1</li> <li><a rel="nofollow" class="external text" href="http://www.maths.ex.ac.uk/~mwatkins/zeta/vardi.html">An Introduction to Analytic Number Theory, by Ilan Vardi and Cyril Banderier</a></li> <li><a rel="nofollow" class="external text" href="http://www.mersenne.org">Primos de Mersenne - Os maiores primos já encontrados</a></li></ul> <style data-mw-deduplicate="TemplateStyles:r69328899">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:0 auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><div role="navigation" class="navbox" aria-labelledby="Classes_de_números_primos" style="padding:3px"><table class="nowraplinks collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div class="plainlinks hlist navbar mini"><ul><li class="nv-ver"><a href="/wiki/Predefini%C3%A7%C3%A3o:Classes_de_n%C3%BAmeros_primos" title="Predefinição:Classes de números primos"><abbr title="Ver esta predefinição" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">v</abbr></a></li><li class="nv-discutir"><a href="/w/index.php?title=Predefini%C3%A7%C3%A3o_Discuss%C3%A3o:Classes_de_n%C3%BAmeros_primos&amp;action=edit&amp;redlink=1" class="new" title="Predefinição Discussão:Classes de números primos (página não existe)"><abbr title="Discutir esta predefinição" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">d</abbr></a></li><li class="nv-editar"><a class="external text" href="https://pt.wikipedia.org/w/index.php?title=Predefini%C3%A7%C3%A3o:Classes_de_n%C3%BAmeros_primos&amp;action=edit"><abbr title="Editar esta predefinição" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">e</abbr></a></li></ul></div><div id="Classes_de_números_primos" style="font-size:114%;margin:0 4em">Classes de <a class="mw-selflink selflink">números primos</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Por fórmula</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/N%C3%BAmero_de_Fermat" title="Número de Fermat">Fermat (<span class="texhtml texhtml-big" style="font-size:110%;">2<sup>2<sup><i>n</i></sup></sup> + 1</span>)</a></li> <li><a href="/wiki/Primo_de_Mersenne" title="Primo de Mersenne">Mersenne (<span class="texhtml texhtml-big" style="font-size:110%;">2<sup><i>p</i></sup> − 1</span>)</a></li> <li><a href="/wiki/N%C3%BAmero_duplo_de_Mersenne" title="Número duplo de Mersenne">Duplo de Mersenne <span class="texhtml texhtml-big" style="font-size:110%;">2<sup>2<sup><i>p</i></sup>−1</sup> − 1</span>)</a></li> <li><a href="/wiki/N%C3%BAmero_primo_de_Wagstaff" title="Número primo de Wagstaff">Wagstaff <span class="texhtml texhtml-big" style="font-size:110%;">(2<sup><i>p</i></sup> + 1)/3</span></a></li> <li><a href="/wiki/N%C3%BAmero_primo_fatorial" title="Número primo fatorial">Fatorial (<span class="texhtml texhtml-big" style="font-size:110%;"><i>n</i>! ± 1</span>)</a></li> <li><a href="/wiki/N%C3%BAmero_de_Euclides" title="Número de Euclides">Euclides (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p<sub>n</sub></i># + 1</span>)</a></li> <li><a href="/wiki/N%C3%BAmero_de_Cullen" title="Número de Cullen">Cullen (<span class="texhtml texhtml-big" style="font-size:110%;"><i>n</i>·2<sup><i>n</i></sup> + 1</span>)</a></li> <li><a href="/wiki/N%C3%BAmero_de_Woodall" title="Número de Woodall">Woodall (<span class="texhtml texhtml-big" style="font-size:110%;"><i>n</i>·2<sup><i>n</i></sup> − 1</span>)</a></li> <li><a href="/wiki/N%C3%BAmero_de_Leyland" title="Número de Leyland">Leyland (<span class="texhtml texhtml-big" style="font-size:110%;"><i>x<sup>y</sup></i> + <i>y<sup>x</sup></i></span>)</a></li> <li><a href="/wiki/Constante_de_Mills" title="Constante de Mills">Mills (<span class="texhtml texhtml-big" style="font-size:110%;">⌊<i>A</i><sup>3<sup><i>n</i></sup></sup>⌋</span>)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Por propriedade</th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Primos_de_Wall%E2%80%93Sun%E2%80%93Sun" title="Primos de Wall–Sun–Sun">Wall–Sun–Sun</a></li> <li><a href="/wiki/N%C3%BAmero_primo_de_Pillai" title="Número primo de Pillai">Pillai</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Dependentes de <a href="/wiki/Base_(aritm%C3%A9tica)" title="Base (aritmética)">base</a></th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/N%C3%BAmero_primo_pal%C3%ADndromo" title="Número primo palíndromo">Palíndromo</a></li> <li><a href="/wiki/Omirp" title="Omirp">Omirp</a></li> <li><a href="/wiki/Primo_circular" title="Primo circular">Circular</a></li> <li><a href="/wiki/N%C3%BAmero_estrobogram%C3%A1tico" title="Número estrobogramático">Estrobogramático</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Padrões</th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/N%C3%BAmeros_primos_g%C3%AAmeos" class="mw-redirect" title="Números primos gêmeos">Gêmeos (<span class="texhtml texhtml-big" style="font-size:110%;"><i>p</i>, <i>p</i> + 2</span>)</a></li> <li><a href="/wiki/N%C3%BAmero_primo_de_Chen" title="Número primo de Chen">Chen</a></li> <li><a href="/wiki/N%C3%BAmero_primo_equilibrado" title="Número primo equilibrado">Equilibrado (<span class="texhtml texhtml-big" style="font-size:110%;">consecutivos <i>p</i> − <i>n</i>, <i>p</i>, <i>p</i> + <i>n</i></span>)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Por dimensão</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Maior_n%C3%BAmero_primo_conhecido" title="Maior número primo conhecido">Maior conhecido</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/N%C3%BAmero_composto" title="Número composto">Números compostos</a></th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Pseudoprimo" title="Pseudoprimo">Pseudoprimo</a></li> <li><a href="/wiki/N%C3%BAmero_de_Carmichael" title="Número de Carmichael">Número de Carmichael</a></li> <li><a href="/wiki/Quase-primo" title="Quase-primo">Quase-primo</a></li> <li><a href="/wiki/N%C3%BAmero_semiprimo" title="Número semiprimo">Semiprimo</a></li> <li><a href="/wiki/N%C3%BAmero_esf%C3%AAnico" title="Número esfênico">Número esfênico</a></li> <li><a href="/wiki/N%C3%BAmero_interprimo" title="Número interprimo">Interprimo</a></li> <li><a href="/wiki/N%C3%BAmero_pernicioso" title="Número pernicioso">Pernicioso</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tópicos relacionados</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/N%C3%BAmero_primo_ilegal" title="Número primo ilegal">Ilegal</a></li> <li><a href="/wiki/Intervalo_entre_primos" title="Intervalo entre primos">Intervalo entre primos</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><a href="/wiki/Lista_de_n%C3%BAmeros_primos" title="Lista de números primos">Lista de números primos</a></div></td></tr></tbody></table></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r69328899"><div role="navigation" class="navbox" aria-labelledby="Teoria_dos_números" style="padding:3px"><table class="nowraplinks hlist collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div class="plainlinks hlist navbar mini"><ul><li class="nv-ver"><a href="/wiki/Predefini%C3%A7%C3%A3o:Teoria_dos_n%C3%BAmeros" title="Predefinição:Teoria dos números"><abbr title="Ver esta predefinição" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">v</abbr></a></li><li class="nv-discutir"><a href="/w/index.php?title=Predefini%C3%A7%C3%A3o_Discuss%C3%A3o:Teoria_dos_n%C3%BAmeros&amp;action=edit&amp;redlink=1" class="new" title="Predefinição Discussão:Teoria dos números (página não existe)"><abbr title="Discutir esta predefinição" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">d</abbr></a></li><li class="nv-editar"><a class="external text" href="https://pt.wikipedia.org/w/index.php?title=Predefini%C3%A7%C3%A3o:Teoria_dos_n%C3%BAmeros&amp;action=edit"><abbr title="Editar esta predefinição" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">e</abbr></a></li></ul></div><div id="Teoria_dos_números" style="font-size:114%;margin:0 4em"><a href="/wiki/Teoria_dos_n%C3%BAmeros" title="Teoria dos números">Teoria dos números</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Princípios gerais</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Indu%C3%A7%C3%A3o_matem%C3%A1tica" title="Indução matemática">Indução</a></li> <li><a href="/wiki/Princ%C3%ADpio_da_boa_ordena%C3%A7%C3%A3o" title="Princípio da boa ordenação">Princípio da boa ordenação</a></li> <li><a href="/wiki/Rela%C3%A7%C3%A3o_de_equival%C3%AAncia" title="Relação de equivalência">Relação de equivalência</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Áreas</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Teoria_alg%C3%A9brica_dos_n%C3%BAmeros" title="Teoria algébrica dos números">Teoria algébrica dos números</a> <ul><li><a href="/wiki/Teoria_dos_corpos_de_classes" title="Teoria dos corpos de classes">teoria dos corpos de classes</a></li> <li><a href="/wiki/Teoria_de_Iwasawa" title="Teoria de Iwasawa">teoria de Iwasawa</a></li> <li><a href="/wiki/Teoria_de_Kummer" title="Teoria de Kummer">teoria de Kummer</a></li></ul></li> <li><a href="/wiki/Teoria_anal%C3%ADtica_dos_n%C3%BAmeros" title="Teoria analítica dos números">Teoria analítica dos números</a> <ul><li><a href="/wiki/Fun%C3%A7%C3%A3o_L" title="Função L">teoria analítica das funções L</a></li> <li><a href="/wiki/Teoria_probabil%C3%ADstica_dos_n%C3%BAmeros" title="Teoria probabilística dos números">teoria probabilística dos números</a></li> <li><a href="/wiki/Teoria_dos_crivos" title="Teoria dos crivos">teoria dos crivos</a></li></ul></li> <li><a href="/wiki/Teoria_computacional_dos_n%C3%BAmeros" title="Teoria computacional dos números">Teoria computacional dos números</a></li> <li><a href="/wiki/Geometria_diofantina" title="Geometria diofantina">Geometria diofantina</a></li> <li><a href="/w/index.php?title=Combinat%C3%B3ria_aritm%C3%A9tica&amp;action=edit&amp;redlink=1" class="new" title="Combinatória aritmética (página não existe)">Combinatória aritmética</a> (<a href="/wiki/Teoria_aditiva_dos_n%C3%BAmeros" title="Teoria aditiva dos números">teoria aditiva dos números</a>)</li> <li><a href="/wiki/Geometria_aritm%C3%A9tica" title="Geometria aritmética">Geometria aritmética</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Conceitos-chave</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/N%C3%BAmero" title="Número">Números</a></li> <li><a href="/wiki/0_(n%C3%BAmero)" title="0 (número)">0</a></li> <li><a href="/wiki/N%C3%BAmero_natural" title="Número natural">Números naturais</a></li> <li><a href="/wiki/Um" title="Um">Unidade</a></li> <li><a href="/wiki/Paridade" title="Paridade">Paridade</a> <ul><li><a href="/wiki/Paridade_do_zero" title="Paridade do zero">paridade do zero</a></li></ul></li> <li><a class="mw-selflink selflink">Números primos</a> <ul><li><a href="/wiki/Teorema_de_Euclides" title="Teorema de Euclides">Teorema de Euclides</a></li> <li><a href="/wiki/Crivo_de_Erat%C3%B3stenes" title="Crivo de Eratóstenes">Crivo de Eratóstenes</a></li> <li><a href="/wiki/Teste_de_primalidade" title="Teste de primalidade">Teste de primalidade</a></li> <li><a href="/wiki/Teorema_dos_n%C3%BAmeros_primos" title="Teorema dos números primos">Teorema dos números primos</a></li></ul></li> <li><a href="/wiki/N%C3%BAmero_composto" title="Número composto">Números compostos</a></li> <li><a href="/wiki/N%C3%BAmero_racional" title="Número racional">Números racionais</a></li> <li><a href="/wiki/N%C3%BAmero_irracional" title="Número irracional">Números irracionais</a></li> <li><a href="/wiki/N%C3%BAmero_alg%C3%A9brico" title="Número algébrico">Números algébricos</a></li> <li><a href="/wiki/N%C3%BAmero_transcendente" title="Número transcendente">Números transcendentes</a></li> <li><a href="/wiki/N%C3%BAmero_p-%C3%A1dico" title="Número p-ádico">Números p-ádicos</a> <ul><li><a href="/wiki/An%C3%A1lise_p-%C3%A1dica" title="Análise p-ádica">análise p-ádica</a></li></ul></li> <li><a href="/wiki/Aritm%C3%A9tica" title="Aritmética">Aritmética</a></li> <li><a href="/wiki/Aritm%C3%A9tica_modular" title="Aritmética modular">Aritmética modular</a></li> <li><a href="/wiki/Teorema_fundamental_da_aritm%C3%A9tica" title="Teorema fundamental da aritmética">Teorema fundamental da aritmética</a></li> <li><a href="/wiki/Teorema_chin%C3%AAs_do_resto" title="Teorema chinês do resto">Teorema chinês do resto</a></li> <li><a href="/wiki/Fun%C3%A7%C3%A3o_aritm%C3%A9tica" title="Função aritmética">Funções aritméticas</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Conceitos avançados</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Forma_quadr%C3%A1tica" title="Forma quadrática">Formas quadráticas</a></li> <li><a href="/wiki/Forma_modular" title="Forma modular">Formas modulares</a></li> <li><a href="/wiki/Fun%C3%A7%C3%A3o_L" title="Função L">Funções L</a></li> <li><a href="/wiki/Equa%C3%A7%C3%A3o_diofantina" title="Equação diofantina">Equações diofantinas</a></li> <li><a href="/wiki/Aproxima%C3%A7%C3%A3o_diofantina" title="Aproximação diofantina">Aproximação diofantina</a></li> <li><a href="/wiki/Fra%C3%A7%C3%A3o_cont%C3%ADnua" title="Fração contínua">Frações contínuas</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Principais teóricos</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/Leonardo_Fibonacci" title="Leonardo Fibonacci">Fibonacci</a></li> <li><a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Fermat</a></li> <li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Gauss</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler</a></li> <li><a href="/wiki/Adrien-Marie_Legendre" title="Adrien-Marie Legendre">Legendre</a></li> <li><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Riemann</a></li> <li><a href="/wiki/Johann_Peter_Gustav_Lejeune_Dirichlet" title="Johann Peter Gustav Lejeune Dirichlet">Dirichlet</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span typeof="mw:File"><span title="Página de categoria"><img alt="Página de categoria" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/96/Symbol_category_class.svg/24px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/96/Symbol_category_class.svg/32px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Categoria:Teoria_dos_n%C3%BAmeros" title="Categoria:Teoria dos números">Categoria</a></li> <li><span typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Symbol_question.svg/16px-Symbol_question.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Symbol_question.svg/24px-Symbol_question.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Symbol_question.svg/32px-Symbol_question.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="https://en.wikibooks.org/wiki/Teoria_de_n%C3%BAmeros" class="extiw" title="wikibooks:Teoria de números">Wikibook</a></li></ul> </div></td></tr></tbody></table></div> <ul class="noprint navigation-box" style="border-top: solid silver 1px; border-right: solid silver 1px; border-bottom:1px solid silver; border-left: solid silver 1px; padding:3px; background-color: #F9F9F9; text-align: center; margin-top:10px; margin-left: 0; clear: both;"><li style="display: inline;"><span style="white-space: nowrap; margin: auto 1.5em"><span style="margin-right: 0.5em"><span typeof="mw:File"><a href="/wiki/Ficheiro:Nuvola_apps_edu_mathematics-p.svg" title="Portal da matemática"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/25px-Nuvola_apps_edu_mathematics-p.svg.png" decoding="async" width="25" height="25" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/38px-Nuvola_apps_edu_mathematics-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/50px-Nuvola_apps_edu_mathematics-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span> <span style="font-weight:bold"><a href="/wiki/Portal:Matem%C3%A1tica" title="Portal:Matemática">Portal da matemática</a></span></span></li> </ul> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5d7b8865c6‐4mpg6 Cached time: 20250217204733 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.711 seconds Real time usage: 1.125 seconds Preprocessor visited node count: 11996/1000000 Post‐expand include size: 176235/2097152 bytes Template argument size: 5474/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 105288/5000000 bytes Lua time usage: 0.265/10.000 seconds Lua memory usage: 5266464/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 680.502 1 -total 42.21% 287.237 3 Predefinição:Referências 23.55% 160.292 1 Predefinição:Multitag 22.09% 150.324 1 Predefinição:Ambox 13.96% 94.990 38 Predefinição:Citar_livro 8.29% 56.432 2 Predefinição:MacTutor 7.04% 47.904 2 Predefinição:Navbox 6.92% 47.083 9 Predefinição:Citar_web 6.26% 42.603 1 Predefinição:Classes_de_números_primos 5.15% 35.071 12 Predefinição:Citar_periódico --> <!-- Saved in parser cache with key ptwiki:pcache:13149:|#|:idhash:canonical and timestamp 20250217204733 and revision id 68953932. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Obtida de "<a dir="ltr" href="https://pt.wikipedia.org/w/index.php?title=Número_primo&amp;oldid=68953932">https://pt.wikipedia.org/w/index.php?title=Número_primo&amp;oldid=68953932</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Especial:Categorias" title="Especial:Categorias">Categorias</a>: <ul><li><a href="/wiki/Categoria:N%C3%BAmeros_primos" title="Categoria:Números primos">Números primos</a></li><li><a href="/wiki/Categoria:Sequ%C3%AAncias_de_n%C3%BAmeros_inteiros" title="Categoria:Sequências de números inteiros">Sequências de números inteiros</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorias ocultas: <ul><li><a href="/wiki/Categoria:!CS1_ingl%C3%AAs-fontes_em_l%C3%ADngua_(en)" title="Categoria:!CS1 inglês-fontes em língua (en)">!CS1 inglês-fontes em língua (en)</a></li><li><a href="/wiki/Categoria:!CS1_franc%C3%AAs-fontes_em_l%C3%ADngua_(fr)" title="Categoria:!CS1 francês-fontes em língua (fr)">!CS1 francês-fontes em língua (fr)</a></li><li><a href="/wiki/Categoria:!Artigos_que_carecem_de_notas_de_rodap%C3%A9_desde_julho_de_2018" title="Categoria:!Artigos que carecem de notas de rodapé desde julho de 2018">!Artigos que carecem de notas de rodapé desde julho de 2018</a></li><li><a href="/wiki/Categoria:!Artigos_que_carecem_de_notas_de_rodap%C3%A9_sem_indica%C3%A7%C3%A3o_de_tema" title="Categoria:!Artigos que carecem de notas de rodapé sem indicação de tema">!Artigos que carecem de notas de rodapé sem indicação de tema</a></li><li><a href="/wiki/Categoria:!Artigos_a_revisar_desde_julho_de_2018" title="Categoria:!Artigos a revisar desde julho de 2018">!Artigos a revisar desde julho de 2018</a></li><li><a href="/wiki/Categoria:!Artigos_a_revisar_sem_indica%C3%A7%C3%A3o_de_tema" title="Categoria:!Artigos a revisar sem indicação de tema">!Artigos a revisar sem indicação de tema</a></li><li><a href="/wiki/Categoria:!P%C3%A1ginas_a_reciclar_desde_julho_de_2018" title="Categoria:!Páginas a reciclar desde julho de 2018">!Páginas a reciclar desde julho de 2018</a></li><li><a href="/wiki/Categoria:!P%C3%A1ginas_a_reciclar_sem_indica%C3%A7%C3%A3o_de_tema" title="Categoria:!Páginas a reciclar sem indicação de tema">!Páginas a reciclar sem indicação de tema</a></li><li><a href="/wiki/Categoria:!Artigos_contendo_afirma%C3%A7%C3%B5es_potencialmente_datadas" title="Categoria:!Artigos contendo afirmações potencialmente datadas">!Artigos contendo afirmações potencialmente datadas</a></li><li><a href="/wiki/Categoria:!P%C3%A1ginas_que_usam_hiperliga%C3%A7%C3%B5es_m%C3%A1gicas_ISBN" title="Categoria:!Páginas que usam hiperligações mágicas ISBN">!Páginas que usam hiperligações mágicas ISBN</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Esta página foi editada pela última vez às 00h44min de 7 de novembro de 2024.</li> <li id="footer-info-copyright">Este texto é disponibilizado nos termos da licença <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.pt">Atribuição-CompartilhaIgual 4.0 Internacional (CC BY-SA 4.0) da Creative Commons</a>; pode estar sujeito a condições adicionais. Para mais detalhes, consulte as <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">condições de utilização</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/pt-br">Política de privacidade</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:Sobre">Sobre a Wikipédia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Aviso_geral">Avisos gerais</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Código de conduta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Programadores</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/pt.wikipedia.org">Estatísticas</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Declaração sobre ''cookies''</a></li> <li id="footer-places-mobileview"><a href="//pt.m.wikipedia.org/w/index.php?title=N%C3%BAmero_primo&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versão móvel</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Busca</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Pesquisar na Wikipédia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Especial:Pesquisar"> </div> <button class="cdx-button cdx-search-input__end-button">Pesquisar</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Conteúdo" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Alternar o índice" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Alternar o índice</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Número primo</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>138 línguas</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Adicionar tópico</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b9576b97f-tvtxc","wgBackendResponseTime":162,"wgPageParseReport":{"limitreport":{"cputime":"0.711","walltime":"1.125","ppvisitednodes":{"value":11996,"limit":1000000},"postexpandincludesize":{"value":176235,"limit":2097152},"templateargumentsize":{"value":5474,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":105288,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 680.502 1 -total"," 42.21% 287.237 3 Predefinição:Referências"," 23.55% 160.292 1 Predefinição:Multitag"," 22.09% 150.324 1 Predefinição:Ambox"," 13.96% 94.990 38 Predefinição:Citar_livro"," 8.29% 56.432 2 Predefinição:MacTutor"," 7.04% 47.904 2 Predefinição:Navbox"," 6.92% 47.083 9 Predefinição:Citar_web"," 6.26% 42.603 1 Predefinição:Classes_de_números_primos"," 5.15% 35.071 12 Predefinição:Citar_periódico"]},"scribunto":{"limitreport-timeusage":{"value":"0.265","limit":"10.000"},"limitreport-memusage":{"value":5266464,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5d7b8865c6-4mpg6","timestamp":"20250217204733","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"N\u00famero primo","url":"https:\/\/pt.wikipedia.org\/wiki\/N%C3%BAmero_primo","sameAs":"http:\/\/www.wikidata.org\/entity\/Q49008","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q49008","author":{"@type":"Organization","name":"Contribuidores dos projetos da Wikimedia"},"publisher":{"@type":"Organization","name":"Funda\u00e7\u00e3o Wikimedia, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-06-01T10:02:24Z","dateModified":"2024-11-07T00:44:10Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/b\/b7\/Primes-vs-composites_pt.svg","headline":"n\u00famero natural com exatamente dois divisores, 1 e ele mesmo"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10