CINXE.COM
Search results for: flowers
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flowers</title> <meta name="description" content="Search results for: flowers"> <meta name="keywords" content="flowers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flowers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flowers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 159</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flowers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> The Patterns Designation by the Inspiration from Flower at Suan Sunandha Palace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nawaporn%20Srisarankullawong">Nawaporn Srisarankullawong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is about the creating the design by the inspiration of the flowers, which were once planted in Suan Sunandha Palace. The researcher have conducted the research regarding the history of Suan Sunandha Palace and the flowers which have been planted in the palace’s garden, in order to use this research to create the new designs in the future. The objective are as follows; 1. To study the shape and the pattern of the flowers in Suan Sunandha Palace, in order to select a few of them as the model to create the new design. 2. In order to create the flower design from the flowers in Suan Sunandha Palace by using the current photograph of the flowers which were once used to be planted inside the palace and using adobe Illustrator and Adobe Photoshop programs to create the patterns and the model. The result of the research: From the research, the researcher had selected three types of flowers to crate the pattern model; they are Allamanda, Orchids and Flamingo Plant. The details of the flowers had been reduced in order to show the simplicity and create the pattern model to use them for models, so three flowers had created three pattern models and they had been developed into six patterns, using universal artist techniques, so the pattern created are modern and they can be used for further decoration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patterns%20design" title="patterns design">patterns design</a>, <a href="https://publications.waset.org/abstracts/search?q=Suan%20Sunandha%20Palace" title=" Suan Sunandha Palace"> Suan Sunandha Palace</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20of%20the%20flowers" title=" pattern of the flowers"> pattern of the flowers</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20arts%20and%20design" title=" visual arts and design"> visual arts and design</a> </p> <a href="https://publications.waset.org/abstracts/17311/the-patterns-designation-by-the-inspiration-from-flower-at-suan-sunandha-palace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> In vitro Culture of Flowers of Maerua crassiflia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abobkar%20Abrahem%20Mohamed%20Saad">Abobkar Abrahem Mohamed Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Abud%20Alsalam"> Asma Abud Alsalam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Closed flowers of Maerua crassifolia were cultured on Murashige and Skoog medium supplemented with benzyl amino purine BA (1.0 mg/l). The colour of flowers changed from green to pale brown after one week. They opened after two weeks. The anthers became clear which was observed after 3 weeks. Calluses are induced from sepals after one month. 19 anthers were observed with average length of 1.9 cm. The amount of calluses increased after 40 days. These calluses were fragmented and subcultured on MS+ 2-4D (1.0 mg/l) in order to increase growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title="in vitro">in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=Maerua" title=" Maerua"> Maerua</a>, <a href="https://publications.waset.org/abstracts/search?q=flowers" title=" flowers"> flowers</a>, <a href="https://publications.waset.org/abstracts/search?q=culture" title=" culture"> culture</a> </p> <a href="https://publications.waset.org/abstracts/4399/in-vitro-culture-of-flowers-of-maerua-crassiflia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> The Impact of Plants on Relaxation of Patients in Hospitals, Case Study: District 6th, Tehran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hashem%20Hashemnejad">Hashem Hashemnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Yazdanfar"> Abbas Yazdanfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahzad%20Mohandes%20Tarighi"> Mahzad Mohandes Tarighi</a>, <a href="https://publications.waset.org/abstracts/search?q=Denial%20Sadighi"> Denial Sadighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the factors that can have a positive influence on the mental health is the presence of trees and flowers. Research shows that even a glance at nature can evoke positive feelings in the person and reduce his tension and stress. According to the historical, cultural, religious, and individual background in each geographical district, the relaxing or spiritual impact of certain kinds of flowers can be evaluated. In this paper, using a questionnaire, the amount of relaxing impact of prevalent trees and flowers of the district on the patients was examined. The results showed that cedar and pomegranate trees and jasmine and rose in flowers, respectively, relax the patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plants" title="plants">plants</a>, <a href="https://publications.waset.org/abstracts/search?q=patients" title=" patients"> patients</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxing" title=" relaxing"> relaxing</a> </p> <a href="https://publications.waset.org/abstracts/5782/the-impact-of-plants-on-relaxation-of-patients-in-hospitals-case-study-district-6th-tehran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> The Design of Decorative Flower Patterns from Suan Sunandha Palace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nawaporn%20Srisarankullawong">Nawaporn Srisarankullawong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study on the design of decorative flower patterns from Suan Sunandha Palace is the innovative design using flowers grown in Suan Sunandha Palace as the original sources. The research instrument included: 1) the photographs of flowers in watercolors painted by one of the lady in waiting of Her Royal Highness Princess Saisawareepirom as the source for investigating flowers used to grow in Suan Sunandha Palace, 2) pictures of real flowers used to grow in Suan Sunandha Palace, 3) Adobe Illustrator Program and Adobe Photoshop Program in designing the motif and decorative patterns including the prototype. The researcher chose 3 types of Suan Sunandha Palace flowers; moss rose, orchid, and lignum vitae. The details of the flowers were cut down to make simple motifs which were developed for elaborative decoration. There were 4 motifs adapted from moss roses, 3 motifs adapted from orchids, and 3 motifs adapted from lignum vitae. The patterns were used to decorate photo frames, wrapping paper, and gift boxes or souvenir boxes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suan%20Sunandha%20Palace" title="Suan Sunandha Palace">Suan Sunandha Palace</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20decorative" title=" design of decorative"> design of decorative</a>, <a href="https://publications.waset.org/abstracts/search?q=flower%20patterns" title=" flower patterns"> flower patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=decorative%20flower" title=" decorative flower"> decorative flower</a> </p> <a href="https://publications.waset.org/abstracts/7778/the-design-of-decorative-flower-patterns-from-suan-sunandha-palace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Utilization of Chrysanthemum Flowers in Textile Dyeing: Chemical and Phenolic Analysis of Dyes and Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ahmad">Muhammad Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, Chrysanthemum (morifolium) flowers are used as a natural dye to reduce synthetic dyes and take a step toward sustainability in the fashion industry. The aqueous extraction method is utilized for natural dye extraction and then applied to silk and cotton fabric samples. The color of the dye extracted from dried chrysanthemum flowers is originally a shade of rich green, but after being washed with detergent, it turns to a shade of yellow. Traditional salt and vinegar are used as a natural mordant to fix the dye color. This study also includes a phenolic and chemical analysis of the natural dye (Chrysanthemum flowers) and the textiles (cotton and silk). Compared to cotton fabric, silk fabric has far superior chemical qualities to use in natural dyeing. The results of this study show that the Chrysanthemum flower offers a variety of colors when treated with detergent, without detergent, and with mordants. Chrysanthemum flowers have long been used in other fields, such as medicine; therefore, it is time to start using them in the fashion industry as a natural dye to lessen the harm that synthetic dyes cause. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title="natural dyes">natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Chrysanthemum%20flower" title=" Chrysanthemum flower"> Chrysanthemum flower</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20fabrics" title=" textile fabrics"> textile fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20and%20phenolic%20analysis" title=" chemical and phenolic analysis"> chemical and phenolic analysis</a> </p> <a href="https://publications.waset.org/abstracts/193318/utilization-of-chrysanthemum-flowers-in-textile-dyeing-chemical-and-phenolic-analysis-of-dyes-and-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Control Effect of Flowering Chrysanthemum, the Trap Plant to the Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) in Greenhouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=YongSeok%20Choi">YongSeok Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=HwaYoung%20Seo"> HwaYoung Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=InSu%20Whang"> InSu Whang</a>, <a href="https://publications.waset.org/abstracts/search?q=GeogKee%20Park"> GeogKee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frankliniella. occidentalis is major pest in chrysanthemum in worldwide. The density of F. occidentalis increased continuously in spite of the periodical chemical control after planting in this study. F. occidentalis began to increase mid-May. The numbers of F. occidentalis collected on a tray with wet paper by heating the flowers of pink, white, and yellow Chrysanthemum standard mums were 18.4, 56.6, and 52.6 in the flowering season. Also, the numbers were 15.2, 45.8, and 41.6 in bud season, but in the case of the leaves, the numbers were 2, 8.8 and 3.4. In the Y-tube olfactometer test, the frequency of F. occidentalis’ visits to one side arm of the Y-tube olfactometer was higher in the odor cue of the white flower than of the yellow, red, and violet flowers, but the frequency was higher in the odor cue of the violet and red flowers than of the yellow without white. In the case of the four-choice olfactometer test, in the same visual cues as the odor cues of the pot mum flowers, the frequency of F. occidentalis was higher in the yellow flower than in the other flowers (white, red, and violet) in all the observation times (10, 15, and 20 minutes). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frankliniella%20occidentalis" title="Frankliniella occidentalis">Frankliniella occidentalis</a>, <a href="https://publications.waset.org/abstracts/search?q=Chrysanthemum" title=" Chrysanthemum"> Chrysanthemum</a>, <a href="https://publications.waset.org/abstracts/search?q=trap%20plant" title=" trap plant"> trap plant</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20effect" title=" control effect"> control effect</a> </p> <a href="https://publications.waset.org/abstracts/85755/control-effect-of-flowering-chrysanthemum-the-trap-plant-to-the-western-flower-thrips-frankliniella-occidentalis-thysanoptera-thripidae-in-greenhouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Analysis of the Volatile Organic Compounds of Tillandsia Flowers by HS-SPME/GC-MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Gonzalez">Alexandre Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohra%20Benfodda"> Zohra Benfodda</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20B%C3%A9nim%C3%A9lis"> David Bénimélis</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Xavier%20Fontaine"> Jean-Xavier Fontaine</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Molini%C3%A9"> Roland Molinié</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Meffre"> Patrick Meffre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile organic compounds (VOCs) emitted by flowers play an important role in plant ecology. However, the Tillandsia genus has been scarcely studied according to the VOCs emitted by flowers. Tillandsia are epiphytic flowering plants belonging to the Bromeliaceae family. The VOCs composition of twelve unscented and two faint-scented Tillandsia species was studied. The headspace solid phase microextraction coupled with gas chromatography combined with mass spectrometry method was used to explore the chemical diversity of the VOCs. This study allowed the identification of 65 VOCs among the fourteen species, and between six to twenty-five compounds were identified in each of the species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tillandsia" title="tillandsia">tillandsia</a>, <a href="https://publications.waset.org/abstracts/search?q=headspace%20solid%20phase%20microextraction%20%28HS-SPME%29" title=" headspace solid phase microextraction (HS-SPME)"> headspace solid phase microextraction (HS-SPME)</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography-mass%20spectrometry%20%28GC-MS%29" title=" gas chromatography-mass spectrometry (GC-MS)"> gas chromatography-mass spectrometry (GC-MS)</a>, <a href="https://publications.waset.org/abstracts/search?q=scentless%20flowers" title=" scentless flowers"> scentless flowers</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds%20%28VOCs%29" title=" volatile organic compounds (VOCs)"> volatile organic compounds (VOCs)</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA%20analysis" title=" PCA analysis"> PCA analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heatmap" title=" heatmap"> heatmap</a> </p> <a href="https://publications.waset.org/abstracts/152016/analysis-of-the-volatile-organic-compounds-of-tillandsia-flowers-by-hs-spmegc-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Extraction and Analysis of Anthocyanins Contents from Different Stage Flowers of the Orchids Dendrobium Hybrid cv. Ear-Sakul</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orose%20Rugchati">Orose Rugchati</a>, <a href="https://publications.waset.org/abstracts/search?q=Khumthong%20Mahawongwiriya"> Khumthong Mahawongwiriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dendrobium hybrid cv. Ear-Sakul has become one of the important commercial commodities in Thailand agricultural industry worldwide, either as potted plants or as cut flowers due to the attractive color produced in flower petals. Anthocyanins are the main flower pigments and responsible for the natural attractive display of petal colors. These pigments play an important role in functionality, such as to attract animal pollinators, classification, and grading of these orchids. Dendrobium hybrid cv. Ear-Sakul has been collected from local area farm in different stage flowers (F1, F2-F5, and F6). Anthocyanins pigment were extracted from the fresh flower by solvent extraction (MeOH–TFA 99.5:0.5v/v at 4ºC) and purification with ethyl acetate. The main anthocyanins components are cyanidin, pelargonidin, and delphinidin. Pure anthocyanin contents were analysis by UV-Visible spectroscopy technique at λ max 535, 520 and 546 nm respectively. The anthocyanins contents were converted in term of monomeric anthocyanins pigment (mg/L). The anthocyanins contents of all sample were compared with standard pigments cyanidin, pelargonidin and delphinidin. From this experiment is a simple extraction and analysis anthocyanins content in different stage of flowers results shown that monomeric anthocyanins pigment contents of different stage flowers (F1, F2-F5 and F6 ): cyanidin – 3 – glucoside (mg/l) are 0.85+0.08, 24.22+0.12 and 62.12+0.6; Pelargonidin 3,5-di- glucoside(mg/l) 10.37+0.12, 31.06+0.8 and 81.58+ 0.5; Delphinidin (mg/l) 6.34+0.17, 18.98+0.56 and 49.87+0.7; and the appearance of extraction pure anthocyanins in L(a, b): 2.71(1.38, -0.48), 1.06(0.39,-0.66) and 2.64(2.71,-3.61) respectively. Dendrobium Hybrid cv. Ear-Sakul could be used as a source of anthocyanins by simple solvent extraction and stage of flowers as a guideline for the prediction amount of main anthocyanins components are cyanidin, pelargonidin, and delphinidin could be application and development in quantities, and qualities with the advantage for food pharmaceutical and cosmetic industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analysis" title="analysis">analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=anthocyanins%20contents" title=" anthocyanins contents"> anthocyanins contents</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20stage%20flowers" title=" different stage flowers"> different stage flowers</a>, <a href="https://publications.waset.org/abstracts/search?q=Dendrobium%20Hybrid%20cv.%20Ear-Sakul" title=" Dendrobium Hybrid cv. Ear-Sakul"> Dendrobium Hybrid cv. Ear-Sakul</a> </p> <a href="https://publications.waset.org/abstracts/52719/extraction-and-analysis-of-anthocyanins-contents-from-different-stage-flowers-of-the-orchids-dendrobium-hybrid-cv-ear-sakul" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> The Effect of Artificial Intelligence on Decoration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Fayz%20Bekhet%20Abaskron">Ashraf Fayz Bekhet Abaskron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is done to create new compositions for designs, finding inspiration from watercolor artworks displayed in SuanSunandha Palace. The researcher made a study in the history of the landmark, its importance, the paintings in the Palace, the types and characteristics of the flowers painted, as well as the artistic elements and principles of designs that went into the paintings. The information obtained led to the creation of six totally new designs. The designs incorporated standard international designs and artistic principles and still kept to the original style of the watercolor paintings in SuanSunandha Palace. Following the paintings, the designs are divided into three categories: Orchids, Roses, and Flowers from literature. The researcher used the components of the flowers including rounded-petal flowers, wavy-edged petals, flowers with pointed petals, leaves, vines, and branches. All of them are represented in the original paintings. Upon the original, the researcher switched these elements and their proportions around to create a more modern design. The original forms are used as references since they contain the characteristics of each flower species. The work created achieved an updated trait and simultaneously reflects the charms and timeless beauty of the watercolor paintings displayed in SuanSunandha Palace, which still exists in today’s world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=art" title="art">art</a>, <a href="https://publications.waset.org/abstracts/search?q=craft" title=" craft"> craft</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=Oman" title=" Oman"> Oman</a>, <a href="https://publications.waset.org/abstracts/search?q=weaving%20watercolor" title=" weaving watercolor"> weaving watercolor</a>, <a href="https://publications.waset.org/abstracts/search?q=painting" title=" painting"> painting</a>, <a href="https://publications.waset.org/abstracts/search?q=flower" title=" flower"> flower</a>, <a href="https://publications.waset.org/abstracts/search?q=Suan%20Sunandhagolden%20ratio" title=" Suan Sunandhagolden ratio"> Suan Sunandhagolden ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Fibonacci%20numbers" title=" Fibonacci numbers"> Fibonacci numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20design" title=" textile design"> textile design</a>, <a href="https://publications.waset.org/abstracts/search?q=designs" title=" designs"> designs</a> </p> <a href="https://publications.waset.org/abstracts/188567/the-effect-of-artificial-intelligence-on-decoration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Seasonal Variation in Free Radical Scavenging Properties of Indian Moringa (Moringa Oleifera)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awadhesh%20Kishore">Awadhesh Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=Tushar%20Sharma"> Tushar Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study was to compare the free radical-scavenging (FRS) characteristics of four Indian moringa (Moringa oleifera) plant components: flowers, tender and mature leaves, and seeds that were collected from three Indian districts: Jaipur, Dehra Dun, and Gwalior; in every month of 2021–2022. The samples were collected from three randomly selected agroforest locations from each district. The samples were extracted, and antioxidant properties were determined following the DPPH method with minor modifications. The FRS properties were calculated as the non-absorbance values of the sample in percentage. The factorial ANOVA statistical analysis technique was implemented for comparing FRS properties, and an MS Office Excel 2016 analysis pack was used to compare data. The flowers from Dehra Dun had superior FRS properties (27.06±1.03%), while the seeds from the same location were inferior (8.64±0.17%). The FRS properties of flowers (26.27±0.61%) were not statistically different (P > 0.05) compared to those of tender (27.30±0.63%) and mature leaves (28.37±0.59%), but significantly higher (P < 0.05) than those of seeds (9.31±0.16%). However, the FRS properties in Indian moringa were significantly higher during the winter (Jan 28.67±1.48%) compared to that in the summer (Jun 14.03±0.79%) season, but collected from three locations, viz. Gwalior (22.35±0.70%), Jaipur (23.06±0.73%), and Dehra Dun (23.10±0.76%), were not significantly different (P > 0.05). Based on this study, it can be concluded that the FRS value of flowers during the winter season is superior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flowers" title="flowers">flowers</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20radical-scavenging" title=" free radical-scavenging"> free radical-scavenging</a>, <a href="https://publications.waset.org/abstracts/search?q=leaves" title=" leaves"> leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=moringa%20oleifera" title=" moringa oleifera"> moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=seeds" title=" seeds"> seeds</a> </p> <a href="https://publications.waset.org/abstracts/182035/seasonal-variation-in-free-radical-scavenging-properties-of-indian-moringa-moringa-oleifera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Detecting Tomato Flowers in Greenhouses Using Computer Vision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dor%20Oppenheim">Dor Oppenheim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yael%20Edan"> Yael Edan</a>, <a href="https://publications.waset.org/abstracts/search?q=Guy%20Shani"> Guy Shani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20engineering" title="agricultural engineering">agricultural engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=flower%20detection" title=" flower detection"> flower detection</a> </p> <a href="https://publications.waset.org/abstracts/57279/detecting-tomato-flowers-in-greenhouses-using-computer-vision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Ethylene Sensitivity in Orchids and Its Control Using 1-MCP: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parviz%20Almasi">Parviz Almasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethylene is produced as a gaseous growth regulator in all plants and their constructive parts such as roots, stems, leaves, flowers and fruits. It is considered a multifunctional phytohormone that regulates both growths including flowering, fruit ripening, inhibition of root growth, and senescence such as senescence of leaves and flowers and etc. In addition, exposure to external ethylene is caused some changes that are often undesirable and harmful. Some flowers are more sensitive to others and when exposed to ethylene; their aging process is hastened. 1-MCP is an exogenous and endogenous ethylene action inhibitor, which binds to the ethylene receptors in the plants and prevents ethylene-dependent reactions. The binding affinity of 1- MCP for the receptors is about 10 times more than ethylene. Hence, 1-MCP can be a potential candidate for controlling of ethylene injury in horticultural crops. This review integrates knowledge of ethylene biosynthesis in the plants and also a mode of action of 1-MCP in preventing of ethylene injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethylene%20injury" title="ethylene injury">ethylene injury</a>, <a href="https://publications.waset.org/abstracts/search?q=biosynthesis" title=" biosynthesis"> biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20sensitivity" title=" ethylene sensitivity"> ethylene sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=1-MCP" title=" 1-MCP"> 1-MCP</a> </p> <a href="https://publications.waset.org/abstracts/151840/ethylene-sensitivity-in-orchids-and-its-control-using-1-mcp-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Creating New Designs from Watercolor Paintings in Suan Sunandha Palace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taechit%20Cheuypoung">Taechit Cheuypoung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is done to create new compositions for designs finding inspirations from watercolor artworks displayed in SuanSunandha Palace. The researcher made a study in the history of the landmark, its importance, the paintings in the Palace, the types and characteristics of the flower painted, as well as the artistic elements and principles of designs that went into the paintings. The information obtained led to the creation of six totally new designs. The designs incorporated standard international designs and artistic principles, and still kept to the original style of the watercolor paintings in SuanSunandha Palace. Following the paintings, the designs are divided into three categories: Orchids, Roses and Flowers from Literatures. The researcher used the components of the flowers including: rounded-petal flowers, wavy-edged petals, flowers with pointed petals, leaves, vines, and branches. All of them represented in the original paintings. Upon the original, the researcher switched these elements and its proportion around to create a more modern designs. The original forms are used as references since they contain the characteristics of each flower species. The work created achieved an updated trait and simultaneously, reflects the charms and timeless beauty of the watercolor paintings displayed in SuanSunandha Palace, which still exists in today’s world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=watercolor" title="watercolor">watercolor</a>, <a href="https://publications.waset.org/abstracts/search?q=painting" title=" painting"> painting</a>, <a href="https://publications.waset.org/abstracts/search?q=flower" title=" flower"> flower</a>, <a href="https://publications.waset.org/abstracts/search?q=Suan%20Sunandha" title=" Suan Sunandha"> Suan Sunandha</a> </p> <a href="https://publications.waset.org/abstracts/17379/creating-new-designs-from-watercolor-paintings-in-suan-sunandha-palace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Evaluation of Antioxidant Activity as a Function of the Genetic Diversity of Canna indica Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Rattanapittayapron">A. Rattanapittayapron</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Vanijajiva"> O. Vanijajiva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Canna indica</em> is a prominent species complex in tropical and subtropical areas. They become indigenous in Southeast Asia where they have been introduced. At present,<em> C. indica</em> complex comprises over hundred hybrids, are cultivated as commercial horticulture. The species complex contains starchy rhizome having economic value in terms of food and herbal medicine. In addition, bright color of the flowers makes it a valuable ornamental plant and potential source for natural colorant. This study aims to assess genetic diversity of four varieties of <em>C. indica</em> complex based on SRAP (sequence-related amplified polymorphism) and iPBS (inter primer binding site) markers. We also examined phytochemical characteristics and antioxidant properties of the flower extracts from four different color varieties. Results showed that despite of the genetic variation, there were no significant differences in phytochemical characteristics and antioxidant properties of flowers. The SRAP and iPBS results agree with the more primitive traits showed by morphological information and phytochemical and antioxidant characteristics from the flowers. Since <em>Canna</em> flowers has long been used as natural colorants together with the antioxidant activities from the ethanol extracts in this study, there are likely to be good source for cosmetics additives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Canna%20indica" title="Canna indica">Canna indica</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=SRAP" title=" SRAP"> SRAP</a>, <a href="https://publications.waset.org/abstracts/search?q=iPBS" title=" iPBS"> iPBS</a> </p> <a href="https://publications.waset.org/abstracts/44454/evaluation-of-antioxidant-activity-as-a-function-of-the-genetic-diversity-of-canna-indica-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Extraction of Natural Colorant from the Flowers of Flame of Forest Using Ultrasound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunny%20Arora">Sunny Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=Meghal%20A.%20Desai"> Meghal A. Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An impetus towards green consumerism and implementation of sustainable techniques, consumption of natural products and utilization of environment friendly techniques have gained accelerated acceptance. Butein, a natural colorant, has many medicinal properties apart from its use in dyeing industries. Extraction of butein from the flowers of flame of forest was carried out using ultrasonication bath. Solid loading (2-6 g), extraction time (30-50 min), volume of solvent (30-50 mL) and types of solvent (methanol, ethanol and water) have been studied to maximize the yield of butein using the Taguchi method. The highest yield of butein 4.67% (w/w) was obtained using 4 g of plant material, 40 min of extraction time and 30 mL volume of methanol as a solvent. The present method provided a greater reduction in extraction time compared to the conventional method of extraction. Hence, the outcome of the present investigation could further be utilized to develop the method at a higher scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butein" title="butein">butein</a>, <a href="https://publications.waset.org/abstracts/search?q=flowers%20of%20Flame%20of%20the%20Forest" title=" flowers of Flame of the Forest"> flowers of Flame of the Forest</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20bath" title=" ultrasonic bath"> ultrasonic bath</a> </p> <a href="https://publications.waset.org/abstracts/79692/extraction-of-natural-colorant-from-the-flowers-of-flame-of-forest-using-ultrasound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> The Study on Tourist’s Satisfaction in Xinshe Flowers Festival</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yashan%20Liu">Yashan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chen%20Chien"> Yu-Chen Chien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past few years, a global trend to hold sightseeing festivals has prevailed. For the purpose of attracting more tourists, the Taiwan government has not only organized a considerable number of international activities, but also provided guidance to counties and cities in organizing festivals which reflect a collaboration of culture and humanity. These festivals have also assisted in the development of local industry and the promotion of their unique characteristics. The purpose of this research is to analyze the influences and relationships between tourist satisfaction and the revisiting willingness of visitors at the Xin-she Flower Festival. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flowers%20Festival%20in%20Xin-she" title="Flowers Festival in Xin-she">Flowers Festival in Xin-she</a>, <a href="https://publications.waset.org/abstracts/search?q=Tourist%20Satisfaction" title=" Tourist Satisfaction"> Tourist Satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Festival" title=" Festival"> Festival</a>, <a href="https://publications.waset.org/abstracts/search?q=Revisiting%20Willingness" title=" Revisiting Willingness"> Revisiting Willingness</a> </p> <a href="https://publications.waset.org/abstracts/40888/the-study-on-tourists-satisfaction-in-xinshe-flowers-festival" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Chemical Analysis and Cytotoxic Evaluation of Asphodelus Aestivus Brot. Flowers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mai%20M.%20Farid">Mai M. Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20El-Shabrawy"> Mona El-Shabrawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameh%20R.%20Hussein"> Sameh R. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elkhateeb"> Ahmed Elkhateeb</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Said%20S.%20Abdel-Hameed"> El-Said S. Abdel-Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20M.%20Marzouk"> Mona M. Marzouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asphodelus aestivus Brot. Is a wild plant distributed in Egypt and is considered one of the five Asphodelus spp. from the family Asphodelaceae; it grows in dry grasslands and on rocky or sandy soil. The chemical components of A. aestivus flowers extract were analyzed using different chromatographic and spectral techniques and led to the isolation of two anthraquinones identified as emodin and emodin-O-glucoside. In addition to, five flavonoid compounds;kaempferol,Kaempferol-3-O-glucoside,Apigenin-6-C-glucoside-7-O-glucoside (Saponarine), luteolin 7-O-β-glucopyranoside, Isoorientin-O-malic acid which is a new compound in nature. The LC-ESI-MS/MS analysis of the flower extract of A. aestivus led to the identification of twenty- two compounds characterized by the presence of flavones, flavonols, and flavone C-glycosides. While GC/MS analysis led to the identification of 24 compounds comprising 98.32% of the oil, the major components of the oil were 9, 12, 15-Octadecatrieoic acid methyl ester 28.72%, and 9, 12-Octadecadieroic acid (Z, Z)-methyl ester 19.96%. In vitro cytotoxic activity of the aqueous methanol extract of A. aestivus flowers against HEPG2, HCT-116, MCF-7, and A549 culture was examined and showed moderate inhibition (62.3±1.1)% on HEPG2 cell line followed by (36.8±0.2)% inhibition on HCT-116 and a weak inhibition (5.7± 0.0.2) on MCF-7 cell line followed by (4.5± 0.4) % inhibition on A549 cell line and this is considered the first cytotoxic report of A. aestivus flowers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthraquinones" title="Anthraquinones">Anthraquinones</a>, <a href="https://publications.waset.org/abstracts/search?q=Asphodelus%20aestivus" title=" Asphodelus aestivus"> Asphodelus aestivus</a>, <a href="https://publications.waset.org/abstracts/search?q=Cytotoxic%20activity" title=" Cytotoxic activity"> Cytotoxic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavonoids" title=" Flavonoids"> Flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-ESI-MS%2FMS" title=" LC-ESI-MS/MS"> LC-ESI-MS/MS</a> </p> <a href="https://publications.waset.org/abstracts/131479/chemical-analysis-and-cytotoxic-evaluation-of-asphodelus-aestivus-brot-flowers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Changing Colours and Odours: Exploring Cues Used by Insect Pollinators in Two Brassicaceous Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katherine%20Y.%20Barragan-Fonseca">Katherine Y. Barragan-Fonseca</a>, <a href="https://publications.waset.org/abstracts/search?q=Joop%20J.%20A.%20Van%20Loon"> Joop J. A. Van Loon</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Dicke"> Marcel Dicke</a>, <a href="https://publications.waset.org/abstracts/search?q=Dani%20Lucas-Barbosa"> Dani Lucas-Barbosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flowering plants use different traits to attract pollinators, which indicate flower location and reward quality. Visual and olfactory cues are among the most important floral traits exploited by pollinating insects. Pollination can alter physical and chemical cues of flowers, which can subsequently influence the behaviour of flower visitors. We investigated the main cues exploited by the syrphid fly Episyrphus balteatus and the butterfly Pieris brassicae when visiting flowers of Brassica nigra and Raphanus sativus plants. We studied post-pollination changes and their effects on the behaviour of flower visitors and flower volatile emission. Preference of pollinators was investigated by offering visual and olfactory cues simultaneously as well as separately in two-choice bioassays. We also assessed whether pollen is used as a cue by pollinating insects. In addition, we studied whether behavioural responses could be correlated with changes in plant volatile emission, by collecting volatiles from flower headspace. P. brassicae and E. balteatus did not use pollen as a cue in either of the two plant species studied. Interestingly, pollinators showed a strong bias for visual cues over olfactory cues when exposed to B. nigra plants. Flower visits by pollinators were influenced by post-pollination changes in B. nigra. In contrast, plant responses to pollination did not influence pollinator preference for R. sativus flowers. These results correlate well with floral volatile emission of B. nigra and R. sativus; pollination influenced the volatile profile of B. nigra flowers but not that of R. sativus. Collectively, our data show that different pollinators exploit different visual and olfactory traits when searching for nectar or pollen of flowers of two close related plant species. Although the syrphid fly consumes mostly pollen from brassicaceous flowers, it cannot detect pollen from a distance and likely associates other flower traits with quantity and quality of pollen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20volatiles" title="plant volatiles">plant volatiles</a>, <a href="https://publications.waset.org/abstracts/search?q=pollinators" title=" pollinators"> pollinators</a>, <a href="https://publications.waset.org/abstracts/search?q=post-pollination%20changes" title=" post-pollination changes"> post-pollination changes</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20and%20odour%20cues" title=" visual and odour cues"> visual and odour cues</a> </p> <a href="https://publications.waset.org/abstracts/102139/changing-colours-and-odours-exploring-cues-used-by-insect-pollinators-in-two-brassicaceous-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Effect of Crude Flowers Extract of Citrus reticulata Blanco Flowers on Physicochemical and Nutritional Properties of Cheddar Cheese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20Mir%20Khan">Usman Mir Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishtiaque%20Ahmad"> Ishtiaque Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Inayat"> Saima Inayat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Arslan%20Amin"> H. M. Arslan Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ayaz"> Muhammad Ayaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nisar%20Ahmad"> Nisar Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Citrus reticulata Blanco crude flowers extract (CFE) at four different concentration (1, 2, 3 and 4%, v/v) were used as natural milk coagulant instead of rennet to apply for Cheddar cheese making from buffalo milk. The physicochemical properties and nutrition composition of Cheddar cheeses were compared with cheese made with 0.002% (v/v) rennet (control cheese). Physico-chemical of Cheddar cheese showed that cheese made with 1% and 2% of CFE had a crumbly and slightly softer texture of cheese. While, cheeses containing 3 and 4% CFE had semi-hard textural properties of curd similar to rennet added cheese. The CFE made cheese had moisture 37 %, fat 45 % on dry basis similar to rennet made Cheddar cheese. Protein analysis shows that CFE made cheese had significant higher protein content than control. The Cheddar cheese with 3% and 1% CFE were preferred by consumers instead of 2% and 4% CFE for their taste, texture/appearance and overall acceptability. Conclusively, CFE coagulated Cheddar cheese fulfills the nutritional requirement with acceptable organoleptic characteristics and at the same time provides nutritional health benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cheddar%20cheese" title="cheddar cheese">cheddar cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=Citrus%20reticulata%20Blanco" title=" Citrus reticulata Blanco"> Citrus reticulata Blanco</a>, <a href="https://publications.waset.org/abstracts/search?q=buffalo%20milk" title=" buffalo milk"> buffalo milk</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20coagulant" title=" milk coagulant"> milk coagulant</a> </p> <a href="https://publications.waset.org/abstracts/76034/effect-of-crude-flowers-extract-of-citrus-reticulata-blanco-flowers-on-physicochemical-and-nutritional-properties-of-cheddar-cheese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Formulation and Evaluation of Ethosomes of Plumeria indica Linn. Flowers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumeet%20Dwivedi">Sumeet Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Shriwas"> Shweta Shriwas</a>, <a href="https://publications.waset.org/abstracts/search?q=Raghvendra%20Dubey"> Raghvendra Dubey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of products based on new drug delivery systems has significantly increased in the past few years, and this growth is expected to continue in the near future. These biopharmaceuticals present challenges to drug delivery scientists because of their unique nature and difficulty in delivery through conventional routes. Therefore, future research will focus on the delivery of these complex molecules through different routes, including oral, nasal, pulmonary, vaginal, rectal, etc. The aim of present study was to formulate and evaluate ethosomes of Plumeria indica flowers which may deliver the drug to targeted site more efficiently than marketed preparation and also overcome the problems related with oral administration of drug. The formulations were prepared with ethanol, lecithin, propylene glycol and were evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethosomes" title="ethosomes">ethosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20extract" title=" herbal extract"> herbal extract</a>, <a href="https://publications.waset.org/abstracts/search?q=plumeria%20alba" title=" plumeria alba"> plumeria alba</a>, <a href="https://publications.waset.org/abstracts/search?q=lecithin" title=" lecithin"> lecithin</a> </p> <a href="https://publications.waset.org/abstracts/60035/formulation-and-evaluation-of-ethosomes-of-plumeria-indica-linn-flowers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Anxieolytic Activity of Ethyl Acetate Extract of Flowers Nerium indicum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Mohale">D. S. Mohale</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Chandewar"> A. V. Chandewar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anxiety is defined as an exaggerated feeling of apprehension, uncertainty and fear. Nerium indicum is a well-known ornamental and medicinal plant belonging to the family Apocynaceae. A wide spectrum of biological activities has been reported with various constituents isolated from different parts of the plant. This study was conducted to investigate antianxiety activity of flower extract. Flowers were collected and dried in shade and coarsely powdered. Powdered mixture was extracted with ethyl acetate by maceration process. Extract of flowers obtained was subsequently dried in oven at 40-50 °C. This extract is then tested for antianxiety activity at low and high dose using Elevated Plus Maze and Light & dark Model. Rats shown increased open arm entries and time spent in open arm in elevated Plus maze with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. In Light & dark Model, light box entries and time spent in light box increased with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. From result it is concluded that Ethyl acetate extract of flower of Nerium indicum possess antianxiety activity at low and high dose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiety" title="anxiety">anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=anxieolytic" title=" anxieolytic"> anxieolytic</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20isolation" title=" social isolation"> social isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=nerium%20indicum" title=" nerium indicum"> nerium indicum</a>, <a href="https://publications.waset.org/abstracts/search?q=kaner" title=" kaner"> kaner</a> </p> <a href="https://publications.waset.org/abstracts/40002/anxieolytic-activity-of-ethyl-acetate-extract-of-flowers-nerium-indicum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Anti-Anxiety Activity of Ethyl Acetate Extract of Flowers Nerium indicum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Suresh%20Mohale">Deepak Suresh Mohale</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20V.%20Chandewar"> Anil V. Chandewar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anxiety is defined as an exaggerated feeling of apprehension, uncertainty and fear. Nerium indicum is a well-known ornamental and medicinal plant belonging to the family Apocynaceae. A wide spectrum of biological activities has been reported with various constituents isolated from different parts of the plant. This study was conducted to investigate antianxiety activity of flower extract. Flowers were collected and dried in shade and coarsely powdered. Powdered mixture was extracted with ethyl acetate by maceration process. Extract of flowers obtained was subsequently dried in oven at 40-50 °C. This extract is then tested for antianxiety activity at low and high dose using elevated plus maze and light & dark model. Rats shown increased open arm entries and time spent in open arm in elevated Plus maze with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. In Light & dark Model, light box entries and time spent in light box increased with treatment low and high dose of extract of Nerium indicum flower as compared to their respective control groups. From result it is concluded that ethyl acetate extract of flower of Nerium indicum possess antianxiety activity at low and high dose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antianxiety" title="antianxiety">antianxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=anxiety" title=" anxiety"> anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=kaner" title=" kaner"> kaner</a>, <a href="https://publications.waset.org/abstracts/search?q=nerium%20indicum" title=" nerium indicum"> nerium indicum</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20isolation" title=" social isolation"> social isolation</a> </p> <a href="https://publications.waset.org/abstracts/24821/anti-anxiety-activity-of-ethyl-acetate-extract-of-flowers-nerium-indicum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Investigation of Genetic Variation among Anemone narcissiflora L. Population Using PCR-RAPD Molecular Marker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Akrami">Somayeh Akrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Habib%20Onsori"> Habib Onsori</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Tahmassebian"> Elham Tahmassebian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Species of Anemone narcissiflora is belonged to Anemone genus of Ranunculaceae family. This species has two subspecies named narcissiflora and willdenowii which the latest is recorded in Iran in 2010. Some samples of A. narcissiflora is gathered from kuhkamar-zonouz region of East -Azerbaijan province, Iran to study the genetic diversity of the species by using RAPD molecular markers, and estimation of genetic diversity were evaluated with the using 10mer RAPD primers by PCR-RAPD method. 39 polymorphic bands were produced from the six primers used in this technique that the maximum band is related to the RP1 primer, the lowest band is related to the RP7 and the average band for all primers were 6.5 polymorphic bands. Cluster analysis of samples in done by UPGMA method in NTSYSpc 2.02 software. Dendrogram resulting from migrating bands showed that the studied samples can be divided into two groups. The first group includes samples with 1-2 flowers and the second group consists of two sub-groups which the first subgroup consists of samples with 3-5 flowers, and the second subgroup consists of samples with 6-7 flowers. The results of the comparison and analysis of the data obtained from RAPD technique and similarity matrix represents the genetic variation between collected samples. This study shows that RAPD markers can determine the polymorphisms between different genotypes of A. narcissiflora and their hybrids. So RAPD technique can serve as a suitable molecular method to determine the genetic diversity of samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anemone%20narcissiflora" title="Anemone narcissiflora">Anemone narcissiflora</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPD-PCR" title=" RAPD-PCR"> RAPD-PCR</a> </p> <a href="https://publications.waset.org/abstracts/25060/investigation-of-genetic-variation-among-anemone-narcissiflora-l-population-using-pcr-rapd-molecular-marker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Chemical Composition and Biological Investigation of Halpophyllum tuberculatum A. Juss (Rutaceae) Essential Oils Growing in Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20M.%20Sabry">O. M. M. Sabry</a>, <a href="https://publications.waset.org/abstracts/search?q=Abeer%20M.%20El%20Sayed"> Abeer M. El Sayed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The essential oils from the aerial parts and flowers of Haplophyllum tuberculatum (Forsskal) Adr. Juss (Rutaceae) growing in Libya were obtained separately by hydro-distillation using a Clevenger-type apparatus. The essential oils yield were (0.4, 1.5w/w%) respectively based on the dry weight of the plant. The oils were analyzed by GC-MS. Twenty four constituents, amounting to 96.6%, were identified in the oil of the aerial parts. The predominant compounds were among the non oxygenated terpenoids (82.4%) as monoterpene hydrocarbons, represented by sabinen (26.4 %), δ-terpinen (26 %), β-phellandrene (10.4%) and 3-carene (3.86%). Zingiberine (0.4%) and β-sesquiphellandrene (0.12%) were the major sesquiterpene hydrocarbons identified. Oxygenated monoterpenes were represented by eucalyptol (5.5%) and piperitone (5.55%). Twenty six constituents, equivalent to 99.5%, were identified in the oil of the flowers. The dominance of monoterpene hydrocarbons in the flowers oil can be attributed to the high percentage of γ-terpinen (38.44%), β-phellandrene (10.0%), α- phellandrene (2.33%), 3,4-dimethyl-1,5-cyclooctadiene (6.67%), β-myrecene (6.04%), 3-carene (5.43%) and α-pinene (1.3%).While the oxygenated monoterpenes can be contributed to the trans-piperitol (4.67%) and piperitone (2.07%). Sesquiterpene hydrocarbons were not identified in the oil of the flower of H. tuberculatum. Variation in constitution between oils of Libyan H. tuberculatum and that obtained from other countries can be due to both environmental and genetic factors. The essential oils have demonstrated variable antimicrobial activities against certain micro-organisms. Also have revealed marked in vitro cytotoxicity against lung (H1299), liver (HEPG2) carcinoma cell line and variably effective as anti-inflammatory and antioxidant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halpophyllum%20tuberculatum" title="Halpophyllum tuberculatum">Halpophyllum tuberculatum</a>, <a href="https://publications.waset.org/abstracts/search?q=rutaceae" title=" rutaceae"> rutaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory" title=" anti-inflammatory"> anti-inflammatory</a>, <a href="https://publications.waset.org/abstracts/search?q=antitumor" title=" antitumor"> antitumor</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=Libya" title=" Libya "> Libya </a> </p> <a href="https://publications.waset.org/abstracts/20254/chemical-composition-and-biological-investigation-of-halpophyllum-tuberculatum-a-juss-rutaceae-essential-oils-growing-in-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Effects of Nutrient Source and Drying Methods on Physical and Phytochemical Criteria of Pot Marigold (Calendula offiCinalis L.) Flowers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Tabrizi">Leila Tabrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Dezhaboun"> Farnaz Dezhaboun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effect of plant nutrient source and different drying methods on physical and phytochemical characteristics of pot marigold (Calendula officinalis L., Asteraceae) flowers, a factorial experiment was conducted based on completely randomized design with three replications in Research Laboratory of University of Tehran in 2010. Different nutrient sources (vermicompost, municipal waste compost, cattle manure, mushroom compost and control) which were applied in a field experiment for flower production and different drying methods including microwave (300, 600 and 900 W), oven (60, 70 and 80oC) and natural-shade drying in room temperature, were tested. Criteria such as drying kinetic, antioxidant activity, total flavonoid content, total phenolic compounds and total carotenoid of flowers were evaluated. Results indicated that organic inputs as nutrient source for flowers had no significant effects on quality criteria of pot marigold except of total flavonoid content, while drying methods significantly affected phytochemical criteria. Application of microwave 300, 600 and 900 W resulted in the highest amount of total flavonoid content, total phenolic compounds and antioxidant activity, respectively, while oven drying caused the lowest amount of phytochemical criteria. Also, interaction effect of nutrient source and drying method significantly affected antioxidant activity in which the highest amount of antioxidant activity was obtained in combination of vermicompost and microwave 900 W. In addition, application of vermicompost combined with oven drying at 60oC caused the lowest amount of antioxidant activity. Based on results of drying trend, microwave drying showed a faster drying rate than those oven and natural-shade drying in which by increasing microwave power and oven temperature, time of flower drying decreased whereas slope of moisture content reduction curve showed accelerated trend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drying%20kinetic" title="drying kinetic">drying kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plant" title=" medicinal plant"> medicinal plant</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20criteria" title=" phytochemical criteria"> phytochemical criteria</a> </p> <a href="https://publications.waset.org/abstracts/28542/effects-of-nutrient-source-and-drying-methods-on-physical-and-phytochemical-criteria-of-pot-marigold-calendula-officinalis-l-flowers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Comparation of Essential Oils Composition from the Leaves and Flowers of Salvia pratensis L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valerija%20Dunki%C4%87">Valerija Dunkić</a>, <a href="https://publications.waset.org/abstracts/search?q=Nada%20Bezi%C4%87"> Nada Bezić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salvia is a genus of the well-known medicinal plant of Lamiaceae family and growing wild throughout the world. This abstract reports the comparation of the essential oils from leaves and flowers composition of Salvia pratensis L. from mountain Velebit, Croatia. Water distilled essential oils from aerial parts of investigation plant have been analysed by GC and GC/MS using VF-5ms capillary column. Fifty-three constituents, representing 99.4% of the leaf oil composition; 51 constituents, representing 86.8% of the flower oil composition. Essential oil yield varied from 0.9% to 1.3% in the leaf and flower parts of the plant. The flower essential oil was characterized by a high concentration of E-caryophyllene (21.9%) and germacrene D (10.2%). Major constituents of the leaf oil were linalool (17.7%), linalool acetate (15.3%) and limonene (9.8%). The comparative results clearly indicated that the leaf and flower oil compositions of S. pratensis were quite different in terms of major components content. The present study gives additional knowledge about secondary metabolites contents on the genus Salvia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title="essential oil">essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf" title=" leaf"> leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=flower" title=" flower"> flower</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvia%20pratensis%20L." title=" Salvia pratensis L."> Salvia pratensis L.</a> </p> <a href="https://publications.waset.org/abstracts/39154/comparation-of-essential-oils-composition-from-the-leaves-and-flowers-of-salvia-pratensis-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Antimicrobial Potential of Calendula officinalis Extracts on Flavobacterium columnare of Clarias gariepinus Fingerlings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Rotimi%20Osungbemiro">Nelson Rotimi Osungbemiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanni%20Rafiu%20Olugbenga"> Sanni Rafiu Olugbenga</a>, <a href="https://publications.waset.org/abstracts/search?q=Abayomi%20Olufemi%20Olajuyigbe"> Abayomi Olufemi Olajuyigbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ninety Fingerlings of Clarias gariepinus were exposed to the pathogenic Flavobacterium columnare a Gram Negative bacteria responsible for high mortality in fish pond raised young fish (fries and fingerlings) of Clarias sp. in Southwestern Nigeria. After feeding with 40% crude protein pelletized fish feed for 5 days, the fishes were divided into two groups, one group was treated with extracts from Calendula officinalis flowers, while the second group was not treated (control). The results indicated that, at day 5, colony formation had been manifesting and at day 7, skin lesion occurred and at the 8th day, first mortality of fish occurred, and this continued steadily on the 9th-12th day when all the fishes were dead. Whereas, in the group that was treated with Calendula sp., no single mortality was recorded. This research shows that plant extract from Calendula flowers is an effective antimicrobial agent against the virulent pathogenic Flavobacterium columnare disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavobacterium%20columnare" title=" Flavobacterium columnare"> Flavobacterium columnare</a>, <a href="https://publications.waset.org/abstracts/search?q=Clarias%20gariepinus" title=" Clarias gariepinus"> Clarias gariepinus</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a> </p> <a href="https://publications.waset.org/abstracts/25461/antimicrobial-potential-of-calendula-officinalis-extracts-on-flavobacterium-columnare-of-clarias-gariepinus-fingerlings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">608</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Substitution of Silver-Thiosulfate (STS) with Some Essential Oils on Vase-Life of Cut Carnation cv. Liberty</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bagher%20Hassanpouraghdam">Mohammad Bagher Hassanpouraghdam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Aazami%20Mavaloo"> Mohammad Ali Aazami Mavaloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the huge side-effects of chemicals; essential oils have been considered as suitable alternatives for keeping the vase-life of cut flowers mainly owing to the availability and environment-friend nature of these bio-chemicals. In the present experiment, 50% substitution of STS was achieved and tested on cut carnation flowers cv. Liberty by using the essential oils from four plants; Satureja sahendica Bornm., Echinophora platyloba DC., Tanacetum balsamita L. and Cupressus arizonica Greene., as CRD with five treatments and 3 replications. Vase-life and flower diameter were affected with 50% substitution of STS by essential oils from C. arizonica and T. balsamita. Membrane stability index, Malondialdehyde (MDA) content and Hydrogen peroxide (H2O2) amounts were affected by the substitution treatments as well. The main preservative effect belonged to the substitution with C. arizonica. So that, 50% STS substitution with Cupressus oil holds the highest membrane integrity and the least data for MDA and H2O2 content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carnation" title="Carnation">Carnation</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Membrane%20stability%20index%20%28MSI%29" title=" Membrane stability index (MSI)"> Membrane stability index (MSI)</a>, <a href="https://publications.waset.org/abstracts/search?q=vase%20life" title=" vase life"> vase life</a> </p> <a href="https://publications.waset.org/abstracts/55028/substitution-of-silver-thiosulfate-sts-with-some-essential-oils-on-vase-life-of-cut-carnation-cv-liberty" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Inventory and Pollinating Role of Bees (Hymenoptera: apoidea) on Turnip (Brassica rapa L.) and Radish (Raphanus sativus L.) (Brassicaceae) in Constantine Area (Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benachour%20Karima">Benachour Karima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollination is a key factor in crop production and the presence of insect pollinators, mainly wild bees, is essential for improving yields. In this work, visiting apoids of two vegetable crops, the turnip (Brassica rapa L.) and the radish (Raphanus sativus L.) (Brassicaceae) were recorded during flowering times of 2003 and 2004 in Constantine area (36°22’N 06°37’E, 660 m). The observations were conducted in a plot of approximately 308 m2 of the Institute of Nutrition, Food and Food Technology (University of Mentouri Brothers). To estimate the density of bees (per 100 flowers or m2), 07 plots (01m2 for each one) are defined from the edge of the culture and in the first two rows. From flowering and every two days, foraging insects are recorded from 09 am until 17 pm (Gmt+1).The purpose of visit (collecting nectar, pollen or both) and pollinating efficiency (estimated by the number of flowers visited per minute and the number of positive visits) were noted for the most abundant bees on flowers. The action of pollinating insects is measured by comparing seed yields of 07 plots covered with tulle with 07 other accessible to pollinators. 04 families of Apoidea: Apidae, Halictidae, Andrenidae and Megachilidae were observed on the two plants. On turnip, the honeybee is the most common visitor (on average 214visites/ m2), it is followed by the Halictidae Lasioglossum mediterraneum whose visits are less intense (20 individuals/m2). Visits by Andrenidae, represented by several species such as Andrena lagopus, A.flavipes, A.agilissima and A.rhypara were episodic. The honeybee collected mainly nectar, its visits were all potentially fertilizing (contact with stigma) and more frequent (on average 14 flowers/min. L.mediterraneum visited only 05 flrs/min, it collected mostly the two products together and all its visits were also positive. On radish, the wild bee Ceratina cucurbitina recorded the highest number of visits (on average 06 individuals/100flo wers), the Halictidae represented mainly by L.mediterraneum, and L.malachurum, L.pauxillum were less abundant. C.cucurbitina visited on average 10 flowers /min and all its visits are positive. Visits of Halictidae were less frequent (05-06 flowers/min) and not all fertilizing. Seed yield of Brassica rapa (average number of pods /plant, seeds/ pods and average weight of 1000 seeds) was significantly higher in the presence of pollinators. Similarly, the pods of caged plants gave a percentage of aborted seeds (10.3%) significantly higher than that obtained on free plants (4.12%), the pods of caged plants also gave a percentage of malformed seeds (1.9%) significantly higher than that of the free plants (0.9%). For radish, the seed yield in the presence and absence of insects are almost similar. Only the percentage of malformed seeds (3.8%) obtained from the pods of caged plants was significantly higher in comparison with pods of free plants (1.9%). Following these results, it is clear that pollinators especially bees are essential for the production and improvement of crop yields and therefore it is necessary to protect this fauna increasingly threatened. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foraging%20behavior" title="foraging behavior">foraging behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=honey%20bee" title=" honey bee"> honey bee</a>, <a href="https://publications.waset.org/abstracts/search?q=radish" title=" radish"> radish</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20yield" title=" seed yield"> seed yield</a>, <a href="https://publications.waset.org/abstracts/search?q=turnip" title=" turnip"> turnip</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20bee" title=" wild bee"> wild bee</a> </p> <a href="https://publications.waset.org/abstracts/38554/inventory-and-pollinating-role-of-bees-hymenoptera-apoidea-on-turnip-brassica-rapa-l-and-radish-raphanus-sativus-l-brassicaceae-in-constantine-area-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Variation of Fertility-Related Traits in Italian Tomato Landraces under Mild Heat Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maurizio%20E.%20Picarella">Maurizio E. Picarella</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludovica%20Fumelli"> Ludovica Fumelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Siligato"> Francesca Siligato</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Mazzucato"> Andrea Mazzucato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies on reproductive dynamics in crops subjected to heat stress are crucial to breed more tolerant cultivars. In tomato, cultivars, breeding lines, and wild species have been thoroughly evaluated for the response to heat stress in several studies. Here, we address the reaction to temperature stress in a panel of selected landraces representing genotypes cultivated before the advent of professional varieties that usually show high adaptation to local environments. We adopted an experimental design with two open field trials, where transplanting was spaced by one month. In the second field, plants were thus subjected to mild stress with natural temperature fluctuations. The genotypes showed wide variation for both vegetative (plant height) and reproductive (stigma exsertion, pollen viability, number of flowers per inflorescence, and fruit set) traits. On average, all traits were affected by heat conditions; except for the number of flowers per inflorescence, the “G*E” interaction was always significant. In agreement with studies based on different materials, estimated broad sense heritability was high for plant height, stigma exsertion, and pollen viability and low for the number of flowers per inflorescence and fruit set. Despite the interaction, traits recorded in control and in heat conditions were positively correlated. The first two principal components estimated by multivariate analysis explained more than 50% of the total variability. The study indicated that landraces present a wide variability for the response of reproductive traits to temperature stress and that such variability could be very informative to dissect the traits with higher heritability and identify new QTL useful for breeding more resilient varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fruit%20set" title="fruit set">fruit set</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title=" heat stress"> heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=solanum%20lycopersicum%20L." title=" solanum lycopersicum L."> solanum lycopersicum L.</a>, <a href="https://publications.waset.org/abstracts/search?q=style%20exsertion" title=" style exsertion"> style exsertion</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a> </p> <a href="https://publications.waset.org/abstracts/146199/variation-of-fertility-related-traits-in-italian-tomato-landraces-under-mild-heat-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flowers&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flowers&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flowers&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flowers&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flowers&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flowers&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>