CINXE.COM
Search results for: [bmim][PF₆] as absorbent
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: [bmim][PF₆] as absorbent</title> <meta name="description" content="Search results for: [bmim][PF₆] as absorbent"> <meta name="keywords" content="[bmim][PF₆] as absorbent"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="[bmim][PF₆] as absorbent" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="[bmim][PF₆] as absorbent"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 64</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: [bmim][PF₆] as absorbent</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Exergy Analysis of a Vapor Absorption Refrigeration System Using Carbon Dioxide as Refrigerant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samsher%20Gautam">Samsher Gautam</a>, <a href="https://publications.waset.org/abstracts/search?q=Apoorva%20Roy"> Apoorva Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhuvan%20Aggarwal"> Bhuvan Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vapor absorption refrigeration systems can replace vapor compression systems in many applications as they can operate on a low-grade heat source and are environment-friendly. Widely used refrigerants such as CFCs and HFCs cause significant global warming. Natural refrigerants can be an alternative to them, among which carbon dioxide is promising for use in automotive air conditioning systems. Its inherent safety, ability to withstand high pressure and high heat transfer coefficient coupled with easy availability make it a likely choice for refrigerant. Various properties of the ionic liquid [bmim][PF₆], such as non-toxicity, stability over a wide temperature range and ability to dissolve gases like carbon dioxide, make it a suitable absorbent for a vapor absorption refrigeration system. In this paper, an absorption chiller consisting of a generator, condenser, evaporator and absorber was studied at an operating temperature of 70⁰C. A thermodynamic model was set up using the Peng-Robinson equations of state to predict the behavior of the refrigerant and absorbent pair at different points in the system. A MATLAB code was used to obtain the values of enthalpy and entropy at selected points in the system. The exergy destruction in each component and exergetic coefficient of performance (ECOP) of the system were calculated by performing an exergy analysis based on the second law of thermodynamics. Graphs were plotted between varying operating conditions and the ECOP obtained in each case. The effect of every component on the ECOP was examined. The exergetic coefficient of performance was found to be lesser than the coefficient of performance based on the first law of thermodynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%5Bbmim%5D%5BPF%E2%82%86%5D%20as%20absorbent" title="[bmim][PF₆] as absorbent">[bmim][PF₆] as absorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20as%20refrigerant" title=" carbon dioxide as refrigerant"> carbon dioxide as refrigerant</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title=" exergy analysis"> exergy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng-Robinson%20equations%20of%20state" title=" Peng-Robinson equations of state"> Peng-Robinson equations of state</a>, <a href="https://publications.waset.org/abstracts/search?q=vapor%20absorption%20refrigeration" title=" vapor absorption refrigeration"> vapor absorption refrigeration</a> </p> <a href="https://publications.waset.org/abstracts/73396/exergy-analysis-of-a-vapor-absorption-refrigeration-system-using-carbon-dioxide-as-refrigerant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Effects of Using Super-Absorbent Polymers on Physiological Indexes of Maize</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoaei%20Shahram">Shoaei Shahram</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiei%20Felora"> Rafiei Felora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the effects of using superabsorbent polymers on physiological of maize in deficit Irrigation condition .an experiment carried out in split plot factorial based on completely Randomized Block design (RCBD) with three replication in 2012years. Deficit Irrigation was applied by three different Irrigation amount. Super absorbent polymers in 3 levels were and two veriety of maize allocated in sub plots. there was significant difference between Irrigation levels in all experimental Traits by increasing in deficit irrigation. Results of this research showed water stress significantly decreased relative water content (RWC) LAI,Ash percentage in both hybrids, and increased Cell membrane percentage and SPAD,ADF percent.whereas the application of super absorbent polymer compensated the negative effect of drought stress, especially in high rates of polymer application .These mentioned rates of polymer had the best effect to all of the studied traits. These findings can be suggested that the irrigation intervals of corn could be increased by application of super absorbent polymer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20absorbent" title="super absorbent">super absorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=p%20hysiological" title="p hysiological">p hysiological</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a>, <a href="https://publications.waset.org/abstracts/search?q=zea%20maize" title=" zea maize"> zea maize</a> </p> <a href="https://publications.waset.org/abstracts/33414/effects-of-using-super-absorbent-polymers-on-physiological-indexes-of-maize" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Green Extraction of Patchoulol from Patchouli Leaves Using Ultrasound-Assisted Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Jadeja">G. C. Jadeja</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Desai"> M. A. Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Bhatt"> D. R. Bhatt</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Parikh"> J. K. Parikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green extraction techniques are fast paving ways into various industrial sectors due to the stringent governmental regulations leading to the banning of toxic chemicals’ usage and also due to the increasing health/environmental awareness. The present work describes the ionic liquids based sonication method for selectively extracting patchoulol from the leaves of patchouli. 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and N,N,N,N’,N’,N’-Hexaethyl-butane-1,4-diammonium dibromide (dicationic ionic liquid - DIL) were selected for extraction. Ultrasound assisted ionic liquid extraction was employed considering concentration of ionic liquid (4–8 %, w/w), ultrasound power (50–150 W for [Bmim]BF4 and 20–80 W for DIL), temperature (30–50 oC) and extraction time (30–50 min) as major parameters influencing the yield of patchoulol. Using the Taguchi method, the parameters were optimized and analysis of variance (ANOVA) was performed to find the most influential factor in the selected extraction method. In case of [Bmim]BF4, the optimum conditions were found to be: 4 % (w/w) ionic liquid concentration, 50 W power, 30 oC temperature and extraction time of 30 min. The yield obtained under the optimum conditions was 3.99 mg/g. In case of DIL, the optimum conditions were obtained as 6 % (w/w) ionic liquid concentration, 80 W power, 30 oC temperature and extraction time of 40 min, for which the yield obtained was 4.03 mg/g. Temperature was found to be the most significant factor in both the cases. Extraction time was the insignificant parameter while extracting the product using [Bmim]BF4 and in case of DIL, power was found to be the least significant factor affecting the process. Thus, a green method of recovering patchoulol is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20extraction" title="green extraction">green extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=patchoulol" title=" patchoulol"> patchoulol</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a> </p> <a href="https://publications.waset.org/abstracts/79798/green-extraction-of-patchoulol-from-patchouli-leaves-using-ultrasound-assisted-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Reactivity Study on South African Calcium Based Material Using a pH-Stat and Citric Acid: A Statistical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto">Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Mbali%20Chiliza"> Mbali Chiliza</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study on reactivity of calcined calcium-based material is very important in dry flue gas desulphurisation (FGD) process, so as to produce absorbent with high sulphur dioxide capture capacity during the hydration process. The effect of calcining temperature and time on the reactivity of calcined limestone material were investigated. In this study, the reactivity was measured using a pH stat apparatus and also confirming the result by performing citric acid reactivity test. The reactivity was calculated using the shrinking core model. Based on the experiments, a mathematical model is developed to correlate the effect of time and temperature to the reactivity of absorbent. The calcination process variables were temperature (700 -1000°C) and time (1-6 hrs). It was found that reactivity increases with an increase in time and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactivity" title="reactivity">reactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=citric%20acid" title=" citric acid"> citric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/57923/reactivity-study-on-south-african-calcium-based-material-using-a-ph-stat-and-citric-acid-a-statistical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Experimental Investigation of Absorbent Regeneration Techniques to Lower the Cost of Combined CO₂ and SO₂ Capture Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bharti%20Garg">Bharti Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashleigh%20Cousins"> Ashleigh Cousins</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauline%20Pearson"> Pauline Pearson</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Verheyen"> Vincent Verheyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Feron"> Paul Feron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of SO₂ in power plant flue gases makes flue gas desulfurization (FGD) an essential requirement prior to post combustion CO₂ (PCC) removal facilities. Although most of the power plants worldwide deploy FGD in order to comply with environmental regulations, generally the achieved SO₂ levels are not sufficiently low for the flue gases to enter the PCC unit. The SO₂ level in the flue gases needs to be less than 10 ppm to effectively operate the PCC installation. The existing FGD units alone cannot bring down the SO₂ levels to or below 10 ppm as required for CO₂ capture. It might require an additional scrubber along with the existing FGD unit to bring the SO₂ to the desired levels. The absence of FGD units in Australian power plants brings an additional challenge. SO₂ concentrations in Australian power station flue gas emissions are in the range of 100-600 ppm. This imposes a serious barrier on the implementation of standard PCC technologies in Australia. CSIRO’s developed CS-Cap process is a unique solution to capture SO₂ and CO₂ in a single column with single absorbent which can potentially bring cost-effectiveness to the commercial deployment of carbon capture in Australia, by removing the need for FGD. Estimated savings of removing SO₂ through a similar process as CS-Cap is around 200 MMUSD for a 500 MW Australian power plant. Pilot plant trials conducted to generate the proof of concept resulted in 100% removal of SO₂ from flue gas without utilising standard limestone-based FGD. In this work, removal of absorbed sulfur from aqueous amine absorbents generated in the pilot plant trials has been investigated by reactive crystallisation and thermal reclamation. More than 95% of the aqueous amines can be reclaimed back from the sulfur loaded absorbent via reactive crystallisation. However, the recovery of amines through thermal reclamation is limited and depends on the sulfur loading on the spent absorbent. The initial experimental work revealed that reactive crystallisation is a better fit for CS-Cap’s sulfur-rich absorbent especially when it is also capable of generating K₂SO₄ crystals of highly saleable quality ~ 99%. Initial cost estimation carried on both the technologies resulted in almost similar capital expenditure; however, the operating cost is considerably higher in thermal reclaimer than that in crystalliser. The experimental data generated in the laboratory from both the regeneration techniques have been used to generate the simulation model in Aspen Plus. The simulation model illustrates the economic benefits which could be gained by removing flue gas desulfurization prior to standard PCC unit and replacing it with a CS-Cap absorber column co-capturing CO₂ and SO₂, and it's absorbent regeneration system which would be either reactive crystallisation or thermal reclamation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20capture" title="combined capture">combined capture</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallisation" title=" crystallisation"> crystallisation</a>, <a href="https://publications.waset.org/abstracts/search?q=CS-Cap" title=" CS-Cap"> CS-Cap</a>, <a href="https://publications.waset.org/abstracts/search?q=flue%20gas%20desulfurisation" title=" flue gas desulfurisation"> flue gas desulfurisation</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur" title=" sulfur"> sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20reclamation" title=" thermal reclamation "> thermal reclamation </a> </p> <a href="https://publications.waset.org/abstracts/100335/experimental-investigation-of-absorbent-regeneration-techniques-to-lower-the-cost-of-combined-co2-and-so2-capture-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Nitrate Removal from Drinking Water Using Modified Natural Nanozeolite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Meftah">T. Meftah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Zerafat"> M. M. Zerafat</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sabbaghi"> S. Sabbaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrate compounds are considered as groundwater contaminants, the concentration of which has been growing in these resources during recent years. As a result, it seems necessary to use effective methods to remove nitrate from water and wastewater. Adsorption process is generally considered more economical in water treatment. Natural clinoptilolite zeolite is one of the best absorbents because of its high capacity and low cost.In this research, we are going to modify zeolite nanoparticles as a chemical modification. Zeolite nanoparticles have been modified with a kind of organosilane, like 3-aminopropyltriethoxysilane. The advantage of this modification method, in comparison with physical modification, is the good stability in various environmental conditions. In this research, absorbent properties have been analyzed by PSA, FTIR and CHN elemental analysis. Also, nitrate adsorption by modified nanoparticles was examined by UV-Vis spectroscopy. There would be 〖NH〗_2 groups on the zeolite surface as a result of organosilane modification. In order to adsorption of nitrate, we need to convert 〖NH〗_2 groups to〖NH〗_4^+, that it is possible in acidic condition. As a result, the best nitrate removal is possible in the lowest concentration and pH. We obtained 80.12% nitrate removal in pH=3 and 50 mg⁄l nitrate concentration and 4 g⁄l absorbent optimum concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrate%20removal" title="nitrate removal">nitrate removal</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=organosilane" title=" organosilane"> organosilane</a> </p> <a href="https://publications.waset.org/abstracts/18940/nitrate-removal-from-drinking-water-using-modified-natural-nanozeolite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> The Physical Impact of Nano-Layer Due to Dispersions of Carbon Nano-Tubes through an Absorbent Channel: A Numerical Nano-Fluid Flow Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zubair%20Akbar%20Qureshi">Muhammad Zubair Akbar Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Bari%20%20Farooq"> Abdul Bari Farooq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intention of the current study to analyze the significance of nano-layer in incompressible magneto-hydrodynamics (MHD) flow of a Newtonian nano-fluid consisting of carbon nano-materials has been considered through an absorbent channel with moving porous walls. Using applicable similarity transforms, the governing equations are converted into a system of nonlinear ordinary differential equations which are solved by using the 4th-order Runge-Kutta technique together with shooting methodology. The phenomena of nano-layer have also been modeled mathematically. The inspiration behind this segment is to reveal the behavior of involved parameters on velocity and temperature profiles. A detailed table is presented in which the effects of involved parameters on shear stress and heat transfer rate are discussed. Specially presented the impact of the thickness of the nano-layer and radius of the particle on the temperature profile. We observed that due to an increase in the thickness of the nano-layer, the heat transfer rate increases rapidly. The consequences of this research may be advantageous to the applications of biotechnology and industrial motive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nano-tubes" title="carbon nano-tubes">carbon nano-tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-hydrodynamics" title=" magneto-hydrodynamics"> magneto-hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-layer" title=" nano-layer"> nano-layer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/129942/the-physical-impact-of-nano-layer-due-to-dispersions-of-carbon-nano-tubes-through-an-absorbent-channel-a-numerical-nano-fluid-flow-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> The Effect of Ionic Liquid Anion Type on the Properties of TiO2 Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marta%20Paszkiewicz">Marta Paszkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Justyna%20%C5%81uczak"> Justyna Łuczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Martyna%20Marchelek"> Martyna Marchelek</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Zaleska-Medynska"> Adriana Zaleska-Medynska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, photocatalytical processes have been intensively investigated for destruction of pollutants, hydrogen evolution, disinfection of water, air and surfaces, for the construction of self-cleaning materials (tiles, glass, fibres, etc.). Titanium dioxide (TiO2) is the most popular material used in heterogeneous photocatalysis due to its excellent properties, such as high stability, chemical inertness, non-toxicity and low cost. It is well known that morphology and microstructure of TiO2 significantly influence the photocatalytic activity. This characteristics as well as other physical and structural properties of photocatalysts, i.e., specific surface area or density of crystalline defects, could be controlled by preparation route. In this regard, TiO2 particles can be obtained by sol-gel, hydrothermal, sonochemical methods, chemical vapour deposition and alternatively, by ionothermal synthesis using ionic liquids (ILs). In the TiO2 particles synthesis ILs may play a role of a solvent, soft template, reagent, agent promoting reduction of the precursor or particles stabilizer during synthesis of inorganic materials. In this work, the effect of the ILs anion type on morphology and photoactivity of TiO2 is presented. The preparation of TiO2 microparticles with spherical structure was successfully achieved by solvothermal method, using tetra-tert-butyl orthotitatane (TBOT) as the precursor. The reaction process was assisted by an ionic liquids 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium haxafluorophosphate [BMIM][PF6]. Various molar ratios of all ILs to TBOT (IL:TBOT) were chosen. For comparison, reference TiO2 was prepared using the same method without IL addition. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brenauer-Emmett-Teller surface area (BET), NCHS analysis, and FTIR spectroscopy were used to characterize the surface properties of the samples. The photocatalytic activity was investigated by means of phenol photodegradation in the aqueous phase as a model pollutant, as well as formation of hydroxyl radicals based on detection of fluorescent product of coumarine hydroxylation. The analysis results showed that the TiO2 microspheres had spherical structure with the diameters ranging from 1 to 6 µm. The TEM micrographs gave a bright observation of the samples in which the particles were comprised of inter-aggregated crystals. It could be also observed that the IL-assisted TiO2 microspheres are not hollow, which provides additional information about possible formation mechanism. Application of the ILs results in rise of the photocatalytic activity as well as BET surface area of TiO2 as compared to pure TiO2. The results of the formation of 7-hydroxycoumarin indicated that the increased amount of ·OH produced at the surface of excited TiO2 for samples TiO2_ILs well correlated with more efficient degradation of phenol. NCHS analysis showed that ionic liquids remained on the TiO2 surface confirming structure directing role of that compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photocatalysis" title="heterogeneous photocatalysis">heterogeneous photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-assisted%20synthesis" title=" IL-assisted synthesis"> IL-assisted synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a> </p> <a href="https://publications.waset.org/abstracts/41337/the-effect-of-ionic-liquid-anion-type-on-the-properties-of-tio2-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> An Experimental Study of Low Concentration CO₂ Capture from Regenerative Thermal Oxidation Tail Gas in Rotating Packed Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dang%20HuynhMinhTam">Dang HuynhMinhTam</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuang-Cong%20Lu"> Kuang-Cong Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Hung%20Chen"> Yi-Hung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhung-Yu%20Lin"> Zhung-Yu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Siang%20Cheng"> Cheng-Siang Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon capture, utilization, and storage (CCUS) technology become a predominant technique to mitigate carbon dioxide and achieve net-zero emissions goals. This research targets to continuously capture the low concentration CO₂ from the tail gas of the regenerative thermal oxidizer (RTO) in the high technology industry. A rotating packed bed (RPB) reactor is investigated to capture the efficiency of CO₂ using a mixture of NaOH/Na₂CO₃ solutions to simulate the real absorbed solution. On a lab scale, semi-batch experiments of continuous gas flow and circulating absorbent solution are conducted to find the optimal parameters and are then examined in a continuous operation. In the semi-batch tests, the carbon capture efficiency and pH variation in the conditions of a low concentration CO₂ (about 1.13 vol%), the NaOH concentration of 1 wt% or 2 wt% mixed with 14 wt% Na₂CO₃, the rotating speed (600, 900, 1200 rpm), the gas-liquid ratio (100, 200, and 400), and the temperature of absorbent solution of 40 ºC are studied. The CO₂ capture efficiency significantly increases with higher rotating speed and smaller gas-liquid ratio, respectively, while the difference between the NaOH concentration of 1 wt% and 2 wt% is relatively small. The maximum capture efficiency is close to 80% in the conditions of the NaOH concentration of 1 wt%, the G/L ratio of 100, and the rotating speed of 1200 rpm within the first 5 minutes. Furthermore, the continuous operation based on similar conditions also demonstrates the steady efficiency of the carbon capture of around 80%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20capture" title="carbon dioxide capture">carbon dioxide capture</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20thermal%20oxidizer" title=" regenerative thermal oxidizer"> regenerative thermal oxidizer</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20packed%20bed" title=" rotating packed bed"> rotating packed bed</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a> </p> <a href="https://publications.waset.org/abstracts/182235/an-experimental-study-of-low-concentration-co2-capture-from-regenerative-thermal-oxidation-tail-gas-in-rotating-packed-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Post-Combustion CO₂ Capture: From Membrane Synthesis to Module Intensification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imran%20Khan%20Swati">Imran Khan Swati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Younas"> Mohammad Younas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to explore the potential applications of polymeric hydrophobic membranes and green ionic liquids (ILs). Protic and aprotic ILs were synthesized in the lab., characterized, and tested for CO₂/N₂ and CO₂/CH₄ separation using hydrophobic polymeric membranes via supported ionic liquid membrane (SILM). ILs were verified by FTIR spectroscopy. The SILMs were stable at room temperature up to 0.5 MPa. For CO₂, [BSmim][tos] had the greatest coefficient of solubility and permeability, along with all ILs. At 0.5 MPa, IL [BSmim][tos] was found with a selectivity of 56.2 and 47.5 for pure CO₂/N₂ and CO₂/CH₄, respectively. The ILs synthesized for this study are rated as [BSmim][tos]>[BSmpy][tos]>[Bmim][Cl]>[Bpy][Cl] based on their SILM separation performance. Furthermore, high values of selectivity of [BSmim][tos] and [BSmpy][tos] support the use of ILs for CO₂ separation using SILMs. The study was extended to synthesize and test the ammonium-based ILs, [2-HEA][f] and [2-HEA][Hs]. These ILs achieved 50 % less selectivity for CO₂/N₂ as compared to [BSmim][tos] and [BSmpy][tos]. Nevertheless, the permeability of CO₂ achieved with [2-HEA][f] and [2-HEA][Hs] is more than 20 times higher than the [BSmim][tos] and [BSmpy][tos]. Later, the CO₂/N₂ permeability and selectivity study was extended using a flat sheet membrane contactor with recirculated IL. The contact angle effects, liquid entry pressure (LEP), initial CO₂ concentration, and type of solvents and membrane material on the CO₂ capture efficiency and membrane wetting in the post-combustion capture (PCC) process have been experimentally investigated and evaluated. Polytetrafluoroethylene (PTFE) has shown the most hydrophobic property with 6-170 loss in the contact angle. Furthermore, [Omim][BF4] and [Bmim][BF6] have exhibited only 5-8 % loss in LEP using PTFE membrane support. The CO₂ capture efficiency has been achieved as 80.8-99.8 % in different combinations of ILs and membrane support, keeping all other variables constant. While increasing CO₂ concentration from 15 to 45 % vol., an increase of nearly three folds in the CO₂ mass transfer flux was observed. The combination of [Omim][BF4] and PTFE membrane witnessed good long-term stability with only a 20 % loss in CO₂ capture efficiency in 480 min of continuous operation. A 3- D simulation model for non-dispersive solvent absorption in membrane contactors provides insight into the optimum design of a separation system for a specific application minimizing the overall cost and making the process environment-friendly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Post-combustion%20CO2%20capture" title="Post-combustion CO2 capture">Post-combustion CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20synthesis" title=" membrane synthesis"> membrane synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20development" title=" process development"> process development</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability%20%20and%20selectivity" title=" permeability and selectivity"> permeability and selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a> </p> <a href="https://publications.waset.org/abstracts/160318/post-combustion-co2-capture-from-membrane-synthesis-to-module-intensification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> A New Approach for Preparation of Super Absorbent Polymers: In-Situ Surface Cross-Linking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhan%20%C3%96zdo%C4%9Fan">Reyhan Özdoğan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mithat%20%C3%87elebi"> Mithat Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Ceylan"> Özgür Ceylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Arif%20Kaya"> Mehmet Arif Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Super absorbent polymers (SAPs) are defined as materials that can absorb huge amount of water or aqueous solution in comparison to their own mass and retain in their lightly cross-linked structure. SAPs were produced from water soluble monomers via polymerization subsequently controlled crosslinking. SAPs are generally used for water absorbing applications such as baby diapers, patient or elder pads and other hygienic product industries. Crosslinking density (CD) of SAP structure is an essential factor for water absortion capacity (WAC). Low internal CD leads to high WAC values and vice versa. However, SAPs have low CD and high swelling capacities and tend to disintegrate when pressure is applied upon them, so SAPs under load cannot absorb liquids effectively. In order to prevent this undesired situation and to obtain suitable SAP structures having high swelling capacity and ability to work under load, surface crosslinking can be the answer. In industry, these superabsorbent gels are mostly produced via solution polymerization and then they need to be dried, grinded, sized, post polymerized and finally surface croslinked (involves spraying of a crosslinking solution onto dried and grinded SAP particles, and then curing by heat). It can easily be seen that these steps are time consuming and should be handled carefully for the desired final product. If we could synthesize desired final SAPs using less processes it will help reducing time and production costs which are very important for any industries. In this study, synthesis of SAPs were achieved successfully by inverse suspension (Pickering type) polymerization and subsequently in-situ surface cross-linking via using proper surfactants in high boiling point solvents. Our one-pot synthesis of surface cross-linked SAPs invovles only one-step for preparation, thus it can be said that this technique exhibits more preferable characteristic for the industry in comparison to conventional methods due to its one-step easy process. Effects of different surface crosslinking agents onto properties of poly(acrylic acid-co-sodium acrylate) based SAPs are investigated. Surface crosslink degrees are evaluated by swelling under load (SUL) test. It was determined water absorption capacities of obtained SAPs decrease with the increasing surface crosslink density while their mechanic properties are improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20suspension%20polymerization" title="inverse suspension polymerization">inverse suspension polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylic%20acid" title=" polyacrylic acid"> polyacrylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20absorbent%20polymers%20%28SAPs%29" title=" super absorbent polymers (SAPs)"> super absorbent polymers (SAPs)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20crosslinking" title=" surface crosslinking"> surface crosslinking</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20polyacrylate" title=" sodium polyacrylate"> sodium polyacrylate</a> </p> <a href="https://publications.waset.org/abstracts/33811/a-new-approach-for-preparation-of-super-absorbent-polymers-in-situ-surface-cross-linking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> The Mechanical and Comfort Properties of Cotton/Micro-Tencel Lawn Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Basit">Abdul Basit</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Latif"> Shahid Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Mehmood"> Shah Mehmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lawn fabric was usually prepared from originally of linen but at present chiefly cotton. Lawn fabric is worn in summer. Cotton Lawn is a lightweight pure cloth which is heavier than voile. It is so fine that it is somewhat transparent. It is soft and superb to wear thus it is perfect for summer clothes or for regular wear in hotter climates. Tencel (Lyocell) fiber is considered as the fiber of the future as Tencel fibers are absorbent, soft, and extremely strong when wet or dry, and resistant to wrinkles. Fibers are more absorbent than cotton, softer than silk and cooler than linen. High water absorption and water vapor absorption give more heat capacity and heat balancing effect for thermo-regulation. This thermo-regulation is analogous with the action of phase-change-materials. The thermal wear properties result in cool and dry touch that gives cooling effect in sportswear, and the warmth properties (when used as an insulation layer). These cooling and warming effects are adaptive to the environment giving comfort in a broad range of climatic conditions. In this work, single yarns of Ne 80s were made. Yarns were made from conventional ring spinning. Different yarns of 100% cotton, 100% micro-Tencel and Cotton:micro-Tencel blends (67:33, 50:50:33:67) were made. The mechanical and comfort properties of the woven fabrics were compared. The mechanical properties include the tensile and tear strength, bending length, pilling and abrasion resistance whereas comfort properties include the air permeability, moisture management and thermal resistance. It is found that as the content of the micro-Tencel is increased, the mechanical and comfort properties of the woven fabric are also increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combed%20cotton" title="combed cotton">combed cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort%20properties" title=" comfort properties "> comfort properties </a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-Tencel" title=" micro-Tencel"> micro-Tencel</a> </p> <a href="https://publications.waset.org/abstracts/74702/the-mechanical-and-comfort-properties-of-cottonmicro-tencel-lawn-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Synthesis and Properties of Chitosan-Graft-Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafida%20Ferfera-Harrar">Hafida Ferfera-Harrar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Aiouaz"> Nacera Aiouaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Dairi"> Nassima Dairi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Super absorbents polymers received much attention and are used in many fields because of their superior characters to traditional absorbents, e.g., sponge and cotton. So, it is very important but challenging to prepare highly and fast-swelling super absorbents. A reliable, efficient and low-cost technique for removing heavy metal ions from waste water is the adsorption using bio-adsorbents obtained from biological materials, such as polysaccharides-based hydrogels super absorbents. In this study, novel multi-functional super absorbent composites type semi-interpenetrating polymer networks (Semi-IPNs) were prepared via graft polymerization of acrylamide onto chitosan backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium persulfate and N,N’ -methylenebisacrylamide as initiator and cross linker, respectively. These hydrogels were also partially hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. The formation of the grafted network was evidenced by Fourier Transform Infrared Spectroscopy (ATR-FTIR) and thermo gravimetric Analysis (TGA). The porous structures were observed by Scanning Electron Microscope (SEM). From TGA analysis, it was concluded that the incorporation of the Ge in the CTS-g-PAAm network has marginally affected its thermal stability. The effect of gelatin content on the swelling capacities of these super absorbent composites was examined in various media (distilled water, saline and pH-solutions).The water absorbency was enhanced by adding Ge in the network, where the optimum value was reached at 2 wt. % of Ge. Their hydrolysis has not only greatly optimized their absorption capacity but also improved the swelling kinetic. These materials have also showed reswelling ability. We believe that these super-absorbing materials would be very effective for the adsorption of harmful metal ions from waste water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=superabsorbent" title=" superabsorbent"> superabsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorbency" title=" water absorbency"> water absorbency</a> </p> <a href="https://publications.waset.org/abstracts/25966/synthesis-and-properties-of-chitosan-graft-polyacrylamidegelatin-superabsorbent-composites-for-wastewater-purification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Extraction of Strontium Ions through Ligand Assisted Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Kumar">Pradeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Kumar%20Chandra"> Abhishek Kumar Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Khanna"> Ashok Khanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extraction of Strontium by crown ether (DCH18C6) hasbeen investigated in [BMIM][TF2N] Ionic Liquid (IL) giving higher extraction ~98% and distribution ratio as compared to other organic solvents (Dodecane, Hexane, & Isodecyl alcohol + Dodecane). Distribution ratio of Sr in IL at 0.15M DCH18C6 indicates an enhancement of 20000, 2000, 500 times over Dodecane, Hexane and 5% Isodecyl Alcohol + 95 % Dodecane at 0.01M aqueous acidity respectively. In presence of IL, Sr extraction decreases with increase in HNO3 concentration in aqueous phase whereas opposite trend was observed with organic solvents.Extraction of Sr initially increases with increase in DCH18C6 concentration in IL, finally reaching an asymptotic constant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20ratio" title="distribution ratio">distribution ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=ligand" title=" ligand"> ligand</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvent" title=" organic solvent"> organic solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=stripping" title=" stripping"> stripping</a> </p> <a href="https://publications.waset.org/abstracts/76098/extraction-of-strontium-ions-through-ligand-assisted-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Stability Enhancement of Supported Ionic Liquid Membranes Using Ion Gels for Gas Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Hwang">Y. H. Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Won"> J. Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Kang"> Y. S. Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supported ionic liquid membranes (SILMs) have attracted due to the negligible vapor pressure of ionic liquids (ILs) as well as the high gas selectivity for specific gases such as CO2 or olefin. 1-ethyl-3-methylimidazolium tricyanomethanide ([EMIM][TCM]), 1-butyl-3-methylimidazolium tricyanomethanide ([BMIM][TCM]), show high CO2 solubility, CO2 absorption, rapid CO2 absorption rate and negligible vapor pressure, SILMs using these ILs have been good candidates as CO2 separation membranes. However, SILM has to be operated at a low differential pressure to prevent the solvent from being expelled from the pores of supported membranes. In this paper, we improve the mechanical strength by forming ion gels which provide the stability while it retains the diffusion properties of the liquid stage which affects the gas separation properties. The ion gel was created by the addition of tri-block copolymer, poly(styrene-ethylene oxide-b-styrene) in RTIL. SILM using five different RTILs, are investigated with and without ion gels. The gas permeance were measured and the gas performance with and without the SEOS were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20gel" title="ion gel">ion gel</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a> </p> <a href="https://publications.waset.org/abstracts/15496/stability-enhancement-of-supported-ionic-liquid-membranes-using-ion-gels-for-gas-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Degumming of Eri Silk Fabric with Ionic Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shweta%20K.%20Vyas">Shweta K. Vyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Musale"> Rakesh Musale</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20R.%20Shukla"> Sanjeev R. Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eri silk is a non mulberry silk which is obtained without killing the silkworms and hence it is also known as Ahmisa silk. In the present study, the results on degumming of eri silk with alkaline peroxide have been compared with those obtained by using ionic liquid (IL) 1-Butyl-3-methylimidazolium chloride [BMIM]Cl. Experiments were designed to find out the optimum processing parameters for degumming of eri silk by response surface methodology. The statistical software, Design-Expert 6.0 was used for regression analysis and graphical analysis of the responses obtained by running the set of designed experiments. Analysis of variance (ANOVA) was used to estimate the statistical parameters. The polynomial equation of quadratic order was employed to fit the experimental data. The quality and model terms were evaluated by F-test. Three dimensional surface plots were prepared to study the effect of variables on different responses. The optimum conditions for IL treatment were selected from predicted combinations and the experiments were repeated under these conditions to determine the reproducibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silk%20degumming" title="silk degumming">silk degumming</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a> </p> <a href="https://publications.waset.org/abstracts/18585/degumming-of-eri-silk-fabric-with-ionic-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Solid Polymer Electrolyte Prepared From Nostoc Commune Cyanobacteria Exopolysaccharides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernando%20G.%20Torres">Fernando G. Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20P.%20Troncoso"> Omar P. Troncoso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wide range of bacteria synthesizes and secretes polymeric substances composed of a mixture of high-molecular-mass heteropolysaccharides. Nostoc commune cyanobacteria grow in colonial spherules of 10-20 mm in diameter. These spherules are filled with an internal gel made from a variety of polysaccharides known as Nostoc commune exopolysaccharides (NCE). In this paper, we report the use of these exopolysaccharides as a raw material for the preparation of a solid polymer electrolyte. Ammonium iodide and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) salts were used to provide NCE films with ionic conductivity. In addition, a carboxymethylation treatment was used to further increase the conductivity of NCE films. The structural characterization of the NCE films was assessed by FTIR, XRD, and DSC tests. Broadband dielectric spectroscopy (BDS) and dielectric thermal analysis (DETA) were used to evaluate the ionic conductivity of the samples. The results showed that NCE can be used to prepare solid polymer electrolyte films and that carboxymethylation improves their ionic conductivity. These NCE films can be used in the development of novel energy storage devices such as flat batteries or supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrolyte" title="polymer electrolyte">polymer electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Nostoc%20commune" title=" Nostoc commune"> Nostoc commune</a>, <a href="https://publications.waset.org/abstracts/search?q=cyanobacteria" title=" cyanobacteria"> cyanobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=exopolysaccharides" title=" exopolysaccharides"> exopolysaccharides</a> </p> <a href="https://publications.waset.org/abstracts/138093/solid-polymer-electrolyte-prepared-from-nostoc-commune-cyanobacteria-exopolysaccharides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Beneficiation of Dye Sensitized Solar Cell as Energy Saving from Apple Skin with TiO2 Electrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Astari%20Indarsari">Astari Indarsari</a>, <a href="https://publications.waset.org/abstracts/search?q=Bastian%20B.%20Purba"> Bastian B. Purba</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Fadlilah"> Muhammad Fadlilah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Indonesian climates that have the tropic climate, one of the potential energy sources is coming from solar energy. From the solar energy, we can convert it into the others energy, such as electrical energy. In this topic, we want to do the research about Dye Sensitized Solar Cell (DSSC). The materials that we use as sensitizer is anthocyanin that we extract from apple skin, because the anthocyanin is one of the most effective as a sensitizer for DSSC. The variable in this research is pH. The pH that we used are pH 0,5; pH 1; pH 1,5; pH 2; pH 2,5. The method is electrolysis, and we use TiO2 as sensitized material. The hypothesis from this research is the smaller pH can make higher the efficiency of the absorbent of the solar energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthocyanin" title="anthocyanin">anthocyanin</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=DSSC" title=" DSSC"> DSSC</a>, <a href="https://publications.waset.org/abstracts/search?q=apple%20skin" title=" apple skin"> apple skin</a> </p> <a href="https://publications.waset.org/abstracts/57912/beneficiation-of-dye-sensitized-solar-cell-as-energy-saving-from-apple-skin-with-tio2-electrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Munting Kamay, Munting Gawa: Children's Development Training, a UCU Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20A.%20Montero">Elizabeth A. Montero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The project contemplated in this study particularly aimed at enabling public school children of ages ten to twelve who belong to low and middle income families. The pupils were provided training on communication, work, computer and social skills. In this study, the researcher hypothesized that children given the opportunity to develop a skill through guidance and proper supervision will significantly learn, improve and develop a skill. Since children’s minds are highly absorbent like a sponge absorbing anything within its capacity to take, it is ideal and necessary that education should provide an environment that is rich offering an array of meaningful experiences. The context of this study is well balanced since it catered to the children’s communication, work, computer and social skills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munting%20Kamay" title="Munting Kamay">Munting Kamay</a>, <a href="https://publications.waset.org/abstracts/search?q=Munting%20Gawa" title=" Munting Gawa"> Munting Gawa</a>, <a href="https://publications.waset.org/abstracts/search?q=children%E2%80%99s%20development%20training" title=" children’s development training"> children’s development training</a>, <a href="https://publications.waset.org/abstracts/search?q=UCU%20experience" title=" UCU experience"> UCU experience</a> </p> <a href="https://publications.waset.org/abstracts/15535/munting-kamay-munting-gawa-childrens-development-training-a-ucu-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Effect of Superabsorbent for the Improvement of Car Seat's Thermal Comfort</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Funda%20Buyuk%20Mazari">Funda Buyuk Mazari</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Mazari"> Adnan Mazari</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonin%20Havelka"> Antonin Havelka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Wiener"> Jakub Wiener</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad%20Naeem"> Jawad Naeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of super absorbent polymers (SAP) for moisture absorption and comfort is still unexplored. In this research the efficiency of different SAP fibrous webs are determined under different moisture percentage to examine the sorption and desorption efficiency. The SAP fibrous web with low thickness and high moisture absorption are tested with multilayer sandwich structure of car seat cover to determine the moisture absorption through cover material. Sweating guarded hot plate (SGHP) from company Atlas is used to determine the moisture permeability of different car seat cover with superabsorbent layer closed with impermeable polyurethane foam. It is observed that the SAP fibrous layers are very effective in absorbing and desorbing water vapor under extreme high and low moisture percentages respectively. In extreme humid condition (95 %RH) the 20g of SAP layer absorbs nearly 3g of water vapor per hour and reaches the maximum absorption capacity in 6 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=car%20seat" title="car seat">car seat</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort" title=" comfort"> comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=SAF" title=" SAF"> SAF</a>, <a href="https://publications.waset.org/abstracts/search?q=superabsorbent" title=" superabsorbent"> superabsorbent</a> </p> <a href="https://publications.waset.org/abstracts/43231/effect-of-superabsorbent-for-the-improvement-of-car-seats-thermal-comfort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaseen%20Muhammad">Yaseen Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenxia%20Zhao"> Zhenxia Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhangfa%20Tong"> Zhangfa Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT%20simulation" title="DFT simulation">DFT simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS%20and%20reaction%20mechanism" title=" GC-MS and reaction mechanism"> GC-MS and reaction mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=Ionic%20liquid%20coupled%20HDS%20of%20DBT" title=" Ionic liquid coupled HDS of DBT"> Ionic liquid coupled HDS of DBT</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Pd%20loaded%20catalyst" title=" low Pd loaded catalyst"> low Pd loaded catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20operating%20condition" title=" mild operating condition "> mild operating condition </a> </p> <a href="https://publications.waset.org/abstracts/90224/catalytic-hydrodesulfurization-of-dibenzothiophene-coupled-with-ionic-liquids-over-low-pd-incorporated-co-mo-at-al2o3-and-ni-mo-at-al2o3-catalysts-at-mild-operating-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> One-Pot Synthesis of 5-Hydroxymethylfurfural from Hexose Sugar over Chromium Impregnated Zeolite Based Catalyst, Cr/H-ZSM-5</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20K.%20Degife">Samuel K. Degife</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20K.%20Pant"> Kamal K. Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=Sapna%20Jain"> Sapna Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world´s population and industrialization of countries continued to grow in an alarming rate irrespective of the security for food, energy supply, and pure water availability. As a result, the global energy consumption is observed to increase significantly. Fossil energy resources that mainly comprised of crude oil, coal, and natural gas have been used by mankind as the main energy source for almost two centuries. However, sufficient evidences are revealing that the consumption of fossil resource as transportation fuel emits environmental pollutants such as CO2, NOx, and SOx. These resources are dwindling rapidly besides enormous amount of problems associated such as fluctuation of oil price and instability of oil-rich regions. Biomass is a promising renewable energy candidate to replace fossil-based transportation fuel and chemical production. The present study aims at valorization of hexose sugars (glucose and fructose) using zeolite based catalysts in imidazolium based ionic liquid (1-butyl-3-methylimidazolium chloride, [BMIM] Cl) reaction media. The catalytic effect chromium impregnated H-ZSM-5 (Cr/H-ZSM-5) was studied for dehydration of hexose sugars. The wet impregnation method was used to prepare Cr/H-ZSM-5 catalyst. The characterization of the prepared catalyst was performed using techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Temperature-programmed desorption of ammonia (NH3-TPD) and BET-surface area analysis. The dehydration product, 5-hydroxymethylfurfural (5-HMF), was analyzed using high-performance liquid chromatography (HPLC). Cr/H-ZSM-5 was effective in dehydrating fructose with 87% conversion and 55% yield 5-HMF at 180 oC for 30 min of reaction time compared with H-ZSM-5 catalyst which yielded only 31% of 5-HMF at identical reaction condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium" title="chromium">chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=hexose" title=" hexose"> hexose</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/86044/one-pot-synthesis-of-5-hydroxymethylfurfural-from-hexose-sugar-over-chromium-impregnated-zeolite-based-catalyst-crh-zsm-5" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> A Comparative Assessment of Membrane Bioscrubber and Classical Bioscrubber for Biogas Purification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Tilahun">Ebrahim Tilahun</a>, <a href="https://publications.waset.org/abstracts/search?q=Erkan%20Sahinkaya"> Erkan Sahinkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bari%C5%9F%20Calli%CC%87"> Bariş Calli̇</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Raw biogas is a valuable renewable energy source however it usually needs removal of the impurities. The presence of hydrogen sulfide (H2S) in the biogas has detrimental corrosion effects on the cogeneration units. Removal of H2S from the biogas can therefore significantly improve the biogas quality. In this work, a conventional bioscrubber (CBS), and a dense membrane bioscrubber (DMBS) were comparatively evaluated in terms of H2S removal efficiency (RE), CH4 enrichment and alkaline consumption at gas residence times ranging from 5 to 20 min. Both bioscrubbers were fed with a synthetic biogas containing H2S (1%), CO2 (39%) and CH4 (60%). The results show that high RE (98%) was obtained in the DMBS when gas residence time was 20 min, whereas slightly lower CO2 RE was observed. While in CBS system the outlet H2S concentration was always lower than 250 ppmv, and its H2S RE remained higher than 98% regardless of the gas residence time, although the high alkaline consumption and frequent absorbent replacement limited its cost-effectiveness. The result also indicates that in DMBS when the gas residence time increased to 20 min, the CH4 content in the treated biogas enriched upto 80%. However, while operating the CBS unit the CH4 content of the raw biogas (60%) decreased by three fold. The lower CH4 content in CBS was probably caused by extreme dilution of biogas with air (N2 and O2). According to the results obtained here the DMBS system is a robust and effective biotechnology in comparison with CBS. Hence, DMBS has a better potential for real scale applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas" title="biogas">biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=bioscrubber" title=" bioscrubber"> bioscrubber</a>, <a href="https://publications.waset.org/abstracts/search?q=desulfurization" title=" desulfurization"> desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS%20membrane" title=" PDMS membrane"> PDMS membrane</a> </p> <a href="https://publications.waset.org/abstracts/84585/a-comparative-assessment-of-membrane-bioscrubber-and-classical-bioscrubber-for-biogas-purification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Electrospinning Preparation of Superhydrophobic Polydimethylsiloxane/Polystyrene Nanofibrous Membranes for Carbon Dioxide Capture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Yu%20Chang">Chia-Yu Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CO2 capture has attracted significant research attention due to global warming. Among the various CO2 capture methods, membrane technology has proven to be highly efficient in capturing CO2 due to the ease at which this technology can be scaled up, its low energy consumptions, small area requirements and overall environmental friendliness for use by industrial plants. Capturing CO2 is to use a membrane contactor with a combination of water-repellent porous membranes and chemical absorption processes. In a CO2 membrane contactor system, CO2 passes through a hydrophobic porous membrane in the gas phase to contact the amine absorbent in the liquid phase. Consequently, additional CO2 gas is absorbed by amine absorbents. This study examines highly porous Polydimethylsiloxane (PDMS)/Polystyrene (PS) Nanofibrous Membranes and successfully coated onto a macroporous Al2O3 membrane. The performance of these materials in a membrane contactor system for CO2 absorption is also investigated. Compared with pristine PS nanofibrous membranes, the PDMS/PS nanofibrous membranes exhibit greater solvent resistance and mechanical strength, making them more suitable for use in CO2 capture by the membrane contactor. The resulting hydrophobic membrane contactor also demonstrates the potential for large-scale CO2 absorption during post-combustion processes in power plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title="CO2 capture">CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=polydimethylsiloxane" title=" polydimethylsiloxane"> polydimethylsiloxane</a>, <a href="https://publications.waset.org/abstracts/search?q=superhydrophobic" title=" superhydrophobic"> superhydrophobic</a> </p> <a href="https://publications.waset.org/abstracts/21442/electrospinning-preparation-of-superhydrophobic-polydimethylsiloxanepolystyrene-nanofibrous-membranes-for-carbon-dioxide-capture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Effect of Temperature on the Binary Mixture of Imidazolium Ionic Liquid with Pyrrolidin-2-One: Volumetric and Ultrasonic Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Srinivasa%20Krishna">T. Srinivasa Krishna</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Narendra"> K. Narendra</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Thomas"> K. Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Raju"> S. S. Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Munibhadrayya"> B. Munibhadrayya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The densities, speeds of sound and refractive index of the binary mixture of ionic liquid (IL) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Imide]) and Pyrrolidin-2-one(PY) was measured at atmospheric pressure, and over the range of temperatures T= (298.15 -323.15)K. The excess molar volume, excess isentropic compressibility, excess speed of sound, partial molar volumes, and isentropic partial molar compressibility were calculated from the values of the experimental density and speed of sound. From the experimental data excess thermal expansion coefficients and isothermal pressure coefficient of excess molar enthalpy at 298.15K were calculated. The results were analyzed and were discussed from the point of view of structural changes. Excess properties were calculated and correlated by the Redlich–Kister and the Legendre polynomial equation and binary coefficients were obtained. Values of excess partial volumes at infinite dilution for the binary system at different temperatures were calculated from the adjustable parameters obtained from Legendre polynomial and Redlich–Kister smoothing equation. Deviation in refractive indices ΔnD and deviation in molar refraction, ΔRm were calculated from the measured refractive index values. Equations of state and several mixing rules were used to predict refractive indices of the binary mixtures and compared with the experimental values by means of the standard deviation and found to be in excellent agreement. By using Prigogine–Flory–Patterson (PFP) theory, the above thermodynamic mixing functions have been calculated and the results obtained from this theory were compared with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density" title="density">density</a>, <a href="https://publications.waset.org/abstracts/search?q=refractive%20index" title=" refractive index"> refractive index</a>, <a href="https://publications.waset.org/abstracts/search?q=speeds%20of%20sound" title=" speeds of sound"> speeds of sound</a>, <a href="https://publications.waset.org/abstracts/search?q=Prigogine-Flory-Patterson%20theory" title=" Prigogine-Flory-Patterson theory"> Prigogine-Flory-Patterson theory</a> </p> <a href="https://publications.waset.org/abstracts/36516/effect-of-temperature-on-the-binary-mixture-of-imidazolium-ionic-liquid-with-pyrrolidin-2-one-volumetric-and-ultrasonic-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Effect of Whey Protein Based Edible Coating on the Moisture Loss and Sensory Attributes of Fresh Mutton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Belgheisi">Saba Belgheisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food packaging, is an important discipline in the area of food technology, concerns preservation and protection of foods. The objective of this research was to determine of the effect of whey protein based edible coating on the moisture loss and sensory attributes of fresh mutton after 0, 1, 3 and 5 days at 5° C. The moisture content, moisture loss and sensory attributes (juiciness, color and odor) of the coated and uncoated samples were analyzed. The results showed that, moisture content, moisture loss, juiciness and color of the coated and uncoated samples have significant differences (p < 0.05) at the intervals of 0 to 1 and 1 to 3 days of storage. But no significant difference was observed at interval time 3 to 5 days of storage (p > 0.05). Also, there was no significant differences in the odor values of the coated and uncoated samples (p > 0.05). Therefore, the coated samples had consistently more moisture, juiciness and colored values than uncoated samples after 3 days at 5° C. So, whey protein edible coating could enhance product presentation and eliminate the need for placing absorbent pads at the bottom of the trays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20protein" title=" whey protein"> whey protein</a>, <a href="https://publications.waset.org/abstracts/search?q=mutton" title=" mutton"> mutton</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory" title=" sensory "> sensory </a> </p> <a href="https://publications.waset.org/abstracts/21747/effect-of-whey-protein-based-edible-coating-on-the-moisture-loss-and-sensory-attributes-of-fresh-mutton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tingkai%20Zhao">Tingkai Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingtian%20Hu"> Jingtian Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiarong%20Peng"> Xiarong Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenbo%20Yang"> Wenbo Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiehu%20Li"> Tiehu Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20carbon%20nanotubes" title="amorphous carbon nanotubes">amorphous carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20aerogel" title=" graphene aerogel"> graphene aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=barium%20ferrite%20nanorod" title=" barium ferrite nanorod"> barium ferrite nanorod</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20wave%20absorption" title=" electromagnetic wave absorption"> electromagnetic wave absorption</a> </p> <a href="https://publications.waset.org/abstracts/83830/synthesis-and-electromagnetic-wave-absorbing-property-of-amorphous-carbon-nanotube-networks-on-a-3d-graphene-aerogelbafe12o19-nanorod-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Modelling of Filters CO2 (Carbondioxide) and CO (Carbonmonoxide) Portable in Motor Vehicle's Exhaust with Absorbent Chitosan </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuandanis%20Wahyu%20Salam">Yuandanis Wahyu Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfi%20Panrepi"> Irfi Panrepi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuraeni"> Nuraeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increased of greenhouse gases, that is CO2 (carbondioxide) in atmosphere induce the rising of earth’s surface average temperature. One of the largest contributors to greenhouse gases is motor vehicles. Smoke which is emitted by motor’s exhaust containing gases such as CO2 (carbondioxide) and CO (carbon monoxide). Chemically, chitosan is cellulose like plant fiber that has the ability to bind like absorbant foam. Chitosan is a natural antacid (absorb toxins), when chitosan is spread over the surface of water, chitosan is able to absorb fats, oils, heavy metals, and other toxic substances. Judging from the nature of chitosan is able to absorb various toxic substances, it is expected that chitosan is also able to filter out gas emission from the motor vehicles. This study designing a carbondioxide filter in the exhaust of motor vehicles using chitosan as its absorbant. It aims to filter out gases in the exhaust so that CO2 and CO can be reducted before emitted by exhaust. Form of this reseach is study of literature and applied with experimental research of tool manufacture. Data collected through documentary studies by studying books, magazines, thesis, search on the internet as well as the relevant reference. This study will produce a filters which has main function to filter out CO2 and CO emissions that generated by vehicle’s exhaust and can be used as portable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filter" title="filter">filter</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=carbondioxide" title=" carbondioxide"> carbondioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust" title=" exhaust"> exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a> </p> <a href="https://publications.waset.org/abstracts/36368/modelling-of-filters-co2-carbondioxide-and-co-carbonmonoxide-portable-in-motor-vehicles-exhaust-with-absorbent-chitosan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Environmental and Economic Analysis of Absorption Air Conditioning Unit Onboard Marine Vehicles: Case Study of Passenger Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20S.%20Seddiek">Ibrahim S. Seddiek</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20R.%20Ammar"> Nader R. Ammar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important equipment that affects the performance of passenger ships is the air conditioning system, which in turn consumes considerable electric loads. In this paper, the waste heat energies of exhaust gases and jacket cooling water of marine diesel engines for these ships are analyzed to be used as heat sources for absorption refrigeration unit (ARU). Economic and environmental analysis of the absorption refrigeration cycle operated with the two heat sources that use lithium bromide as absorbent is carried out. In addition, environmental and economic analysis for the absorption cycle is performed. As a case study, high-speed passenger vessel operating in the Red Sea area has been investigated. The results show that a considerable specific economic benefit could be achieved in case of applying absorption air condition that operates by water cooling system over that operates by main engine exhaust gases. Environmentally, applying ARU machine during cruise will reduce total ship’s fuel consumption by about 104 ton per year. This will result in reducing NOₓ, SOₓ, and CO₂ emissions with cost-effectiveness of 6.99 $/kg, 18.44 $/kg, and 0.117 $/kg, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ship%20emissions" title="ship emissions">ship emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=IMO" title=" IMO"> IMO</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20bromide-water%20ARU" title=" lithium bromide-water ARU"> lithium bromide-water ARU</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic" title=" thermodynamic"> thermodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20and%20environmental%20analysis" title=" economic and environmental analysis"> economic and environmental analysis</a> </p> <a href="https://publications.waset.org/abstracts/82155/environmental-and-economic-analysis-of-absorption-air-conditioning-unit-onboard-marine-vehicles-case-study-of-passenger-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Potential Application of Modified Diglycolamide Resin for Rare Earth Element Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junnile%20Romero">Junnile Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilhwan%20Park"> Ilhwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Vannie%20Joy%20Resabal"> Vannie Joy Resabal</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlito%20Tabelin"> Carlito Tabelin</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Alorro"> Richard Alorro</a>, <a href="https://publications.waset.org/abstracts/search?q=Leaniel%20Silva"> Leaniel Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Zoleta"> Joshua Zoleta</a>, <a href="https://publications.waset.org/abstracts/search?q=Takunda%20Mandu"> Takunda Mandu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kosei%20Aikawa"> Kosei Aikawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayumi%20Ito"> Mayumi Ito</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoki%20Hiroyoshi"> Naoki Hiroyoshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare earth elements (REE) play a vital role in technological advancement due to their unique physical and chemical properties essential for various renewable energy applications. However, this increasing demand represents a challenging task for sustainability that corresponds to various research interests relating to the development of various extraction techniques, particularly on the extractant being used. In this study, TK221 (a modified polymer resin containing diglycolamide, carbamoyl methyl phosphine oxide (CMPO), and diglycolamide (DGA-N)) has been investigated as a conjugate extractant. FTIR and SEM analysis results confirmed the presence of CMPO and DGA-N being coated onto the PS-DVB support of TK221. Moreover, the kinetic rate law and adsorption isotherm batch test was investigated to understand the corresponding adsorption mechanism. The results show that REEs’ (Nd, Y, Ce, and Er) obtained pseudo-second-order kinetics and Langmuir isotherm, suggesting that the adsorption mechanism undergoes a single monolayer adsorption site via a chemisorption process. The Qmax values of Nd, Ce, Er, Y, and Fe were 45.249 mg/g, 43.103 mg/g, 35.088 mg/g, 15.552 mg/g, and 12.315 mg/g, respectively. This research further suggests that TK221 polymer resin can be used as an alternative absorbent material for an effective REE extraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20element" title="rare earth element">rare earth element</a>, <a href="https://publications.waset.org/abstracts/search?q=diglycolamide" title=" diglycolamide"> diglycolamide</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20resin" title=" extraction resin"> extraction resin</a> </p> <a href="https://publications.waset.org/abstracts/161913/potential-application-of-modified-diglycolamide-resin-for-rare-earth-element-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%5Bbmim%5D%5BPF%E2%82%86%5D%20as%20absorbent&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%5Bbmim%5D%5BPF%E2%82%86%5D%20as%20absorbent&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%5Bbmim%5D%5BPF%E2%82%86%5D%20as%20absorbent&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>