CINXE.COM
Search results for: fired cartridge
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fired cartridge</title> <meta name="description" content="Search results for: fired cartridge"> <meta name="keywords" content="fired cartridge"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fired cartridge" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fired cartridge"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 127</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fired cartridge</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Aporia, Daze and Arcanes during Visit to Scene of Crime: A Case History</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Grewal">A. S. Grewal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Dharambir"> Sh. Dharambir</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Sangwan"> R. S. Sangwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Dhanda"> Vikas Dhanda </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every Scene of Crime is of different kind in nature. Sometimes we see such type of circumstances that we become confused to judge whether the case is of homicide or suicide. In such circumstances a doyen is asked for the option. On the basis of his esoteric knowledge he finds such clues which force the sleuth to change the under sections of Indian penal Code. Here we have examined a case by visiting Scene of Crime and found that a person was found lying dead in a room. There was only one passage which was found opened, the pistol along with the fired cartridge case, misfired cartridge were lying on the spot. Observation method, mathematical calculations, chemical examination and other aspects were considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=country-made%20pistol" title="country-made pistol">country-made pistol</a>, <a href="https://publications.waset.org/abstracts/search?q=misfired%20cartridge" title=" misfired cartridge"> misfired cartridge</a>, <a href="https://publications.waset.org/abstracts/search?q=fired%20cartridge%20case" title=" fired cartridge case"> fired cartridge case</a>, <a href="https://publications.waset.org/abstracts/search?q=blackening" title=" blackening"> blackening</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite" title=" nitrite"> nitrite</a> </p> <a href="https://publications.waset.org/abstracts/7867/aporia-daze-and-arcanes-during-visit-to-scene-of-crime-a-case-history" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Analysis of DNA from Fired Cartridge Casings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mawlood">S. Mawlood</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Denanny"> L. Denanny</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Watson"> N. Watson</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Pickard"> B. Pickard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DNA analysis has been widely accepted as providing valuable evidence concerning the identity of the source of biological traces. Our work has showed that DNA samples can survive on cartridges even after firing. The study also raised the possibility of determining other information such as the age of the donor. Such information may be invaluable in certain cases where spent cartridges from automatic weapons are left behind at the scene of a crime. In spite of the nature of touch evidence and exposure to high chamber temperatures during shooting, we were still capable to retrieve enough DNA for profile typing. In order to estimate age of contributor, DNA methylation levels were analyzed using EpiTect system for retrieved DNA. However, results were not conclusive, due to low amount of input DNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20profile" title="DNA profile">DNA profile</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20Methylation" title=" DNA Methylation"> DNA Methylation</a>, <a href="https://publications.waset.org/abstracts/search?q=fired%20cartridge" title=" fired cartridge"> fired cartridge</a>, <a href="https://publications.waset.org/abstracts/search?q=touch%20sample" title=" touch sample"> touch sample</a> </p> <a href="https://publications.waset.org/abstracts/24507/analysis-of-dna-from-fired-cartridge-casings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Fingerprint on Ballistic after Shooting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narong%20Kulnides">Narong Kulnides</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research involved fingerprints on ballistics after shooting. Two objectives of research were as follows; (1) to study the duration of the existence of latent fingerprints on .38, .45, 9 mm and .223 cartridge case after shooting, and (2) to compare the effectiveness of the detection of latent fingerprints by Black Powder, Super Glue, Perma Blue and Gun Bluing. The latent fingerprint appearance were studied on .38, .45, 9 mm. and .223 cartridge cases before and after shooting with Black Powder, Super Glue, Perma Blue and Gun Bluing. The detection times were 3 minute, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78 and 84 hours respectively. As a result of the study, it can be conclude that: (1) Before shooting, the detection of latent fingerprints on 38, .45, and 9 mm. and .223 cartridge cases with Black Powder, Super Glue, Perma Blue and Gun Bluing can detect the fingerprints at all detection times. (2) After shooting, the detection of latent fingerprints on .38, .45, 9 mm. and .223 cartridge cases with Black Powder, Super Glue did not appear. The detection of latent fingerprints on .38, .45, 9 mm. cartridge cases with Perma Blue and Gun Bluing were found 100% of the time and the detection of latent fingerprints on .223 cartridge cases with Perma Blue and Gun Bluing were found 40% and 46.67% of the time, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballistic" title="ballistic">ballistic</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title=" fingerprint"> fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=shooting" title=" shooting"> shooting</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20times" title=" detection times"> detection times</a> </p> <a href="https://publications.waset.org/abstracts/10363/fingerprint-on-ballistic-after-shooting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> An Overview of Sludge Utilization into Fired Clay Brick</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aeslina%20Binti%20Abdul%20Kadir">Aeslina Binti Abdul Kadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shayuti%20Bin%20Abdul%20Rahim"> Ahmad Shayuti Bin Abdul Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for example marble sludge, stone sludge, water sludge, sewage sludge, and ceramic sludge. The utilization of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. This paper reviews on utilization of different types of sludge wastes into fired clay bricks. Previous investigations have demonstrated positive effects on the physical and mechanical properties as well as less impact towards the environment. Thus, the utilizations of sludge waste could produce a good quality of brick and could be one of alternative disposal methods for the sludge wastes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fired%20clay%20brick" title="fired clay brick">fired clay brick</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20waste" title=" sludge waste"> sludge waste</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption" title=" water absorption"> water absorption</a> </p> <a href="https://publications.waset.org/abstracts/11628/an-overview-of-sludge-utilization-into-fired-clay-brick" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Additional Method for the Purification of Lanthanide-Labeled Peptide Compounds Pre-Purified by Weak Cation Exchange Cartridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Eryilmaz">K. Eryilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Mercanoglu"> G. Mercanoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Purification of the final product, which is the last step in the synthesis of lanthanide-labeled peptide compounds, can be accomplished by different methods. Among these methods, the two most commonly used methods are C18 solid phase extraction (SPE) and weak cation exchanger cartridge elution. SPE C18 solid phase extraction method yields high purity final product, while elution from the weak cation exchanger cartridge is pH dependent and ineffective in removing colloidal impurities. The aim of this work is to develop an additional purification method for the lanthanide-labeled peptide compound in cases where the desired radionuclidic and radiochemical purity of the final product can not be achieved because of pH problem or colloidal impurity. Material and Methods: For colloidal impurity formation, 3 mL of water for injection (WFI) was added to 30 mCi of 177LuCl3 solution and allowed to stand for 1 day. 177Lu-DOTATATE was synthesized using EZAG ML-EAZY module (10 mCi/mL). After synthesis, the final product was mixed with the colloidal impurity solution (total volume:13 mL, total activity: 40 mCi). The resulting mixture was trapped in SPE-C18 cartridge. The cartridge was washed with 10 ml saline to remove impurities to the waste vial. The product trapped in the cartridge was eluted with 2 ml of 50% ethanol and collected to the final product vial via passing through a 0.22μm filter. The final product was diluted with 10 mL of saline. Radiochemical purity before and after purification was analysed by HPLC method. (column: ACE C18-100A. 3µm. 150 x 3.0mm, mobile phase: Water-Acetonitrile-Trifluoro acetic acid (75:25:1), flow rate: 0.6 mL/min). Results: UV and radioactivity detector results in HPLC analysis showed that colloidal impurities were completely removed from the 177Lu-DOTATATE/ colloidal impurity mixture by purification method. Conclusion: The improved purification method can be used as an additional method to remove impurities that may result from the lanthanide-peptide synthesis in which the weak cation exchange purification technique is used as the last step. The purification of the final product and the GMP compliance (the final aseptic filtration and the sterile disposable system components) are two major advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lanthanide" title="lanthanide">lanthanide</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide" title=" peptide"> peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=labeling" title=" labeling"> labeling</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclide" title=" radionuclide"> radionuclide</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceutical" title=" radiopharmaceutical"> radiopharmaceutical</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/96095/additional-method-for-the-purification-of-lanthanide-labeled-peptide-compounds-pre-purified-by-weak-cation-exchange-cartridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> All-In-One Universal Cartridge Based Truly Modular Electrolyte Analyzer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Dalvi">S. Dalvi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Sane"> N. Sane</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Patil"> V. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Bansode"> D. Bansode</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tharakan"> A. Tharakan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Mathur"> V. Mathur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measurement of routine clinical electrolyte tests is common in labs worldwide for screening of illness or diseases. All the analyzers for the measurement of electrolyte parameters have sensors, reagents, sampler, pump tubing, valve, other tubing’s separate that are either expensive, require heavy maintenance and have a short shelf-life. Moreover, the costs required to maintain such Lab instrumentation is high and this limits the use of the device to only highly specialized personnel and sophisticated labs. In order to provide Healthcare Diagnostics to ALL at affordable costs, there is a need for an All-in-one Universal Modular Cartridge that contains sensors, reagents, sampler, valve, pump tubing, and other tubing’s in one single integrated module-in-module cartridge that is affordable, reliable, easy-to-use, requires very low sample volume and is truly modular and maintenance-free. DiaSys India has developed a World’s first, Patent Pending, Versatile All-in-one Universal Module-in-Module Cartridge based Electrolyte Analyzer (QDx InstaLyte) that can perform sodium, potassium, chloride, calcium, pH, lithium tests. QDx InstaLyte incorporates High Performance, Inexpensive All-in-one Universal Cartridge for rapid quantitative measurement of electrolytes in body fluids. Our proposed methodology utilizes Advanced & Improved long life ISE sensors to provide a sensitive and accurate result in 120 sec with just 100 µl of sample volume. The All-in-One Universal Cartridge has a very low reagent consumption capable of maximum of 1000 tests with a Use-life of 3-4 months and a long Shelf life of 12-18 months at 4-25°C making it very cost-effective. Methods: QDx InstaLyte analyzers with All-in-one Universal Modular Cartridges were independently evaluated with three R&D lots for Method Performance (Linearity, Precision, Method Comparison, Cartridge Stability) to measure Sodium, Potassium, Chloride. Method Comparison was done against Medica EasyLyte Plus Na/K/Cl Electrolyte Analyzer, a mid-size lab based clinical chemistry analyzer with N = 100 samples run over 10 days. Within-run precision study was done using modified CLSI guidelines with N = 20 samples and day-to-day precision study was done for 7 consecutive days using Trulab N & P Quality Control Samples. Accelerated stability testing was done at 45oC for 4 weeks with Production Lots. Results: Data analysis indicates that the CV for within-run precision for Na is ≤ 1%, for K is ≤2%, and for Cl is ≤2% and with R2 ≥ 0.95 for Method Comparison. Further, the All-in-One Universal Cartridge is stable up to 12-18 months at 4-25oC storage temperature based on preliminary extrapolated data. Conclusion: The Developed Technology Platform of All-in-One Universal Module-in-Module Cartridge based QDx InstaLyte is Reliable and meets all the performance specifications of the lab and is Truly Modular and Maintenance-Free. Hence, it can be easily adapted for low cost, sensitive and rapid measurement of electrolyte tests in low resource settings such as in urban, semi-urban and rural areas in the developing countries and can be used as a Point-of-care testing system for worldwide applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-in-one%20modular%20catridge" title="all-in-one modular catridge">all-in-one modular catridge</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolytes" title=" electrolytes"> electrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20free" title=" maintenance free"> maintenance free</a>, <a href="https://publications.waset.org/abstracts/search?q=QDx%20instalyte" title=" QDx instalyte"> QDx instalyte</a> </p> <a href="https://publications.waset.org/abstracts/192088/all-in-one-universal-cartridge-based-truly-modular-electrolyte-analyzer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> The Effect of CaO Addition on Mechanical Properties of Ceramic Tiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucie%20Vodova">Lucie Vodova</a>, <a href="https://publications.waset.org/abstracts/search?q=Radomir%20Sokolar"> Radomir Sokolar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Hroudova"> Jitka Hroudova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stoneware clay, fired clay (as a grog), calcite waste and class C fly ash in various mixing rations were the basic raw materials for the mixture for production of dry pressed ceramic tiles. Mechanical properties (water absorption, bulk density, apparent porosity, flexural strength) as well as mineralogical composition were studied on samples with different source of calcium oxide after firing at 900, 1000, 1100 and 1200°C. It was found that samples with addition of calcite waste contain dmisteinbergit and anorthite. This minerals help to improve the strength of the body and reduce porosity fired at lower temperatures. Class C fly ash has not significantly influence on properties of the fired body as calcite waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20tiles" title="ceramic tiles">ceramic tiles</a>, <a href="https://publications.waset.org/abstracts/search?q=class%20C%20fly%20ash" title=" class C fly ash"> class C fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=calcite%20waste" title=" calcite waste"> calcite waste</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20oxide" title=" calcium oxide"> calcium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=anorthite" title=" anorthite"> anorthite</a> </p> <a href="https://publications.waset.org/abstracts/10757/the-effect-of-cao-addition-on-mechanical-properties-of-ceramic-tiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> The Influence of Clayey Pellet Size on Adsorption Efficiency of Metal Ions Removal from Waste Printing Developer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranogajec%20G.%20Jonjaua"> Ranogajec G. Jonjaua</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption efficiency of fired clayey pellets of 5 and 8 mm diameter size for Cu(II) and Zn(II) ions removal from a waste printing developer was studied. In order to investigate the influence of contact time, adsorbent mass and pellet size on the adsorption efficiency the batch mode was carried out. Faster uptake of copper ions was obtained with the fired clay pellets of 5 mm diameter size within 30 minutes. The pellets of 8 mm diameter size showed the higher equilibrium time (60 to 75 minutes) for copper and zinc ions. The results pointed out that adsorption efficiency increases with the increase of adsorbent mass. The maximal efficiency is different for Cu(II) and Zn(II) ions due to the pellet size. Therefore, the fired clay pellets of 5 mm diameter size present an effective adsorbent for Cu(II) ions removal (adsorption efficiency is 63.6%), whereas the fired clay pellets of 8 mm diameter size are the best alternative for Zn(II) ions removal (adsorption efficiency is 92.8%) from a waste printing developer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20efficiency" title="adsorption efficiency">adsorption efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20pellet" title=" clayey pellet"> clayey pellet</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions"> metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20printing%20developer" title=" waste printing developer"> waste printing developer</a> </p> <a href="https://publications.waset.org/abstracts/22917/the-influence-of-clayey-pellet-size-on-adsorption-efficiency-of-metal-ions-removal-from-waste-printing-developer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> PTFE Capillary-Based DNA Amplification within an Oscillatory Thermal Cycling Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh%20J.%20Chen">Jyh J. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fu%20H.%20Yang"> Fu H. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20H.%20Liao"> Ming H. Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes a capillary-based device integrated with the heating and cooling modules for polymerase chain reaction (PCR). The device consists of the reaction polytetrafluoroethylene (PTFE) capillary, the aluminum blocks, and is equipped with two cartridge heaters, a thermoelectric (TE) cooler, a fan, and some thermocouples for temperature control. The cartridge heaters are placed into the heating blocks and maintained at two different temperatures to achieve the denaturation and the extension step. Some thermocouples inserted into the capillary are used to obtain the transient temperature profiles of the reaction sample during thermal cycles. A 483-bp DNA template is amplified successfully in the designed system and the traditional thermal cycler. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymerase%20chain%20reaction" title="polymerase chain reaction">polymerase chain reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cycles" title=" thermal cycles"> thermal cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary" title=" capillary"> capillary</a>, <a href="https://publications.waset.org/abstracts/search?q=TE%20cooler" title=" TE cooler"> TE cooler</a> </p> <a href="https://publications.waset.org/abstracts/7439/ptfe-capillary-based-dna-amplification-within-an-oscillatory-thermal-cycling-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> The Statistical Significant of Adsorbents for Effective Zn(II) Ions Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna</a>, <a href="https://publications.waset.org/abstracts/search?q=Kova%C4%8Devi%C4%87%20M.%20Ilija"> Kovačević M. Ilija</a>, <a href="https://publications.waset.org/abstracts/search?q=Aksentijevi%C4%87%20M.%20Sne%C5%BEana"> Aksentijević M. Snežana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption efficiency of various adsorbents for the removal of Zn(II) ions from the waste printing developer was studied in laboratory batch mode. The maximum adsorption efficiency of 94.1% was achieved with unfired clay pellets size (d≈15 mm). The obtained values of adsorption efficiency was subjected to the independent samples t-test in order to investigate the statistically significant differences of the investigated adsorbents for the effective removal of Zn(II) ions from the waste printing developer. The most statistically significant differences of adsorption efficiencies for Zn(II) ions removal were obtained between unfired clay pellets size (d≈15 mm) and activated carbon (|t|= 6.909), natural zeolite (|t|= 10.380), mixture of activated carbon and natural zeolite (|t|= 9.865), bentonite (|t|= 6.159), fired clay (|t|= 6.641), fired clay pellets size (d≈5 mm) (|t|= 6.678), fired clay pellets size (d≈8 mm) (|t|= 3.422), respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adsorption%20efficiency" title="Adsorption efficiency">Adsorption efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20ion." title=" zinc ion."> zinc ion.</a> </p> <a href="https://publications.waset.org/abstracts/12529/the-statistical-significant-of-adsorbents-for-effective-znii-ions-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Measurement of Operational and Environmental Performance of the Coal-Fired Power Plants in India by Using Data Envelopment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Kumar%20Bajpai">Vijay Kumar Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20Kumar%20Singh"> Sudhir Kumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the performance analyses of the twenty five coal-fired power plants (CFPPs) used for electricity generation are carried out through various data envelopment analysis (DEA) models. Three efficiency indices are defined and pursued. During the calculation of the operational performance, energy and non-energy variables are used as input, and net electricity produced is used as desired output. CO2 emitted to the environment is used as the undesired output in the computation of the pure environmental performance while in Model-3 CO2 emissions is considered as detrimental input in the calculation of operational and environmental performance. Empirical results show that most of the plants are operating in increasing returns to scale region and Mettur plant is efficient one with regards to energy use and environment. The result also indicates that the undesirable output effect is insignificant in the research sample. The present study will provide clues to plant operators towards raising the operational and environmental performance of CFPPs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20fired%20power%20plants" title="coal fired power plants">coal fired power plants</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20performance" title=" environmental performance"> environmental performance</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20performance" title=" operational performance"> operational performance</a> </p> <a href="https://publications.waset.org/abstracts/15455/measurement-of-operational-and-environmental-performance-of-the-coal-fired-power-plants-in-india-by-using-data-envelopment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> The Purification of Waste Printing Developer with the Fixed Bed Adsorption Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiurski%20S.%20Jelena">Kiurski S. Jelena</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranogajec%20G.%20Jonjaua"> Ranogajec G. Jonjaua</a>, <a href="https://publications.waset.org/abstracts/search?q=Keci%C4%87%20S.%20Vesna"> Kecić S. Vesna</a>, <a href="https://publications.waset.org/abstracts/search?q=Oros%20B.%20Ivana"> Oros B. Ivana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigates the effectiveness of newly designed clayey pellets (fired clay pellets diameter sizes of 5 and 8 mm, and unfired clay pellets with the diameter size of 15 mm) as the beds in the column adsorption process. The adsorption experiments in the batch mode were performed before the column experiment with the purpose to determine the order of adsorbent package in the column which was to be designed in the investigation. The column experiment was performed by using a known mass of the clayey beds and the volume of the waste printing developer, which was purified. The column was filled in the following order: fired clay pellets of the diameter size of 5 mm, fired clay pellets of the diameter size of 8 mm, and unfired clay pellets of the diameter size of 15 mm. The selected order of the adsorbents showed a high removal efficiency for zinc (97.8%) and copper (81.5%) ions. These efficiencies were better than those in the case of the already existing mode adsorption. The obtained experimental data present a good basis for the selection of an appropriate column fill, but further testing is necessary in order to obtain more accurate results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20materials" title="clay materials">clay materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fix%20bed%20adsorption%20column" title=" fix bed adsorption column"> fix bed adsorption column</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions"> metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=printing%20developer" title=" printing developer"> printing developer</a> </p> <a href="https://publications.waset.org/abstracts/38605/the-purification-of-waste-printing-developer-with-the-fixed-bed-adsorption-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> High Temperature Behavior of a 75Cr3C2–25NiCr Coated T91 Boiler Steel in an Actual Industrial Environment of a Coal Fired Boiler </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buta%20Singh%20Sidhu">Buta Singh Sidhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhpal%20Singh%20Chatha"> Sukhpal Singh Chatha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazoor%20Singh%20Sidhu"> Hazoor Singh Sidhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, 75Cr3C2-25NiCr coating was deposited on T91 boiler tube steel substrate by high velocity oxy-fuel (HVOF) process to enhance high-temperature corrosion resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under cyclic conditions in the platen superheater zone coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles each of 100 h duration followed by 1 h cooling at ambient temperature. The performance of the bare and coated specimens was assessed via metal thickness loss corresponding to the corrosion scale formation and the depth of internal corrosion attack. 75Cr3C2-25NiCr coating deposited on T91 steel imparted better hot corrosion resistance than the uncoated steel. Inferior resistance of bare T91 steel is attributed to the formation of pores and loosely bounded oxide scale rich in Fe2O3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=75Cr3C2-25NiCr" title="75Cr3C2-25NiCr">75Cr3C2-25NiCr</a>, <a href="https://publications.waset.org/abstracts/search?q=HVOF%20process" title=" HVOF process"> HVOF process</a>, <a href="https://publications.waset.org/abstracts/search?q=boiler%20steel" title=" boiler steel"> boiler steel</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20fired%20boilers" title=" coal fired boilers "> coal fired boilers </a> </p> <a href="https://publications.waset.org/abstracts/9512/high-temperature-behavior-of-a-75cr3c2-25nicr-coated-t91-boiler-steel-in-an-actual-industrial-environment-of-a-coal-fired-boiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">609</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Modelling and Simulation of Natural Gas-Fired Power Plant Integrated to a CO2 Capture Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebuwa%20Osagie">Ebuwa Osagie</a>, <a href="https://publications.waset.org/abstracts/search?q=Chet%20Biliyok"> Chet Biliyok</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeung%20Hoi"> Yeung Hoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regeneration energy requirement and ways to reduce it is the main aim of most CO2 capture researches currently being performed and thus, post-combustion carbon capture (PCC) option is identified to be the most suitable for the natural gas-fired power plants. From current research and development (R&D) activities worldwide, two main areas are being examined in order to reduce the regeneration energy requirement of amine-based PCC, namely: (a) development of new solvents with better overall performance than 30wt% monoethanolamine (MEA) aqueous solution, which is considered as the base-line solvent for solvent-based PCC, (b) Integration of the PCC Plant to the power plant. In scaling-up a PCC pilot plant to the size required for a commercial-scale natural gas-fired power plant, process modelling and simulation is very essential. In this work, an integrated process made up of a 482MWe natural gas-fired power plant, an MEA-based PCC plant which is developed and validated has been modelled and simulated. The PCC plant has four absorber columns and a single stripper column, the modelling and simulation was performed with Aspen Plus® V8.4. The gas turbine, the heat recovery steam generator and the steam cycle were modelled based on a 2010 US DOE report, while the MEA-based PCC plant was modelled as a rate-based process. The scaling of the amine plant was performed using a rate based calculation in preference to the equilibrium based approach for 90% CO2 capture. The power plant was integrated to the PCC plant in three ways: (i) flue gas stream from the power plant which is divided equally into four stream and each stream is fed into one of the four absorbers in the PCC plant. (ii) Steam draw-off from the IP/LP cross-over pipe in the steam cycle of the power plant used to regenerate solvent in the reboiler. (iii) Condensate returns from the reboiler to the power plant. The integration of a PCC plant to the NGCC plant resulted in a reduction of the power plant output by 73.56 MWe and the net efficiency of the integrated system is reduced by 7.3 % point efficiency. A secondary aim of this study is the parametric studies which have been performed to assess the impacts of natural gas on the overall performance of the integrated process and this is achieved through investigation of the capture efficiencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas-fired" title="natural gas-fired">natural gas-fired</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=MEA" title=" MEA"> MEA</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title=" CO2 capture"> CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/36464/modelling-and-simulation-of-natural-gas-fired-power-plant-integrated-to-a-co2-capture-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Evaluation of Deteriorated Fired Clay Bricks Based on Schmidt Hammer Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Debailleux">Laurent Debailleux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although past research has focused on parameters influencing the vulnerability of brick and its decay, in practice ancient fired clay bricks are usually replaced without any particular assessment of their characteristics. This paper presents results of non-destructive Schmidt hammer tests performed on ancient fired clay bricks sampled from historic masonry. Samples under study were manufactured between the 18th and 20th century and came from facades and interior walls. Tests were performed on three distinct brick surfaces, depending on their position within the masonry unit. Schmidt hammer tests were carried out in order to measure the mean rebound value (Rn), which refers to the resistance of the surface to successive impacts of the hammer plunger tip. Results indicate that rebound values increased with successive impacts at the same point. Therefore, mean Schmidt hammer rebound values (Rn), limited to the first impact on a surface minimises the estimation of compressive strength. In addition, the results illustrate that this technique is sensitive enough to measure weathering differences, even for different surfaces of a particular sample. Finally, the paper also highlights the relevance of considering the position of the brick within the masonry when conducting particular assessments of the material’s strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brick" title="brick">brick</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20tests" title=" non-destructive tests"> non-destructive tests</a>, <a href="https://publications.waset.org/abstracts/search?q=rebound%20number" title=" rebound number"> rebound number</a>, <a href="https://publications.waset.org/abstracts/search?q=Schmidt%20hammer" title=" Schmidt hammer"> Schmidt hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=weathering%20grade" title=" weathering grade"> weathering grade</a> </p> <a href="https://publications.waset.org/abstracts/80252/evaluation-of-deteriorated-fired-clay-bricks-based-on-schmidt-hammer-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Strategy of Inventory Analysis with Economic Order Quantity and Quick Response: Case on Filter Inventory for Heavy Equipment in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lim%20Sanny">Lim Sanny</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Christian"> Felix Christian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of heavy equipment in Indonesia is always increasing. Cost reduction in procurement of spare parts is the aim of the company. The spare parts in this research are focused in the kind of filters. On the early step, the choosing of priority filter will be studied further by using the ABC analysis. To find out future demand of the filter, this research is using demand forecast by utilizing the QM software for windows. And to find out the best method of inventory control for each kind of filter is by comparing the total cost of Economic Order Quantity and Quick response inventory method. For the three kind of filters which are Cartridge, Engine oil – pn : 600-211-123, Element, Transmission – pn : 424-16-11140, and Element, Hydraulic – pn : 07063-01054, the best forecasting method is Linear regression. The best method for inventory control of Cartridge, Engine oil – pn : 600-211-123 and Element, Transmission – pn : 424-16-11140, is Quick Response Inventory, while the best method for Element, Hydraulic – pn : 07063-01054 is Economic Order Quantity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strategy" title="strategy">strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory" title=" inventory"> inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=ABC%20analysis" title=" ABC analysis"> ABC analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20order%20quantity" title=" economic order quantity"> economic order quantity</a>, <a href="https://publications.waset.org/abstracts/search?q=quick%20response%20inventory" title=" quick response inventory"> quick response inventory</a> </p> <a href="https://publications.waset.org/abstracts/19597/strategy-of-inventory-analysis-with-economic-order-quantity-and-quick-response-case-on-filter-inventory-for-heavy-equipment-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Phosphate Tailings in View of a Better Waste Disposal And/or Valorization: Case of Tunisian Phosphates Mines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Ettoumi">Mouna Ettoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jouini%20Marouen"> Jouini Marouen</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Mihaela%20Neculita"> Carmen Mihaela Neculita</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Bouhlel"> Salah Bouhlel</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucie%20Coudert"> Lucie Coudert</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Benzaazoua"> Mostafa Benzaazoua</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Taha"> Y. Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of sustainable development and circular economy, waste valorization is considered a promising alternative to overcome issues related to their disposal or elimination. The aim of this study is to evaluate the potential use of phosphate sludges (tailings) from the Kef Shfeir mine site (Gafsa, Tunisia) as an alternative material in the production of fired bricks. To do so, representative samples of raw phosphate treatment sludges were collected and characterized for their physical, chemical, mineralogical and environmental characteristics. Then, the raw materials were baked at different temperatures (900°C, 1000°C, and 1100°C) for bricks making. Afterward, fired bricks were characterized for their physical (particle size distribution, density, and plasticity), chemical (XRF and digestion), mineralogical (XRD) and mechanical (flexural strength) properties as well as for their environmental behavior (TCLP, SPLP, and CTEU-9) to ensure whether they meet the required construction standards. Results showed that the raw materials had low density (2.47g/cm 3), were non-plastic and were mainly composed of fluoroapatite (15.6%), calcite (23.1%) and clays (22.2% - mainly as heulandite, vermiculite and palygorskite). With respect to the environmental behavior, all metals (e.g., Pb, Zn, As, Cr, Ba, Cd) complied with the requirements set by the USEPA. In addition, fired bricks had varying porosity (9-13%), firing shrinking (5.2-7.5%), water absorption (12.5-17.2%) and flexural strength (3.86-13.4 MPa). Noteworthy, an improvement in the properties (porosity, firing shrinking, water absorption, and flexural strength) of manufactured fired bricks was observed with the increase of firing temperature from 900 to 1100°C. All the measured properties complied with the construction norms and requirements. Moreover, regardless of the firing temperature, the environmental behavior of metals obeyed the requirements of the USEPA standards. Finally, fired bricks could be produced at high temperatures (1000°C) based on 100% of phosphate sludge without any substitution or addition of either chemical agents or binders. This sustainable brick-making process could be a promising approach for the Phosphate Company to partially manage these wastes, which are considered “non-profitable” for the moment and preserve soils that are exploited presently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate%20treatment%20sludge" title="phosphate treatment sludge">phosphate treatment sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20waste" title=" mine waste"> mine waste</a>, <a href="https://publications.waset.org/abstracts/search?q=backed%20bricks" title=" backed bricks"> backed bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20valorization" title=" waste valorization"> waste valorization</a> </p> <a href="https://publications.waset.org/abstracts/141982/phosphate-tailings-in-view-of-a-better-waste-disposal-andor-valorization-case-of-tunisian-phosphates-mines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Computational Fluid Dynamics Study on Water Soot Blower Direction in Tangentially Fired Pulverized-Coal Boiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teewin%20Plangsrinont">Teewin Plangsrinont</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasawat%20Nakkiew"> Wasawat Nakkiew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, computational fluid dynamics (CFD) was utilized to simulate and predict the path of water from water soot blower through an ambient flow field in 300-megawatt tangentially burned pulverized coal boiler that utilizes a water soot blower as a cleaning device. To predict the position of the impact of water on the opposite side of the water soot blower under identical conditions, the nozzle size and water flow rate were fixed in this investigation. The simulation findings demonstrated a high degree of accuracy in predicting the direction of water flow to the boiler's water wall tube, which was validated by comparison to experimental data. Results show maximum deviation value of the water jet trajectory is 10.2 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=tangentially%20fired%20boiler" title=" tangentially fired boiler"> tangentially fired boiler</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20power%20plant" title=" thermal power plant"> thermal power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20soot%20blower" title=" water soot blower"> water soot blower</a> </p> <a href="https://publications.waset.org/abstracts/129135/computational-fluid-dynamics-study-on-water-soot-blower-direction-in-tangentially-fired-pulverized-coal-boiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Biodiesel Fuel Properties of Mixed Culture Microalgae under Different CO₂ Concentration from Coal Fired Flue Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambreen%20Aslam">Ambreen Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahira%20Aziz%20Mughal"> Tahira Aziz Mughal</a>, <a href="https://publications.waset.org/abstracts/search?q=Skye%20R.%20Thomas-Hall"> Skye R. Thomas-Hall</a>, <a href="https://publications.waset.org/abstracts/search?q=Peer%20M.%20Schenk"> Peer M. Schenk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodiesel is an alternative to petroleum-derived fuel mainly composed of fatty acid from oleaginous microalgae feedstock. Microalgae produced fatty acid methyl esters (FAMEs) as they can store high levels of lipids without competing for food productivity. After lipid extraction and esterification, fatty acid profile from algae feedstock possessed the abundance of fatty acids with carbon chain length specifically C16 and C18. The qualitative analysis of FAME was done by cultivating mix microalgae consortia under three different CO₂ concentrations (1%, 3%, and 5.5%) from a coal fired flue gas. FAME content (280.3 µg/mL) and productivity (18.69 µg/mL/D) was higher under 1% CO₂ (flue gas) as compare to other treatments. Whereas, Mixed C. (F) supplemented with 5.5% CO₂ (50% flue gas) had higher SFA (36.28%) and UFA (63.72%) which improve the oxidative stability of biodiesel. Subsequently, low Iodine value (136.3 gI₂/100g) and higher Cetane number (52) of Mixed C.+P (F) were found to be in accordance with European (EN 14214) standard under 5.5% CO₂ along with 50mM phosphate buffer. Experimental results revealed that sufficient phosphate reduced FAME productivity but significantly enhance biodiesel quality. This research aimed to develop an integrated approach of utilizing flue gas (as CO₂ source) for significant improvement in biodiesel quality under surplus phosphorus. CO₂ sequestration from industrial flue gas not only reduce greenhouse gases (GHG) emissions but also ensure sustainability and eco-friendliness of the biodiesel production process through microalgae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel%20analysis" title="biodiesel analysis">biodiesel analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20fired%20flue%20gas" title=" coal fired flue gas"> coal fired flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=FAME%20productivity" title=" FAME productivity"> FAME productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20profile" title=" fatty acid profile"> fatty acid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20properties" title=" fuel properties"> fuel properties</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20content" title=" lipid content"> lipid content</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20culture%20microalgae" title=" mixed culture microalgae"> mixed culture microalgae</a> </p> <a href="https://publications.waset.org/abstracts/67538/biodiesel-fuel-properties-of-mixed-culture-microalgae-under-different-co2-concentration-from-coal-fired-flue-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Technology Identification, Evaluation and Selection Methodology for Industrial Process Water and Waste Water Treatment Plant of 3x150 MWe Tufanbeyli Lignite-Fired Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cigdem%20Safak%20Saglam">Cigdem Safak Saglam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most thermal power plants use steam as working fluid in their power cycle. Therefore, in addition to fuel, water is the other main input for thermal plants. Water and steam must be highly pure in order to protect the systems from corrosion, scaling and biofouling. Pure process water is produced in water treatment plants having many several treatment methods. Treatment plant design is selected depending on raw water source and required water quality. Although working principle of fossil-fuel fired thermal power plants are same, there is no standard design and equipment arrangement valid for all thermal power plant utility systems. Besides that, there are many other technology evaluation and selection criteria for designing the most optimal water systems meeting the requirements such as local conditions, environmental restrictions, electricity and other consumables availability and transport, process water sources and scarcity, land use constraints etc. Aim of this study is explaining the adopted methodology for technology selection for process water preparation and industrial waste water treatment plant in a thermal power plant project located in Tufanbeyli, Adana Province in Turkey. Thermal power plant is fired with indigenous lignite coal extracted from adjacent lignite reserves. This paper addresses all above-mentioned factors affecting the thermal power plant water treatment facilities (demineralization + waste water treatment) design and describes the ultimate design of Tufanbeyli Thermal Power Plant Water Treatment Plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20power%20plant" title="thermal power plant">thermal power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=lignite%20coal" title=" lignite coal"> lignite coal</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=demineralization" title=" demineralization"> demineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodialysis" title=" electrodialysis"> electrodialysis</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=ash%20dampening" title=" ash dampening"> ash dampening</a> </p> <a href="https://publications.waset.org/abstracts/38609/technology-identification-evaluation-and-selection-methodology-for-industrial-process-water-and-waste-water-treatment-plant-of-3x150-mwe-tufanbeyli-lignite-fired-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Resolution Method for Unforeseen Ground Condition Problem Case in Coal Fired Steam Power Plant Project Location Adipala, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andi%20Fallahi">Andi Fallahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bona%20Ryan%20Situmeang"> Bona Ryan Situmeang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Construction Industry is notoriously risky. Much of the preparatory paperwork that precedes construction project can be viewed as the formulation of risk allocation between the owner and the Contractor. The Owner is taking the risk that his project will not get built on the schedule that it will not get built for what he has budgeted and that it will not be of the quality he expected. The Contractor Face a multitude of risk. One of them is an unforeseen condition at the construction site. The Owner usually has the upper hand here if the unforeseen condition occurred. Site data contained in Ground Investigation report is often of significant contractual importance in disputes related to the unforeseen ground condition. A ground investigation can never fully disclose all the details of the underground condition (Risk of an unknown ground condition can never be 100% eliminated). Adipala Coal Fired Steam Power Plant (CSFPP) 1 x 660 project is one of the large CSFPP project in Indonesia based on Engineering, Procurement, and Construction (EPC) Contract. Unforeseen Ground Condition it’s responsible by the Contractor has stipulated in the clausal of Contract. In the implementation, there’s indicated unforeseen ground condition at Circulating Water Pump House (CWPH) area which caused the Contractor should be changed the Method of Work that give big impact against Time of Completion and Cost Project. This paper tries to analyze the best way for allocating the risk between The Owner and The Contractor. All parties that allocating of sharing risk fairly can ultimately save time and money for all parties, and get the job done on schedule for the least overall cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unforeseen%20ground%20condition" title="unforeseen ground condition">unforeseen ground condition</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20fired%20steam%20power%20plant" title=" coal fired steam power plant"> coal fired steam power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=circulating%20water%20pump%20house" title=" circulating water pump house"> circulating water pump house</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesia" title=" Indonesia"> Indonesia</a> </p> <a href="https://publications.waset.org/abstracts/34234/resolution-method-for-unforeseen-ground-condition-problem-case-in-coal-fired-steam-power-plant-project-location-adipala-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mir%20Shahnawaz%20Jagirani">Mir Shahnawaz Jagirani</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziza%20Aftab"> Aziza Aftab</a>, <a href="https://publications.waset.org/abstracts/search?q=Noorullah%20Soomro"> Noorullah Soomro</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Farman%20Ali%20Shah"> Syed Farman Ali Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kambiz%20Vafai"> Kambiz Vafai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilization of indigenous adsorbent bed of power plant waste ash briquettes, a porous medium was used first time in Pakistan for low cost treatment facility for the toxic effluent of a dyes manufacturing plant effectively and economically. This could replace costly treatment facilities, such as reverse osmosis (RO) and the beds, containing imported and commercial grade expensive Granulated Activated Carbon (GAC).This bed was coupled with coagulants (Ferrous Sulphate and Lime) and found more effective. The coal fired ash (CFA) was collected from coal fired boilers of Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this bed resolved the disposal and environmental issues and treated waste water of chemicals, dyes and pigment manufacturing plant. The bed reduced COD, color, turbidity and TSS remarkably. An adsorptive capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment alone, elimination of COD by 32%, color by 48%, and turbidity by 50% and TSS by 51% respectively. When the bed was coupled with coagulants, it resulted an excessive removal of Color 88%, TSS 92%, COD 67% and Turbidity 89%. Its regeneration was also inexpensive and simple. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20fly%20ash" title="coal fly ash">coal fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=spheres" title=" spheres"> spheres</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/36530/treatment-bed-of-coal-fly-ash-for-dyes-and-pigments-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Availability of Metals in Fired Bricks Incorporating Harbour Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabienne%20Baraud">Fabienne Baraud</a>, <a href="https://publications.waset.org/abstracts/search?q=Lydia%20Leleyter"> Lydia Leleyter</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Poree"> Sandra Poree</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Lemoine"> Melanie Lemoine</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Oudghiri"> Fatiha Oudghiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alternative solutions to immersion at sea are searched for the huge amounts of dredged sediments around the world that might contain various types of contaminants. Possible re-uses of such materials in civil engineering appear as sustainable solutions. The French SEDIBRIC project (valorisation de SEDIments en BRIQues et tuiles) aims to replace a part of natural clays with dredged sediments in the preparation of fired bricks. The potential environmental impact of this re-use is explored to complete the technical and economic feasibility of the study. As part of the project, we investigate the environmental availability of metallic elements (Al, Ca, Cd, Co, Cr, Cu, Fe, Ni, Mg, Mn, Pb, Ti, and Zn) initially present in the dredged sediments selected for the project. Leaching tests (with H₂O, HCl, or EDTA) are conducted in the sediments than in the final bricks in order to evaluate the possible influence of some steps of the bricks manufacturing (desalination pre-treatment, firing, etc.). The desalination pre-treatment using tap water has no or few impacts on the environmental availability of the studied elements. On the opposite, the firing process (900°C) affects the value of the total content of elements detected in the bricks but also the environmental availability for various elements. For instance, Cd, Cu, Pb, and Zn are stabilized in the bricks, whereas the availability of some other elements (i.e., Cr, Ni) increases, depending on the nature of the extracting solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=availability" title="availability">availability</a>, <a href="https://publications.waset.org/abstracts/search?q=bricks" title=" bricks"> bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=dredged%20sediments" title=" dredged sediments"> dredged sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a> </p> <a href="https://publications.waset.org/abstracts/129774/availability-of-metals-in-fired-bricks-incorporating-harbour-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Use of Chemical Extractions to Estimate the Metals Availability in Bricks Made of Dredged Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabienne%20Baraud">Fabienne Baraud</a>, <a href="https://publications.waset.org/abstracts/search?q=Lydia%20Leleyter"> Lydia Leleyter</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Poree"> Sandra Poree</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Lemoine"> Melanie Lemoine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SEDIBRIC (valorization de SEDIments en BRIQues et tuiles) is a French project that aims to replace a part of natural clays with dredged sediments in the preparation of fired bricks in order to propose an alternative solution for the management of harbor dredged sediments. The feasibility of such re-use is explored from a technical, economic, and environmental point of view. The present study focuses on the potential environmental impact of various chemical elements (Al, Ca, Cd, Co, Cr, Cu, Fe, Ni, Mg, Mn, Pb, Ti, and Zn) that are initially present in the dredged sediments. The total content (after acid digestion) and the environmental availability (estimated by single extractions with various extractants) of these elements are determined in the raw sediments and in the obtained fired bricks. The possible influence of some steps of the manufacturing process (sediment pre-treatment, firing) is also explored. The first results show that the pre-treatment step, which uses tap water to desalinate the raw sediment, does not influence the environmental availability of the studied elements. However, the firing process, performed at 900°C, can affect the amount of some elements detected in the bricks, as well as their environmental availability. We note that for Cr, or Ni, the HCl or EDTA availability was increased in the brick (compared to the availability in the raw sediment). For Cd, Cu, Pb, and Zn, the HCl and EDTA availability was reduced in the bricks, meaning that these elements were stabilized within the bricks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bricks" title="bricks">bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20extraction" title=" chemical extraction"> chemical extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/132584/use-of-chemical-extractions-to-estimate-the-metals-availability-in-bricks-made-of-dredged-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Building Bricks Made of Fly-Ash Mixed with Sand or Ceramic Dust: Synthesis and a Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20R.%20Shattique">Md. R. Shattique</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20T.%20Zaki"> Md. T. Zaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20G.%20Kibria"> Md. G. Kibria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fly-ash bricks give a comprehensive solution towards recycling of fly-ash and since there is no requirement of firing to produce them, they are also eco-friendly bricks; little or no carbon-dioxide is emitted during their entire production cycle. As bricks are the most essential and widely utilized building materials in the construction industry, the significance of developing an alternate eco-friendly brick is substantial in modern times. In this paper, manufacturing and potential utilization of Fly-ash made building bricks have been studied and was found to be a prospective substitute for fired clay bricks that contribute greatly to polluting the environment. Also, a comparison between sand made and ceramic dust made Fly-ash bricks have been carried out experimentally. The ceramic dust made bricks seem to show higher compressive strength at lower unit volume weight compared to sand made Fly-ash bricks. Moreover, the water absorption capacity of ceramic dust Fly-ash bricks was lower than sand made bricks. Then finally a statistical comparison between fired clay bricks and fly-ash bricks were carried out. All the requirements for good quality building bricks are matched by the fly-ash bricks. All the facts from this study pointed out that these bricks give a new opportunity for being an alternate building material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20fly-ash" title="coal fly-ash">coal fly-ash</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20dust" title=" ceramic dust"> ceramic dust</a>, <a href="https://publications.waset.org/abstracts/search?q=burnt%20clay%20bricks" title=" burnt clay bricks"> burnt clay bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=gypsum" title=" gypsum"> gypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption%20capacity" title=" absorption capacity"> absorption capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20volume%20weight" title=" unit volume weight"> unit volume weight</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/17049/building-bricks-made-of-fly-ash-mixed-with-sand-or-ceramic-dust-synthesis-and-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Hygrothermal Properties of Raw Earth Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ichrak%20Hamrouni">Ichrak Hamrouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Ouahbi"> Tariq Ouahbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalija%20Lhuissier"> Natalija Lhuissier</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%C3%AFd%20Taibi"> Saïd Taibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrez%20Jemai"> Mehrez Jemai</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Crumeyrolle"> Olivier Crumeyrolle</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Zenzri"> Hatem Zenzri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raw earth is the oldest building technique used for over 11 centuries, thanks to its various benefits. The most known raw earth construction technics are compressed earth blocks, rammed earth, raw earth concrete, and daub. The raw earth can be stabilized with hydraulic binders, mixed by fibers, or hyper-compacted in order to improve its mechanical behaviour. Moreover, raw earth is characterized by a low thermal conductivity what make it a good thermal insulator, and it has a very important capacity to condense and evaporate relative humidity. In this context, many researches have been developed. They have shown that the mechanical characteristics of earth materials increase with the hyper-compaction and adding fibers or hydraulic binders. Besides, other researches have been determined the thermal and hygroscopic properties of raw earth. They have shown that this material able to contribute to moisture and heat control in constructions. Its hygrothermal properties are better than fired earth bricks and concrete. The aim of this study is to evaluate the thermal and hygrometric behavior of raw earth material using experimental tests allows to determine the main Hygrothermal properties such as the water Vapour permeability and thermal conductivity and compare the results with those of other building materials such as fired clay bricks and cement concrete is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=raw%20earth%20material" title="raw earth material">raw earth material</a>, <a href="https://publications.waset.org/abstracts/search?q=hygro-thermal" title=" hygro-thermal"> hygro-thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapour%20permeability" title=" water vapour permeability"> water vapour permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a> </p> <a href="https://publications.waset.org/abstracts/143371/hygrothermal-properties-of-raw-earth-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Reduction Behavior of Some Low-Grade Iron Ores for Application in Blast Furnace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heba%20Al-Kelesh">Heba Al-Kelesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Day after day, high-grade iron ores are consumed. Because of the strong global demand for iron and steel, it has necessitated the utilization of various low-grade iron ores, which are not suitable for direct exploitation in the iron industry. The low-grade ores cannot be dressed using traditional mineral processing methods because of complicated mineral compositions. The present work is aimed to investigate the reducibility of some Egyptian iron ores and concentrates by conditions emulate different blast furnace areas. Representative specimens are collected from El-Gedida–Baharia oasis, Eastern South Aswan, and Eastern desert-wadi Kareem (EDC). Some mineralogical and morphological characterizations are executed. The reactivity arrangement of green samples is Baharia>Aswan>EDC. The presence of magnetite decreased reactivity of EDC. The reducibility of the Aswan sample is lower than Baharia due to the presence of agglomerated metallic grain surrounded by semi-melted phases. Specimens are annealed at 1000ᵒC for 3 hours. After firing, the reducibility of Aswan becomes the lowest due to the formation of fayalite and calcium phosphate phases. The relative attitude for green and fired samples reduced at different conditions are studied. For thermal and top areas, the reactivity of fired samples is greater than green ones, which were confirmed by morphological examinations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reducibility" title="reducibility">reducibility</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20grade" title=" low grade"> low grade</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20industry" title=" iron industry"> iron industry</a>, <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title=" blast furnace"> blast furnace</a> </p> <a href="https://publications.waset.org/abstracts/111794/reduction-behavior-of-some-low-grade-iron-ores-for-application-in-blast-furnace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Evaluation of Zr/NH₄ClO₄ and Zr/KClO₄ Compositions for Development of Igniter for Ammonium Perchlorate and Hydroxyl-Terminated Polybutadiene Based Base Bleed System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Mukhtar">Amir Mukhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib%20Nasir"> Habib Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To achieve an enhanced range of large calibre artillery a base bleed unit equipped with ammonium perchlorate and hydroxyl-terminated polybutadiene (AP/HTPB) based composite propellant grain is installed at the bottom of a projectile which produces jet of hot gasses and reduces base drag during flight of the projectile. Upon leaving the muzzle at very high muzzle velocity, due to sudden pressure drop, the propellant grain gets quenched. Therefore, base-bleed unit is equipped with an igniter to ensure ignition as well as reignition of the propellant grain. Pyrotechnic compositions based on Zr/NH₄ClO₄ and Zr/KClO₄ mixtures have been studied for the effect of fuel/oxidizer ratio and oxidizer type on ballistic properties. Calorific values of mixtures were investigated by bomb calorimeter, the average burning rate was measured by fuse wire technique at ambient conditions, and high-pressure closed vessel was used to record pressure-time profile, maximum pressure achieved (Pmax), time to achieve Pmax and differential pressure (dP/dt). It was observed that the 30, 40, 50 and 60 wt.% of Zr has a very significant effect on ballistic properties of mixtures. Compositions with NH₄ClO₄ produced higher values of Pmax, dP/dt and Calorific value as compared to Zr/KClO₄ based mixtures. Composition containing KClO₄ comparatively produced higher burning rate and maximum burning rate was recorded at 8.30 mm/s with 60 wt.% Zr in Zr/KClO₄ pyrotechnic mixture. Zr/KClO₄ with 50 wt. % of Zr was tests fired in igniter assembly by electric initiation method. Igniter assembly was test fired several times and average burning time of 3.5 sec with igniter mass burning rate of 6.85 g/sec was recorded. Igniter was finally fired on static and dynamic level with base bleed unit which gave successful ignition to the base bleed grain and extended range was achieved with 155 mm artillery projectile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20bleed" title="base bleed">base bleed</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20vessel" title=" closed vessel"> closed vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=igniter" title=" igniter"> igniter</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconium" title=" zirconium"> zirconium</a> </p> <a href="https://publications.waset.org/abstracts/101276/evaluation-of-zrnh4clo4-and-zrkclo4-compositions-for-development-of-igniter-for-ammonium-perchlorate-and-hydroxyl-terminated-polybutadiene-based-base-bleed-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> A Low-Cost Disposable PDMS Microfluidic Cartridge with Reagent Storage Silicone Blisters for Isothermal DNA Amplification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Ereku">L. Ereku</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20E.%20Mackay"> R. E. Mackay</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Naveenathayalan"> A. Naveenathayalan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ajayi"> K. Ajayi</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Balachandran"> W. Balachandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past decade the increase of sexually transmitted infections (STIs) especially in the developing world due to high cost and lack of sufficient medical testing have given rise to the need for a rapid, low cost point of care medical diagnostic that is disposable and most significantly reproduces equivocal results achieved within centralised laboratories. This paper present the development of a disposable PDMS microfluidic cartridge incorporating blisters filled with reagents required for isothermal DNA amplification in clinical diagnostics and point-of-care testing. In view of circumventing the necessity for external complex microfluidic pumps, designing on-chip pressurised fluid reservoirs is embraced using finger actuation and blister storage. The fabrication of the blisters takes into consideration three proponents that include: material characteristics, fluid volume and structural design. Silicone rubber is the chosen material due to its good chemical stability, considerable tear resistance and moderate tension/compression strength. The case of fluid capacity and structural form go hand in hand as the reagent need for the experimental analysis determines the volume size of the blisters, whereas the structural form has to be designed to provide low compression stress when deformed for fluid expulsion. Furthermore, the top and bottom section of the blisters are embedded with miniature polar opposite magnets at a defined parallel distance. These magnets are needed to lock or restrain the blisters when fully compressed so as to prevent unneeded backflow as a result of elasticity. The integrated chip is bonded onto a large microscope glass slide (50mm x 75mm). Each part is manufactured using a 3D printed mould designed using Solidworks software. Die-casting is employed, using 3D printed moulds, to form the deformable blisters by forcing a proprietary liquid silicone rubber through the positive mould cavity. The set silicone rubber is removed from the cast and prefilled with liquid reagent and then sealed with a thin (0.3mm) burstable layer of recast silicone rubber. The main microfluidic cartridge is fabricated using classical soft lithographic techniques. The cartridge incorporates microchannel circuitry, mixing chamber, inlet port, outlet port, reaction chamber and waste chamber. Polydimethylsiloxane (PDMS, QSil 216) is mixed and degassed using a centrifuge (ratio 10:1) is then poured after the prefilled blisters are correctly positioned on the negative mould. Heat treatment of about 50C to 60C in the oven for about 3hours is needed to achieve curing. The latter chip production stage involves bonding the cured PDMS to the glass slide. A plasma coroner treater device BD20-AC (Electro-Technic Products Inc., US) is used to activate the PDMS and glass slide before they are both joined and adequately compressed together, then left in the oven over the night to ensure bonding. There are two blisters in total needed for experimentation; the first will be used as a wash buffer to remove any remaining cell debris and unbound DNA while the second will contain 100uL amplification reagents. This paper will present results of chemical cell lysis, extraction using a biopolymer paper membrane and isothermal amplification on a low-cost platform using the finger actuated blisters for reagent storage. The platform has been shown to detect 1x105 copies of Chlamydia trachomatis using Recombinase Polymerase Amplification (RPA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finger%20actuation" title="finger actuation">finger actuation</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20of%20care" title=" point of care"> point of care</a>, <a href="https://publications.waset.org/abstracts/search?q=reagent%20storage" title=" reagent storage"> reagent storage</a>, <a href="https://publications.waset.org/abstracts/search?q=silicone%20blisters" title=" silicone blisters "> silicone blisters </a> </p> <a href="https://publications.waset.org/abstracts/32115/a-low-cost-disposable-pdms-microfluidic-cartridge-with-reagent-storage-silicone-blisters-for-isothermal-dna-amplification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Utilization of Sludge in the Manufacturing of Fired Clay Bricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjali%20G.%20Pillai">Anjali G. Pillai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chadrakaran"> S. Chadrakaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extensive amount of sludge generated throughout the world, as a part of water treatment works, have caused various social and economic issues, such as a demand on landfill spaces, increase in environmental pollution and raising the waste management cost. With growing social awareness about toxic incinerator emissions and the increasing concern over the disposal of sludge on the agricultural land, the recovery of sewage sludge as a building and construction raw material can be considered as an innovative approach to tackle the sludge disposal problem. The proposed work aims at studying the recycling ability of the sludge, generated from the water treatment process, by incorporating it into the fired clay brick units. The work involves initial study of the geotechnical characteristics of the brick-clay and the sludge. Chemical compatibility of both the materials will be analyzed by X-ray fluorescence technique. The variation in the strength aspects with varying proportions of sludge i.e. 10%, 20%, 30% and 40% in the sludge-clay mix will also be determined by the proctor density test. Based on the optimum moisture content, the sludge-clay bricks will be manufactured in a brick manufacturing plant and the modified brick units will be tested to determine the variation in compressive strength, bulk density, firing shrinkage, shrinkage loss and initial water absorption rate with respect to the conventional clay bricks. The results will be compared with the specifications given in Indian Standards to arrive at the potential use of the new bricks. The durability aspect will be studied by conducting the leachate analysis test using atomic adsorption spectrometry. The lightweight characteristics of the sludge modified bricks will be ascertained with the scanning electron microscope technique which will be indicative of the variation in pore structure with the increase in sludge content within the bricks. The work will determine the suitable proportion of the sludge – clay mix in the brick which can then be effectively implemented. The feasibility aspect of the work will be determined for commercial production of the units. The work involves providing a strategy for conversion of waste to resource. Moreover, it provides an alternative solution to the problem of growing scarcity of brick-clay for the manufacturing of fired clay bricks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-bricks" title="eco-bricks">eco-bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20construction%20material" title=" green construction material"> green construction material</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20amended%20bricks" title=" sludge amended bricks"> sludge amended bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20disposal" title=" sludge disposal"> sludge disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/66230/utilization-of-sludge-in-the-manufacturing-of-fired-clay-bricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fired%20cartridge&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fired%20cartridge&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fired%20cartridge&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fired%20cartridge&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fired%20cartridge&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>