CINXE.COM

Search results for: quantum enabled device

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: quantum enabled device</title> <meta name="description" content="Search results for: quantum enabled device"> <meta name="keywords" content="quantum enabled device"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="quantum enabled device" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="quantum enabled device"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3040</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: quantum enabled device</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3040</span> An Authentication Protocol for Quantum Enabled Mobile Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natarajan%20Venkatachalam">Natarajan Venkatachalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrahmanya%20V.%20R.%20K.%20Rao"> Subrahmanya V. R. K. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Karthikeyan%20Dhandapani"> Vijay Karthikeyan Dhandapani</a>, <a href="https://publications.waset.org/abstracts/search?q=Swaminathan%20Saravanavel"> Swaminathan Saravanavel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quantum communication technology is an evolving design which connects multiple quantum enabled devices to internet for secret communication or sensitive information exchange. In future, the number of these compact quantum enabled devices will increase immensely making them an integral part of present communication systems. Therefore, safety and security of such devices is also a major concern for us. To ensure the customer sensitive information will not be eavesdropped or deciphered, we need a strong authentications and encryption mechanism. In this paper, we propose a mutual authentication scheme between these smart quantum devices and server based on the secure exchange of information through quantum channel which gives better solutions for symmetric key exchange issues. An important part of this work is to propose a secure mutual authentication protocol over the quantum channel. We show that our approach offers robust authentication protocol and further our solution is lightweight, scalable, cost-effective with optimized computational processing overheads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20cryptography" title="quantum cryptography">quantum cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20key%20distribution" title=" quantum key distribution"> quantum key distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20quantum%20communication" title=" wireless quantum communication"> wireless quantum communication</a>, <a href="https://publications.waset.org/abstracts/search?q=authentication%20protocol" title=" authentication protocol"> authentication protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device" title=" quantum enabled device"> quantum enabled device</a>, <a href="https://publications.waset.org/abstracts/search?q=trusted%20third%20party" title=" trusted third party"> trusted third party</a> </p> <a href="https://publications.waset.org/abstracts/99935/an-authentication-protocol-for-quantum-enabled-mobile-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3039</span> Spaces of Interpretation: Personal Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yehuda%20Roth">Yehuda Roth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In quantum theory, a system’s time evolution is predictable unless an observer performs measurement, as the measurement process can randomize the system. This randomness appears when the measuring device does not accurately describe the measured item, i.e., when the states characterizing the measuring device appear as a superposition of those being measured. When such a mismatch occurs, the measured data randomly collapse into a single eigenstate of the measuring device. This scenario resembles the interpretation process in which the observer does not experience an objective reality but interprets it based on preliminary descriptions initially ingrained into his/her mind. This distinction is the motivation for the present study in which the collapse scenario is regarded as part of the interpretation process of the observer. By adopting the formalism of the quantum theory, we present a complete mathematical approach that describes the interpretation process. We demonstrate this process by applying the proposed interpretation formalism to the ambiguous image "My wife and mother-in-law" to identify whether a woman in the picture is young or old. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum-like%20interpretation" title="quantum-like interpretation">quantum-like interpretation</a>, <a href="https://publications.waset.org/abstracts/search?q=ambiguous%20image" title=" ambiguous image"> ambiguous image</a>, <a href="https://publications.waset.org/abstracts/search?q=determination" title=" determination"> determination</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum-like%20collapse" title=" quantum-like collapse"> quantum-like collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=classified%20representation" title=" classified representation"> classified representation</a> </p> <a href="https://publications.waset.org/abstracts/158438/spaces-of-interpretation-personal-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3038</span> Introducing Quantum-Weijsberg Algebras by Redefining Quantum-MV Algebras: Characterization, Properties, and Other Important Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lavinia%20Ciungu">Lavinia Ciungu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decades, developing algebras related to the logical foundations of quantum mechanics became a central topic of research. Generally known as quantum structures, these algebras serve as models for the formalism of quantum mechanics. In this work, we introduce the notion of quantum-Wajsberg algebras by redefining the quantum-MV algebras starting from involutive BE algebras. We give a characterization of quantum-Wajsberg algebras, investigate their properties, and show that, in general, quantum-Wajsberg algebras are not (commutative) quantum-B algebras. We also define the ∨-commutative quantum-Wajsberg algebras and study their properties. Furthermore, we prove that any Wajsberg algebra (bounded ∨-commutative BCK algebra) is a quantum-Wajsberg algebra, and we give a condition for a quantum-Wajsberg algebra to be a Wajsberg algebra. We prove that Wajsberg algebras are both quantum-Wajsberg algebras and commutative quantum-B algebras. We establish the connection between quantum-Wajsberg algebras and quantum-MV algebras, proving that the quantum-Wajsberg algebras are term equivalent to quantum-MV algebras. We show that, in general, the quantum-Wajsberg algebras are not commutative quantum-B algebras and if a quantum-Wajsberg algebra is self-distributive, then the corresponding quantum-MV algebra is an MV algebra. Our study could be a starting point for the development of other implicative counterparts of certain existing algebraic quantum structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum-Wajsberg%20algebra" title="quantum-Wajsberg algebra">quantum-Wajsberg algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum-MV%20algebra" title=" quantum-MV algebra"> quantum-MV algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=MV%20algebra" title=" MV algebra"> MV algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=Wajsberg%20algebra" title=" Wajsberg algebra"> Wajsberg algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=BE%20algebra" title=" BE algebra"> BE algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum-B%20algebra" title=" quantum-B algebra"> quantum-B algebra</a> </p> <a href="https://publications.waset.org/abstracts/192449/introducing-quantum-weijsberg-algebras-by-redefining-quantum-mv-algebras-characterization-properties-and-other-important-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3037</span> Polyethylenimine-Ethoxylated Dual Interfacial Layers for High-Efficient Quantum Dot Light-Emitting Diodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woosuk%20Lee">Woosuk Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We controlled the electron injection rate in inverted quantum dot light-emitting diode (QLED) by inserting PEIE layer between ZnO electron transport layer(ETL) and quantum dots(QDs) layer and successfully demonstrated high efficiency of QLEDs. The inverted QLED has the layer structure of ITO(cathode)/ ZnO NPs/PEIE/QDs/PEIE/P-TPD/MoO3/Al(anode). The PEIE between poly-TPD hole transport layer (HTL) and quantum dot emitting layer protects QD EML during HTL coating process and improves the surface morphology. In addition, the hole injection barrier is reduced by upshifting the valence band maximum (VBM) of QDs. An additional layer of PEIE was introduced between ZnO and QD to balance charge within QD emissive layer in device, which serves as an effective electron blocking layer without changing device operating condition such as turn-on voltage and emissive spectra. As a result, the optimized QLED with 5nm PEIE shows a ~36% improved current efficiency and external quantum efficiency (EQE) compared to the QLED without PEIE.(maximum current efficiency, and EQE are achieved 70cd/A and 17.3%, respectively). In particular, the maximum brightness of the optimized QLED dramatically improved by a factor of 2.3 relative to the QLED without PEIE. The main reasons for these QLED performance improvement are due to the suppressing the leakage current across the device and well confined exciton by inserting PEIE layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot%20light-emitting%20diodes" title="quantum dot light-emitting diodes">quantum dot light-emitting diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20layer" title=" interfacial layer"> interfacial layer</a>, <a href="https://publications.waset.org/abstracts/search?q=charge-injection%20balance" title=" charge-injection balance"> charge-injection balance</a>, <a href="https://publications.waset.org/abstracts/search?q=suppressing%20QD%20charging" title=" suppressing QD charging"> suppressing QD charging</a> </p> <a href="https://publications.waset.org/abstracts/89085/polyethylenimine-ethoxylated-dual-interfacial-layers-for-high-efficient-quantum-dot-light-emitting-diodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3036</span> Capacitance Models of AlGaN/GaN High Electron Mobility Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Douara">A. Douara</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kermas"> N. Kermas</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Djellouli"> B. Djellouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we report calculations of gate capacitance of AlGaN/GaN HEMTs with nextnano device simulation software. We have used a physical gate capacitance model for III-V FETs that incorporates quantum capacitance and centroid capacitance in the channel. These simulations explore various device structures with different values of barrier thickness and channel thickness. A detailed understanding of the impact of gate capacitance in HEMTs will allow us to determine their role in future 10 nm physical gate length node. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gate%20capacitance" title="gate capacitance">gate capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=AlGaN%2FGaN" title=" AlGaN/GaN"> AlGaN/GaN</a>, <a href="https://publications.waset.org/abstracts/search?q=HEMTs" title=" HEMTs"> HEMTs</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20%20capacitance" title=" quantum capacitance"> quantum capacitance</a>, <a href="https://publications.waset.org/abstracts/search?q=centroid%20capacitance" title=" centroid capacitance"> centroid capacitance</a> </p> <a href="https://publications.waset.org/abstracts/39564/capacitance-models-of-algangan-high-electron-mobility-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3035</span> Fabrication and Properties of Al2O3/Si Quantum Well-Structured Silicon Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwang-Ho%20Kim">Kwang-Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan-Hong%20Min"> Kwan-Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Pyungwoo%20Jang"> Pyungwoo Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chisup%20Jung"> Chisup Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyu%20Seomoon"> Kyu Seomoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By restricting the dimensions of silicon to less than Bohr radius of bulk crystalline silicon (∼5 nm), quantum confinement causes its effective bandgap to increase. Therefore, silicon quantum wells (QWs) using these quantum phenomena could be a good candidate to achieve high performance silicon solar cells. The Al2O3/Si QW structures were fabricated by using the successive deposition technique, as a quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the 3rd generation solar cell applications. In Si/Al2O3 QWs, the thicknesses of Si layers and Al2O3 layers were varied between 1 to 5 nm, respectively. The roughness of deposited Si on Al2O3 was less than 4 Å in the thickness of 2 nm. By using the Al2O3/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The discussion about the other properties such as electrical and optical properties of the QWs structures as well as the fabricated solar cells will be presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al2O3%2FSi%20quantum%20well" title="Al2O3/Si quantum well">Al2O3/Si quantum well</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20confinement" title=" quantum confinement"> quantum confinement</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20generation" title=" third generation"> third generation</a>, <a href="https://publications.waset.org/abstracts/search?q=successive%20deposition%20technique" title=" successive deposition technique"> successive deposition technique</a> </p> <a href="https://publications.waset.org/abstracts/6308/fabrication-and-properties-of-al2o3si-quantum-well-structured-silicon-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3034</span> Threshold (K, P) Quantum Distillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Gupta">Shashank Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Cid"> Carlos Cid</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20John%20Munro"> William John Munro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum distillation is the task of concentrating quantum correlations present in N imperfect copies to M perfect copies (M < N) using free operations by involving all P the parties sharing the quantum correlation. We present a threshold quantum distillation task where the same objective is achieved but using lesser number of parties (K < P). In particular, we give an exact local filtering operations by the participating parties sharing high dimension multipartite entangled state to distill the perfect quantum correlation. Later, we bridge a connection between threshold quantum entanglement distillation and quantum steering distillation and show that threshold distillation might work in the scenario where general distillation protocol like DEJMPS does not work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20networks" title="quantum networks">quantum networks</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20distillation" title=" quantum distillation"> quantum distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20key%20distribution" title=" quantum key distribution"> quantum key distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=entanglement%20distillation" title=" entanglement distillation"> entanglement distillation</a> </p> <a href="https://publications.waset.org/abstracts/186155/threshold-k-p-quantum-distillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3033</span> Quantom Magnetic Effects of P-B Fusion in Plasma Focus Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Habibi">M. Habibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The feasibility of proton-boron fusion in plasmoids caused by magneto hydrodynamics instabilities in plasma focus devices is studied analytically. In plasmoids, fusion power for 76 keV < Ti < 1500 keV exceeds bremsstrahlung loss (W/Pb=5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus device will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect, W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion-electron collision rate due to quantization of electron orbits. While approximately there is no change in electron-ion collision rate, the effect of quantum magnetic field makes ions much hotter than electrons which enhance the fraction of fusion power to bremsstrahlung loss. Therefore self-sustained p-11B fusion reactions would be possible and it could be said that p-11B fuelled plasma focus device is a clean and efficient source of energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmoids" title="plasmoids">plasmoids</a>, <a href="https://publications.waset.org/abstracts/search?q=p11B%20fuel" title=" p11B fuel"> p11B fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20viscous%20heating" title=" ion viscous heating"> ion viscous heating</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20magnetic%20field" title=" quantum magnetic field"> quantum magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20focus%20device" title=" plasma focus device"> plasma focus device</a> </p> <a href="https://publications.waset.org/abstracts/26776/quantom-magnetic-effects-of-p-b-fusion-in-plasma-focus-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3032</span> Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Tancara">Diego Tancara</a>, <a href="https://publications.waset.org/abstracts/search?q=Raul%20Coto"> Raul Coto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariel%20Norambuena"> Ariel Norambuena</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoseein%20T.%20Dinani"> Hoseein T. Dinani</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20Fanchini"> Felipe Fanchini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum" title="quantum">quantum</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=kernel" title=" kernel"> kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=non-markovianity" title=" non-markovianity"> non-markovianity</a> </p> <a href="https://publications.waset.org/abstracts/165769/quantum-kernel-based-regressor-for-prediction-of-non-markovianity-of-open-quantum-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3031</span> Stern-Gerlach Force in Quantum Magnetic Field and Schrodinger&#039;s Cat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandip%20Singh">Mandip Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum entanglement plays a fundamental role in our understanding of counter-intuitive aspects of quantum reality. If classical physics is an approximation of quantum physics, then quantum entanglement should persist at a macroscopic scale. In this paper, a thought experiment is presented where a free falling spin polarized Bose-Einstein condensate interacts with a quantum superimposed magnetic field of nonzero gradient. In contrast to the semiclassical Stern-Gerlach experiment, the magnetic field and the spin degrees of freedom both are considered to be quantum mechanical in a generalized scenario. As a consequence, a Bose-Einstein condensate can be prepared at distinct locations in space in a sense of quantum superposition. In addition, the generation of Schrodinger-cat like quantum states shall be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Schrodinger-cat%20quantum%20states" title="Schrodinger-cat quantum states">Schrodinger-cat quantum states</a>, <a href="https://publications.waset.org/abstracts/search?q=macroscopic%20entanglement" title=" macroscopic entanglement"> macroscopic entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=macroscopic%20quantum%20fields" title=" macroscopic quantum fields"> macroscopic quantum fields</a>, <a href="https://publications.waset.org/abstracts/search?q=foundations%20of%20quantum%20physics" title=" foundations of quantum physics"> foundations of quantum physics</a> </p> <a href="https://publications.waset.org/abstracts/74746/stern-gerlach-force-in-quantum-magnetic-field-and-schrodingers-cat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3030</span> 3D Quantum Simulation of a HEMT Device Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kourdi">Z. Kourdi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouazza"> B. Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khaouani"> M. Khaouani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guen-Bouazza"> A. Guen-Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Djennati"> Z. Djennati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boursali"> A. Boursali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/mm, a peak extrinsic transconductance of 590 mS/mm at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEMT" title="HEMT">HEMT</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvaco" title=" Silvaco"> Silvaco</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20plate" title=" field plate"> field plate</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum" title=" quantum"> quantum</a> </p> <a href="https://publications.waset.org/abstracts/30552/3d-quantum-simulation-of-a-hemt-device-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3029</span> Science behind Quantum Teleportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ananya%20G.">Ananya G.</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Varshitha"> B. Varshitha</a>, <a href="https://publications.waset.org/abstracts/search?q=Shwetha%20S."> Shwetha S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavitha%20S.%20N."> Kavitha S. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar%20Gupta"> Praveen Kumar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Teleportation is the ability to travel by just reappearing at some other spot. Though teleportation has never been achieved, quantum teleportation is possible. Quantum teleportation is a process of transferring the quantum state of a particle onto another particle, under the circumstance that one does not get to know any information about the state in the process of transformation. This paper presents a brief overview of quantum teleportation, discussing the topics like Entanglement, EPR Paradox, Bell's Theorem, Qubits, elements for a successful teleport, some examples of advanced teleportation systems (also covers few ongoing experiments), applications (that includes quantum cryptography), and the current hurdles for future scientists interested in this field. Finally, major advantages and limitations to the existing teleportation theory are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teleportation" title="teleportation">teleportation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20teleportation" title=" quantum teleportation"> quantum teleportation</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20entanglement" title=" quantum entanglement"> quantum entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=qubits" title=" qubits"> qubits</a>, <a href="https://publications.waset.org/abstracts/search?q=EPR%20paradox" title=" EPR paradox"> EPR paradox</a>, <a href="https://publications.waset.org/abstracts/search?q=bell%20states" title=" bell states"> bell states</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20particles" title=" quantum particles"> quantum particles</a>, <a href="https://publications.waset.org/abstracts/search?q=spooky%20action%20at%20a%20distance" title=" spooky action at a distance"> spooky action at a distance</a> </p> <a href="https://publications.waset.org/abstracts/148679/science-behind-quantum-teleportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3028</span> Transient Performance Analysis of Gate Inside Junctionless Transistor (GI-JLT)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Singh">Sangeeta Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Kumar"> Pankaj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Kondekar"> P. N. Kondekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the transient device performance analysis of n-type Gate Inside Junctionless Transistor (GIJLT)has been evaluated. 3-D Bohm Quantum Potential (BQP)transport device simulation has been used to evaluate the delay and power dissipation performance. GI-JLT has a number of desirable device parameters such as reduced propagation delay, dynamic power dissipation, power and delay product, intrinsic gate delay and energy delay product as compared to Gate-all-around transistors GAA-JLT. In addition to this, various other device performance parameters namely, on/off current ratio, short channel effects (SCE), transconductance Generation Factor(TGF) and unity gain cut-off frequency (fT) and subthreshold slope (SS) of the GI-JLT and Gate-all-around junctionless transistor(GAA-JLT) have been analyzed and compared. GI-JLT shows better device performance characteristics than GAA-JLT for low power and high frequency applications, because of its larger gate electrostatic control on the device operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gate-inside%20junctionless%20transistor%20GI-JLT" title="gate-inside junctionless transistor GI-JLT">gate-inside junctionless transistor GI-JLT</a>, <a href="https://publications.waset.org/abstracts/search?q=gate-all-around%20junctionless%20transistor%20GAA-JLT" title=" gate-all-around junctionless transistor GAA-JLT"> gate-all-around junctionless transistor GAA-JLT</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20delay" title=" propagation delay"> propagation delay</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20delay%20product" title=" power delay product"> power delay product</a> </p> <a href="https://publications.waset.org/abstracts/9662/transient-performance-analysis-of-gate-inside-junctionless-transistor-gi-jlt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3027</span> Aperiodic and Asymmetric Fibonacci Quasicrystals: Next Big Future in Quantum Computation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatindranath%20Gain">Jatindranath Gain</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhumita%20DasSarkar"> Madhumita DasSarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudakshina%20Kundu"> Sudakshina Kundu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. Topological quantum computation is concerned with two-dimensional many body systems that support excitations. Anyons are elementary building block of quantum computations. When anyons tunneling in a double-layer system can transition to an exotic non-Abelian state and produce Fibonacci anyons, which are powerful enough for universal topological quantum computation (TQC).Here the exotic behavior of Fibonacci Superlattice is studied by using analytical transfer matrix methods and hence Fibonacci anyons. This Fibonacci anyons can build a quantum computer which is very emerging and exciting field today’s in Nanophotonics and quantum computation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=quasicrystals" title=" quasicrystals"> quasicrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=Multiple%20Quantum%20wells%20%28MQWs%29" title=" Multiple Quantum wells (MQWs)"> Multiple Quantum wells (MQWs)</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20method" title=" transfer matrix method"> transfer matrix method</a>, <a href="https://publications.waset.org/abstracts/search?q=fibonacci%20anyons" title=" fibonacci anyons"> fibonacci anyons</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20hall%20effect" title=" quantum hall effect"> quantum hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=nanophotonics" title=" nanophotonics"> nanophotonics</a> </p> <a href="https://publications.waset.org/abstracts/41369/aperiodic-and-asymmetric-fibonacci-quasicrystals-next-big-future-in-quantum-computation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3026</span> Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Osman%20Mohammed">Moustafa Osman Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The photocurrent generations are influencing ultra-high efficiency solar cells based on self-assembled quantum dot (QD) nanostructures. Nanocrystal quantum dots (QD) provide a great enhancement toward solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum enabled multi-exciton generation. Based on theoretical predictions, QDs have potential to improve systems efficiency in approximate regular electrons excitation intensity greater than 50%. In solar cell devices, an intermediate band formed by the electron levels in quantum dot systems. The spatial architecture is exploring how can solar cell integrate and produce not only high open circuit voltage (> 1.7 eV) but also large short-circuit currents due to the efficient absorption of sub-bandgap photons. In the proposed QD system, the structure allows barrier material to absorb wavelengths below 700 nm while multi-photon processes in the used quantum dots to absorb wavelengths up to 2 µm. The assembly of the electronic model is flexible to demonstrate the atoms and molecules structure and material properties to tune control energy bandgap of the barrier quantum dot to their respective optimum values. In terms of energy virtual conversion, the efficiency and cost of the electronic structure are unified outperform a pair of multi-junction solar cell that obtained in the rigorous test to quantify the errors. The milestone toward achieving the claimed high-efficiency solar cell device is controlling the edge causes of energy bandgap between the barrier material and quantum dot systems according to the media design limits. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (Voc) is fundamentally limited due to non-radiative recombination processes in QD solar cells. The orientation of voltage recovery system is compared theoretically with experimental Voc variation in mediation upper–limit obtained one diode modeling form at the cells with different bandgap (Eg) as classified in the proposed spatial architecture. The opportunity for improvement Voc is valued approximately greater than 1V by using smaller QDs through QD solar cell recovery systems as confined to other micro and nano operations states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title="nanotechnology">nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20solar%20cell" title=" photovoltaic solar cell"> photovoltaic solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20systems" title=" quantum systems"> quantum systems</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20modeling" title=" environmental modeling"> environmental modeling</a> </p> <a href="https://publications.waset.org/abstracts/93102/spatial-architecture-impact-in-mediation-open-circuit-voltage-control-of-quantum-solar-cell-recovery-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3025</span> Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunho%20Shin">Hyunho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaekwang%20Jung"> Jaekwang Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeongho%20Park"> Jeongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungwon%20Hwang"> Sungwon Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the application of graphene quantum dots (GQDs) to optoelectronic nanodevices, it is of critical importance to understand the mechanisms which result in novel phenomena of their light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Here, we present size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependencies. With varying the average size (da) of GQDs from 5 to 35 nm, the peak energy of the absorption spectra monotonically decreases, while that of the visible PL spectra unusually shows nonmonotonic behaviors having a minimum at diameter ∼17 nm. The PL behaviors can be attributed to the novel feature of GQDs, that is, the circular-to-polygonal-shape and corresponding edge-state variations of GQDs at diameter ∼17 nm as the GQD size increases, as demonstrated by high resolution transmission electron microscopy. We believe that such a comprehensive scheme in designing device architecture and the structural formulation of GQDs provides a device for practical realization of environmentally benign, high performance flexible devices in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title=" quantum dot"> quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=size" title=" size"> size</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/46330/anomalous-behaviors-of-visible-luminescence-from-graphene-quantum-dots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3024</span> Design and Construction of Models of Sun Tracker or Sun Tracking System for Light Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Azarmjoo">Mohsen Azarmjoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasaman%20Azarmjoo"> Yasaman Azarmjoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Alikhani%20Koopaei"> Zahra Alikhani Koopaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article introduces devices that can transfer sunlight to buildings that do not have access to direct sunlight during the day. The transmission and reflection of sunlight are done through the movement of movable mirrors. The focus of this article is on two models of sun tracker systems designed and built by the Macad team. In fact, this article will reveal the distinction between the two Macad devices and the previously built competitor device. What distinguishes the devices built by the Macad team from the competitor's device is the different mode of operation and the difference in the location of the sensors. Given that the devices have the same results, the Macad team has tried to reduce the defects of the competitor's device as much as possible. The special feature of the second type of device built by the Macad team has enabled buildings with different construction positions to use sun tracking systems. This article will also discuss diagrams of the path of sunlight transmission and more details of the device. It is worth mentioning that fixed mirrors are also placed next to the main devices. So that the light shining on the first device is reflected to these mirrors, this light is guided within the light receiver space and is transferred to the different parts around by steel sheets built in the light receiver space, and finally, these spaces benefit from sunlight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=mechatronic%20device" title=" mechatronic device"> mechatronic device</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20tracker%20system" title=" sun tracker system"> sun tracker system</a>, <a href="https://publications.waset.org/abstracts/search?q=sun%20tracker" title=" sun tracker"> sun tracker</a>, <a href="https://publications.waset.org/abstracts/search?q=sunlight" title=" sunlight"> sunlight</a> </p> <a href="https://publications.waset.org/abstracts/176681/design-and-construction-of-models-of-sun-tracker-or-sun-tracking-system-for-light-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3023</span> The Magnetized Quantum Breathing in Cylindrical Dusty Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdikian">A. Abdikian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20linear%20quantum%20hydrodynamic%20model" title="the linear quantum hydrodynamic model">the linear quantum hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20magnetized%20quantum%20breathing%20mode" title=" the magnetized quantum breathing mode"> the magnetized quantum breathing mode</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20quantum%20dispersion%20relation%20of%20rotation%20mode" title=" the quantum dispersion relation of rotation mode"> the quantum dispersion relation of rotation mode</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20structure" title=" void structure"> void structure</a> </p> <a href="https://publications.waset.org/abstracts/69938/the-magnetized-quantum-breathing-in-cylindrical-dusty-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3022</span> ChaQra: A Cellular Unit of the Indian Quantum Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Gupta">Shashank Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Iteash%20Agarwal"> Iteash Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijayalaxmi%20Mogiligidda"> Vijayalaxmi Mogiligidda</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Krishnan"> Rajesh Kumar Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sruthi%20Chennuri"> Sruthi Chennuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepika%20Aggarwal"> Deepika Aggarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwesha%20Hoodati"> Anwesha Hoodati</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheroy%20Cooper"> Sheroy Cooper</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan"> Ranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Bilal%20Sheik"> Mohammad Bilal Sheik</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavya%20K.%20M."> Bhavya K. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Manasa%20Hegde"> Manasa Hegde</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naveen%20Krishna"> M. Naveen Krishna</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar%20Chauhan"> Amit Kumar Chauhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mallikarjun%20Korrapati"> Mallikarjun Korrapati</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Singh"> Sumit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20B.%20Singh"> J. B. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Sud"> Sunil Sud</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Gupta"> Sunil Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidhartha%20Pant"> Sidhartha Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=Sankar"> Sankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Agrawal"> Neha Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Ranjan"> Ashish Ranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Mohapatra"> Piyush Mohapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Roopak%20T."> Roopak T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsh%20Ahmad"> Arsh Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanjunda%20M."> Nanjunda M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilip%20Singh"> Dilip Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Major research interests on quantum key distribution (QKD) are primarily focussed on increasing 1. point-to-point transmission distance (1000 Km), 2. secure key rate (Mbps), 3. security of quantum layer (device-independence). It is great to push the boundaries on these fronts, but these isolated approaches are neither scalable nor cost-effective due to the requirements of specialised hardware and different infrastructure. Current and future QKD network requires addressing different sets of challenges apart from distance, key rate, and quantum security. In this regard, we present ChaQra -a sub-quantum network with core features as 1) Crypto agility (integration in the already deployed telecommunication fibres), 2) Software defined networking (SDN paradigm for routing different nodes), 3) reliability (addressing denial-of-service with hybrid quantum safe cryptography), 4) upgradability (modules upgradation based on scientific and technological advancements), 5) Beyond QKD (using QKD network for distributed computing, multi-party computation etc). Our results demonstrate a clear path to create and accelerate quantum secure Indian subcontinent under the national quantum mission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20network" title="quantum network">quantum network</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20key%20distribution" title=" quantum key distribution"> quantum key distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20security" title=" quantum security"> quantum security</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20information" title=" quantum information"> quantum information</a> </p> <a href="https://publications.waset.org/abstracts/186156/chaqra-a-cellular-unit-of-the-indian-quantum-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3021</span> Quantum Entanglement and Thermalization in Superconducting Two-Qubit Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Karami">E. Karami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bohloul"> M. Bohloul</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Najmadi"> P. Najmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The superconducting system is a suitable system for quantum computers. Quantum entanglement is a fundamental phenomenon that is key to the power of quantum computers. Quantum entanglement has been studied in different superconducting systems. In this paper, we are investigating a superconducting two-qubit system as a macroscopic system. These systems include two coupled Quantronium circuits. We calculate quantum entanglement and thermalization for system evolution and compare them. We observe, thermalization and entanglement have different behavior, and equilibrium thermal state has maximum entanglement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=macroscopic%20system" title="macroscopic system">macroscopic system</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20entanglement" title=" quantum entanglement"> quantum entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=thermalization" title=" thermalization"> thermalization</a>, <a href="https://publications.waset.org/abstracts/search?q=superconducting%20system" title=" superconducting system"> superconducting system</a> </p> <a href="https://publications.waset.org/abstracts/148726/quantum-entanglement-and-thermalization-in-superconducting-two-qubit-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3020</span> Reinforcement Learning the Born Rule from Photon Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20S.%20Piera">Rodrigo S. Piera</a>, <a href="https://publications.waset.org/abstracts/search?q=Jailson%20Sales%20Ara%C2%B4ujo"> Jailson Sales Ara´ujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20B.%20Lemos"> Gabriela B. Lemos</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20B.%20Weiss"> Matthew B. Weiss</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20B.%20DeBrota"> John B. DeBrota</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20H.%20Aguilar"> Gabriel H. Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacques%20L.%20Pienaar"> Jacques L. Pienaar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Born rule was historically viewed as an independent axiom of quantum mechanics until Gleason derived it in 1957 by assuming the Hilbert space structure of quantum measurements [1]. In subsequent decades there have been diverse proposals to derive the Born rule starting from even more basic assumptions [2]. In this work, we demonstrate that a simple reinforcement-learning algorithm, having no pre-programmed assumptions about quantum theory, will nevertheless converge to a behaviour pattern that accords with the Born rule, when tasked with predicting the output of a quantum optical implementation of a symmetric informationally-complete measurement (SIC). Our findings support a hypothesis due to QBism (the subjective Bayesian approach to quantum theory), which states that the Born rule can be thought of as a normative rule for making decisions in a quantum world [3]. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20Bayesianism" title="quantum Bayesianism">quantum Bayesianism</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20theory" title=" quantum theory"> quantum theory</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20information" title=" quantum information"> quantum information</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20measurement" title=" quantum measurement"> quantum measurement</a> </p> <a href="https://publications.waset.org/abstracts/175290/reinforcement-learning-the-born-rule-from-photon-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3019</span> Quantum Cryptography: Classical Cryptography Algorithms’ Vulnerability State as Quantum Computing Advances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tydra%20Preyear">Tydra Preyear</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Clincy"> Victor Clincy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum computing presents many computational advantages over classical computing methods due to the utilization of quantum mechanics. The capability of this computing infrastructure poses threats to standard cryptographic systems such as RSA and AES, which are designed for classical computing environments. This paper discusses the impact that quantum computing has on cryptography, while focusing on the evolution from classical cryptographic concepts to quantum and post-quantum cryptographic concepts. Standard Cryptography is essential for securing data by utilizing encryption and decryption methods, and these methods face vulnerability problems due to the advancement of quantum computing. In order to counter these vulnerabilities, the methods that are proposed are quantum cryptography and post-quantum cryptography. Quantum cryptography uses principles such as the uncertainty principle and photon polarization in order to provide secure data transmission. In addition, the concept of Quantum key distribution is introduced to ensure more secure communication channels by distributing cryptographic keys. There is the emergence of post-quantum cryptography which is used for improving cryptographic algorithms in order to be more secure from attacks by classical and quantum computers. Throughout this exploration, the paper mentions the critical role of the advancement of cryptographic methods to keep data integrity and privacy safe from quantum computing concepts. Future research directions that would be discussed would be more effective cryptographic methods through the advancement of technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20cryptography" title=" quantum cryptography"> quantum cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20integrity%20and%20privacy" title=" data integrity and privacy"> data integrity and privacy</a> </p> <a href="https://publications.waset.org/abstracts/189381/quantum-cryptography-classical-cryptography-algorithms-vulnerability-state-as-quantum-computing-advances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3018</span> Quantum Dots with Microwave Propagation in Future Quantum Internet Protocol for Mobile Telephony</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20R.%20Hazarika">A. B. R. Hazarika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, Quantum dots of ZnS are used to study the faster microwave propagation in space and on earth which will be difficult to bypass as quantum key encryption-decryption is difficult to decode. The present study deals with Quantum internet protocol which is much faster, safer and secure in microwave propagation than the present Internet Protocol v6, which forms the aspect of our study. Assimilation of hardware, Quantum dots with Quantum protocol theory beautifies the aspect of the study. So far to author’s best knowledge, the study on mobile telephony with Quantum dots long-term evolution (QDLTE) has not been studied earlier, which forms the aspect of the study found that the Bitrate comes out to be 102.4 Gbps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=encryption" title="encryption">encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=decryption" title=" decryption"> decryption</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20protocol" title=" internet protocol"> internet protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20telephony" title=" mobile telephony"> mobile telephony</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20key%20encryption" title=" quantum key encryption"> quantum key encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/89901/quantum-dots-with-microwave-propagation-in-future-quantum-internet-protocol-for-mobile-telephony" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3017</span> Secure Optical Communication System Using Quantum Cryptography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehab%20AbdulRazzaq%20Hussein">Ehab AbdulRazzaq Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum cryptography (QC) is an emerging technology for secure key distribution with single-photon transmissions. In contrast to classical cryptographic schemes, the security of QC schemes is guaranteed by the fundamental laws of nature. Their security stems from the impossibility to distinguish non-orthogonal quantum states with certainty. A potential eavesdropper introduces errors in the transmissions, which can later be discovered by the legitimate participants of the communication. In this paper, the modeling approach is proposed for QC protocol BB84 using polarization coding. The single-photon system is assumed to be used in the designed models. Thus, Eve cannot use beam-splitting strategy to eavesdrop on the quantum channel transmission. The only eavesdropping strategy possible to Eve is the intercept/resend strategy. After quantum transmission of the QC protocol, the quantum bit error rate (QBER) is estimated and compared with a threshold value. If it is above this value the procedure must be stopped and performed later again. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=security" title="security">security</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20distribution" title=" key distribution"> key distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20protocols" title=" quantum protocols"> quantum protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=Quantum%20Cryptography%20%28QC%29" title=" Quantum Cryptography (QC)"> Quantum Cryptography (QC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Quantum%20Key%20Distribution%20%28QKD%29." title=" Quantum Key Distribution (QKD)."> Quantum Key Distribution (QKD).</a> </p> <a href="https://publications.waset.org/abstracts/2413/secure-optical-communication-system-using-quantum-cryptography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3016</span> Using Wavelet Uncertainty Relations in Quantum Mechanics: From Trajectories Foam to Newtonian Determinism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Castro">Paulo Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Croca"> J. R. Croca</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gatta"> M. Gatta</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Moreira"> R. Moreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to the development of quantum mechanics, we will contextualize the foundations of the theory on the Fourier analysis framework, thus stating the unavoidable philosophical conclusions drawn by Niels Bohr. We will then introduce an alternative way of describing the undulatory aspects of quantum entities by using gaussian Morlet wavelets. The description has its roots in de Broglie's realistic program for quantum physics. It so happens that using wavelets it is possible to formulate a more general set of uncertainty relations. A set from which it is possible to theoretically describe both ends of the behavioral spectrum in reality: the indeterministic quantum trajectorial foam and the perfectly drawn Newtonian trajectories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=philosophy%20of%20quantum%20mechanics" title="philosophy of quantum mechanics">philosophy of quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20realism" title=" quantum realism"> quantum realism</a>, <a href="https://publications.waset.org/abstracts/search?q=morlet%20wavelets" title=" morlet wavelets"> morlet wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20relations" title=" uncertainty relations"> uncertainty relations</a>, <a href="https://publications.waset.org/abstracts/search?q=determinism" title=" determinism"> determinism</a> </p> <a href="https://publications.waset.org/abstracts/144113/using-wavelet-uncertainty-relations-in-quantum-mechanics-from-trajectories-foam-to-newtonian-determinism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3015</span> Room Temperature Lasing from InGaAs Quantum Well Nanowires on Silicon-On-Insulator Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balthazar%20Temu">Balthazar Temu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Yan"> Zhao Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogdan-Petrin%20Ratiu"> Bogdan-Petrin Ratiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Soon%20Oh"> Sang Soon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Li"> Qiang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum confinement can be used to increase efficiency and control the emitted spectra in lasers and LEDs. In semiconductor nanowires, quantum confinement can be achieved in the axial direction by stacking multiple quantum disks or in the radial direction by forming a core-shell structure. In this work we demonstrate room temperature lasing in topological photonic crystal nanowire array lasers by using the InGaAs radial quantum well as the gain material. The nanowires with the GaAs/ InGaAs/ InGaP quantum well structure are arranged in a deformed honeycomb lattice, forming a photonic crystal surface emitting laser (PCSEL) . Under optical pumping we show that the PCSEL lase at the wavelength of 1001 nm (undeformed pattern) and 966 nm (stretched pattern), with the lasing threshold of 103 µJ〖/cm 〗^2. We compare the lasing wavelengths from devices with three different nanowire diameters for undeformed compressed and stretched devices, showing that the lasing wavelength increases as the nanowire diameter increases. The impact of deforming the honeycomb pattern is studied, where it was found out that the lasing wavelengths of undeformed devices are always larger than the corresponding stretched or compressed devices with the same nanowire diameter. Using photoluminescence results and numerical simulations on the field profile and the quality factors of the devices, we establish that the lasing of the device is from the radial quantum well structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20PCSEL" title="honeycomb PCSEL">honeycomb PCSEL</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire%20laser" title=" nanowire laser"> nanowire laser</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal%20laser" title=" photonic crystal laser"> photonic crystal laser</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20well%20laser" title=" quantum well laser"> quantum well laser</a> </p> <a href="https://publications.waset.org/abstracts/193549/room-temperature-lasing-from-ingaas-quantum-well-nanowires-on-silicon-on-insulator-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3014</span> Network Connectivity Knowledge Graph Using Dwave Quantum Hybrid Solvers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nivedha%20Rajaram">Nivedha Rajaram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid Quantum solvers have been given prime focus in recent days by computation problem-solving domain industrial applications. D’Wave Quantum Computers are one such paragon of systems built using quantum annealing mechanism. Discrete Quadratic Models is a hybrid quantum computing model class supplied by D’Wave Ocean SDK - a real-time software platform for hybrid quantum solvers. These hybrid quantum computing modellers can be employed to solve classic problems. One such problem that we consider in this paper is finding a network connectivity knowledge hub in a huge network of systems. Using this quantum solver, we try to find out the prime system hub, which acts as a supreme connection point for the set of connected computers in a large network. This paper establishes an innovative problem approach to generate a connectivity system hub plot for a set of systems using DWave ocean SDK hybrid quantum solvers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20quantum%20solver" title=" hybrid quantum solver"> hybrid quantum solver</a>, <a href="https://publications.waset.org/abstracts/search?q=DWave%20annealing" title=" DWave annealing"> DWave annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20knowledge%20graph" title=" network knowledge graph"> network knowledge graph</a> </p> <a href="https://publications.waset.org/abstracts/150932/network-connectivity-knowledge-graph-using-dwave-quantum-hybrid-solvers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3013</span> Quantum Entangled States and Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20%20Singh">Sanjay Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Kumar"> Sushil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Jain"> Rashmi Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum registering is another pattern in computational hypothesis and a quantum mechanical framework has a few helpful properties like Entanglement. We plan to store data concerning the structure and substance of a basic picture in a quantum framework. Consider a variety of n qubits which we propose to use as our memory stockpiling. In recent years classical processing is switched to quantum image processing. Quantum image processing is an elegant approach to overcome the problems of its classical counter parts. Image storage, retrieval and its processing on quantum machines is an emerging area. Although quantum machines do not exist in physical reality but theoretical algorithms developed based on quantum entangled states gives new insights to process the classical images in quantum domain. Here in the present work, we give the brief overview, such that how entangled states can be useful for quantum image storage and retrieval. We discuss the properties of tripartite Greenberger-Horne-Zeilinger and W states and their usefulness to store the shapes which may consist three vertices. We also propose the techniques to store shapes having more than three vertices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Greenberger-Horne-Zeilinger" title="Greenberger-Horne-Zeilinger">Greenberger-Horne-Zeilinger</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20storage%20and%20retrieval" title=" image storage and retrieval"> image storage and retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20entanglement" title=" quantum entanglement"> quantum entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=W%20states" title=" W states"> W states</a> </p> <a href="https://publications.waset.org/abstracts/67732/quantum-entangled-states-and-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3012</span> Tailoring the Parameters of the Quantum MDS Codes Constructed from Constacyclic Codes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaskarn%20Singh%20Bhullar">Jaskarn Singh Bhullar</a>, <a href="https://publications.waset.org/abstracts/search?q=Divya%20Taneja"> Divya Taneja</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Gupta"> Manish Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Narula"> Rajesh Kumar Narula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The existence conditions of dual containing constacyclic codes have opened a new path for finding quantum maximum distance separable (MDS) codes. Using these conditions parameters of length n=(q²+1)/2 quantum MDS codes were improved. A class of quantum MDS codes of length n=(q²+q+1)/h, where h>1 is an odd prime, have also been constructed having large minimum distance and these codes are new in the sense as these are not available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hermitian%20construction" title="hermitian construction">hermitian construction</a>, <a href="https://publications.waset.org/abstracts/search?q=constacyclic%20codes" title=" constacyclic codes"> constacyclic codes</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclotomic%20cosets" title=" cyclotomic cosets"> cyclotomic cosets</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20MDS%20codes" title=" quantum MDS codes"> quantum MDS codes</a>, <a href="https://publications.waset.org/abstracts/search?q=singleton%20bound" title=" singleton bound"> singleton bound</a> </p> <a href="https://publications.waset.org/abstracts/55714/tailoring-the-parameters-of-the-quantum-mds-codes-constructed-from-constacyclic-codes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3011</span> Water Vapor Oxidization of NiO for a Hole Transport Layer in All Inorganic QD-LED</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaeun%20Park">Jaeun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Daekyoung%20Kim"> Daekyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho%20Kyoon%20Chung"> Ho Kyoon Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Heeyeop%20Chae"> Heeyeop Chae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum dots light-emitting diodes (QD-LEDs) have been considered as the next generation display and lighting devices due to their excellent color purity, photo-stability solution process possibility and good device stability. Currently typical quantum dot light emitting diodes contain organic layers such as PEDOT:PSS and PVK for charge transport layers. To make quantum dot light emitting diodes (QD-LED) more stable, it is required to replace those acidic and relatively unstable organic charge transport layers with inorganic materials. Therefore all inorganic and solution processed quantum dot light emitting diodes can potentially be a solution to stable and cost-effective display devices. We studied solution processed NiO films to replace organic charge transport layers that are required for stable all-inorganic based light emitting diodes. The transition metal oxides can be made by various vacuum and solution processes, but the solution processes are considered more cost-effective than vacuum processes. In this work we investigated solution processed NiOx for a hole transport layer (HTL). NiOx, has valence band energy levels of 5.3eV and they are easy to make sol-gel solutions. Water vapor oxidation process was developed and applied to solution processed all-inorganic QD-LED. Turn-on voltage, luminance and current efficiency of QD in this work were 5V, 1800Cd/m2 and 0.5Cd/A, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=QD-LED" title="QD-LED">QD-LED</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide%20solution" title=" metal oxide solution"> metal oxide solution</a>, <a href="https://publications.waset.org/abstracts/search?q=NiO" title=" NiO"> NiO</a>, <a href="https://publications.waset.org/abstracts/search?q=all-inorganic%20QD-LED%20device" title=" all-inorganic QD-LED device"> all-inorganic QD-LED device</a> </p> <a href="https://publications.waset.org/abstracts/17283/water-vapor-oxidization-of-nio-for-a-hole-transport-layer-in-all-inorganic-qd-led" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">750</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device&amp;page=101">101</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device&amp;page=102">102</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=quantum%20enabled%20device&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10