CINXE.COM

Search results for: open channel

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: open channel</title> <meta name="description" content="Search results for: open channel"> <meta name="keywords" content="open channel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="open channel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="open channel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4322</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: open channel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4322</span> Experimental Study of Discharge with Sharp-Crested Weirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Keramaris">E. Keramaris</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kanakoudis"> V. Kanakoudis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the water flow in an open channel over a sharp-crested weir is investigated experimentally. For this reason a series of laboratory experiments were performed in an open channel with a sharp-crested weir. The maximum head expected over the weir, the total upstream water height and the downstream water height of the impact in the constant bed of the open channel were measured. The discharge was measured using a tank put right after the open channel. In addition, the discharge and the upstream velocity were also calculated using already known equations. The main finding is that the relative error percentage for the majority of the experimental measurements is &plusmn; 4%, meaning that the calculation of the discharge with a sharp-crested weir gives very good results compared to the numerical results from known equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sharp-crested%20weir" title="sharp-crested weir">sharp-crested weir</a>, <a href="https://publications.waset.org/abstracts/search?q=weir%20height" title=" weir height"> weir height</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20measurement" title=" flow measurement"> flow measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title=" open channel flow"> open channel flow</a> </p> <a href="https://publications.waset.org/abstracts/117918/experimental-study-of-discharge-with-sharp-crested-weirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4321</span> Computation of Drag and Lift Coefficients on Submerged Vanes in Open Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anshul%20Jain">Anshul Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Deepak%20Kumar"> P. Deepak Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20S.%20Dikshit"> P. K. S. Dikshit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To stabilize the riverbanks in the curved reaches of alluvial channels due to erosion and to stop sediment transportation, many models and theories have been put forth. One among such methods is to install flat vanes on the channel bed in predetermined manner. In practical, a relatively small no of vanes can produce bend flows which are practically uniform across the channel. The objective of the present study is to measure the drag and lift on such submerged vanes in open channels. Experiments were performed and the data collected have been presented and analyzed. Using the data collected herein, predictors for the coefficients of drag and lift have been developed. Such predictors yield the value of these coefficients for the known fluid properties and flow characteristic of the channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag" title="drag">drag</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/abstracts/search?q=vanes" title=" vanes"> vanes</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel" title=" open channel"> open channel</a> </p> <a href="https://publications.waset.org/abstracts/47361/computation-of-drag-and-lift-coefficients-on-submerged-vanes-in-open-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4320</span> Flow Prediction of Boundary Shear Stress with Enlarging Flood Plains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spandan%20Sahu">Spandan Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Amiya%20Kumar%20Pati"> Amiya Kumar Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishanjit%20Kumar%20Khatua"> Kishanjit Kumar Khatua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> River is our main source of water which is a form of open channel flow and the flow in open channel provides with many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results is compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depth%20average%20velocity" title="depth average velocity">depth average velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20prismatic%20compound%20channel" title=" non prismatic compound channel"> non prismatic compound channel</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20flow%20depth" title=" relative flow depth"> relative flow depth</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20distribution" title=" velocity distribution"> velocity distribution</a> </p> <a href="https://publications.waset.org/abstracts/110224/flow-prediction-of-boundary-shear-stress-with-enlarging-flood-plains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4319</span> Turbulence Measurement Over Rough and Smooth Bed in Open Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirti%20Singh">Kirti Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kesheo%20Prasad"> Kesheo Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3D Acoustic Doppler velocimeter was used in the current investigation to quantify the mean and turbulence characteristics in non-uniform open-channel flows. Results are obtained from studies done in the laboratory, analysing the behavior of sand particles under turbulent open channel flow conditions flowing through rough, porous beds. Data obtained from ADV is used to calculate turbulent flow characteristics, Reynolds stresses and turbulent kinetic energy. Theoretical formulations for the distribution of Reynolds stress and the vertical velocity have been constructed using the Reynolds equation and the continuity equation of 2D open-channel flow. The measured Reynolds stress profile and the vertical velocity are comparable with the derived expressions. This study uses the Navier-Stokes equations for analysing the behavior of the vertical velocity profile in the dominant region of full-fledged turbulent flows in open channels, and it gives a new origination of the profile. For both wide and narrow open channels, this origination can estimate the time-averaged primary velocity in the turbulent boundary layer's outer region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulence" title="turbulence">turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20roughness" title=" bed roughness"> bed roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=logarithmic%20law" title=" logarithmic law"> logarithmic law</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress%20correlations" title=" shear stress correlations"> shear stress correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=ADV" title=" ADV"> ADV</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20shear%20stress" title=" Reynolds shear stress"> Reynolds shear stress</a> </p> <a href="https://publications.waset.org/abstracts/159300/turbulence-measurement-over-rough-and-smooth-bed-in-open-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4318</span> Prediction of Boundary Shear Stress with Flood Plains Enlargements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spandan%20Sahu">Spandan Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Amiya%20Kumar%20Pati"> Amiya Kumar Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishanjit%20Kumar%20Khatua"> Kishanjit Kumar Khatua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The river is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that need to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between the main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of the main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel, and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depth%20average%20velocity" title="depth average velocity">depth average velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20prismatic%20compound%20channel" title=" non prismatic compound channel"> non prismatic compound channel</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20flow%20depth" title=" relative flow depth"> relative flow depth</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20distribution" title=" velocity distribution"> velocity distribution</a> </p> <a href="https://publications.waset.org/abstracts/110673/prediction-of-boundary-shear-stress-with-flood-plains-enlargements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4317</span> Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Abdullah%20Al%20Faruque">Md Abdullah Al Faruque</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Balachandar"> Ram Balachandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title="open channel flow">open channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20Number" title=" Reynolds Number"> Reynolds Number</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/54441/effect-of-reynolds-number-on-wall-normal-turbulence-intensity-in-a-smooth-and-rough-open-channel-using-both-outer-and-inner-scaling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4316</span> Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ansari">M. A. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hussain"> A. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Uddin"> A. Uddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discharge%20coefficient" title="discharge coefficient">discharge coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20method%20of%20data%20handling" title=" group method of data handling"> group method of data handling</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel" title=" open channel"> open channel</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20labyrinth%20weir" title=" side labyrinth weir"> side labyrinth weir</a> </p> <a href="https://publications.waset.org/abstracts/115809/estimation-of-coefficient-of-discharge-of-side-trapezoidal-labyrinth-weir-using-group-method-of-data-handling-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4315</span> Study the Effect of Roughness on the Higher Order Moment to Extract Information about the Turbulent Flow Structure in an Open Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Abdullah%20Al%20Faruque">Md Abdullah Al Faruque</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Balachandar"> Ram Balachandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out to understand the extent of effect of roughness and Reynolds number in open channel flow (OCF). To this extent, four different types of bed surface conditions consisting smooth, distributed roughness, continuous roughness, natural sand bed and two different Reynolds number for each bed surfaces were adopted in this study. Particular attention was given on mean velocity, turbulence intensity, Reynolds shear stress, correlation, higher order moments and quadrant analysis. Further, the extent of influence of roughness and Reynolds number in the depth-wise direction also studied. Increasing Reynolds shear stress near rough beds are noticed due to arrays of discrete roughness elements and flow over these elements generating a series of wakes which contributes to the generation of significantly higher Reynolds shear stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20roughness" title="bed roughness">bed roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=ejection%20and%20sweep" title=" ejection and sweep"> ejection and sweep</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title=" open channel flow"> open channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20shear%20stress" title=" Reynolds shear stress"> Reynolds shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20boundary%20layer" title=" turbulent boundary layer"> turbulent boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20triple%20product" title=" velocity triple product"> velocity triple product</a> </p> <a href="https://publications.waset.org/abstracts/45772/study-the-effect-of-roughness-on-the-higher-order-moment-to-extract-information-about-the-turbulent-flow-structure-in-an-open-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4314</span> Effects of Upstream Wall Roughness on Separated Turbulent Flow over a Forward Facing Step in an Open Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Rifat">S. M. Rifat</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20L.%20Marchildon"> André L. Marchildon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20F.%20Tachie"> Mark F. Tachie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of upstream surface roughness over a smooth forward facing step in an open channel was investigated using a particle image velocimetry technique. Three different upstream surface topographies consisting of hydraulically smooth wall, sandpaper 36 grit and sand grains were examined. Besides the wall roughness conditions, all other upstream flow characteristics were kept constant. It was also observed that upstream roughness decreased the approach velocity by 2% and 10% but increased the turbulence intensity by 14% and 35% at the wall-normal distance corresponding to the top plane of the step compared to smooth upstream. The results showed that roughness decreased the reattachment lengths by 14% and 30% compared to smooth upstream. Although the magnitudes of maximum positive and negative Reynolds shear stress in separated and reattached region were 0.02Ue for all the cases, the physical size of both the maximum and minimum contour levels were decreased by increasing upstream roughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forward%20facing%20step" title="forward facing step">forward facing step</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel" title=" open channel"> open channel</a>, <a href="https://publications.waset.org/abstracts/search?q=separated%20and%20reattached%20turbulent%20flows" title=" separated and reattached turbulent flows"> separated and reattached turbulent flows</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20roughness" title=" wall roughness"> wall roughness</a> </p> <a href="https://publications.waset.org/abstracts/37174/effects-of-upstream-wall-roughness-on-separated-turbulent-flow-over-a-forward-facing-step-in-an-open-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4313</span> Prediction of Boundary Shear Stress with Gradually Tapering Flood Plains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spandan%20Sahu">Spandan Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Amiya%20Kumar%20Pati"> Amiya Kumar Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishanjit%20Kumar%20Khatua"> Kishanjit Kumar Khatua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> River is the main source of water. It is a form of natural open channel which gives rise to many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. The development of society more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, Conveyance Estimation System (CES) software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depth%20average%20velocity" title="depth average velocity">depth average velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20prismatic%20compound%20channel" title=" non prismatic compound channel"> non prismatic compound channel</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20flow%20depth" title=" relative flow depth "> relative flow depth </a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20distribution" title=" velocity distribution"> velocity distribution</a> </p> <a href="https://publications.waset.org/abstracts/111003/prediction-of-boundary-shear-stress-with-gradually-tapering-flood-plains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4312</span> An Experimental Study to Investigate the Behaviour of Torque Fluctuation of Crossflow Turbines Operating in an Open Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kumar%20Singal">Sunil Kumar Singal</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Sood"> Manoj Sood</a>, <a href="https://publications.waset.org/abstracts/search?q=Upendra%20Bajpai"> Upendra Bajpai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Instream technology is the upcoming sustainable approach in the hydro sector for energy harnessing. With well-known cross-sections and regulated supply, open channels are the most prominent locations for the installation of hydrokinetic turbines. The fluctuation in generated torque varies with site condition (flow depth and flow velocity), as well as with the type of turbine. The present experimental study aims to investigate the torque/power fluctuations of crossflow hydrokinetic turbines operating at different flow velocities and water depths. The flow velocity is varied from 1.0 m/s to 2.0 m/s. The complete assembly includes an open channel having dimensions of 0.3 m (depth) x 0.71 m (width) x 4.5 m (length), along with a lifting mechanism for varying the channel slope, a digital transducer for monitoring the torque, power, and rpm, a digital handheld water velocity meter for measuring the flow velocity. Further, a time series of torque, power, and rpm is plotted for a duration of 30 minutes showing the continuous operation of the turbine. A comparison of Savonius, Darrieus, and their improved twisted and helical blades is also presented in the study. A correlation has also been developed for assessing the hydropower generation from the installed turbine. The developed correlations will be very useful in the decision-making process for development at a site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=darrieus%20turbine" title="darrieus turbine">darrieus turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20velocity" title=" flow velocity"> flow velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel" title=" open channel"> open channel</a>, <a href="https://publications.waset.org/abstracts/search?q=savoinus%20turbine" title=" savoinus turbine"> savoinus turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20depth" title=" water depth"> water depth</a>, <a href="https://publications.waset.org/abstracts/search?q=hydropower" title=" hydropower"> hydropower</a> </p> <a href="https://publications.waset.org/abstracts/171312/an-experimental-study-to-investigate-the-behaviour-of-torque-fluctuation-of-crossflow-turbines-operating-in-an-open-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4311</span> Investigation of Heat Transfer by Natural Convection in an Open Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20S.%20Ahmed">Mahmoud S. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20A.%20Mohamed"> Hany A. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Omara"> Mohamed A. Omara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20F.%20Abdeen"> Mohamed F. Abdeen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental study of natural convection heat transfer inside smooth and rough surfaces of vertical and inclined equilateral triangular channels of different inclination angles with a uniformly heated surface are performed. The inclination angle is changed from 15º to 90º. Smooth and rough surface of average roughness (0.02 mm) are used and their effect on the heat transfer characteristics are studied. The local and average heat transfer coefficients and Nusselt number are obtained for smooth and rough channels at different heat flux values, different inclination angles and different Rayleigh numbers (Ra) 6.48 × 105 ≤ Ra ≤ 4.78 × 106. The results show that the local Nusselt number decreases with increase of axial distance from the lower end of the triangular channel to a point near the upper end of channel, and then, it slightly increases. Higher values of local Nusselt number for rough channel along the axial distance compared with the smooth channel. The average Nusselt number of rough channel is higher than that of smooth channel by about 8.1% for inclined case at θ = 45o and 10% for vertical case. The results obtained are correlated using dimensionless groups for both rough and smooth surfaces of the inclined and vertical triangular channels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20heat%20transfer%20convection" title="natural heat transfer convection">natural heat transfer convection</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20heat%20flux" title=" constant heat flux"> constant heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channels" title=" open channels"> open channels</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/26024/investigation-of-heat-transfer-by-natural-convection-in-an-open-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4310</span> Numerical Solution of Manning&#039;s Equation in Rectangular Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Abdulrahman">Abdulrahman Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning&#39;s equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning&#39;s equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning&#39;s equation in non-dimensional form, then expanding this form using Maclaurin&#39;s series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning&#39;s equation is valid over a large range of parameters, and its maximum error is within -1.586%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20design" title="channel design">channel design</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20engineering" title=" hydraulic engineering"> hydraulic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title=" open channel flow"> open channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Manning%27s%20equation" title=" Manning&#039;s equation"> Manning&#039;s equation</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20depth" title=" normal depth"> normal depth</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20flow" title=" uniform flow"> uniform flow</a> </p> <a href="https://publications.waset.org/abstracts/72618/numerical-solution-of-mannings-equation-in-rectangular-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4309</span> Opportunities and Challenges of Omni Channel Retailing in the Emerging Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Ahmed">Salma Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kumar"> Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper develops and estimates a model for understanding the drivers and barriers for Omni-Channel retail. This study serves as one of the first attempt to empirically test the effect of various factors on Omni-channel retail. Omni-channel is relative new and evolving, we hypothesize three drivers: (1) Innovative sales and marketing opportunities, (2) channel migration, (3) Cross channel synergies; and three barriers: (1) Integrated sales and marketing operations, (2) Visibility and synchronization (3) Integration and Technology challenges. The findings from the study strongly support that Omni-channel effects exist between cross channel synergy and channel migration. However, it partially supports innovative sales and marketing operations. We also found the variables which we identified as barriers to Omni-channel retail have a strong impact on Omni-channel retail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retailing" title="retailing">retailing</a>, <a href="https://publications.waset.org/abstracts/search?q=multichannel" title=" multichannel"> multichannel</a>, <a href="https://publications.waset.org/abstracts/search?q=Omni-channel" title=" Omni-channel"> Omni-channel</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20market" title=" emerging market "> emerging market </a> </p> <a href="https://publications.waset.org/abstracts/24135/opportunities-and-challenges-of-omni-channel-retailing-in-the-emerging-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4308</span> Variation of Manning’s Coefficient in a Meandering Channel with Emergent Vegetation Cover</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Spandan%20Sahu">Spandan Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Amiya%20Kumar%20Pati"> Amiya Kumar Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishanjit%20Kumar%20Khatua"> Kishanjit Kumar Khatua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetation plays a major role in deciding the flow parameters in an open channel. It enhances the aesthetic view of the revetments. The major types of vegetation in river typically comprises of herbs, grasses, weeds, trees, etc. The vegetation in an open channel usually consists of aquatic plants with complete submergence, partial submergence, floating plants. The presence of vegetative plants can have both benefits and problems. The major benefits of aquatic plants are they reduce the soil erosion, which provides the water with a free surface to move on without hindrance. The obvious problems are they retard the flow of water and reduce the hydraulic capacity of the channel. The degree to which the flow parameters are affected depends upon the density of the vegetation, degree of submergence, pattern of vegetation, vegetation species. Vegetation in open channel tends to provide resistance to flow, which in turn provides a background to study the varying trends in flow parameters having vegetative growth in the channel surface. In this paper, an experiment has been conducted on a meandering channel having sinuosity of 1.33 with rigid vegetation cover to investigate the effect on flow parameters, variation of manning’s n with degree of the denseness of vegetation, vegetation pattern and submergence criteria. The measurements have been carried out in four different cross-sections two on trough portion of the meanders, two on the crest portion. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress have been taken into account. Dimensionless eddy viscosity and bed friction have been incorporated to modify the SKM to provide more accurate results. A mathematical model has been formulated to have a comparative analysis with the results obtained from Shiono-Knight Method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20friction" title="bed friction">bed friction</a>, <a href="https://publications.waset.org/abstracts/search?q=depth%20averaged%20velocity" title=" depth averaged velocity"> depth averaged velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20viscosity" title=" eddy viscosity"> eddy viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=SKM" title=" SKM"> SKM</a> </p> <a href="https://publications.waset.org/abstracts/111032/variation-of-mannings-coefficient-in-a-meandering-channel-with-emergent-vegetation-cover" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4307</span> Discharge Estimation in a Two Flow Braided Channel Based on Energy Concept </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amiya%20Kumar%20Pati">Amiya Kumar Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Spandan%20Sahu"> Spandan Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishanjit%20Kumar%20Khatua"> Kishanjit Kumar Khatua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> River is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. A river flow consisting of small and shallow channels sometimes divide and recombine numerous times because of the slow water flow or the built up sediments. The pattern formed during this process resembles the strands of a braid. Braided streams form where the sediment load is so heavy that some of the sediments are deposited as shifting islands. Braided rivers often exist near the mountainous regions and typically carry coarse-grained and heterogeneous sediments down a fairly steep gradient. In this paper, the apparent shear stress formulae were suitably modified, and the Energy Concept Method (ECM) was applied for the prediction of discharges at the junction of a two-flow braided compound channel. The Energy Concept Method has not been applied for estimating the discharges in the braided channels. The energy loss in the channels is analyzed based on mechanical analysis. The cross-section of channel is divided into two sub-areas, namely the main-channel below the bank-full level and region above the bank-full level for estimating the total discharge. The experimental data are compared with a wide range of theoretical data available in the published literature to verify this model. The accuracy of this approach is also compared with Divided Channel Method (DCM). From error analysis of this method, it is observed that the relative error is less for the data-sets having smooth floodplains when compared to rough floodplains. Comparisons with other models indicate that the present method has reasonable accuracy for engineering purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20flow" title="critical flow">critical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20concept" title=" energy concept"> energy concept</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title=" open channel flow"> open channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=two-flow%20braided%20compound%20channel" title=" two-flow braided compound channel"> two-flow braided compound channel</a> </p> <a href="https://publications.waset.org/abstracts/111145/discharge-estimation-in-a-two-flow-braided-channel-based-on-energy-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4306</span> Analysis of Joint Source Channel LDPC Coding for Correlated Sources Transmission over Noisy Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Ben%20Abdessalem">Marwa Ben Abdessalem</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Zribi"> Amin Zribi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Bouall%C3%A8gue"> Ammar Bouallègue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a Joint Source Channel coding scheme based on LDPC codes is investigated. We consider two concatenated LDPC codes, one allows to compress a correlated source and the second to protect it against channel degradations. The original information can be reconstructed at the receiver by a joint decoder, where the source decoder and the channel decoder run in parallel by transferring extrinsic information. We investigate the performance of the JSC LDPC code in terms of Bit-Error Rate (BER) in the case of transmission over an Additive White Gaussian Noise (AWGN) channel, and for different source and channel rate parameters. We emphasize how JSC LDPC presents a performance tradeoff depending on the channel state and on the source correlation. We show that, the JSC LDPC is an efficient solution for a relatively low Signal-to-Noise Ratio (SNR) channel, especially with highly correlated sources. Finally, a source-channel rate optimization has to be applied to guarantee the best JSC LDPC system performance for a given channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AWGN%20channel" title="AWGN channel">AWGN channel</a>, <a href="https://publications.waset.org/abstracts/search?q=belief%20propagation" title=" belief propagation"> belief propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20source%20channel%20coding" title=" joint source channel coding"> joint source channel coding</a>, <a href="https://publications.waset.org/abstracts/search?q=LDPC%20codes" title=" LDPC codes"> LDPC codes</a> </p> <a href="https://publications.waset.org/abstracts/62721/analysis-of-joint-source-channel-ldpc-coding-for-correlated-sources-transmission-over-noisy-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4305</span> Unequal Error Protection of VQ Image Transmission System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khelifi%20Mustapha">Khelifi Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Moulay%20lakhdar"> A. Moulay lakhdar</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Elawady"> I. Elawady </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We will study the unequal error protection for VQ image. We have used the Reed Solomon (RS) Codes as Channel coding because they offer better performance in terms of channel error correction over a binary output channel. One such channel (binary input and output) should be considered if it is the case of the application layer, because it includes all the features of the layers located below and on the what it is usually not feasible to make changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vector%20quantization" title="vector quantization">vector quantization</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20error%20correction" title=" channel error correction"> channel error correction</a>, <a href="https://publications.waset.org/abstracts/search?q=Reed-Solomon%20channel%20coding" title=" Reed-Solomon channel coding"> Reed-Solomon channel coding</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a> </p> <a href="https://publications.waset.org/abstracts/21372/unequal-error-protection-of-vq-image-transmission-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4304</span> Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdullah%20Al%20Faruque">M. Abdullah Al Faruque</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Balachandar"> Ram Balachandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, the correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title="open channel flow">open channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=smooth%20and%20rough%20bed" title=" smooth and rough bed"> smooth and rough bed</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a> </p> <a href="https://publications.waset.org/abstracts/34228/variation-of-streamwise-and-vertical-turbulence-intensity-in-a-smooth-and-rough-bed-open-channel-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4303</span> General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Abdulrahman">Abdulrahman Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title="analytical solution">analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20channel" title=" combined channel"> combined channel</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20channel" title=" exponential channel"> exponential channel</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20weirs" title=" side weirs"> side weirs</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20channel" title=" trapezoidal channel"> trapezoidal channel</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20surface%20profile" title=" water surface profile"> water surface profile</a> </p> <a href="https://publications.waset.org/abstracts/59960/general-formula-for-water-surface-profile-over-side-weir-in-the-combined-trapezoidal-and-exponential-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4302</span> Analytical Solution of Specific Energy Equation in Exponential Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Abdulrahman">Abdulrahman Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The specific energy equation has many applications in practical channels, such as exponential channels. In this paper, the governing equation of alternate depth ratio for exponential channels, in general, was investigated towards obtaining analytical solution for the alternate depth ratio in three exponential channel shapes, viz., rectangular, triangular, and parabolic channels. The alternate depth ratio for rectangular channels is quadratic; hence it is very simple to solve. While for parabolic and triangular channels, the alternate depth ratio is cubic and quartic equations, respectively, analytical solution for these equations may be achieved easily for a given Froud number. Different examples are solved to prove the efficiency of the proposed solution. Such analytical solution can be easily used in natural rivers and most of practical channels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternate%20depth" title="alternate depth">alternate depth</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20energy" title=" specific energy"> specific energy</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20channel" title=" parabolic channel"> parabolic channel</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20channel" title=" rectangular channel"> rectangular channel</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular%20channel" title=" triangular channel"> triangular channel</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title=" open channel flow"> open channel flow</a> </p> <a href="https://publications.waset.org/abstracts/121104/analytical-solution-of-specific-energy-equation-in-exponential-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4301</span> Experimental Investigation of Hull Form for Electric Driven Ferry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasilij%20Djackov">Vasilij Djackov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Zapnickas"> Tomas Zapnickas</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgenii%20Iamshchikov"> Evgenii Iamshchikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Norkevicius"> Lukas Norkevicius</a>, <a href="https://publications.waset.org/abstracts/search?q=Rima%20Mickeviciene"> Rima Mickeviciene</a>, <a href="https://publications.waset.org/abstracts/search?q=Larisa%20Vasiljeva"> Larisa Vasiljeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the resistance and pitching values of the test of an electric ferry are presented. The research was carried out in the open flow channel of Klaipėda University with a multi-axis dynamometer. The received model resistance values were recalculated to the real vessel and the preliminary chosen propulsion unit power was compared. After analyzing the results of the pitching of the model, it was concluded that the shape of the hull needs to be further improved, taking into account the possible uneven weight distribution at the ends of the ferry. Further investigation of the hull of the electric ferry is recommended, including experiments with various water depths and activation of propulsion units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20ferry" title="electrical ferry">electrical ferry</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20tests" title=" model tests"> model tests</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20flow%20channel" title=" open flow channel"> open flow channel</a>, <a href="https://publications.waset.org/abstracts/search?q=pitching" title=" pitching"> pitching</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/159298/experimental-investigation-of-hull-form-for-electric-driven-ferry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4300</span> Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Min%20Choi">Seok Min Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Bang"> Minho Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seuong%20Yun%20Kim"> Seuong Yun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungmin%20Lee"> Hyungmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Gu%20Joo"> Won-Gu Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Hee%20Cho"> Hyung Hee Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=matrix%20cooling" title="matrix cooling">matrix cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=rib" title=" rib"> rib</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a> </p> <a href="https://publications.waset.org/abstracts/80524/numerical-simulation-of-effect-of-various-rib-configurations-on-enhancing-heat-transfer-of-matrix-cooling-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4299</span> Adaptive Transmission Scheme Based on Channel State in Dual-Hop System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung-Jun%20Yu">Seung-Jun Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jun%20Kim"> Yong-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-In%20Baik"> Jung-In Baik</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Kyu%20Song"> Hyoung-Kyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a dual-hop relay based on channel state is studied. In the conventional relay scheme, a relay uses the same modulation method without reference to channel state. But, a relay uses an adaptive modulation method with reference to channel state. If the channel state is poor, a relay eliminates latter 2 bits and uses Quadrature Phase Shift Keying (QPSK) modulation. If channel state is good, a relay modulates the received symbols with 16-QAM symbols by using 4 bits. The performance of the proposed scheme for Symbol Error Rate (SER) and throughput is analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20transmission" title="adaptive transmission">adaptive transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20state" title=" channel state"> channel state</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-hop" title=" dual-hop"> dual-hop</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20modulation" title=" hierarchical modulation"> hierarchical modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=relay" title=" relay"> relay</a> </p> <a href="https://publications.waset.org/abstracts/52599/adaptive-transmission-scheme-based-on-channel-state-in-dual-hop-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4298</span> Molecular Communication Noise Effect Analysis of Diffusion-Based Channel for Considering Minimum-Shift Keying and Molecular Shift Keying Modulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Azari">A. Azari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20K.%20Seyyedi"> S. S. K. Seyyedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the unaddressed and open challenges in the nano-networking is the characteristics of noise. The previous analysis, however, has concentrated on end-to-end communication model with no separate modelings for propagation channel and noise. By considering a separate signal propagation and noise model, the design and implementation of an optimum receiver will be much easier. In this paper, we justify consideration of a separate additive Gaussian noise model of a nano-communication system based on the molecular communication channel for which are applicable for MSK and MOSK modulation schemes. The presented noise analysis is based on the Brownian motion process, and advection molecular statistics, where the received random signal has a probability density function whose mean is equal to the mean number of the received molecules. Finally, the justification of received signal magnitude being uncorrelated with additive non-stationary white noise is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular" title="molecular">molecular</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=channel" title=" channel"> channel</a> </p> <a href="https://publications.waset.org/abstracts/74407/molecular-communication-noise-effect-analysis-of-diffusion-based-channel-for-considering-minimum-shift-keying-and-molecular-shift-keying-modulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4297</span> Mean Velocity Modeling of Open-Channel Flow with Submerged Vegetation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mabrouka%20Morri">Mabrouka Morri</a>, <a href="https://publications.waset.org/abstracts/search?q=Amel%20Soualmia"> Amel Soualmia</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Belleudy"> Philippe Belleudy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20models" title="analytic models">analytic models</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20velocity" title=" mean velocity"> mean velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation" title=" vegetation"> vegetation</a> </p> <a href="https://publications.waset.org/abstracts/21381/mean-velocity-modeling-of-open-channel-flow-with-submerged-vegetation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4296</span> Formation of Round Channel for Microfluidic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zahra">A. Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20de%20Cesare"> G. de Cesare</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Caputo"> D. Caputo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nascetti"> A. Nascetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PDMS (Polydimethylsiloxane) polymer is a suitable material for biological and MEMS (Microelectromechanical systems) designers, because of its biocompatibility, transparency and high resistance under plasma treatment. PDMS round channel is always been of great interest due to its ability to confine the liquid with membrane type micro valves. In this paper we are presenting a very simple way to form round shape microfluidic channel, which is based on reflow of positive photoresist AZ® 40 XT. With this method, it is possible to obtain channel of different height simply by varying the spin coating parameters of photoresist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lab-on-chip" title="lab-on-chip">lab-on-chip</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS" title=" PDMS"> PDMS</a>, <a href="https://publications.waset.org/abstracts/search?q=reflow" title=" reflow"> reflow</a>, <a href="https://publications.waset.org/abstracts/search?q=round%20microfluidic%20channel" title=" round microfluidic channel"> round microfluidic channel</a> </p> <a href="https://publications.waset.org/abstracts/7886/formation-of-round-channel-for-microfluidic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4295</span> Simulation of Channel Models for Device-to-Device Application of 5G Urban Microcell Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Zormati">H. Zormati</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Chebil"> J. Chebil</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bel%20Hadj%20Tahar"> J. Bel Hadj Tahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Next generation wireless transmission technology (5G) is expected to support the development of channel models for higher frequency bands, so clarification of high frequency bands is the most important issue in radio propagation research for 5G, multiple urban microcellular measurements have been carried out at 60 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL), the objective is to compare simulation results of some studied channel models with the purpose of testing the performance of each one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5G" title="5G">5G</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20model" title=" channel model"> channel model</a>, <a href="https://publications.waset.org/abstracts/search?q=60GHz%20channel" title=" 60GHz channel"> 60GHz channel</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter-wave" title=" millimeter-wave"> millimeter-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20microcell" title=" urban microcell"> urban microcell</a> </p> <a href="https://publications.waset.org/abstracts/81255/simulation-of-channel-models-for-device-to-device-application-of-5g-urban-microcell-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4294</span> A Soil Stabilization Technique on Apa-Hotamiş Conveyance Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Sinan%20So%C4%9Fanc%C4%B1">Ali Sinan Soğancı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Apa-Hotamış conveyance channel is located within in the boundaries of Konya Regional Directorate of Water Works. This channel transfers the water to the fount of Apa Dam with 17 km length of Blue Channel. Then the water is transmitted with Apa- Hotamış conveyance channel to Hotamış Water Storage. In some places along the Apa-Hotamış conveyance canal which will be constructed by Directorate of Water Works of Konya, some swelling soils have been seen. The samples taken from these places have 35-95 kPa swelling pressure. To prevent the swelling pressure arising from the penetration of water to the concrete channel, it was proposed to make 10 cm concrete coating by spreading the geomembrane and geotextile between the soil and concrete. In this way, the pressure (35-95 kPa) caused by the swelling and cracking of concrete failure will be blocked. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conveyance%20channel" title="conveyance channel">conveyance channel</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling%20pressure" title=" swelling pressure"> swelling pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=geomembrane" title=" geomembrane"> geomembrane</a>, <a href="https://publications.waset.org/abstracts/search?q=geotextile" title=" geotextile"> geotextile</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/52995/a-soil-stabilization-technique-on-apa-hotamis-conveyance-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4293</span> Numerical Study for Improving Performance of Air Cooled Proton Exchange Membrane Fuel Cell on the Cathode Channel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hassan%20Gundu">Mohamed Hassan Gundu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaeseung%20Lee"> Jaeseung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Faizan%20Chinannai"> Muhammad Faizan Chinannai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunchul%20Ju"> Hyunchul Ju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we present the effects of bipolar plate design to control the temperature of the cell and ensure effective water management under an excessive amount of air flow and low humidification conditions in the proton exchange membrane fuel cell (PEMFC). The PEMFC model developed and applied to consider a three type of bipolar plate that is defined by ratio of inlet channel width to outlet channel width. Simulation results show that the design which has narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width) make the relative humidity and water concentration increase in the channel and the catalyst layer. Therefore, this study clearly demonstrates that the dehydration phenomenon can be decreased by using design of bipolar plate with narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEMFC" title="PEMFC">PEMFC</a>, <a href="https://publications.waset.org/abstracts/search?q=air-cooling" title=" air-cooling"> air-cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20concentration" title=" water concentration"> water concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20concentration" title=" oxygen concentration"> oxygen concentration</a> </p> <a href="https://publications.waset.org/abstracts/105402/numerical-study-for-improving-performance-of-air-cooled-proton-exchange-membrane-fuel-cell-on-the-cathode-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20channel&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20channel&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20channel&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20channel&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20channel&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20channel&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20channel&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20channel&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20channel&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20channel&amp;page=144">144</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20channel&amp;page=145">145</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20channel&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10