CINXE.COM

Search results for: Patompong Satapornpong

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Patompong Satapornpong</title> <meta name="description" content="Search results for: Patompong Satapornpong"> <meta name="keywords" content="Patompong Satapornpong"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Patompong Satapornpong" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Patompong Satapornpong"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Patompong Satapornpong</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> The Distribution of HLA-B*15:01 and HLA-B*51:01 Alleles in Thai Population: Clinical Implementation and Diagnostic Process of COVID-19 Severity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleena%20Rena%20Onozuka">Aleena Rena Onozuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Patompong%20Satapornpong"> Patompong Satapornpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In a Human Leukocyte Antigen (HLA)’s immune response, HLA alleles (HLA class I and class II) play a crucial role in fighting against pathogens. HLA-B*15:01 allele had a significant association with asymptomatic COVID-19 infection (p-value = 5.67 x 10-5 ; OR = 2.40 and 95% CI = 1.54 - 3.64). There was also a notable linkage between HLA-B*51:01 allele and critically ill patients with COVID-19 (p-value = 0.007 and OR = 3.38). This study has described the distribution of HLA marker alleles in Thais and sub-groups. Objective: We want to investigate the prevalence of HLA-B*15:01 and HLA-B*51:01 alleles in the Thai population. Materials and Methods: 200 healthy Thai population were included in this study from the College of Pharmacy, Rangsit University. HLA-B alleles were genotyped using the sequence-specific oligonucleotides process (PCR-SSOs). Results: We found out that HLA-B*46:01 (12.00%), HLA-B*15:02 (9.25%), HLA-B*40:01 (6.50%), HLA-B*13:01 (6.25%), and HLA-B* 38:02 (5.50%) alleles were more common than other alleles in Thai population. HLA-B*46:01 and HLA-B*15:02 were the most common allele found across four regions. Moreover, the frequency of HLA-B*15:01 and HLA-B*51:01 alleles were similarly distributed in Thai population (0.50, 5.25 %) and (p-value > 0.05), respectively. The frequencies of HLA-B*15:01 and HLA-B*51:01 alleles were not significantly different from other populations compared to the Thai population. Conclusions: We can screen for HLA-B*15:01 and HLA-B*51:01 alleles to determine the symptoms of COVID-19 since they are universal HLA-B markers. Importantly, the database of HLA markers indicates the association between HLA frequency and populations. However, we need further research on larger numbers of COVID-19 patients and in different populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HLA-B%2A15%3A01" title="HLA-B*15:01">HLA-B*15:01</a>, <a href="https://publications.waset.org/abstracts/search?q=HLA-B%2A51%3A01" title=" HLA-B*51:01"> HLA-B*51:01</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=HLA-B%20alleles" title=" HLA-B alleles"> HLA-B alleles</a> </p> <a href="https://publications.waset.org/abstracts/153609/the-distribution-of-hla-b1501-and-hla-b5101-alleles-in-thai-population-clinical-implementation-and-diagnostic-process-of-covid-19-severity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Impact of HLA-C*03:04 Allele Frequency Screening Test in Preventing Dapsone-induced SCARs in Thais</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pear-Rarin%20Leelakunakorn">Pear-Rarin Leelakunakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Patompong%20Satapornpong"> Patompong Satapornpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Dapsone is an anti-inflammatory and antibiotic drug that was widely used for the treatment of leprosy, acne fulminans, and dermatitis herpetiformis (DH). However, dapsone is the main cause that triggers severe cutaneous adverse reactions (SCARs), with a possibility of 0.4 to 3.6% of patients after initiating treatment. In fact, the mortality rate of dapsone-induced SCARs is approximately 9.9%. In previous studies, HLA-B*13:01 was strongly associated with dapsone-induced SCARs in Han Chinese, Thais, and Koreans. Nevertheless, the distribution of HLA-B*13:01 marker in each population might differ. Moreover, there were found that the association between HLA-C*03:04 and dapsone hypersensitivity syndrome in Han Chinese leprosy patients by OR = 9.00 and p-value = 2.23×10⁻¹⁹. Objective: The aim of this study was to investigate the distribution of HLA-C* 03:04 in Thailand's healthy population. Method: A total of 350 participants were HLA-C genotyping used sequence-specific oligonucleotides (PCR-SSOs). This study was approved by the Ethics Committee of Rangsit University Result : The most frequency of HLA -C alleles in Thais, consist of HLA -C* 01:02 (17.00 %), -C*08:01 (11.00%) , -C*07:02 (10.70%) , -C* 03:04 ( 9.10%) , -C* 03:02 (8.00%) , -C* 07:01 (6.30%), -C* 07:04 (4.60%), -C* 04:01 (4.40%) ,-C* 12:02 ( 4.30% ) ,and -C* 04:03(3.90%). Interestingly, HLA -C* 03:04 allele was similar to the distribution among Thais and other populations such as Eastern Europe (6.09%), Vietnam (7.42% ), East Croatia (2.25%), and Han Chinese (11.70%). Conclusion: Consequently, HLA-C*03:04 might serve as a pharmacogenetic marker for screening prior to initiation therapy with dapsone for prevention of dapsone-induced SCARs in Thai population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HLA-C%2A03%3A04" title="HLA-C*03:04">HLA-C*03:04</a>, <a href="https://publications.waset.org/abstracts/search?q=SCARs" title=" SCARs"> SCARs</a>, <a href="https://publications.waset.org/abstracts/search?q=thai%20population" title=" thai population"> thai population</a>, <a href="https://publications.waset.org/abstracts/search?q=allele%20frequency" title=" allele frequency"> allele frequency</a> </p> <a href="https://publications.waset.org/abstracts/146528/impact-of-hla-c0304-allele-frequency-screening-test-in-preventing-dapsone-induced-scars-in-thais" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Important role of HLA-B*58:01 Allele and Distribution Among Healthy Thais: Avoid Severe Cutaneous Adverse Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaomai%20Tungsiripat">Jaomai Tungsiripat</a>, <a href="https://publications.waset.org/abstracts/search?q=Patompong%20Satapornpong"> Patompong Satapornpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Allopurinol have been used to treat diseases that relating with the reduction of uric acid and be a treatment preventing the severity of, including gout, chronic kidney disease, chronic heart failure, and diabetes mellitus (type 2). However, allopurinol metabolites can cause a severe cutaneous adverse reaction (SCARs) consist of Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) and Stevens-Johnson Syndrome(SJS)/Toxic Epidermal Necrolysis (TEN). Previous studies, we found only HLA-B*58:01 allele has a strongly association with allopurinol-induced SCARs in many populations: Han Chinese [P value = 4.7 x 10−24], European [P value <10−6], and Thai [P value <0.001].However, there was no update the frequency of HLA-B alleles and pharmacogenetics markers distribution in healthy Thais and support for screening before the initiation of treatment. The aim of this study was to investigate the prevalence of HLA-B*58:01 allele associated with allopurinol-induced SCARs in healthy Thai population. A retrospective study of 260 individual healthy subjects who living in Thailand. HLA-B were genotyped using sequence-specific oligonucleotides (PCR-SSOs).In this study, we identified the prevalence of HLA-B alleles consist ofHLA-B*46:01 (12.69%), HLA-B*15:02 (8.85%), HLA-B*13:01 (6.35%), HLA-B*40:01 (6.35%), HLA-B*38:02 (5.00%), HLA-B*51:01 (5.00%), HLA-B*58:01 (4.81%), HLA-B*44:03 (4.62%), HLA-B*18:01 (3.85%) and HLA-B*15:25 (3.08%). Therefore, the distribution of HLA-B*58:01 will support the clinical implementation and screening usage of allopurinol in Thai population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allopurinol" title="allopurinol">allopurinol</a>, <a href="https://publications.waset.org/abstracts/search?q=HLA-B%2A58%3A%2001" title=" HLA-B*58: 01"> HLA-B*58: 01</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20population" title=" Thai population"> Thai population</a>, <a href="https://publications.waset.org/abstracts/search?q=SCARs" title=" SCARs"> SCARs</a> </p> <a href="https://publications.waset.org/abstracts/146329/important-role-of-hla-b5801-allele-and-distribution-among-healthy-thais-avoid-severe-cutaneous-adverse-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Distribution of HLA-C* 14:02 Allele in Thai Population to See Risk Factors for Severe COVID-19</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naso%20Isaiah%20Thanavisuth">Naso Isaiah Thanavisuth</a>, <a href="https://publications.waset.org/abstracts/search?q=Patompong%20Satapornpong"> Patompong Satapornpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Covid-19 has been a global pandemic for some time now, causing severe symptoms to patients that received the virus. However, there has been no report on this gene in the Thai population. Objective: Our aim in this study is to explore and compare the frequency of HLA-C allele that is associated with severe COVID-19 symptoms in Thais and other populations. Method: 200 general Thai population were enrolled in this study. The genotyping of HLA -C alleles were determined by the polymerase chain reaction with sequence-specific oligonucleotide probes (PCR-SSOP) and Luminex®IS 100 system (Luminex Corporation, Austin, Texas, USA). Results: We found that the frequency of alleles HLA-C* 01:02 (16.00%), HLA-C* 08:01(10.50%), HLA-C* 03:04 (10.25%),HLA-C* 07:02 (10.00%), HLA-C* 03:02 (9.25%), HLA-C* 07:01 (6.75%), HLA-C* 04:01 (5.00%), HLA-C* 06:02 (4.00%), HLA-C* 04:03 (4.00%), and HLA-C* 07:04 (3.75%) were more common in the Thai population. HLA-C* 01:02 (16.00%) allele was the highest frequency in the North, Center, and North East groups in Thailand, but there was the South region that was not significantly different when compared with the other groups of the region. Additionally, HLA-C∗14:02 allele was similarly distributed in Thais (3.00%), African Americans (1.98%), Caucasians (2.08%), Hispanics (1.71%), North American Natives (1.34%) and Asians (5.01%) by p-value = 0.6506, 0.6506, 0.6506, 0.6135 and 0.7182, respectively. Conclusion: Genetic variation database is important to identify HLA can be a risk factor for severe COVID-19 in many populations. In this study, we will support the research of the HLA markers for screening severe COVID-19 in many populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HLA-C%20%2A%2014%3A02" title="HLA-C * 14:02">HLA-C * 14:02</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=allele%20frequency" title=" allele frequency"> allele frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/155165/the-distribution-of-hla-c-1402-allele-in-thai-population-to-see-risk-factors-for-severe-covid-19" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Database of Pharmacogenetics HLA-A*31:01 Allele in Thai Population and Carbamazepine-Induced SCARs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Watchawin%20Ekphinitphithaya">Watchawin Ekphinitphithaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Patompong%20Satapornpong"> Patompong Satapornpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Carbamazepine (CBZ) is one of the most prescribed antiepileptic drugs (AEDs) by neurologists and non-neurologist worldwide. CBZ is usually prescribed along with other drugs, leading to the possibility of severe cutaneous adverse drug reactions (SCARs). The HLA-B*15:02 is strongly associated with CBZ-induced Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS–TEN) in the Han Chinese and other Asian populations but not in European populations, while HLA-A*31:01 allele has been reported to be associated with CBZ-induced SCARs in European population and Japanese. Objective: The aim of this study is to investigate the distribution of pharmacogenetics HLA-A*31:01 marker in a healthy Thai population associated with Carbamazepine-induced SCARs. Materials and Methods: Prospective study, 350 unrelated healthy Thais were recruited in this study. Human leukocyte antigen-A alleles were genotyped using PCR-sequence specific oligonucleotides (PCR-SSOs). Results: The frequency of HLA-A alleles were HLA-A*11:01 (190 alleles, 27.14%), HLA-A*24:02 (82 alleles, 11.71%), HLA-A*02:03 (80 alleles, 11.43%), HLA-A*33:03 (76 alleles, 10.86%), HLA-A*02:07 (58 alleles, 8.29%), HLA-A*02:01 (35 alleles, 5.00%), HLA-A*24:07 (29 alleles, 4.14%), HLA-A*02:06 – HLA-A*30:01 (15 alleles, 2.14%), and HLA-A*01:01 (14 alleles, 2.00%). Particularly, the number of HLA-A*31:01 alleles was 6 of 700 (0.86%) in the healthy Thai population. Many research presented varying distributions of HLA-A*31:01 in Asians, including 2% of Han Chinese, 9% of Japanese and 5% of Koreans. In addition, this allele was found approximately 2-5% in the Caucasian population. Conclusions: Thus, the pharmacogenetics database is vital to support in many populations, especially in Thais, for screening HLA-A*31:01 allele to avoid CBZ-induced SCARs before initiating treatments in each population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carbamazepine" title="Carbamazepine">Carbamazepine</a>, <a href="https://publications.waset.org/abstracts/search?q=HLA-A%2A31%3A01" title=" HLA-A*31:01"> HLA-A*31:01</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20population" title=" Thai population"> Thai population</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacogenetics" title=" pharmacogenetics"> pharmacogenetics</a> </p> <a href="https://publications.waset.org/abstracts/142633/database-of-pharmacogenetics-hla-a3101-allele-in-thai-population-and-carbamazepine-induced-scars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Update on Genetic Diversity for Lamotrigine Induced Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natida%20Thongsima">Natida Thongsima</a>, <a href="https://publications.waset.org/abstracts/search?q=Patompong%20Satapornpong"> Patompong Satapornpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Lamotrigine is widely used in the treatment of epilepsy and bipolar disorder. However, lamotrigine leads to adverse drug reactions (ADRs) consist of severe cutaneous adverse reactions (SCARs) include Stevens–Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) and drug rash with eosinophilia and systemic symptoms (DRESS). Moreover, lamotrigine-induced SCARs are usually manifested between 2 and 8 weeks after treatment initiation. According to a previous study, the association between HLA-B*15:02 and lamotrigine-induced cutaneous adverse drug reactions in the Thai population (odds ratio 4.89; 95% CI 1.28–18.66; p-value = 0.014) was found. Therefore, the distribution of pharmacogenetics markers a major role in predicting the culprit drugs for SCARs in many populations. Objective: In this study, we want to investigate the prevalence of HLA-B allele, which correlates with lamotrigine-induced SCARs in the healthy Thai population. Materials and Methods: We enrolled 350 healthy Thai individuals and were approved by the ethics committee of Rangsit University. HLA-B alleles were genotyped by the Lifecodes HLA SSO typing kits (Immucor, West Avenue, Stamford, USA). Results: The results presented HLA-B allele frequency in healthy Thai population were 14.71% (HLA-B*46:01), 8.57% (HLA-B*15:02), 6.71% (HLA-B*40:01), 5.86% (HLA-B*13:01), 5.71% (HLA-B*58:01), 5.14% (HLA-B*38:02), 4.86% (HLA-B*18:01), 4.86% (HLA-B*51:01), 3.86% (HLA-B*44:03) and 2.71% (HLA-B*07:05). Especially, HLA-B*15:02 allele was the high frequency in the Thais (8.57%), Han Chinese (7.30%), Vietnamese (13.50%), Malaysian (6.06%) and Indonesian (11.60%). Nevertheless, this allele was much lower in other populations, namely, Africans, Caucasians, and Japanese. Conclusions: Although the sample size of the healthy Thai population in this research was limited, there were found the frequency of the HLA-B*15:02 allele could predispose them toward to lamotrigine-induced SCARs in Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lamotrigine" title="lamotrigine">lamotrigine</a>, <a href="https://publications.waset.org/abstracts/search?q=cutaneous%20adverse%20drug%20reactions" title=" cutaneous adverse drug reactions"> cutaneous adverse drug reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=HLA-B" title=" HLA-B"> HLA-B</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20population" title=" Thai population"> Thai population</a> </p> <a href="https://publications.waset.org/abstracts/142701/update-on-genetic-diversity-for-lamotrigine-induced-stevens-johnson-syndrome-and-toxic-epidermal-necrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Pharmacogenetics Study of Dapsone-Induced Severe Cutaneous Adverse Reactions and HLA Class I Alleles in Thai Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patompong%20Satapornpong">Patompong Satapornpong</a>, <a href="https://publications.waset.org/abstracts/search?q=Therdpong%20Tempark"> Therdpong Tempark</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawinee%20Rerknimitr"> Pawinee Rerknimitr</a>, <a href="https://publications.waset.org/abstracts/search?q=Jettanong%20Klaewsongkram"> Jettanong Klaewsongkram</a>, <a href="https://publications.waset.org/abstracts/search?q=Chonlaphat%20Sukasem"> Chonlaphat Sukasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dapsone (4, 4’-diaminodiphenyl sulfone, DDS) is broadly used for the treatment of inflammatory diseases and infections such as; leprosy, Pneumocystis jiroveci pneumonia in patients with HIV infection, neutrophilic dermatoses, dermatitis herpetiformis and autoimmune bullous disease. The severe cutaneous adverse drug reactions (SCARs) including, Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS) are rare but severe life-threatening adverse drug reactions. Dapsone is one of many culprit drugs induced SJS, TEN and DRESS. Notwithstanding, to our knowledge, there are no studies of the association of HLA class I alleles and dapsone-induced SCARs in non-leprosy Thai patients. This investigation was a prospective cohort study, which performed in a total of 45 non-leprosy patients. Fifteen patients of dapsone-induced SCARs were classified as following the RegiSCAR criteria, and 30 dapsone-tolerant controls were exposed to dapsone more than 6 months without any evidence of cutaneous reactions. The genotyping of HLA-A, -B and –C were performed using sequence-specific oligonucleotides (PCR-SSOs). The Ethics Committee of Ramathibodi hospital, Mahidol University, approved this study. Among all HLA class I alleles, HLA-A*24:07, HLA-B*13:01, HLA-B*15:02, HLA-C*03:04 and HLA-C*03:09 were significantly associated with dapsone-induced SCARs (OR = 10.55, 95% CI = 1.06 – 105.04, p = 0.0360; OR = 56.00, 95% CI = 8.27 – 379.22, p = 0.0001; OR = 7.00, 95% CI = 1.17 – 42.00, p = 0.0322; OR = 6.00, 95% CI = 1.24 – 29.07, p = 0.0425 and OR = 17.08, 95% CI = 0.82 – 355.45, p = 0.0321, respectively). Furthermore, HLA-B*13:01 allele had strong association with dapsone-induced SJS-TEN and DRESS when compared with dapsone-tolerant controls (OR = 42.00, 95% CI = 2.88 – 612.31, p = 0.0064 and OR = 63.00, 95% CI = 7.72 – 513.94 and p = 0.0001, respectively). Consequently, HLA-B*13:01 might serve as a pharmacogenetic marker for screening before initiating the therapy with dapsone for prevention of dapsone-induced SCARs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dapsone-induced%20SCARs" title="dapsone-induced SCARs">dapsone-induced SCARs</a>, <a href="https://publications.waset.org/abstracts/search?q=HLA-B%2A13%3A01" title=" HLA-B*13:01"> HLA-B*13:01</a>, <a href="https://publications.waset.org/abstracts/search?q=HLA%20class%20I%20alleles" title=" HLA class I alleles"> HLA class I alleles</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20cutaneous%20adverse%20reactions" title=" severe cutaneous adverse reactions"> severe cutaneous adverse reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai" title=" Thai"> Thai</a> </p> <a href="https://publications.waset.org/abstracts/74472/pharmacogenetics-study-of-dapsone-induced-severe-cutaneous-adverse-reactions-and-hla-class-i-alleles-in-thai-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Polymorphisms of the UM Genotype of CYP2C19*17 in Thais Taking Medical Cannabis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athicha%20Cherdpunt">Athicha Cherdpunt</a>, <a href="https://publications.waset.org/abstracts/search?q=Patompong%20Satapornpong"> Patompong Satapornpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The medical cannabis is made up of components also known as cannabinoids, which consists of two ingredients which are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Interestingly, the Cannabinoid can be used for many treatments such as chemotherapy, including nausea and vomiting, cachexia, anorexia nervosa, spinal cord injury and disease, epilepsy, pain, and many others. However, the adverse drug reactions (ADRs) of THC can cause sedation, anxiety, dizziness, appetite stimulation and impairments in driving and cognitive function. Furthermore, genetic polymorphisms of CYP2C9, CYP2C19 and CYP3A4 influenced the THC metabolism and might be a cause of ADRs. Particularly, CYP2C19*17 allele increases gene transcription and therefore results in ultra-rapid metabolizer phenotype (UM). The aim of this study, is to investigate the frequency of CYP2C19*17 alleles in Thai patients who have been treated with medical cannabis. We prospectively enrolled 60 Thai patients who were treated with medical cannabis and clinical data from College of Pharmacy, Rangsit University. DNA of each patient was isolated from EDTA blood, using the Genomic DNA Mini Kit. CYP2C19*17 genotyping was conducted using the real time-PCR ViiA7 (ABI, Foster City, CA, USA). 30 patients with medical cannabis-induced ADRs group, 20 (67%) were female, and 10 (33%) were male, with an age range of 30-69 years. On the other hand, 30 patients without medical cannabis-induced ADRs (control group) consist of 17 (57%) female and 13 (43%) male. The most ADRs for medical cannabis treatment in the case group were dry mouth and dry throat (77%), tachycardia (70%), nausea (30%) and arrhythmia(10%). Accordingly, the case group carried CYP2C19*1/*1 (normal metabolizer) approximately 93%, while 7% patients carrying CYP2C19*1/*17 (ultra rapid metabolizers) exhibited in this group. Meanwhile, we found 90% of CYP2C19*1/*1 and 10% of CYP2C19*1/*17 in control group. In this study, we identified the frequency of CYP2C19*17 allele in Thai population which will support the pharmacogenetics biomarkers for screening and avoid ADRs of medical cannabis treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CYP2C19" title="CYP2C19">CYP2C19</a>, <a href="https://publications.waset.org/abstracts/search?q=allele%20frequency" title=" allele frequency"> allele frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20rapid%20metabolizer" title=" ultra rapid metabolizer"> ultra rapid metabolizer</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20cannabis" title=" medical cannabis"> medical cannabis</a> </p> <a href="https://publications.waset.org/abstracts/148144/polymorphisms-of-the-um-genotype-of-cyp2c1917-in-thais-taking-medical-cannabis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Pharmacogenetics of Type 1 Cannabinoid Receptor (CB1) Gene Associated with Adverse Drug Reactions in Thai Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittitara%20Chunlakittiphan">Kittitara Chunlakittiphan</a>, <a href="https://publications.waset.org/abstracts/search?q=Patompong%20Satapornpong"> Patompong Satapornpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The variation of genetics affects how our body responds to pharmaceuticals elucidates the correlation between long-term use of medical cannabis and adverse drug reactions (ADRs). Medical cannabis is regarded as the treatment for chronic pain, cancer pain, acute pain, psychological disorders, multiple sclerosis and migraine management. However, previous studies have shown that delta-9-Tetrahydrocannabinol (THC), an ingredient found in cannabis, was the cause of ADRs in CB1 receptors found in humans. Previous research suggests that distributions of the cannabinoid type 1 (CB1) receptor gene and pharmacogenetic markers, which vary amongst different populations, might affect incidences of ADRs. Although there is an evident need to investigate the level of the CB1 receptor gene (rs806365), studies on the distribution of CB1-pharmacogenetics markers in Thai patients are limited. Objective: Therefore, the aim of this study is to investigate the distribution of the rs806365 polymorphism in Thai patients who have been treated with medical cannabis. Materials and Methods: We enrolled 31 Thai patients with THC-induced ADRs and 34 THC-tolerant controls to take part in this study. All patients with THC-induced ADRs were accessed through a review of medical records by physicians. EDTA blood of 3ml was collected to obtain the CNR1 gene (rs806365) and genotyping of this gene was conducted using the real-time PCR ViiA7 (ABI, Foster City, CA, USA) following the manufacturer’s instruction. Results: The sample consisted of 65 patients (40/61.54%) were females and (25/38.46%) were males, with an age range of 19-87 years, who have been treated with medical cannabis. In this study, the most common THC-induced ADRs were dry mouth and/or dry throat, tachycardia, nausea, and arrhythmia. Across the whole sample, we found that 52.31% of Thai patients carried a heterozygous variant (rs806365, CT allele). Moreover, the number of rs806365 (CC, homozygous variant) carriers totaled seventeen people (26.15%) amongst the subjects of Thai patients treated with medical cannabis. Furthermore, 17 out of 22 patients (77.27%) who experienced severe ADRs: Tachycardia and/or arrhythmia, carried an abnormal rs806365 gene (CT and CC alleles). Conclusions: The results propose that the rs806365 gene is widely distributed amongst the Thai population and there is a link between this gene and vulnerability to developing THC-induced ADRs after being treated with medical cannabis. Therefore, it is necessary to screen for the rs806365 gene before using medical cannabis to treat a patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rs806365" title="rs806365">rs806365</a>, <a href="https://publications.waset.org/abstracts/search?q=THC-induced%20adverse%20drug%20reactions" title=" THC-induced adverse drug reactions"> THC-induced adverse drug reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=CB1%20receptor" title=" CB1 receptor"> CB1 receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20population" title=" Thai population"> Thai population</a> </p> <a href="https://publications.waset.org/abstracts/148193/the-pharmacogenetics-of-type-1-cannabinoid-receptor-cb1-gene-associated-with-adverse-drug-reactions-in-thai-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10