CINXE.COM

Search results for: desorption

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: desorption</title> <meta name="description" content="Search results for: desorption"> <meta name="keywords" content="desorption"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="desorption" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="desorption"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 209</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: desorption</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Thermal Technologies Applications for Soil Remediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20de%20Folly%20d%E2%80%99Auris">A. de Folly d’Auris</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bagatin"> R. Bagatin</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Filtri"> P. Filtri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the importance of having a good initial characterization of soil samples when thermal desorption has to be applied to polluted soils for the removal of contaminants. Particular attention has to be devoted on the desorption kinetics of the samples to identify the gases evolved during the heating, and contaminant degradation pathways. In this study, two samples coming from different points of the same contaminated site were considered. The samples are much different from each other. Moreover, the presence of high initial quantity of heavy hydrocarbons strongly affected the performance of thermal desorption, resulting in formation of dangerous intermediates. Analytical techniques such TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry) and GC-MS (Gas Chromatography-Mass) provided a good support to give correct indication for field application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desorption%20kinetics" title="desorption kinetics">desorption kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons" title=" hydrocarbons"> hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption" title=" thermal desorption"> thermal desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetric%20measurements" title=" thermogravimetric measurements"> thermogravimetric measurements</a> </p> <a href="https://publications.waset.org/abstracts/40004/thermal-technologies-applications-for-soil-remediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> Adsorption-desorption Behavior of Weak Polyelectrolytes Deposition on Aminolyzed-PLA Non-woven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sima%20Shakoorjavan">Sima Shakoorjavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Stawski"> Dawid Stawski</a>, <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Akbari"> Somaye Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the adsorption-desorption behavior of poly(amidoamine) (PAMAM) as a polycation and poly (acrylic acid) (PAA) as a polyanion deposited on aminolyzed-PLA nonwoven through layer-by-layer technique (lbl) was studied. The adsorption-desorption behavior was monitored by UV adsorbance spectroscopy and turbidity tests of the waste polyelectrolytes after each deposition. Also, the drying between each deposition step was performed to study the effect of drying on adsorption-desorption behavior. According to UV adsorbance spectroscopy of the waste polyelectrolyte after each deposition, it was revealed that drying has a great effect on the deposition behavior of the next layer. Regarding the deposition of the second layer, drying caused more desorption and removal of the previously deposited layer since the turbidity and the absorbance of the waste increased in comparison to pure polyelectrolyte. To deposit the third layer, the same scenario occurred and drying caused more removal of the previously deposited layer. However, the deposition of the fourth layer drying after the deposition of the third layer did not affect the adsorption-desorption behavior. Since the adsorbance and turbidity of the samples that were dried and those that were not dried were the same. As a result, it seemed that deposition of the fourth layer could be the starting point where lbl reached its constant state. The decrease in adsorbance and remaining turbidity of the waste same as a pure polyelectrolyte can indicate that most portion of the polyelectrolyte was adsorbed onto the substrate rather than complex formation in the bath as the subsequence of the previous layer removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adsorption-desorption%20behavior" title="Adsorption-desorption behavior">Adsorption-desorption behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=lbl%20technique" title=" lbl technique"> lbl technique</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28amidoamine%29" title=" poly(amidoamine)"> poly(amidoamine)</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28acrylic%20acid%29" title=" poly (acrylic acid)"> poly (acrylic acid)</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20polyelectrolytes" title=" weak polyelectrolytes"> weak polyelectrolytes</a> </p> <a href="https://publications.waset.org/abstracts/176722/adsorption-desorption-behavior-of-weak-polyelectrolytes-deposition-on-aminolyzed-pla-non-woven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Identification and Quantification of Acid Sites of M(X)X Zeolites (M= Cu2+ and/or Zn2+,X = Level of Exchange): An In situ FTIR Study Using Pyridine Adsorption/Desorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hammoudi">H. Hammoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bendenia"> S. Bendenia</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Batonneau-Gener"> I. Batonneau-Gener</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Comparot"> J. Comparot</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Marouf-Khelifa"> K. Marouf-Khelifa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khelifa"> A. Khelifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X zeolites were prepared by ion-exchange with Cu2+ and/or Zn2+ cations, at different concentrations of the exchange solution, and characterised by thermal analysis and nitrogen adsorption. The acidity of the samples was investigated by pyridine adsorption–desorption followed by in situ Fourier transform infrared (FTIR) spectroscopy. Desorption was carried out at 150, 250 and 350 °C. The objective is to estimate the nature and concentration of acid sites. A comparison between the binary (Cu(x)X, Zn(x)X) and ternary (CuZn(x)X) exchanges was also established (x = level of exchange) through the Cu(43)X, Zn(48)X and CuZn(50)X samples. Lewis acidity decreases overall with desorption temperature and the level of exchange. As the latter increases, there is a conversion of some Lewis sites into those of Brønsted during thermal treatment. In return, the concentration of Brønsted sites increases with the degree of exchange. The Brønsted acidity of CuZn(50)X at 350 °C is more important than the sum of those of Cu(43)X and Zn(48)X. The found values were 73, 32 and 15 μmol g-1, respectively. Besides, the concentration of Brønsted sites for CuZn(50)X increases with desorption temperature. These features indicate the presence of a synergistic effect amplifying the strength of these sites when Cu2+ and Zn2+ cations compete for the occupancy of sites distributed inside zeolitic cavities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidity" title="acidity">acidity</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=pyridine" title=" pyridine"> pyridine</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolites" title=" zeolites"> zeolites</a> </p> <a href="https://publications.waset.org/abstracts/43779/identification-and-quantification-of-acid-sites-of-mxx-zeolites-m-cu2-andor-zn2x-level-of-exchange-an-in-situ-ftir-study-using-pyridine-adsorptiondesorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Degradation of Hydrocarbons by Surfactants and Biosurfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Ferhat">Samira Ferhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Redha%20Alouaoui"> Redha Alouaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Trifi"> Leila Trifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmalek%20Badis"> Abdelmalek Badis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is the use of natural surfactant (biosurfactant) and synthetic (sodium dodecyl sulfate and tween 80) for environmental application. In fact the solubility of the polycyclic hydrocarbon (naphthalene) and the desorption of the heavy metals in the presence of surfactants. The microorganisms selected in this work are bacterial strain (Bacillus licheniformis) for the production of biosurfactant for use in this study. In the first part of this study, we evaluated the effectiveness of surfactants solubilization certain hydrocarbons few soluble in water such as polyaromatic (case naphthalene). Tests have shown that from the critical micelle concentration, decontamination is performed. The second part presents the results on the desorption of heavy metals (for copper) by the three surfactants, using concentrations above the critical micelle concentration. The comparison between the desorption of copper by the three surfactants, it is shown that the biosurfactant is more effective than tween 80 and sodium dodecyl sulfate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfactants" title="surfactants">surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthalene" title=" naphthalene"> naphthalene</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20micelle%20concentration" title=" critical micelle concentration"> critical micelle concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization" title=" solubilization"> solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=desorption" title=" desorption"> desorption</a> </p> <a href="https://publications.waset.org/abstracts/40181/degradation-of-hydrocarbons-by-surfactants-and-biosurfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miled%20Amel">Miled Amel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Maad%20Hatem"> Ben Maad Hatem</a>, <a href="https://publications.waset.org/abstracts/search?q=Askri%20Faouzi"> Askri Faouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Nasrallah%20Sassi"> Ben Nasrallah Sassi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15&nbsp;000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title="dynamic behavior">dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=LaNi5" title=" LaNi5"> LaNi5</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20of%20water%20pumping%20system" title=" performance of water pumping system"> performance of water pumping system</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20model" title=" unsteady model"> unsteady model</a> </p> <a href="https://publications.waset.org/abstracts/69344/numerical-simulation-of-the-dynamic-behavior-of-a-lani5-water-pumping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Monitoring Surface Modification of Polylactide Nonwoven Fabric with Weak Polyelectrolytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sima%20Shakoorjavan">Sima Shakoorjavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Stawski"> Dawid Stawski</a>, <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Akbari"> Somaye Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, great attempts have been made to initially modify polylactide (PLA) nonwoven surface with poly(amidoamine) (PAMMA) dendritic polymer to create amine active sites on PLA surface through aminolysis reaction. Further, layer-by-layer deposition of four layers of two weak polyelectrolytes, including PAMAM as polycation and polyacrylic acid (PAA) as polyanion on activated PLA, was monitored with turbidity analysis of waste-polyelectrolytes after each deposition step. The FTIR-ATR analysis confirmed the successful introduction of amine groups into PLA polymeric chains through the emerging peak around 1650 cm⁻¹ corresponding to N-H bending vibration and a double wide peak at around 3670-3170 cm⁻¹ corresponding to N-H stretching vibration. The adsorption-desorption behavior of (PAMAM) and poly (PAA) deposition was monitored by turbidity test. Turbidity results showed the desorption and removal of the previously deposited layer (second and third layers) upon the desorption of the next layers (third and fourth layers). Also, the importance of proper rinsing after aminolysis of PLA nonwoven fabric was revealed by turbidity test. Regarding the sample with insufficient rinsing process, higher desorption and removal of ungrafted PAMAM from aminolyzed-PLA surface into PAA solution was detected upon the deposition of the first PAA layer. This phenomenon can be due to electrostatic attraction between polycation (PAMAM) and polyanion (PAA). Moreover, the successful layer deposition through LBL was confirmed by the staining test of acid red 1 through spectrophotometry analysis. According to the results, layered PLA with four layers with PAMAM as the top layer showed higher dye absorption (46.7%) than neat (1.2%) and aminolyzed PLA (21.7%). In conclusion, the complicated adsorption-desorption behavior of dendritic polycation and linear polyanion systems was observed. Although desorption and removal of previously adsorbed layers occurred upon the deposition of the next layer, the remaining polyelectrolyte on the substrate is sufficient for the adsorption of the next polyelectrolyte through electrostatic attraction between oppositely charged polyelectrolytes. Also, an increase in dye adsorption confirmed more introduction of PAMAM onto PLA surface through LBL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title="surface modification">surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20technique" title=" layer-by-layer technique"> layer-by-layer technique</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20polyelectrolytes" title=" weak polyelectrolytes"> weak polyelectrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption-desorption%20behavior" title=" adsorption-desorption behavior"> adsorption-desorption behavior</a> </p> <a href="https://publications.waset.org/abstracts/179727/monitoring-surface-modification-of-polylactide-nonwoven-fabric-with-weak-polyelectrolytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Alumina Generated by Electrocoagulation as Adsorbent for the Elimination of the Iron from Drilling Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aimad%20Oulebsir">Aimad Oulebsir</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Chaabane"> Toufik Chaabane</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkataraman%20Sivasankar"> Venkataraman Sivasankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Darchen"> André Darchen</a>, <a href="https://publications.waset.org/abstracts/search?q=Titus%20A.%20M.%20Msagati"> Titus A. M. Msagati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the presence of pharmaceutical substances in the environment is an emerging pollution leading to the disruption of ecosystems. Indeed, water loaded with pharmaceutical residues is an issue that has raised the attention of researchers. The aim of this study was to monitor the effectiveness of the alumina electro-generated by the adsorption process the iron of well water for the production of drugs. The Fe2+ was removed from wastewater by adsorption in a batch cell. Performance results of iron removal by alumina electro-generated revealed that the efficiency of the carrier in the method of electro-generated adsorption. The overall Fe2+ of the synthetically solutions and simulated effluent removal efficiencies reached 75% and 65%, respectively. The application of models and isothermal adsorption kinetics complement the results obtained experimentally. Desorption of iron was investigated using a solution of 0.1M NaOH. Regeneration of the tests shows that the adsorbent maintains its capacity after five adsorption/desorption cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title="electrocoagulation">electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20electrode" title=" aluminum electrode"> aluminum electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=electrogenerated%20alumina" title=" electrogenerated alumina"> electrogenerated alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%2Fdesorption" title=" adsorption/desorption"> adsorption/desorption</a> </p> <a href="https://publications.waset.org/abstracts/42493/alumina-generated-by-electrocoagulation-as-adsorbent-for-the-elimination-of-the-iron-from-drilling-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Study on the Thermal Conductivity about Porous Materials in Wet State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Yan">Han Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jieren%20Luo"> Jieren Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiuhui%20Yan"> Qiuhui Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoqing%20Li"> Xiaoqing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal conductivity of porous materials is closely related to the thermal and moisture environment and the overall energy consumption of the building. The study of thermal conductivity of porous materials has great significance for the realization of low energy consumption building and economic construction building. Based on the study of effective thermal conductivity of porous materials at home and abroad, the thermal conductivity under a variety of different density of polystyrene board (EPS), plastic extruded board (XPS) and polyurethane (PU) and phenolic resin (PF) in wet state through theoretical analysis and experimental research has been studied. Initially, the moisture absorption and desorption properties of specimens had been discussed under different density, which led a result indicates the moisture absorption of four porous materials all have three stages, fast, stable and gentle. For the moisture desorption, there are two types. One is the existence of the rapid phase of the stage, such as XPS board, PU board. The other one does not have the fast desorption, instead, it is more stabilized, such as XPS board, PF board. Furthermore, the relationship between water content and thermal conductivity of porous materials had been studied and fitted, which figured out that in the wake of the increasing water content, the thermal conductivity of porous material is continually improving. At the same time, this result also shows, in different density, when the same kind of materials decreases, the saturated moisture content increases. Finally, the moisture absorption and desorption properties of the four kinds of materials are compared comprehensively, and it turned out that the heat preservation performance of PU board is the best, followed by EPS board, XPS board, PF board. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20materials" title="porous materials">porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20hot-wire%20method" title=" transient hot-wire method"> transient hot-wire method</a> </p> <a href="https://publications.waset.org/abstracts/71053/study-on-the-thermal-conductivity-about-porous-materials-in-wet-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> A Step-by-Step Analytical Protocol For Detecting and Identifying Minor Differences In Like Materials and Polymers Using Pyrolysis -Gas Chromatography/Mass Spectrometry Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athena%20Nguyen">Athena Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rojin%20Belganeh"> Rojin Belganeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detecting and identifying differences in like polymer materials are key factors in failure and deformulation analysis, and reverse engineering. Pyrolysis-GC/MS is an easy solid sample introduction technique which expands the application areas of gas chromatography and mass spectrometry. The Micro furnace pyrolyzer is directly interfaced with the GC injector preventing any potential of cold spot, carryover, and cross contamination. In this presentation, the analysis of the differences in three polystyrene samples is demonstrated. Although the three samples look very similar by Evolve gas analysis (EGA) and Flash pyrolysis, there are indications of small levels of other materials. By performing Thermal desorption-GC/MS, the additive compounds between samples show the differences. EGA, flash pyrolysis, and thermal desorption analysis are the different modes of operations of the micro-furnace pyrolyzer enabling users to perform multiple analytical techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gas%20chromatography%2FMass%20spectrometry" title="Gas chromatography/Mass spectrometry">Gas chromatography/Mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolyzer" title=" pyrolyzer"> pyrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption-GC%2FMS" title=" thermal desorption-GC/MS"> thermal desorption-GC/MS</a> </p> <a href="https://publications.waset.org/abstracts/139716/a-step-by-step-analytical-protocol-for-detecting-and-identifying-minor-differences-in-like-materials-and-polymers-using-pyrolysis-gas-chromatographymass-spectrometry-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Basic One-Dimensional Modelica®-Model for Simulation of Gas-Phase Adsorber Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Rettig">Adrian Rettig</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvan%20Schneider"> Silvan Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Reto%20Tamburini"> Reto Tamburini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirko%20Kleingries"> Mirko Kleingries</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulf%20Christian%20Muller">Ulf Christian Muller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial adsorption processes are, mainly due to si-multaneous heat and mass transfer, characterized by a high level of complexity. The conception of such processes often does not take place systematically; instead scale-up/down respectively number-up/down methods based on existing systems are used. This paper shows how Modelica® can be used to develop a transient model enabling a more systematic design of such ad- and desorption components and processes. The core of this model is a lumped-element submodel of a single adsorbent grain, where the thermodynamic equilibria and the kinetics of the ad- and desorption processes are implemented and solved on the basis of mass-, momentum and energy balances. For validation of this submodel, a fixed bed adsorber, whose characteristics are described in detail in the literature, was modeled and simulated. The simulation results are in good agreement with the experimental results from the literature. Therefore, the model development will be continued, and the extended model will be applied to further adsorber types like rotor adsorbers and moving bed adsorbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=desorption" title=" desorption"> desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20driving%20force" title=" linear driving force"> linear driving force</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title=" dynamic model"> dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=Modelica%C2%AE" title=" Modelica®"> Modelica®</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20equation%20approach" title=" integral equation approach"> integral equation approach</a> </p> <a href="https://publications.waset.org/abstracts/130750/basic-one-dimensional-modelica-model-for-simulation-of-gas-phase-adsorber-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> Determination of Brominated Flame Retardants In Recycled Plastic Toys Using Thermal Desorption GC/MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athena%20Nguyen">Athena Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rojin%20Belganeh"> Rojin Belganeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recycling plastics industries, waste plastics are converted into monomers and other useful molecules by chemical reactions. Thermal energy generated by incineration is recovered when waste plastics melt. During the process, Flame retardants containing products get in, and brominated flame retardants (BFRs) are often used to reduce the flammability of products. Some of the originally formulated brominated flame retardants additives are restricted by the RoHS Directive, such as PBDE and PBB. The determination of BFRs other than those restricted by the RoHS directive is required. Frontier Lab developed a pyrolyzer based on the vertical micro-furnace design. The multi-mode pyrolyzer with different modes of operations, including evolve gas analysis (EGA), flash pyrolysis, thermal desorption, heart cutting, allows users to choose among the techniques for their analysis purposes. The method requires very little sample preparation. The first step is to perform an EGA using temperature programs. This technique provides information about the thermal temperature behaviors of the sample. The EGA thermogram is then used to determine the next steps in the analysis process. In this presentation, with an Optimal thermal temperature zone identified based on EGA thermogram, thermal desorption GC/MS is a chosen technique for the determination of brominated flame retardants in recycled plastic toys. Five types of general-purpose brominated flame retardants other than those restricted by the RoHS Directive are determined by the standard addition method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry" title="gas chromatography/mass spectrometry">gas chromatography/mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolyzer" title=" pyrolyzer"> pyrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption-GC%2FMS" title=" thermal desorption-GC/MS"> thermal desorption-GC/MS</a> </p> <a href="https://publications.waset.org/abstracts/139715/determination-of-brominated-flame-retardants-in-recycled-plastic-toys-using-thermal-desorption-gcms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Efficient of Technology Remediation Soil That Contaminated by Petroleum Based on Heat without Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gavin%20Hutama%20Farandiarta">Gavin Hutama Farandiarta</a>, <a href="https://publications.waset.org/abstracts/search?q=Hegi%20Adi%20Prabowo"> Hegi Adi Prabowo</a>, <a href="https://publications.waset.org/abstracts/search?q=Istiara%20Rizqillah%20Hanifah"> Istiara Rizqillah Hanifah</a>, <a href="https://publications.waset.org/abstracts/search?q=Millati%20Hanifah%20Saprudin"> Millati Hanifah Saprudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Raden%20Iqrafia%20Ashna"> Raden Iqrafia Ashna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase of the petroleum’s consumption rate encourages industries to optimize and increase the activity in processing crude oil into petroleum. However, although the result gives a lot of benefits to humans worldwide, it also gives negative impact to the environment. One of the negative impacts of processing crude oil is the soil will be contaminated by petroleum sewage sludge. This petroleum sewage sludge, contains hydrocarbon compound and it can be calculated by Total Petroleum Hydrocarbon (TPH).Petroleum sludge waste is accounted as hazardous and toxic. The soil contamination caused by the petroleum sludge is very hard to get rid of. However, there is a way to manage the soil that is contaminated by petroleum sludge, which is by using heat (thermal desorption) in the process of remediation. There are several factors that affect the success rate of the remediation with the help of heat which are temperature, time, and air pressure in the desorption column. The remediation process using the help of heat is an alternative in soil recovery from the petroleum pollution which highly effective, cheap, and environmentally friendly that produces uncontaminated soil and the petroleum that can be used again. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20sewage%20sludge" title="petroleum sewage sludge">petroleum sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation%20soil" title=" remediation soil"> remediation soil</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption" title=" thermal desorption"> thermal desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20petroleum%20hydrocarbon%20%28TPH%29" title=" total petroleum hydrocarbon (TPH)"> total petroleum hydrocarbon (TPH)</a> </p> <a href="https://publications.waset.org/abstracts/48698/efficient-of-technology-remediation-soil-that-contaminated-by-petroleum-based-on-heat-without-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> Effects of Polymer Adsorption and Desorption on Polymer Flooding in Waterflooded Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukruthai%20Sapniwat">Sukruthai Sapniwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Falan%20Srisuriyachai"> Falan Srisuriyachai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer Flooding is one of the most well-known methods in Enhanced Oil Recovery (EOR) technology which can be implemented after either primary or secondary recovery, resulting in favorable conditions for the displacement mechanism in order to lower the residual oil in the reservoir. Polymer substances can lower the mobility ratio of the whole process by increasing the viscosity of injected water. Therefore, polymer flooding can increase volumetric sweep efficiency, which leads to a better recovery factor. Moreover, polymer adsorption onto rock surface can help decrease reservoir permeability contrast with high heterogeneity. Due to the reduction of the absolute permeability, effective permeability to water, representing flow ability of the injected fluid, is also reduced. Once polymer is adsorbed onto rock surface, polymer molecule can be desorbed when different fluids are injected. This study is performed to evaluate the effects of the adsorption and desorption process of polymer solutions to yield benefits on the oil recovery mechanism. A reservoir model is constructed by reservoir simulation program called STAR® commercialized by the Computer Modeling Group (CMG). Various polymer concentrations, starting times of polymer flooding process and polymer injection rates were evaluated with selected values of polymer desorption degrees including 0, 25, 50, 75 and 100%. The higher the value, the more adsorbed polymer molecules to return back to flowing fluid. According to the results, polymer desorption lowers polymer consumption, especially at low concentrations. Furthermore, starting time of polymer flooding and injection rate affect the oil production. The results show that waterflooding followed by earlier polymer flooding can increase the oil recovery factor while the higher injection rate also enhances the recovery. Polymer concentration is related to polymer consumption due to the two main benefits of polymer flooding control described above. Therefore, polymer slug size should be optimized based on polymer concentration. Polymer desorption causes polymer re-employment that is previously adsorbed onto rock surface, resulting in an increase of sweep efficiency in the further period of polymer flooding process. Even though waterflooding supports polymer injectivity, water cut at the producer can prematurely terminate the oil production. The injection rate decreases polymer adsorption due to decreased retention time of polymer flooding process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery%20technology" title="enhanced oil recovery technology">enhanced oil recovery technology</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20adsorption%20and%20desorption" title=" polymer adsorption and desorption"> polymer adsorption and desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20flooding" title=" polymer flooding"> polymer flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20simulation" title=" reservoir simulation"> reservoir simulation</a> </p> <a href="https://publications.waset.org/abstracts/61704/effects-of-polymer-adsorption-and-desorption-on-polymer-flooding-in-waterflooded-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Synthesis of Nanoparticle Mordenite Zeolite for Dimethyl Ether Carbonylation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Haitao">Zhang Haitao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different size of nanoparticle mordenite zeolites were prepared by adding different soft template during hydrothermal process for carbonylation of dimethyl ether (DME) to methyl acetate (MA). The catalysts were characterized by X-ray diffraction, Ar adsorption-desorption, high-resolution transmission electron microscopy, NH3-temperature programmed desorption, scanning electron microscopy and Thermogravimetric. The characterization results confirmed that mordenite zeolites with small nanoparticle showed more strong acid sites which was the active site for carbonylation thus promoting conversion of DME and MA selectivity. Furthermore, the nanoparticle mordenite had increased the mass transfer efficiency which could suppress the formation of coke. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20mordenite" title="nanoparticle mordenite">nanoparticle mordenite</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonylation" title=" carbonylation"> carbonylation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethyl%20ether" title=" dimethyl ether"> dimethyl ether</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20acetate" title=" methyl acetate"> methyl acetate</a> </p> <a href="https://publications.waset.org/abstracts/120694/synthesis-of-nanoparticle-mordenite-zeolite-for-dimethyl-ether-carbonylation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> Thermal Decontamination of Soils Polluted by Polychlorinated Biphenyls and Microplastics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roya%20Biabani">Roya Biabani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mentore%20Vaccari"> Mentore Vaccari</a>, <a href="https://publications.waset.org/abstracts/search?q=Piero%20Ferrari"> Piero Ferrari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accumulated microplastic (MPLs) in soil pose the risk of adsorbing and transporting polychlorinated biphenyls (PCBs) into the food chain or bodies. PCBs belong to a class of man-made hydrophobic organic chemicals (HOCs) that are classified as probable human carcinogens and a hazard to biota. Therefore, to take effective action and not aggravate the already recognized problems, the knowledge of PCB remediation in the presence of MPLs needs to be complete. Due to the high efficiency and little secondary pollution production, thermal desorption (TD) has been widely used for processing a variety of pollutants, especially for removing volatile and semi-volatile organic matter from contaminated solids and sediment. This study investigates the fate of PCB compounds during the thermal remediation method. For this, the PCB-contaminated soil was collected from the earth-canal downstream Caffaro S.p.A. chemical factory, which produced PCBs and PCB mixtures between 1930 and 1984. For MPL analysis, MPLs were separated by density separation and oxidation of organic matter. An operational range for the key parameters of thermal desorption processes was experimentally evaluated. Moreover, the temperature treatment characteristics of the PCBs-contaminated soil under anaerobic and aerobic conditions were studied using the Thermogravimetric Analysis (TGA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminated%20soils" title="contaminated soils">contaminated soils</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastics" title=" microplastics"> microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyls" title=" polychlorinated biphenyls"> polychlorinated biphenyls</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption" title=" thermal desorption"> thermal desorption</a> </p> <a href="https://publications.waset.org/abstracts/166421/thermal-decontamination-of-soils-polluted-by-polychlorinated-biphenyls-and-microplastics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Deformulation and Comparative Analysis of Apparently Similar Polymers Using Multiple Modes of Pyrolysis-Gc/Ms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athena%20Nguyen">Athena Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rojin%20Belganeh"> Rojin Belganeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detecting and identifying differences in like polymer materials are key factors in deformulation, comparative analysis as well as reverse engineering. Pyrolysis-GC/MS is an easy solid sample introduction technique which expands the application areas of gas chromatography and mass spectrometry. The Micro-furnace pyrolyzer is directly interfaced with the GC injector preventing any potential of cold spot, carryover, and cross contamination. This presentation demonstrates the study of two similar polymers by performing different mode of operations in the same system: Evolve gas analysis (EGA), Flash pyrolysis, Thermal desorption analysis, and Heart-cutting analysis. Unknown polymer materials and their chemical compositions are identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%2Fmass%20spectrometry" title="gas chromatography/mass spectrometry">gas chromatography/mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolyzer" title=" pyrolyzer"> pyrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption-GC%2FMS" title=" thermal desorption-GC/MS"> thermal desorption-GC/MS</a> </p> <a href="https://publications.waset.org/abstracts/139719/deformulation-and-comparative-analysis-of-apparently-similar-polymers-using-multiple-modes-of-pyrolysis-gcms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haiyang%20Su">Haiyang Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Qian"> Kun Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We developed a novel plasmonic matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxin in complex biological emulsion samples. We used silver nanoshells (SiO₂@Ag) with optimized structures as matrices and achieved direct analysis of ~6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, superior to the conventional biochemical methods currently in use. Our approach contributed to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real case bio-analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmonic%20materials" title="plasmonic materials">plasmonic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20desorption%2Fionization" title=" laser desorption/ionization"> laser desorption/ionization</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20nutrients" title=" small nutrients"> small nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=toxins" title=" toxins"> toxins</a> </p> <a href="https://publications.waset.org/abstracts/90310/a-plasmonic-mass-spectrometry-approach-for-detection-of-small-nutrients-and-toxins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Morphological Characterization and Gas Permeation of Commercially Available Alumina Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ifeyinwa%20Orakwe">Ifeyinwa Orakwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20Nwogu"> Ngozi Nwogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents experimental results relating to the structural characterization of a commercially available alumina membrane. A γ-alumina mesoporous tubular membrane has been used. Nitrogen adsorption-desorption, scanning electron microscopy and gas permeability test has been carried out on the alumina membrane to characterize its structural features. Scanning electron microscopy (SEM) was used to determine the pore size distribution of the membrane. Pore size, specific surface area and pore size distribution were also determined with the use of the Nitrogen adsorption-desorption instrument. Gas permeation tests were carried out on the membrane using a variety of single and mixed gases. The permeabilities at different pressure between 0.05-1 bar and temperature range of 25-200oC were used for the single and mixed gases: nitrogen (N2), helium (He), oxygen (O2), carbon dioxide (CO2), 14%CO₂/N₂, 60%CO₂/N₂, 30%CO₂/CH4 and 21%O₂/N₂. Plots of flow rate verses pressure were obtained. Results got showed the effect of temperature on the permeation rate of the various gases. At 0.5 bar for example, the flow rate for N2 was relatively constant before decreasing with an increase in temperature, while for O2, it continuously decreased with an increase in temperature. In the case of 30%CO₂/CH4 and 14%CO₂/N₂, the flow rate showed an increase then a decrease with increase in temperature. The effect of temperature on the membrane performance of the various gases is presented and the influence of the trans membrane pressure drop will be discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20membrane" title="alumina membrane">alumina membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitrogen%20adsorption-desorption" title=" Nitrogen adsorption-desorption"> Nitrogen adsorption-desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscopy" title=" scanning electron microscopy"> scanning electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20permeation" title=" gas permeation"> gas permeation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/26524/morphological-characterization-and-gas-permeation-of-commercially-available-alumina-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Waste Derived from Refinery and Petrochemical Plants Activities: Processing of Oil Sludge through Thermal Desorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Bohers">Anna Bohers</a>, <a href="https://publications.waset.org/abstracts/search?q=Em%C3%ADlia%20Hroncov%C3%A1"> Emília Hroncová</a>, <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Ladomersk%C3%BD"> Juraj Ladomerský</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil sludge with its main characteristic of high acidity is a waste product generated from the operation of refinery and petrochemical plants. Former refinery and petrochemical plant - Petrochema Dubová is present in Slovakia as well. Its activities was to process the crude oil through sulfonation and adsorption technology for production of lubricating and special oils, synthetic detergents and special white oils for cosmetic and medical purposes. Seventy years ago – period, when this historical acid sludge burden has been created – comparing to the environmental awareness the production was in preference. That is the reason why, as in many countries, also in Slovakia a historical environmental burden is present until now – 229 211 m3 of oil sludge in the middle of the National Park of Nízke Tatry mountain chain. Neither one of tried treatment methods – bio or non-biologic one - was proved as suitable for processing or for recovery in the reason of different factors admission: i.e. strong aggressivity, difficulty with handling because of its sludgy and liquid state et sim. As a potential solution, also incineration was tested, but it was not proven as a suitable method, as the concentration of SO2 in combustion gases was too high, and it was not possible to decrease it under the acceptable value of 2000 mg.mn-3. That is the reason why the operation of incineration plant has been terminated, and the acid sludge landfills are present until nowadays. The objective of this paper is to present a new possibility of processing and valorization of acid sludgy-waste. The processing of oil sludge was performed through the effective separation - thermal desorption technology, through which it is possible to split the sludgy material into the matrix (soil, sediments) and organic contaminants. In order to boost the efficiency in the processing of acid sludge through thermal desorption, the work will present the possibility of application of an original technology – Method of Blowing Decomposition for recovering of organic matter into technological lubricating oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazardous%20waste" title="hazardous waste">hazardous waste</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20sludge" title=" oil sludge"> oil sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption" title=" thermal desorption"> thermal desorption</a> </p> <a href="https://publications.waset.org/abstracts/72085/waste-derived-from-refinery-and-petrochemical-plants-activities-processing-of-oil-sludge-through-thermal-desorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> Removal Efficiency of Some Heavy Metals from Aqueous Solution on Magnetic Nanoparticles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gehan%20El-Sayed%20Sharaf%20El-Deen">Gehan El-Sayed Sharaf El-Deen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, super paramagnetic iron-oxide nano- materials (SPMIN) were investigated for removal of toxic heavy metals from aqueous solution. The magnetic nanoparticles of 12 nm were synthesized using a co-precipitation method and characterized by transmission electron microscopy (TEM), transform infrared spectroscopy (FTIR), x-ray diffraction (XRD) and vibrating sample magnetometer (VSM). Batch experiments carried out to investigate the influence of different parameters such as contact time, initial concentration of metal ions, the dosage of SPMIN, desorption,pH value of solutions. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb these three metals from wastewater. Maximum sorption for all the studies cations obtained at the first half hour and reached equilibrium at one hour. The adsorption data of heavy metals studied were well fitted with the Langmuir isotherm and the equilibrium data show the percent removal of Ni2+, Zn2+ and Cd2+ were 96.5%, 80% and 75%, respectively. Desorption studies in acidic medium indicate that Zn2+, Ni2+ and Cd2+ were removed by 89%, 2% and 18% from the first cycle. Regeneration studies indicated that SPMIN nanoparticles undergoing successive adsorption–desorption processes for Zn2+ ions retained original metal removal capacity. The results revealed that the most prominent advantage of the prepared SPMIN adsorbent consisted in their separation convenience compared to the other adsorbents and SPMIN has high efficiency for removal the investigated metals from aqueous solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency"> removal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Batch%20technique" title=" Batch technique "> Batch technique </a> </p> <a href="https://publications.waset.org/abstracts/38658/removal-efficiency-of-some-heavy-metals-from-aqueous-solution-on-magnetic-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> Improvement in Ni (II) Adsorption Capacity by Using Fe-Nano Zeolite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pham-Thi%20Huong">Pham-Thi Huong</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong-Kyu%20Lee"> Byeong-Kyu Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitae%20Kim"> Jitae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Hyeon%20Lee"> Chi-Hyeon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe-nano zeolite adsorbent was used for removal of Ni (II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the surface area Brunauer–Emmett–Teller (BET) using for analysis of functional groups, morphology and surface area. Bath adsorption experiments were analyzed on the effect of pH, time, adsorbent doses and initial Ni (II) concentration. The optimum pH for Ni (II) removal using Fe-nano zeolite was found at 5.0 and 90 min of reaction time. The maximum adsorption capacity of Ni (II) was 231.68 mg/g based on the Langmuir isotherm. The kinetics data for the adsorption process was fitted with the pseudo-second-order model. The desorption of Ni (II) from Ni-loaded Fe-nano zeolite was analyzed and even after 10 cycles 72 % desorption was achieved. These finding supported that Fe-nano zeolite with high adsorption capacity, high reuse ability would be utilized for Ni (II) removal from water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe-nano%20zeolite" title="Fe-nano zeolite">Fe-nano zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20%28II%29%20removal" title=" Ni (II) removal"> Ni (II) removal</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a> </p> <a href="https://publications.waset.org/abstracts/44506/improvement-in-ni-ii-adsorption-capacity-by-using-fe-nano-zeolite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Body Fluids Identification by Raman Spectroscopy and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huixia%20Shi">Huixia Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Can%20Hu"> Can Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zhu"> Jun Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongling%20Guo"> Hongling Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiyan%20Li"> Haiyan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyan%20Du"> Hongyan Du</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The identification of human body fluids during forensic investigations is a critical step to determine key details, and present strong evidence to testify criminal in a case. With the popularity of DNA and improved detection technology, the potential question must be revolved that whether the suspect’s DNA derived from saliva or semen, menstrual or peripheral blood, how to identify the red substance or aged blood traces on the spot is blood; How to determine who contribute the right one in mixed stains. In recent years, molecular approaches have been developing increasingly on mRNA, miRNA, DNA methylation and microbial markers, but appear expensive, time-consuming, and destructive disadvantages. Physicochemical methods are utilized frequently such us scanning electron microscopy/energy spectroscopy and X-ray fluorescence and so on, but results only showing one or two characteristics of body fluid itself and that out of working in unknown or mixed body fluid stains. This paper focuses on using chemistry methods Raman spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to discriminate species of peripheral blood, menstrual blood, semen, saliva, vaginal secretions, urine or sweat. Firstly, non-destructive, confirmatory, convenient and fast Raman spectroscopy method combined with more accurate matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method can totally distinguish one from other body fluids. Secondly, 11 spectral signatures and specific metabolic molecules have been obtained by analysis results after 70 samples detected. Thirdly, Raman results showed peripheral and menstrual blood, saliva and vaginal have highly similar spectroscopic features. Advanced statistical analysis of the multiple Raman spectra must be requested to classify one to another. On the other hand, it seems that the lactic acid can differentiate peripheral and menstrual blood detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, but that is not a specific metabolic molecule, more sensitivity ones will be analyzed in a forward study. These results demonstrate the great potential of the developed chemistry methods for forensic applications, although more work is needed for method validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20fluids" title="body fluids">body fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix-assisted%20laser%20desorption%2Fionization%20time-of-flight%20mass%20spectrometry" title=" matrix-assisted laser desorption/ionization time-of-flight mass spectrometry"> matrix-assisted laser desorption/ionization time-of-flight mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/103873/body-fluids-identification-by-raman-spectroscopy-and-matrix-assisted-laser-desorptionionization-time-of-flight-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20D.%20Hamza">Usman D. Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20S.%20Nasri"> Noor S. Nasri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Jibril"> Mohammed Jibril</a>, <a href="https://publications.waset.org/abstracts/search?q=Husna%20M.%20Zain"> Husna M. Zain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20shell-PEEK" title=" palm shell-PEEK"> palm shell-PEEK</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a> </p> <a href="https://publications.waset.org/abstracts/25253/thermal-regeneration-of-co2-spent-palm-shell-polyetheretherketone-activated-carbon-sorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Rostom">Samira Rostom</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Symonds"> Robert Symonds</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20W.%20Hughes"> Robin W. Hughes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOF" title="MOF">MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=H2%20purification" title=" H2 purification"> H2 purification</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20T" title=" high T"> high T</a>, <a href="https://publications.waset.org/abstracts/search?q=PSA" title=" PSA"> PSA</a> </p> <a href="https://publications.waset.org/abstracts/160618/high-temperature-and-high-pressure-purification-of-hydrogen-from-syngas-using-metal-organic-framework-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> The Performance of PtSn/Al₂O₃ with Cylindrical Particles for Acetic Acid Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingchuan%20Zhou">Mingchuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alumina supported PtSn catalysts with cylindrical particles were prepared and characterized by using low temperature N2 adsorption/desorption and X-ray diffraction. Low temperature N2 adsorption/desorption demonstrate that the tableting changed the texture properties of catalysts. XRD pattern indicate that the crystal structure of supports had no change after reaction. The performances over particles of PtSn/Al2O3 catalysts were investigated with regards to reaction temperature, pressure, and H2/AcOH mole ratio. After tableting, the conversion of acetic acid and selectivity of ethanol and acetyl acetate decreased. High reaction temperature and pressure can improve conversion of acetic acid. H2/AcOH mole ratio of 9.36 showed the best performance on acetic acid hydrogenation. High pressure had benefits for the selectivity of ethanol and other two parameters had no obvious effect on selectivity. &nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20hydrogenation" title="acetic acid hydrogenation">acetic acid hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20particles" title=" cylindrical particles"> cylindrical particles</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=PtSn" title=" PtSn"> PtSn</a> </p> <a href="https://publications.waset.org/abstracts/49368/the-performance-of-ptsnal2o3-with-cylindrical-particles-for-acetic-acid-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Arink">Thomas Arink</a>, <a href="https://publications.waset.org/abstracts/search?q=Isam%20Janajreh"> Isam Janajreh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title="computational fluid dynamics (CFD)">computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20tube%20reactor" title=" drop tube reactor"> drop tube reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=Gibbs%20energy%20minimization" title=" Gibbs energy minimization"> Gibbs energy minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20waste" title=" petroleum waste"> petroleum waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20tires" title=" waste tires "> waste tires </a> </p> <a href="https://publications.waset.org/abstracts/19088/co-gasification-of-petroleum-waste-and-waste-tires-a-numerical-and-cfd-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Malaysian&#039;s Shale Formation Characterizations: Geochemical Properties, Mineralogy, Adsorption and Desorption Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Al-Mutarreb">Ahmed M. Al-Mutarreb</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiferaw%20R.%20Jufar"> Shiferaw R. Jufar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global shale gas resource assessment is still in its preliminary stage in most of the countries including the development of shale gas reservoirs in Malaysia. This project presents the main geochemical and mineral characteristics of few Malaysian’s shale samples which contribute on evaluating shale gas reserve world resource evaluations. Three shale samples from the western part of Peninsular Malaysia (Batu-Caja, Kuala Lumpur, and Johor Baru shale formations) were collected for this study. Total organic carbon wt.%, thermal maturity, kerogen type, mineralogy and adsorption/desorption characteristics are measured at Universiti Teknologi PETRONAS laboratories. Two samples show good potential in TOC results exhibited > 2wt.% exceeding the minimum values of Shale gas potential, while the third revealed < 1.5wt. Mineralogical compositions for the three samples are within the acceptable range percentage% of quartz and clays compared to shale plays in USA. This research’s results are promising and recommend to continue exploring and assessing unconventional shale gas reserves values in these areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shale%20gas%20characterizations" title="shale gas characterizations">shale gas characterizations</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical%20properties" title=" geochemical properties"> geochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20gas%20reserve" title=" shale gas reserve"> shale gas reserve</a> </p> <a href="https://publications.waset.org/abstracts/74861/malaysians-shale-formation-characterizations-geochemical-properties-mineralogy-adsorption-and-desorption-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Treatment of a Galvanization Wastewater in a Fixed-Bed Column Using L. hyperborean and P. canaliculata Macroalgae as Natural Cation Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20A.%20Pozdniakova">Tatiana A. Pozdniakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20A.%20P.%20Cechinel"> Maria A. P. Cechinel</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciana%20P.%20Mazur"> Luciana P. Mazur</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20A.%20R.%20Boaventura"> Rui A. R. Boaventura</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitor%20J.%20P.%20Vilar."> Vitor J. P. Vilar.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two brown macroalgae, Laminaria hyperborea and Pelvetia canaliculata, were employed as natural cation exchangers in a fixed-bed column for Zn(II) removal from a galvanization wastewater. The column (4.8 cm internal diameter) was packed with 30-59 g of previously hydrated algae up to a bed height of 17-27 cm. The wastewater or eluent was percolated using a peristaltic pump at a flow rate of 10 mL/min. The effluent used in each experiment presented similar characteristics: pH of 6.7, 55 mg/L of chemical oxygen demand and about 300, 44, 186 and 244 mg/L of sodium, calcium, chloride and sulphate ions, respectively. The main difference was nitrate concentration: 20 mg/L for the effluent used with L. hyperborean and 341 mg/L for the effluent used with P. canaliculata. The inlet zinc concentration also differed slightly: 11.2 mg/L for L. hyperborean and 8.9 mg/L for P. canaliculata experiments. The breakthrough time was approximately 22.5 hours for both macroalgae, corresponding to a service capacity of 43 bed volumes. This indicates that 30 g of biomass is able to treat 13.5 L of the galvanization wastewater. The uptake capacities at the saturation point were similar to that obtained in batch studies (unpublished data) for both algae. After column exhaustion, desorption with 0.1 M HNO3 was performed. Desorption using 9 and 8 bed volumes of eluent achieved an efficiency of 100 and 91%, respectively for L. hyperborean and P. canaliculata. After elution with nitric acid, the column was regenerated using different strategies: i) convert all the binding sites in the sodium form, by passing a solution of 0.5 M NaCl, until achieve a final pH of 6.0; ii) passing only tap water in order to increase the solution pH inside the column until pH 3.0, and in this case the second sorption cycle was performed using protonated algae. In the first approach, in order to remove the excess of salt inside the column, distilled water was passed through the column, leading to the algae structure destruction and the column collapsed. Using the second approach, the algae remained intact during three consecutive sorption/desorption cycles without loss of performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosorption" title="biosorption">biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanization%20wastewater" title=" galvanization wastewater"> galvanization wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=packed-bed%20column" title=" packed-bed column"> packed-bed column</a> </p> <a href="https://publications.waset.org/abstracts/21822/treatment-of-a-galvanization-wastewater-in-a-fixed-bed-column-using-l-hyperborean-and-p-canaliculata-macroalgae-as-natural-cation-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Comparative Analysis of Benzene, Toluene, Ethylbenzene, and Xylene Concentrations at Roadside and Urban Background Sites in Leicester and Lagos Using Thermal Desorption-Gas Chromatography-Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Bernard">Emmanuel Bernard</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20L.%20Cordell"> Rebecca L. Cordell</a>, <a href="https://publications.waset.org/abstracts/search?q=Akeem%20A.%20Abayomi"> Akeem A. Abayomi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rose%20Alani"> Rose Alani</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20S.%20Monks"> Paul S. Monks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the prevalence and extent of BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) contamination in Leicester, United Kingdom, and Lagos, Nigeria, through field measurements at roadside (RS) and urban background (UB) sites. Using thermal desorption gas chromatography mass spectrometry (TD-GC-MS), BTEX concentrations were quantified. In Leicester, the average RS concentration was 24.9 ± 8.9 μg/m³, and the UB concentration was 12.7 ± 5.7 μg/m³. In Lagos, the RS concentration was significantly higher at 106 ± 39.3 μg/m³, and the UB concentration was 20.1 ± 8.9 μg/m³. The RS concentration in Lagos was approximately 4.3 times higher than in Leicester, while the UB concentration was about 1.6 times higher. These disparities are attributed to differences in road infrastructure, traffic regulation compliance, fuel and oil quality, and local activities. In Leicester, the highest UB concentration (20.5 ± 1.7 μg/m³) was at Knighton Village, near the heavily polluted RS Wigston roundabout. In Lagos, the highest concentration (172.1 ± 12.2 μg/m³) was at Ojuelegba, a major transportation hub. Correlation analysis revealed strong positive relationships between the concentrations of BTEX compounds in both cities, suggesting common sources such as vehicular emissions and industrial activities. The ratios of toluene to benzene (T:B) and m/p xylene to ethylbenzene (m/p X:E) were analysed to infer source contributions and the photochemical age of air masses. The T:B ratio in Leicester ranged from 0.44 to 0.71, while in Lagos, it ranged from 1.36 to 2.17. The m/p X:E ratio in Leicester ranged from 2.11 to 2.19, like other UK cities, while in Lagos, it ranged from 1.65 to 2.32, indicating relatively fresh emissions. This study highlights significant differences in BTEX concentrations between Leicester and Lagos, emphasizing the need for tailored pollution control strategies to address the specific sources and conditions in different urban environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BTEX%20contamination" title="BTEX contamination">BTEX contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20air%20quality" title=" urban air quality"> urban air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption%20GC-MS" title=" thermal desorption GC-MS"> thermal desorption GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=roadside%20emissions" title=" roadside emissions"> roadside emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20background%20sites" title=" urban background sites"> urban background sites</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20emissions" title=" vehicular emissions"> vehicular emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20control%20strategies" title=" pollution control strategies"> pollution control strategies</a> </p> <a href="https://publications.waset.org/abstracts/186333/comparative-analysis-of-benzene-toluene-ethylbenzene-and-xylene-concentrations-at-roadside-and-urban-background-sites-in-leicester-and-lagos-using-thermal-desorption-gas-chromatography-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Rapid Identification of Thermophilic Campylobacter Species from Retail Poultry Meat Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Graziella%20Ziino">Graziella Ziino</a>, <a href="https://publications.waset.org/abstracts/search?q=Filippo%20Giarratana"> Filippo Giarratana</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefania%20Maria%20Marotta"> Stefania Maria Marotta</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Giuffrida"> Alessandro Giuffrida</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Panebianco"> Antonio Panebianco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Europe, North America and Japan, campylobacteriosis is one of the leading food-borne bacterial illnesses, often related to the consumption of poultry meats and/or by-products. The aim of this study was the evaluation of Campylobacter contamination of poultry meats marketed in Sicily (Italy) using both traditional methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). MALDI-TOF MS is considered a promising rapid (less than 1 hour) identification method for food borne pathogens bacteria. One hundred chicken and turkey meat preparations (no. 68 hamburgers, no. 21 raw sausages, no. 4 meatballs and no. 7 meat rolls) were taken from different butcher’s shops and large scale retailers and submitted to detection/enumeration of Campylobacter spp. according to EN ISO 10272-1:2006 and EN ISO 10272-2:2006. Campylobacter spp. was detected with general low counts in 44 samples (44%), of which 30 from large scale retailers and 14 from butcher’s shops. Chicken meats were significantly more contaminated than turkey meats. Among the preparations, Campylobacter spp. was found in 85.71% of meat rolls, 50% of meatballs, 44.12% of hamburgers and 28.57% of raw sausages. A total of 100 strains, 2-3 from each positive samples, were isolated for the identification by phenotypic, biomolecular and MALDI-TOF MS methods. C. jejuni was the predominant strains (63%), followed by C. coli (33%) and C. lari (4%). MALDI-TOF MS correctly identified 98% of the strains at the species level, only 1% of the tested strains were not identified. In the last 1%, a mixture of two different species was mixed in the same sample and MALDI-TOF MS correctly identified at least one of the strains. Considering the importance of rapid identification of pathogens in the food matrix, this method is highly recommended for the identification of suspected colonies of Campylobacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=campylobacter%20spp." title="campylobacter spp.">campylobacter spp.</a>, <a href="https://publications.waset.org/abstracts/search?q=Food%20Microbiology" title=" Food Microbiology"> Food Microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix-assisted%20laser%20desorption%20ionization-time%20of%20flight%20mass%20spectrometry" title=" matrix-assisted laser desorption ionization-time of flight mass spectrometry"> matrix-assisted laser desorption ionization-time of flight mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20microbial%20identification" title=" rapid microbial identification"> rapid microbial identification</a> </p> <a href="https://publications.waset.org/abstracts/71541/rapid-identification-of-thermophilic-campylobacter-species-from-retail-poultry-meat-using-matrix-assisted-laser-desorption-ionization-time-of-flight-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=desorption&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=desorption&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=desorption&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=desorption&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=desorption&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=desorption&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=desorption&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10