CINXE.COM

Search results for: mixture velocity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mixture velocity</title> <meta name="description" content="Search results for: mixture velocity"> <meta name="keywords" content="mixture velocity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mixture velocity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mixture velocity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2940</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mixture velocity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2940</span> Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Rima%20Cheniti">Aicha Rima Cheniti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Besbes"> Hatem Besbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Haggege"> Joseph Haggege</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Sintes"> Christophe Sintes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mean%20carbon%20dioxide%20pressure" title="mean carbon dioxide pressure">mean carbon dioxide pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20mixture%20pressure" title=" mean mixture pressure"> mean mixture pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20velocity" title=" mixture velocity"> mixture velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20velocity%20difference" title=" radial velocity difference"> radial velocity difference</a> </p> <a href="https://publications.waset.org/abstracts/51601/evaluation-of-carbon-dioxide-pressure-through-radial-velocity-difference-in-arterial-blood-modeled-by-drift-flux-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2939</span> Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Rima%20Cheniti">Aicha Rima Cheniti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Besbes"> Hatem Besbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Haggege"> Joseph Haggege</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Sintes"> Christophe Sintes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mean%20carbon%20dioxide%20pressure" title="mean carbon dioxide pressure">mean carbon dioxide pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20mixture%20pressure" title=" mean mixture pressure"> mean mixture pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20velocity" title=" mixture velocity"> mixture velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20velocity" title=" radial velocity"> radial velocity</a> </p> <a href="https://publications.waset.org/abstracts/52258/gas-pressure-evaluation-through-radial-velocity-measurement-of-fluid-flow-modeled-by-drift-flux-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2938</span> The Behavior of Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Mixture Affected by Thermal Radiation Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Zakaraia%20Abdel%20Wahid">Taha Zakaraia Abdel Wahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a development of the papers is introduced. The behavior of the unsteady non-equilibrium distribution functions for a rarefied gas mixture under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the rarefied gas mixture is determined for the first time. The non-equilibrium thermodynamic properties of the system is investigated. The results are applied to the Argon-Neon binary gas mixture, for various values of both of molar fraction parameters and radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior and the results are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation%20field" title="radiation field">radiation field</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20gas%20mixture" title=" binary gas mixture"> binary gas mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20method" title=" travelling wave method"> travelling wave method</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20BGK%20model" title=" unsteady BGK model"> unsteady BGK model</a>, <a href="https://publications.waset.org/abstracts/search?q=irreversible%20thermodynamics" title=" irreversible thermodynamics"> irreversible thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/10477/the-behavior-of-unsteady-non-equilibrium-distribution-function-and-exact-equilibrium-time-for-a-dilute-gas-mixture-affected-by-thermal-radiation-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2937</span> Effect of a GABA/5-HTP Mixture on Behavioral Changes and Biomodulation in an Invertebrate Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyungae%20Jo">Kyungae Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Young%20Kim"> Eun Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungsoo%20Shin"> Byungsoo Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Soon%20Shin"> Kwang Soon Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Joo%20Suh"> Hyung Joo Suh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gamma-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) are amino acids of digested nutrients or food ingredients and these can possibly be utilized as non-pharmacologic treatment for sleep disorder. We previously investigated the GABA/5-HTP mixture is the principal concept of sleep-promoting and activity-repressing management in nervous system of D. melanogaster. Two experiments in this study were designed to evaluate sleep-promoting effect of GABA/5-HTP mixture, to clarify the possible ratio of sleep-promoting action in the Drosophila invertebrate model system. Behavioral assays were applied to investigate distance traveled, velocity, movement, mobility, turn angle, angular velocity and meander of two amino acids and GABA/5-HTP mixture with caffeine treated flies. In addition, differentially expressed gene (DEG) analyses from next generation sequencing (NGS) were applied to investigate the signaling pathway and functional interaction network of GABA/5-HTP mixture administration. GABA/5-HTP mixture resulted in significant differences between groups related to behavior (p < 0.01) and significantly induced locomotor activity in the awake model (p < 0.05). As a result of the sequencing, the molecular function of various genes has relationship with motor activity and biological regulation. These results showed that GABA/5-HTP mixture administration significantly involved the inhibition of motor behavior. In this regard, we successfully demonstrated that using a GABA/5-HTP mixture modulates locomotor activity to a greater extent than single administration of each amino acid, and that this modulation occurs via the neuronal system, neurotransmitter release cycle and transmission across chemical synapses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sleep" title="sleep">sleep</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-aminobutyric%20acid" title=" γ-aminobutyric acid"> γ-aminobutyric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=5-hydroxytryptophan" title=" 5-hydroxytryptophan"> 5-hydroxytryptophan</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20melanogaster" title=" Drosophila melanogaster"> Drosophila melanogaster</a> </p> <a href="https://publications.waset.org/abstracts/49971/effect-of-a-gaba5-htp-mixture-on-behavioral-changes-and-biomodulation-in-an-invertebrate-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2936</span> A Learning-Based EM Mixture Regression Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Cheng%20Tian">Yi-Cheng Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Miin-Shen%20Yang"> Miin-Shen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=EM%20algorithm" title=" EM algorithm"> EM algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20mixture%20model" title=" Gaussian mixture model"> Gaussian mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20regression%20model" title=" mixture regression model"> mixture regression model</a> </p> <a href="https://publications.waset.org/abstracts/25163/a-learning-based-em-mixture-regression-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2935</span> Transient Electrical Resistivity and Elastic Wave Velocity of Sand-Cement-Inorganic Binder Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiza%20Rusati%20Pacifique">Kiza Rusati Pacifique</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-il%20Song"> Ki-il Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement milk grout has been used for ground improvement. Due to the environmental issues related to cement, the reduction of cement usage is requesting. In this study, inorganic binder is introduced to reduce the use of cement contents for ground improvement. To evaluate transient electrical and mechanical properties of sand-cement-inorganic binder mixture, two non-destructive testing (NDT) methods, Electrical Resistivity (ER) and Free Free Resonant Column (FFRC) tests were adopted in addition to unconfined compressive strength test. Electrical resistivity, longitudinal wave velocity and damping ratio of sand-cement admixture samples improved with addition of inorganic binders were measured. Experimental tests were performed considering four different mixing ratios and three different cement contents depending on the curing time. Results show that mixing ratio and curing time have considerable effects on electrical and mechanical properties of mixture. Unconfined compressive strength (UCS) decreases as the cement content decreases. However, sufficient grout strength can be obtained with increase of content of inorganic binder. From the results, it is found that the inorganic binder can be used to enhance the mechanical properties of mixture and reduce the cement content. It is expected that data and trends proposed in this study can be used as reference in predicting grouting quality in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title="damping ratio">damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title=" electrical resistivity"> electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20binder" title=" inorganic binder"> inorganic binder</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20wave%20velocity" title=" longitudinal wave velocity"> longitudinal wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20strength" title=" unconfined compression strength"> unconfined compression strength</a> </p> <a href="https://publications.waset.org/abstracts/78919/transient-electrical-resistivity-and-elastic-wave-velocity-of-sand-cement-inorganic-binder-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2934</span> Measurements of Radial Velocity in Fixed Fluidized Bed for Fischer-Tropsch Synthesis Using LDV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaolai%20Zhang">Xiaolai Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiwen%20Sun"> Qiwen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Weixin%20Qian"> Weixin Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High temperature Fischer-Tropsch synthesis process use fixed fluidized bed as a reactor. In order to understand the flow behavior in the fluidized bed better, the research of how the radial velocity affect the entire flow field is necessary. Laser Doppler Velocimetry (LDV) was used to study the radial velocity distribution along the diameter direction of the cross-section of the particle in a fixed fluidized bed. The velocity in the cross-section is fluctuating within a small range. The direction of the speed is a random phenomenon. In addition to r/R is 1, the axial velocity are more than 6 times of the radial velocity, the radial velocity has little impact on the axial velocity in a fixed fluidized bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fischer-Tropsch%20synthesis" title="Fischer-Tropsch synthesis">Fischer-Tropsch synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Fixed%20fluidized%20bed" title=" Fixed fluidized bed"> Fixed fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=LDV" title=" LDV"> LDV</a>, <a href="https://publications.waset.org/abstracts/search?q=Velocity" title=" Velocity"> Velocity</a> </p> <a href="https://publications.waset.org/abstracts/24993/measurements-of-radial-velocity-in-fixed-fluidized-bed-for-fischer-tropsch-synthesis-using-ldv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2933</span> Numerical Investigation of Cavitation on Different Venturi Shapes by Computational Fluid Dynamics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sedat%20Yayla">Sedat Yayla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Oruc"> Mehmet Oruc</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakhwan%20Yaseen"> Shakhwan Yaseen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cavitation phenomena might rigorously impair machine parts such as pumps, propellers and impellers or devices as the pressure in the fluid declines under the liquid's saturation pressure. To evaluate the influence of cavitation, in this research two-dimensional computational fluid dynamics (CFD) venturi models with variety of inlet pressure values, throat lengths and vapor fluid contents were applied. In this research three different vapor contents (0%, 5% 10%), four inlet pressures (2, 4, 6, 8 and 10 atm) and two venturi models were employed at different throat lengths ( 5, 10, 15 and 20 mm) for discovering the impact of each parameter on the cavitation number. It is uncovered that there is a positive correlation between pressure inlet and vapor fluid content and cavitation number. Furthermore, it is unveiled that velocity remains almost constant at the inlet pressures of 6, 8,10atm, nevertheless increasing the length of throat results in the substantial escalation in the velocity of the throat at inlet pressures of 2 and 4 atm. Furthermore, velocity and cavitation number were negatively correlated. The results of the cavitation number varied between 0.092 and 0.495 depending upon the velocity values of the throat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation%20number" title="cavitation number">cavitation number</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20of%20fluid" title=" mixture of fluid"> mixture of fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20of%20throat" title=" velocity of throat"> velocity of throat</a> </p> <a href="https://publications.waset.org/abstracts/74888/numerical-investigation-of-cavitation-on-different-venturi-shapes-by-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2932</span> The Contribution of Density Fluctuations in Ultrasound Scattering in Cancellous Bone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elsariti">A. Elsariti</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Evans"> T. Evans </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An understanding of the interaction between acoustic waves and cancellous bone is needed in order to realize the full clinical potential of ultrasonic bone measurements. Scattering is likely to be of central importance but has received little attention to date. Few theoretical approaches have been described to explain scattering of ultrasound from bone. In this study, a scattering model based on velocity and density fluctuations in a binary mixture (marrow fat and cortical matrix) was used to estimate the ultrasonic attenuation in cancellous bone as a function of volume fraction. Predicted attenuation and backscatter coefficient were obtained for a range of porosities and scatterer size. At 600 kHZ and for different scatterer size the effect of velocity and density fluctuations in the predicted attenuation was approximately 60% higher than velocity fluctuations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20scattering" title="ultrasound scattering">ultrasound scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20speed" title=" sound speed"> sound speed</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20fluctuations" title=" density fluctuations"> density fluctuations</a>, <a href="https://publications.waset.org/abstracts/search?q=attenuation%20coefficient" title=" attenuation coefficient "> attenuation coefficient </a> </p> <a href="https://publications.waset.org/abstracts/4810/the-contribution-of-density-fluctuations-in-ultrasound-scattering-in-cancellous-bone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2931</span> Velocity Distribution in Open Channels with Sand: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Keramaris">E. Keramaris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title="particle image velocimetry">particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20bed" title=" sand bed"> sand bed</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20distribution" title=" velocity distribution"> velocity distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/46893/velocity-distribution-in-open-channels-with-sand-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2930</span> Ultrasonic Pulse Velocity Investigation of Polypropylene and Steel Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erjola%20Reufi">Erjola Reufi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jozefita%20Marku"> Jozefita Marku</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Bier"> Thomas Bier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic pulse velocity (UPV) method has been shown for some time to provide a reliable means of estimating properties and offers a unique opportunity for direct, quick and safe control of building damaged by earthquake, fatigue, conflagration and catastrophic scenarios. On this investigation hybrid reinforced concrete has been investigated by UPV method. Hooked end steel fiber of length 50 and 30 mm was added to concrete in different proportion 0, 0.25, 0.5, and 1 % by the volume of concrete. On the other hand, polypropylene fiber of length 12, 6, 3 mm was added to concrete of 0.1, 0.2, and 0.4 % by the volume of concrete. Fifteen different mixture has been prepared to investigate the relation between compressive strength and UPV values and also to investigate on the effect of volume and type of fiber on UPV values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20fiber" title=" polypropylene fiber"> polypropylene fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber" title=" steel fiber"> steel fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title=" ultrasonic pulse velocity"> ultrasonic pulse velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=volume" title=" volume"> volume</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20of%20fiber" title=" type of fiber"> type of fiber</a> </p> <a href="https://publications.waset.org/abstracts/43530/ultrasonic-pulse-velocity-investigation-of-polypropylene-and-steel-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2929</span> Use of Dendrochronology in Estimation of Creep Velocity and Its Dependence on the Bulk Density of Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Amjad%20Sabir">Mohammad Amjad Sabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishtiaq%20Khan"> Ishtiaq Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Ali"> Shahid Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Umar%20Shabbir"> Umar Shabbir</a>, <a href="https://publications.waset.org/abstracts/search?q=Aneel%20Ahmad"> Aneel Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Creep, being the main silt contributor to the rivers, is a slow, downhill flow of soils. The creep velocity is measured in millimeters to a couple of centimeters per year and is determined with the help of tilt caused by creep in the vertical objects and needs at least ten years to get a reliable creep velocity. This project was devised to calculate creep velocity using dendrochronology and looking for the difference of creep velocity registered by different trees on the same slope. It was concluded that dendrochronology provides a very reliable procedure of creep velocity estimation if ‘J’ shaped trees are studied for their horizontal movement and age. The age of these trees was measured using tree coring, and the horizontal movement was measured with a conventional tape. Using this procedure it does not require decades and additionally the data reveals the creep velocity for up to 150 years and even more instead of just a decade. It was also concluded that the creep velocity does not only depend on bulk density of soil hence no pronounced effect of bulk density was detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep%20velocity" title="creep velocity">creep velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=Galiyat" title=" Galiyat"> Galiyat</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrochronology" title=" dendrochronology"> dendrochronology</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagri%20Bala" title=" Nagri Bala"> Nagri Bala</a> </p> <a href="https://publications.waset.org/abstracts/100711/use-of-dendrochronology-in-estimation-of-creep-velocity-and-its-dependence-on-the-bulk-density-of-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2928</span> Study of Low Loading Heavier Phase in Horizontal Oil-Water Liquid-Liquid Pipe Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aminu%20J.%20A.%20Koguna">Aminu J. A. Koguna</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliyu%20M.%20Aliyu"> Aliyu M. Aliyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Olawale%20T.%20Fajemidupe"> Olawale T. Fajemidupe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahaya%20D.%20Baba"> Yahaya D. Baba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production fluids are transported from the platform to tankers or process facilities through transfer pipelines. Water being one of the heavier phases tends to settle at the bottom of pipelines especially at low flow velocities and this has adverse consequences for pipeline integrity. On restart after a shutdown this could result in corrosion and issues for process equipment, thus the need to have the heavier liquid dispersed into the flowing lighter fluid. This study looked at the flow regime of low water cut and low flow velocity oil and water flow using conductive film thickness probes in a large diameter 4-inch pipe to obtain oil and water interface height and the interface structural velocity. A wide range of 0.1–1.0 m/s oil and water mixture velocities was investigated for 0.5–5% water cut. Two fluid model predictions were used to compare with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interface%20height" title="interface height">interface height</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid" title=" liquid"> liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20regime" title=" flow regime"> flow regime</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersed" title=" dispersed"> dispersed</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20cut" title=" water cut"> water cut</a> </p> <a href="https://publications.waset.org/abstracts/38742/study-of-low-loading-heavier-phase-in-horizontal-oil-water-liquid-liquid-pipe-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2927</span> Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Kumar"> Nitin Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemant%20Kumar"> Hemant Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid&ndash;liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5&deg; pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5&deg; pipe bend for two-phase (solid and liquid) flow using finite volume method with standard <em>k-&epsilon;</em> turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title="computational fluid dynamics (CFD)">computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20transportation" title=" slurry transportation"> slurry transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CE%B5%20Model" title=" k-ε Model"> k-ε Model</a> </p> <a href="https://publications.waset.org/abstracts/57647/numerical-investigation-of-pressure-drop-and-erosion-wear-by-computational-fluid-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2926</span> Numerical Simulation of Filtration Gas Combustion: Front Propagation Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Laevsky">Yuri Laevsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Nosova"> Tatyana Nosova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The phenomenon of filtration gas combustion (FGC) had been discovered experimentally at the beginning of 80’s of the previous century. It has a number of important applications in such areas as chemical technologies, fire-explosion safety, energy-saving technologies, oil production. From the physical point of view, FGC may be defined as the propagation of region of gaseous exothermic reaction in chemically inert porous medium, as the gaseous reactants seep into the region of chemical transformation. The movement of the combustion front has different modes, and this investigation is focused on the low-velocity regime. The main characteristic of the process is the velocity of the combustion front propagation. Computation of this characteristic encounters substantial difficulties because of the strong heterogeneity of the process. The mathematical model of FGC is formed by the energy conservation laws for the temperature of the porous medium and the temperature of gas and the mass conservation law for the relative concentration of the reacting component of the gas mixture. In this case the homogenization of the model is performed with the use of the two-temperature approach when at each point of the continuous medium we specify the solid and gas phases with a Newtonian heat exchange between them. The construction of a computational scheme is based on the principles of mixed finite element method with the usage of a regular mesh. The approximation in time is performed by an explicit–implicit difference scheme. Special attention was given to determination of the combustion front propagation velocity. Straight computation of the velocity as grid derivative leads to extremely unstable algorithm. It is worth to note that the term ‘front propagation velocity’ makes sense for settled motion when some analytical formulae linking velocity and equilibrium temperature are correct. The numerical implementation of one of such formulae leading to the stable computation of instantaneous front velocity has been proposed. The algorithm obtained has been applied in subsequent numerical investigation of the FGC process. This way the dependence of the main characteristics of the process on various physical parameters has been studied. In particular, the influence of the combustible gas mixture consumption on the front propagation velocity has been investigated. It also has been reaffirmed numerically that there is an interval of critical values of the interfacial heat transfer coefficient at which a sort of a breakdown occurs from a slow combustion front propagation to a rapid one. Approximate boundaries of such an interval have been calculated for some specific parameters. All the results obtained are in full agreement with both experimental and theoretical data, confirming the adequacy of the model and the algorithm constructed. The presence of stable techniques to calculate the instantaneous velocity of the combustion wave allows considering the semi-Lagrangian approach to the solution of the problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filtration%20gas%20combustion" title="filtration gas combustion">filtration gas combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=low-velocity%20regime" title=" low-velocity regime"> low-velocity regime</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20finite%20element%20method" title=" mixed finite element method"> mixed finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/92832/numerical-simulation-of-filtration-gas-combustion-front-propagation-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2925</span> Cold Model Experimental Research on Particle Velocity Distribution in Gas-Solid Circulating Fluidized Bed for Methanol-To-Olefins Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongzheng%20Li">Yongzheng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiwen%20Sun"> Qiwen Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radial profiles of particle velocities were investigated in a 6.1 m tall methanol-to-olefins cold model experimental device using a TSI laser Doppler velocimeter. The measurement of axial levels was conducted in the full developed region. The effect of axial level on flow development was not obvious under the same operating condition. Superficial gas velocity and solid circulating rate had significant influence on particle velocity in the center region of the riser. Besides, comparisons between upward, downward and average particle velocity were conducted. The average particle velocity was close to upward velocity and higher than downward velocity in radial locations except the wall region of riser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circulating%20fluidized%20bed" title="circulating fluidized bed">circulating fluidized bed</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20doppler%20velocimeter" title=" laser doppler velocimeter"> laser doppler velocimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20velocity" title=" particle velocity"> particle velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20profile" title=" radial profile"> radial profile</a> </p> <a href="https://publications.waset.org/abstracts/25000/cold-model-experimental-research-on-particle-velocity-distribution-in-gas-solid-circulating-fluidized-bed-for-methanol-to-olefins-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2924</span> Despiking of Turbulent Flow Data in Gravel Bed Stream </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratul%20Das">Ratul Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek&rsquo;s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov &ldquo;&ndash;5/3 scaling-law&rdquo; in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20doppler%20velocimeter" title="acoustic doppler velocimeter">acoustic doppler velocimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=gravel-bed" title=" gravel-bed"> gravel-bed</a>, <a href="https://publications.waset.org/abstracts/search?q=spike%20removal" title=" spike removal"> spike removal</a>, <a href="https://publications.waset.org/abstracts/search?q=reynolds%20shear%20stress" title=" reynolds shear stress"> reynolds shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=near-bed%20turbulence" title=" near-bed turbulence"> near-bed turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20power%20spectra" title=" velocity power spectra"> velocity power spectra</a> </p> <a href="https://publications.waset.org/abstracts/47047/despiking-of-turbulent-flow-data-in-gravel-bed-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2923</span> 1D Velocity Model for the Gobi-Altai Region from Local Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dolgormaa%20Munkhbaatar">Dolgormaa Munkhbaatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Munkhsaikhan%20%20Adiya"> Munkhsaikhan Adiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Tseedulam%20Khuut"> Tseedulam Khuut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We performed an inversion method to determine the 1D-velocity model with station corrections of the Gobi-Altai area in the southern part of Mongolia using earthquake data collected in the National Data Center during the last 10 years. In this study, the concept of the new 1D model has been employed to minimize the average RMS of a set of well-located earthquakes, recorded at permanent (between 2006 and 2016) and temporary seismic stations (between 2014 and 2016), compute solutions for the coupled hypocenter and 1D velocity model. We selected 4800 events with RMS less than 0.5 seconds and with a maximum GAP of 170 degrees and determined velocity structures. Also, we relocated all possible events located in the Gobi-Altai area using the new 1D velocity model and achieved constrained hypocentral determinations for events within this area. We concluded that the estimated new 1D velocity model is a relatively low range compared to the previous velocity model in a significant improvement intend to, and the quality of the information basis for future research center locations to determine the earthquake epicenter area with this new transmission model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1D%20velocity%20model" title="1D velocity model">1D velocity model</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=relocation" title=" relocation"> relocation</a>, <a href="https://publications.waset.org/abstracts/search?q=Velest" title=" Velest"> Velest</a> </p> <a href="https://publications.waset.org/abstracts/121020/1d-velocity-model-for-the-gobi-altai-region-from-local-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2922</span> Optimum Flight Altitude</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Nandu">Ravi Nandu</a>, <a href="https://publications.waset.org/abstracts/search?q=Anmol%20Taploo"> Anmol Taploo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As per current scenario, commercial aircrafts have been very well functioning with higher efficiency, but there is something that affects it. Every aircraft runs with the combustion produced by mixture of fuel and air. For example: A flight to travel from Mumbai to Kolkata it takes 2h: 30 min and from Kolkata to Mumbai it takes 2h: 45 min. It happens due to head and tail wind. Due to head wind air craft travels faster than its usual velocity and it takes 2h: 30 min to reach to Kolkata, while it takes 2h;45min vis versa. This lag in time is caused due to head wind that increases the drag and reduces the relative velocity of the plane. So in order to reduce this wastage of fuel there is an optimal flight altitude at which the head and tail wind action is reduced compared to the present scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag" title="drag">drag</a>, <a href="https://publications.waset.org/abstracts/search?q=head%20wind" title=" head wind"> head wind</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20wind" title=" tail wind"> tail wind</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft" title=" aircraft"> aircraft</a> </p> <a href="https://publications.waset.org/abstracts/16394/optimum-flight-altitude" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2921</span> Experimental Investigation of S822 and S823 Wind Turbine Airfoils Wake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20B.%20Khoshnevis">Amir B. Khoshnevis</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mirhosseini"> Morteza Mirhosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with a sub-part of an extensive research program on the wake survey method in various Reynolds numbers and angles of attack. This research experimentally investigates the wake flow characteristics behind S823 and S822 airfoils in which designed for small wind turbines. Velocity measurements determined by using hot-wire anemometer. Data acquired in the wake of the airfoil at locations(c is the chord length): 0.01c - 3c. Reynolds number increased due to increase of free stream velocity. Results showed that mean velocity profiles depend on the angle of attack and location of data collections. Data acquired at the low Reynolds numbers (smaller than 10^5). Effects of Reynolds numbers on the mean velocity profiles are more significant in near locations the trailing edge and these effects decrease by taking distance from trailing edge toward downstream. Mean velocity profiles region increased by increasing the angle of attack, except for 7°, and also the maximum velocity deficit (velocity defect) increased. The difference of mean velocity in and out of the wake decreased by taking distance from trailing edge, and mean velocity profile become wider and more uniform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20attack" title="angle of attack">angle of attack</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20deficit" title=" velocity deficit"> velocity deficit</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/36863/experimental-investigation-of-s822-and-s823-wind-turbine-airfoils-wake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2920</span> Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roghayyeh%20Motallebzadeh">Roghayyeh Motallebzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahin%20Hajizadeh"> Shahin Hajizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Ghasemi"> Mohammad Reza Ghasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laminar mixed convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviours of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buoyancy%20force" title="buoyancy force">buoyancy force</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20mixed%20convection" title=" laminar mixed convection"> laminar mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20model" title=" mixture model"> mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-fluid" title=" nano-fluid"> nano-fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase" title=" two-phase"> two-phase</a> </p> <a href="https://publications.waset.org/abstracts/6099/numerical-study-of-laminar-mixed-convection-heat-transfer-of-a-nanofluid-in-a-concentric-annular-tube-using-two-phase-mixture-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2919</span> Measurement of Steady Streaming from an Oscillating Bubble Using Particle Image Velocimetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongseok%20Kwon">Yongseok Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Woowon%20Jeong"> Woowon Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunjin%20Cho"> Eunjin Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangkug%20Chung"> Sangkug Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyehan%20Rhee"> Kyehan Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steady streaming flow fields induced by a 500 um bubble oscillating at 12 kHz were measured using microscopic particle image velocimetry (PIV). The accuracy of velocity measurement using a micro PIV system was checked by comparing the measured velocity fields with the theoretical velocity profiles in fully developed laminar flow. The steady streaming flow velocities were measured in the saggital plane of the bubble attached on the wall. Measured velocity fields showed upward jet flow with two symmetric counter-rotating vortices, and the maximum streaming velocity was about 12 mm/s, which was within the velocity ranges measured by other researchers. The measured streamlines were compared with the analytic solution, and they also showed a reasonable agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillating%20bubble" title="oscillating bubble">oscillating bubble</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title=" particle image velocimetry"> particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=microstreaming" title=" microstreaming"> microstreaming</a>, <a href="https://publications.waset.org/abstracts/search?q=vortices" title=" vortices"> vortices</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/1749/measurement-of-steady-streaming-from-an-oscillating-bubble-using-particle-image-velocimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2918</span> Effect of Using a Mixture of Al2O3 Nanoparticles and 3-Aminopropyltriethoxysilane as the Sensing Membrane for Polysilicon Wire on pH Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=You-Lin%20Wu">You-Lin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zong-Xian%20Wu"> Zong-Xian Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Jenn%20Lin"> Jing-Jenn Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Hung%20Lin"> Shih-Hung Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a polysilicon wire (PSW) coated with a mixture of 3-aminopropyltriethoxysilane (r-APTES) and Al2O3 nanoparticles as the sensing membrane prepared with various Al2O3/r-APTES and dispersing agent/r-APTES ratios for pH sensing is studied. The r-APTES and dispersed Al2O3 nanoparticles mixture was directly transferred to PSW surface by solution phase deposition (SPD). It is found that using a mixture of Al2O3 nanoparticles and r-APTES as the sensing membrane help in improving the pH sensing of the PSW sensor and a 5 min SPD deposition time is the best. Dispersing agent is found to be necessary for better pH sensing when preparing the mixture of Al2O3 nanoparticles and r-APTES. The optimum condition for preparing the mixture is found to be Al2O3/r-APTES ratio of 2% and dispersing agent/r-APTES ratio of 0.3%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=al2o3%20nanoparticles" title="al2o3 nanoparticles">al2o3 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=ph%20sensing" title=" ph sensing"> ph sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=polysilicon%20wire%20sensor" title=" polysilicon wire sensor"> polysilicon wire sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=r-aptes" title=" r-aptes"> r-aptes</a> </p> <a href="https://publications.waset.org/abstracts/31242/effect-of-using-a-mixture-of-al2o3-nanoparticles-and-3-aminopropyltriethoxysilane-as-the-sensing-membrane-for-polysilicon-wire-on-ph-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2917</span> Flow of a Second Order Fluid through Constricted Tube with Slip Velocity at Wall Using Integral Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nosheen%20Zareen%20Khan">Nosheen Zareen Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Majeed%20Siddiqui"> Abdul Majeed Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Afzal%20Rana"> Muhammad Afzal Rana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steady flow of a second order fluid through constricted tube with slip velocity at wall is modeled and analyzed theoretically. The governing equations are simplified by implying no slip in radial direction. Based on Karman Pohlhausen procedure polynomial solution for axial velocity profile is presented. An expressions for pressure gradient, shear stress, separation and reattachment points and radial velocity are also calculated. The effect of slip and no slip velocity on velocity, shear stress, pressure gradient are discussed and depicted graphically. It is noted that when Reynolds number increases velocity of the fluid decreases in both slip and no slip conditions. It is also found that the wall shear stress, separation and reattachment points are strongly effected by Reynolds number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20solution" title="approximate solution">approximate solution</a>, <a href="https://publications.waset.org/abstracts/search?q=constricted%20tube" title=" constricted tube"> constricted tube</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluids" title=" non-Newtonian fluids"> non-Newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/34309/flow-of-a-second-order-fluid-through-constricted-tube-with-slip-velocity-at-wall-using-integral-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2916</span> Particle Size Distribution Estimation of a Mixture of Regular and Irregular Sized Particles Using Acoustic Emissions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ejay%20Nsugbe">Ejay Nsugbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Starr"> Andrew Starr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Jennions"> Ian Jennions</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristobal%20Ruiz-Carcel"> Cristobal Ruiz-Carcel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This works investigates the possibility of using Acoustic Emissions (AE) to estimate the Particle Size Distribution (PSD) of a mixture of particles that comprise of particles of different densities and geometry. The experiments carried out involved the mixture of a set of glass and polyethylene particles that ranged from 150-212 microns and 150-250 microns respectively and an experimental rig that allowed the free fall of a continuous stream of particles on a target plate which the AE sensor was placed. By using a time domain based multiple threshold method, it was observed that the PSD of the particles in the mixture could be estimated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emissions" title="acoustic emissions">acoustic emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20sizing" title=" particle sizing"> particle sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20monitoring" title=" process monitoring"> process monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/68042/particle-size-distribution-estimation-of-a-mixture-of-regular-and-irregular-sized-particles-using-acoustic-emissions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2915</span> Velocity Distribution in Density Currents Flowing over Rough Beds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Nasrollahpour">Reza Nasrollahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Hidayat%20Bin%20Jamal"> Mohamad Hidayat Bin Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulhilmi%20Bin%20Ismail"> Zulhilmi Bin Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Density currents are generated when the fluid of one density is released into another fluid with a different density. These currents occur in a variety of natural and man-made environments, and this emphasises the importance of studying them. In most practical cases, the density currents flow over the surfaces which are not plane; however, there have been limited investigations in this regard. This study uses laboratory experiments to analyse the influence of bottom roughness on the velocity distribution within these dense underflows. The currents are analysed over a plane surface and three different configurations of beam-roughened beds. The velocity profiles are collected using Acoustic Doppler Velocimetry technique, and the distribution of velocity within these currents is formulated for the tested beds. The results indicate that the empirical power and Gaussian relations can describe the velocity distribution in the inner and outer regions of the profiles, respectively. Moreover, it is found that the bottom roughness is the primary controlling parameter in the inner region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20currents" title="density currents">density currents</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20profiles" title=" velocity profiles"> velocity profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=Acoustic%20Doppler%20Velocimeter" title=" Acoustic Doppler Velocimeter"> Acoustic Doppler Velocimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20roughness" title=" bed roughness"> bed roughness</a> </p> <a href="https://publications.waset.org/abstracts/96631/velocity-distribution-in-density-currents-flowing-over-rough-beds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2914</span> Flame Propagation Velocity of Selected Gas Mixtures Depending on the Temperature </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaczmarzyk%20Piotr">Kaczmarzyk Piotr</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Dziechciarz"> Anna Dziechciarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Klapsa"> Wojciech Klapsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is demonstration the test results of research influence of temperature on the velocity of flame propagation using gas and air mixtures for selected gas mixtures. The research was conducted on the test apparatus in the form of duct 2 m long. The test apparatus was funded from the project: “Development of methods to neutralize threats of explosion for determined tanks contained technical gases, including alternative sources of supply in the fire environment, taking into account needs of rescuers” number: DOB-BIO6/02/50/2014. The Project is funded by The National Centre for Research and Development. This paper presents the results of measurement of rate of pressure rise and rate in flame propagation, using test apparatus for mixtures air and methane or air and propane. This paper presents the results performed using the test apparatus in the form of duct measuring the rate of flame and overpressure wave. Studies were performed using three gas mixtures with different concentrations: Methane (3% to 8% vol), Propane (3% to 6% vol). As regard to the above concentrations, tests were carried out at temperatures 20 and 30 ̊C. The gas mixture was supplied to the inside of the duct by the partial pressure molecules. Data acquisition was made using 5 dynamic pressure transducers and 5 ionization probes, arranged along of the duct. Temperature conditions changes were performed using heater which was mounted on the duct’s bottom. During the tests, following parameters were recorded: maximum explosion pressure, maximum pressure recorded by sensors and voltage recorded by ionization probes. Performed tests, for flammable gas and air mixtures, indicate that temperature changes have an influence on overpressure velocity. It should be noted, that temperature changes do not have a major impact on the flame front velocity. In the case of propane and air mixtures (temperature 30 ̊C) was observed DDT (Deflagration to Detonation) phenomena. The velocity increased from 2 to 20 m/s. This kind of explosion could turn into a detonation, but the duct length is too short (2 m). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20propagation" title="flame propagation">flame propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20propagation%20velocity" title=" flame propagation velocity"> flame propagation velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=explosion" title=" explosion"> explosion</a>, <a href="https://publications.waset.org/abstracts/search?q=propane" title=" propane"> propane</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a> </p> <a href="https://publications.waset.org/abstracts/78256/flame-propagation-velocity-of-selected-gas-mixtures-depending-on-the-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2913</span> Effect of Using Crumb Rubber with Warm-Mix-Asphalt Additive in Laboratory and Field Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Akpolat">Mustafa Akpolat</a>, <a href="https://publications.waset.org/abstracts/search?q=Baha%20Vural%20K%C3%B6k"> Baha Vural Kök</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a waste material such as crumb rubber (CR) obtained by waste tires has become an important issue in respect to sustainability. However, the CR modified mixture also requires high manufacture temperature as a polymer modified mixture. For this reason in this study, it is intended to produce a CR modified mixture with warm mix asphalt additives in the same mixture. Asphalt mixtures produced by pure, 10%CR, 10%CR+3% Sasobit and 10%CR+0.7% Evotherm were subjected to aging procedure in the laboratory and the field. The indirect tensile repeated tests were applied to aged and original specimens. It was concluded that the fatigue life of the mixtures increased significantly with the increase of aging time. CR+Sasobit modified mixture aged at the both field and laboratory gave the highest load cycle among the mixtures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title="crumb rubber">crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=warm%20mix%20asphalt" title=" warm mix asphalt"> warm mix asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a> </p> <a href="https://publications.waset.org/abstracts/79016/effect-of-using-crumb-rubber-with-warm-mix-asphalt-additive-in-laboratory-and-field-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2912</span> Prevention of Biocompounds and Amino Acid Losses in Vernonia amygdalina duringPost Harvest Treatment Using Hot Oil-Aqueous Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nneka%20Nkechi%20Uchegbu">Nneka Nkechi Uchegbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Temitope%20Omolayo%20Fasuan"> Temitope Omolayo Fasuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated how to reduce bio-compounds and amino acids in V. amygdalina leaf during processing as a functional food ingredient. Fresh V. amygdalina leaf was processed using thermal oil-aqueous mixtures (soybean oil: aqueous and palm oil: aqueous) at 1:40 and 130 (v/v), respectively. Results indicated that the hot soybean oil-aqueous mixture was the most effective in preserving the bio-compounds and amino acids with retention potentials of 80.95% of the bio-compounds at the rate of 90-100%. Hot palm oil-aqueous mixture retained 61.90% of the bio-compounds at the rate of 90-100% and hot aqueous retained 9.52% of the bio-compounds at the same rate. During the debittering process, seven new bio-compounds were formed in the leaves treated with hot soybean oil-aqueous mixture, six in palm oil-aqueous mixture, and only four in hot aqueous leaves. The bio-compounds in the treated leaves have potential functions as antitumor, antioxidants, antihistaminic, anti-ovarian cancer, anti-inflammatory, antiarthritic, hepatoprotective, antihistaminic, haemolytic 5-α reductase inhibitor, nt, immune-stimulant, diuretic, antiandrogenic, and anaemiagenic. Alkaloids and polyphenols were retained at the rate of 81.34-98.50% using oil: aqueous mixture while aqueous recorded the rate of 33.47-41.46%. Most of the essential amino acids were retained at a rate above 90% through the aid of oil. The process is scalable and could be employed for domestic and industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20amygdalina%20leaf" title="V. amygdalina leaf">V. amygdalina leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-compounds" title=" bio-compounds"> bio-compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-aqueous%20mixture" title=" oil-aqueous mixture"> oil-aqueous mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids"> amino acids</a> </p> <a href="https://publications.waset.org/abstracts/147830/prevention-of-biocompounds-and-amino-acid-losses-in-vernonia-amygdalina-duringpost-harvest-treatment-using-hot-oil-aqueous-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2911</span> Computational Fluid Dynamic Investigation into the Relationship between Pressure and Velocity Distributions within a Microfluidic Feedback Oscillator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zara%20L.%20Sheady">Zara L. Sheady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluidic oscillators are being utilised in an increasing number of applications in a wide variety of areas; these include on-board vehicle cleaning systems, flow separation control on aircraft and in fluidic circuitry. With this increased use, there is a further understanding required for the mechanics of the fluidics of the fluidic oscillator and why they work in the manner that they do. ANSYS CFX has been utilized to visualise the pressure and velocity within a microfluidic feedback oscillator. The images demonstrate how the pressure vortices build within the oscillator at the points where the velocity is diverted from linear motion through the oscillator. With an enhanced understanding of the pressure and velocity distributions within a fluidic oscillator, it will enable users of microfluidics to more greatly tailor fluidic nozzles to their specification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20CFX" title="ANSYS CFX">ANSYS CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidic%20oscillators" title=" fluidic oscillators"> fluidic oscillators</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanics" title=" mechanics"> mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=relationship" title=" relationship"> relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a> </p> <a href="https://publications.waset.org/abstracts/86615/computational-fluid-dynamic-investigation-into-the-relationship-between-pressure-and-velocity-distributions-within-a-microfluidic-feedback-oscillator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mixture%20velocity&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mixture%20velocity&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mixture%20velocity&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mixture%20velocity&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mixture%20velocity&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mixture%20velocity&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mixture%20velocity&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mixture%20velocity&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mixture%20velocity&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mixture%20velocity&amp;page=97">97</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mixture%20velocity&amp;page=98">98</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mixture%20velocity&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10