CINXE.COM
Search results for: phasor measurement unit
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: phasor measurement unit</title> <meta name="description" content="Search results for: phasor measurement unit"> <meta name="keywords" content="phasor measurement unit"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="phasor measurement unit" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="phasor measurement unit"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4752</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: phasor measurement unit</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4752</span> Phasor Measurement Unit Based on Particle Filtering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rithvik%20Reddy%20Adapa">Rithvik Reddy Adapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Wang"> Xin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phasor Measurement Units (PMUs) are very sophisticated measuring devices that find amplitude, phase and frequency of various voltages and currents in a power system. Particle filter is a state estimation technique that uses Bayesian inference. Particle filters are widely used in pose estimation and indoor navigation and are very reliable. This paper studies and compares four different particle filters as PMUs namely, generic particle filter (GPF), genetic algorithm particle filter (GAPF), particle swarm optimization particle filter (PSOPF) and adaptive particle filter (APF). Two different test signals are used to test the performance of the filters in terms of responsiveness and correctness of the estimates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit" title="phasor measurement unit">phasor measurement unit</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20filter" title=" particle filter"> particle filter</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimisation" title=" particle swarm optimisation"> particle swarm optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20estimation" title=" state estimation"> state estimation</a> </p> <a href="https://publications.waset.org/abstracts/194127/phasor-measurement-unit-based-on-particle-filtering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4751</span> Inter-Area Oscillation Monitoring in Maghrebian Power Grid Using Phasor Measurement Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tsebia">M. Tsebia</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Bentarzi"> H. Bentarzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the inter-connected power systems, a phenomenon called inter-area oscillation may be caused by several defects. In this paper, a study of the Maghreb countries inter-area power networks oscillation has been investigated. The inter-area oscillation monitoring can be enhanced by integrating Phasor Measurement Unit (PMU) technology installed in different places. The data provided by PMU and recorded by PDC will be used for the monitoring, analysis, and control purposes. The proposed approach has been validated by simulation using MATLAB/Simulink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PMU" title="PMU">PMU</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-area%20oscillation" title=" inter-area oscillation"> inter-area oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=Maghrebian%20power%20system" title=" Maghrebian power system"> Maghrebian power system</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulink" title=" Simulink"> Simulink</a> </p> <a href="https://publications.waset.org/abstracts/74645/inter-area-oscillation-monitoring-in-maghrebian-power-grid-using-phasor-measurement-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4750</span> Optimal Placement of Phasor Measurement Units Using Gravitational Search Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyendra%20Pratap%20Singh">Satyendra Pratap Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Singh"> S. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a methodology using Gravitational Search Algorithm for optimal placement of Phasor Measurement Units (PMUs) in order to achieve complete observability of the power system. The objective of proposed algorithm is to minimize the total number of PMUs at the power system buses, which in turn minimize installation cost of the PMUs. In this algorithm, the searcher agents are collection of masses which interact with each other using Newton鈥檚 laws of gravity and motion. This new Gravitational Search Algorithm based method has been applied to the IEEE 14-bus, IEEE 30-bus and IEEE 118-bus test systems. Case studies reveal optimal number of PMUs with better observability by proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravitational%20search%20algorithm%20%28GSA%29" title="gravitational search algorithm (GSA)">gravitational search algorithm (GSA)</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20of%20motion" title=" law of motion"> law of motion</a>, <a href="https://publications.waset.org/abstracts/search?q=law%20of%20gravity" title=" law of gravity"> law of gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=observability" title=" observability"> observability</a>, <a href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit" title=" phasor measurement unit"> phasor measurement unit</a> </p> <a href="https://publications.waset.org/abstracts/24189/optimal-placement-of-phasor-measurement-units-using-gravitational-search-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4749</span> Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alpesh%20Adeshara">Alpesh Adeshara</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajendrasinh%20Jadeja"> Rajendrasinh Jadeja</a>, <a href="https://publications.waset.org/abstracts/search?q=Praghnesh%20Bhatt"> Praghnesh Bhatt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of Supervisory Control and Data Acquisition System (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide Area Measurement System (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of MATLAB based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS%20global%20positioning%20system" title="GPS global positioning system">GPS global positioning system</a>, <a href="https://publications.waset.org/abstracts/search?q=PMU%20phasor%20measurement%20system" title=" PMU phasor measurement system"> PMU phasor measurement system</a>, <a href="https://publications.waset.org/abstracts/search?q=WAMS%20wide%20area%20monitoring%20system" title=" WAMS wide area monitoring system"> WAMS wide area monitoring system</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=PDC" title=" PDC"> PDC</a> </p> <a href="https://publications.waset.org/abstracts/32482/performance-evaluation-of-discrete-fourier-transform-algorithm-based-pmu-for-wide-area-measurement-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4748</span> Optimal Placement of Phasor Measurement Units (PMU) Using Mixed Integer Programming (MIP) for Complete Observability in Power System Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshith%20Gowda%20K.%20S">Harshith Gowda K. S</a>, <a href="https://publications.waset.org/abstracts/search?q=Tejaskumar%20N"> Tejaskumar N</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubhanga%20R.%20B"> Shubhanga R. B</a>, <a href="https://publications.waset.org/abstracts/search?q=Gowtham%20N"> Gowtham N</a>, <a href="https://publications.waset.org/abstracts/search?q=Deekshith%20Gowda%20H.%20S"> Deekshith Gowda H. S</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phasor measurement units (PMU) are playing an important role in the current power system for state estimation. It is necessary to have complete observability of the power system while minimizing the cost. For this purpose, the optimal location of the phasor measurement units in the power system is essential. In a bus system, zero injection buses need to be evaluated to minimize the number of PMUs. In this paper, the optimization problem is formulated using mixed integer programming to obtain the optimal location of the PMUs with increased observability. The formulation consists of with and without zero injection bus as constraints. The formulated problem is simulated using a CPLEX solver in the GAMS software package. The proposed method is tested on IEEE 30, IEEE 39, IEEE 57, and IEEE 118 bus systems. The results obtained show that the number of PMUs required is minimal with increased observability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PMU" title="PMU">PMU</a>, <a href="https://publications.waset.org/abstracts/search?q=observability" title=" observability"> observability</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20programming%20%28MIP%29" title=" mixed integer programming (MIP)"> mixed integer programming (MIP)</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20injection%20buses%20%28ZIB%29" title=" zero injection buses (ZIB)"> zero injection buses (ZIB)</a> </p> <a href="https://publications.waset.org/abstracts/143686/optimal-placement-of-phasor-measurement-units-pmu-using-mixed-integer-programming-mip-for-complete-observability-in-power-system-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4747</span> Performance of Total Vector Error of an Estimated Phasor within Local Area Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdolkhalig">Ahmed Abdolkhalig</a>, <a href="https://publications.waset.org/abstracts/search?q=Rastko%20Zivanovic"> Rastko Zivanovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper evaluates the Total Vector Error of an estimated Phasor as define in IEEE C37.118 standard within different medium access in Local Area Networks (LAN). Three different LAN models (CSMA/CD, CSMA/AMP, and Switched Ethernet) are evaluated. The Total Vector Error of the estimated Phasor has been evaluated for the effect of Nodes Number under the standardized network Band-width values defined in IEC 61850-9-2 communication standard (i.e. 0.1, 1, and 10 Gbps). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phasor" title="phasor">phasor</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20area%20network" title=" local area network"> local area network</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20vector%20error" title=" total vector error"> total vector error</a>, <a href="https://publications.waset.org/abstracts/search?q=IEEE%20C37.118" title=" IEEE C37.118"> IEEE C37.118</a>, <a href="https://publications.waset.org/abstracts/search?q=IEC%2061850" title=" IEC 61850"> IEC 61850</a> </p> <a href="https://publications.waset.org/abstracts/5655/performance-of-total-vector-error-of-an-estimated-phasor-within-local-area-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4746</span> A Novel Software Model for Enhancement of System Performance and Security through an Optimal Placement of PMU and FACTS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kiran">R. Kiran</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Lakshmikantha"> B. R. Lakshmikantha</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Parimala"> R. V. Parimala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Secure operation of power systems requires monitoring of the system operating conditions. Phasor measurement units (PMU) are the device, which uses synchronized signals from the GPS satellites, and provide the phasors information of voltage and currents at a given substation. The optimal locations for the PMUs must be determined, in order to avoid redundant use of PMUs. The objective of this paper is to make system observable by using minimum number of PMUs & the implementation of stability software at 22OkV grid for on-line estimation of the power system transfer capability based on voltage and thermal limitations and for security monitoring. This software utilizes State Estimator (SE) and synchrophasor PMU data sets for determining the power system operational margin under normal and contingency conditions. This software improves security of transmission system by continuously monitoring operational margin expressed in MW or in bus voltage angles, and alarms the operator if the margin violates a pre-defined threshold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=state%20estimator%20%28SE%29" title="state estimator (SE)">state estimator (SE)</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20ac%20transmission%20systems%20%28FACTS%29" title=" flexible ac transmission systems (FACTS)"> flexible ac transmission systems (FACTS)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20location" title=" optimal location"> optimal location</a>, <a href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20units%20%28PMU%29" title=" phasor measurement units (PMU)"> phasor measurement units (PMU)</a> </p> <a href="https://publications.waset.org/abstracts/39366/a-novel-software-model-for-enhancement-of-system-performance-and-security-through-an-optimal-placement-of-pmu-and-facts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4745</span> Investigation of Learning Challenges in Building Measurement Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Argaw%20T.%20Gurmu">Argaw T. Gurmu</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20N.%20Mahmood"> Muhammad N. Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to identify the architecture and construction management students’ learning challenges of the building measurement. This research used the survey data obtained collected from the students who completed the building measurement unit. NVivo qualitative data analysis software was used to identify relevant themes. The analysis of the qualitative data revealed the major learning difficulties such as inadequacy of practice questions for the examination, inability to work as a team, lack of detailed understanding of the prerequisite units, insufficiency of the time allocated for tutorials and incompatibility of lecture and tutorial schedules. The output of this research can be used as a basis for improving the teaching and learning activities in construction measurement units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20measurement" title="building measurement">building measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title=" construction management"> construction management</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20challenges" title=" learning challenges"> learning challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluate%20survey" title=" evaluate survey"> evaluate survey</a> </p> <a href="https://publications.waset.org/abstracts/116469/investigation-of-learning-challenges-in-building-measurement-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4744</span> Challenges with Synchrophasor Technology Deployments in Electric Power Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20U.%20Oleka">Emmanuel U. Oleka</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Khanal"> Anil Khanal</a>, <a href="https://publications.waset.org/abstracts/search?q=Gary%20L.%20Lebby"> Gary L. Lebby</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20R.%20Osareh"> Ali R. Osareh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synchrophasor technology is fast being deployed in electric power grids all over the world and is fast changing the way the grids are managed. This trend is to continue until the entire power grids are fully connected so they can be monitored and controlled in real-time. Much achievement has been made in the synchrophasor technology development and deployment, and much more are yet to be achieved. Real-time power grid control and protection potentials of synchrophasor are yet to be explored. It is of necessity that researchers keep in view the various challenges that still need to be overcome in expanding the frontiers of synchrophasor technology. This paper outlines the major challenges that should be dealt with in order to achieve the goal of total power grid visualization, monitoring and control using synchrophasor technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20power%20grid" title="electric power grid">electric power grid</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20visualization" title=" grid visualization"> grid visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit" title=" phasor measurement unit"> phasor measurement unit</a>, <a href="https://publications.waset.org/abstracts/search?q=synchrophasor" title=" synchrophasor"> synchrophasor</a> </p> <a href="https://publications.waset.org/abstracts/34833/challenges-with-synchrophasor-technology-deployments-in-electric-power-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4743</span> Examining the Modular End of Line Control Unit Design Criteria for Vehicle Sliding Door System Slide Profile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orhan%20Kurtulu%C5%9F">Orhan Kurtulu艧</a>, <a href="https://publications.waset.org/abstracts/search?q=C%C3%BCneyt%20Yavuz"> C眉neyt Yavuz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The end of the line controls of the finished products in the automotive industry is important. The control that has been conducted with the manual methods for the sliding doors tracks is not sufficient and faulty products cannot be identified. As a result, the customer has the faulty products. In the scope of this study, the design criteria of the PLC integrated modular end of line control unit has been examined, designed and manufactured to make the control of the 10 different track profile to 2 different vehicles with an objective to minimize the salvage costs by obtaining more sensitive, certain and accurate measurement results. In the study that started with literature and patent review, the design inputs have been specified, the technical concept has been developed, computer supported mechanic design, control system and automation design, design review and design improvement have been made. Laser analog sensors at high sensitivity, probes and modular blocks have been used in the unit. The measurement has been conducted in the system and it is observed that measurement results are more sensitive than the previous methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20unit%20design" title="control unit design">control unit design</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20of%20line" title=" end of line"> end of line</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20design" title=" modular design"> modular design</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20door%20system" title=" sliding door system"> sliding door system</a> </p> <a href="https://publications.waset.org/abstracts/35415/examining-the-modular-end-of-line-control-unit-design-criteria-for-vehicle-sliding-door-system-slide-profile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4742</span> Inverterless Grid Compatible Micro Turbine Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ozeri">S. Ozeri</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Shmilovitz"> D. Shmilovitz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro鈥怲urbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG鈥檚 power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=inverter" title=" inverter"> inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20multiplier" title=" power multiplier"> power multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title=" distributed generation"> distributed generation</a> </p> <a href="https://publications.waset.org/abstracts/52165/inverterless-grid-compatible-micro-turbine-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4741</span> Field Saturation Flow Measurement Using Dynamic Passenger Car Unit under Mixed Traffic Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Chandra%20Majhi">Ramesh Chandra Majhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saturation flow is a very important input variable for the design of signalized intersections. Saturation flow measurement is well established for homogeneous traffic. However, saturation flow measurement and modeling is a challenging task in heterogeneous characterized by multiple vehicle types and non-lane based movement. Present study focuses on proposing a field procedure for Saturation flow measurement and the effect of typical mixed traffic behavior at the signal as far as non-lane based traffic movement is concerned. Data collected during peak and off-peak hour from five intersections with varying approach width is used for validating the saturation flow model. The insights from the study can be used for modeling saturation flow and delay at signalized intersection in heterogeneous traffic conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=passenger%20car%20unit" title=" passenger car unit"> passenger car unit</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20flow" title=" saturation flow"> saturation flow</a>, <a href="https://publications.waset.org/abstracts/search?q=signalized%20intersection" title=" signalized intersection"> signalized intersection</a> </p> <a href="https://publications.waset.org/abstracts/63968/field-saturation-flow-measurement-using-dynamic-passenger-car-unit-under-mixed-traffic-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4740</span> Using Inertial Measurement Unit to Evaluate the Balance Ability of Hikers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Chen%20Chen">Po-Chen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsung-Han%20Yang"> Tsung-Han Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-Wei%20Zheng"> Zhi-Wei Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Tsang%20Tang"> Shih-Tsang Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Falls are the most common accidents during mountain hiking, especially in high-altitude environments with unstable terrain or adverse weather. Balance ability is a crucial factor in hiking, effectively ensuring hiking safety and reducing the risk of injuries. If balance ability can be assessed simply and effectively, hikers can identify their weaknesses and conduct targeted training to improve their balance ability, thereby reducing injury risks. With the widespread use of smartphones and their built-in inertial sensors, this project aims to develop a simple Inertial Measurement Unit (IMU) balance measurement technique based on smartphones. This will provide hikers with an easy-to-use, low-cost tool for assessing balance ability, monitoring training effects in real-time, and continuously tracking balance ability through uploading cloud data uploads, facilitating personal athletic performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance" title="balance">balance</a>, <a href="https://publications.waset.org/abstracts/search?q=IMU" title=" IMU"> IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone" title=" smartphone"> smartphone</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20devices" title=" wearable devices"> wearable devices</a> </p> <a href="https://publications.waset.org/abstracts/188349/using-inertial-measurement-unit-to-evaluate-the-balance-ability-of-hikers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4739</span> Inter Laboratory Comparison with Coordinate Measuring Machine and Uncertainty Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugrul%20%20Torun">Tugrul Torun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihsan%20A.%20Yuksel"> Ihsan A. Yuksel</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%CC%87nem%20On%20Aktan"> Si虈nem On Aktan</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20K.%20Vezi%CC%87roglu"> Taha K. Vezi虈roglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the quality control processes in some industries, the usage of CMM has increased in recent years. Consequently, the CMMs play important roles in the acceptance or rejection of manufactured parts. For parts, it鈥檚 important to be able to make decisions by performing fast measurements. According to related technical drawing and its tolerances, measurement uncertainty should also be considered during assessment. Since uncertainty calculation is difficult and time-consuming, most companies ignore the uncertainty value in their routine inspection method. Although studies on measurement uncertainty have been carried out on CMM鈥檚 in recent years, there is still no applicable method for analyzing task-specific measurement uncertainty. There are some standard series for calculating measurement uncertainty (ISO-15530); it is not possible to use it in industrial measurement because it is not a practical method for standard measurement routine. In this study, the inter-laboratory comparison test has been carried out in the ROKETSAN A.艦. with all dimensional inspection units. The reference part that we used is traceable to the national metrology institute TUB陌TAK UME. Each unit has measured reference parts according to related technical drawings, and the task-specific measuring uncertainty has been calculated with related parameters. According to measurement results and uncertainty values, the En values have been calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordinate%20measurement" title="coordinate measurement">coordinate measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=CMM" title=" CMM"> CMM</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/136496/inter-laboratory-comparison-with-coordinate-measuring-machine-and-uncertainty-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4738</span> On Board Measurement of Real Exhaust Emission of Light-Duty Vehicles in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kerbachi">R. Kerbachi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chikhi"> S. Chikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Boughedaoui"> M. Boughedaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study presents an analysis of the Algerian vehicle fleet and resultant emissions. The emission measurement of air pollutants emitted by road transportation (CO, THC, NOX and CO2) was conducted on 17 light duty vehicles in real traffic. This sample is representative of the Algerian light vehicles in terms of fuel quality (gasoline, diesel and liquefied petroleum gas) and the technology quality (injection system and emission control). The experimental measurement methodology of unit emission of vehicles in real traffic situation is based on the use of the mini-Constant Volume Sampler for gas sampling and a set of gas analyzers for CO2, CO, NOx and THC, with an instrumentation to measure kinematics, gas temperature and pressure. The apparatus is also equipped with data logging instrument and data transfer. The results were compared with the database of the European light vehicles (Artemis). It was shown that the technological injection liquefied petroleum gas (LPG) has significant impact on air pollutants emission. Therefore, with the exception of nitrogen oxide compounds, uncatalyzed LPG vehicles are more effective in reducing emissions unit of air pollutants compared to uncatalyzed gasoline vehicles. LPG performance seems to be lower under real driving conditions than expected on chassis dynamometer. On the other hand, the results show that uncatalyzed gasoline vehicles emit high levels of carbon monoxide, and nitrogen oxides. Overall, and in the absence of standards in Algeria, unit emissions are much higher than Euro 3. The enforcement of pollutant emission standard in developing countries is an important step towards introducing cleaner technology and reducing vehicular emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=on-board%20measurements%20of%20unit%20emissions%20of%20CO" title="on-board measurements of unit emissions of CO">on-board measurements of unit emissions of CO</a>, <a href="https://publications.waset.org/abstracts/search?q=HC" title=" HC"> HC</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx%20and%20CO2" title=" NOx and CO2"> NOx and CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20vehicles" title=" light vehicles"> light vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=mini-CVS" title=" mini-CVS"> mini-CVS</a>, <a href="https://publications.waset.org/abstracts/search?q=LPG-fuel" title=" LPG-fuel"> LPG-fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=artemis" title=" artemis"> artemis</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/37645/on-board-measurement-of-real-exhaust-emission-of-light-duty-vehicles-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4737</span> Simultaneous Measurement of Wave Pressure and Wind Speed with the Specific Instrument and the Unit of Measurement Description</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Branimir%20Jurun">Branimir Jurun</a>, <a href="https://publications.waset.org/abstracts/search?q=Elza%20Jurun"> Elza Jurun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of this paper is the description of an instrument called 'Quattuor 45' and defining of wave pressure measurement. Special attention is given to measurement of wave pressure created by the wind speed increasing obtained with the instrument 'Quattuor 45' in the investigated area. The study begins with respect to theoretical attitudes and numerous up to date investigations related to the waves approaching the coast. The detailed schematic view of the instrument is enriched with pictures from ground plan and side view. Horizontal stability of the instrument is achieved by mooring which relies on two concrete blocks. Vertical wave peak monitoring is ensured by one float above the instrument. The synthesis of horizontal stability and vertical wave peak monitoring allows to create a representative database for wave pressure measuring. Instrument 鈥楺uattuor 45' is named according to the way the database is received. Namely, the electronic part of the instrument consists of the main chip 鈥楢rduino', its memory, four load cells with the appropriate modules and the wind speed sensor 'Anemometers'. The 'Arduino' chip is programmed to store two data from each load cell and two data from the anemometer on SD card each second. The next part of the research is dedicated to data processing. All measured results are stored automatically in the database and after that detailed processing is carried out in the MS Excel. The result of the wave pressure measurement is synthesized by the unit of measurement kN/m虏. This paper also suggests a graphical presentation of the results by multi-line graph. The wave pressure is presented on the left vertical axis, while the wind speed is shown on the right vertical axis. The time of measurement is displayed on the horizontal axis. The paper proposes an algorithm for wind speed measurements showing the results for two characteristic winds in the Adriatic Sea, called 'Bura' and 'Jugo'. The first of them is the northern wind that reaches high speeds, causing low and extremely steep waves, where the pressure of the wave is relatively weak. On the other hand, the southern wind 'Jugo' has a lower speed than the northern wind, but due to its constant duration and constant speed maintenance, it causes extremely long and high waves that cause extremely high wave pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instrument" title="instrument">instrument</a>, <a href="https://publications.waset.org/abstracts/search?q=measuring%20unit" title=" measuring unit"> measuring unit</a>, <a href="https://publications.waset.org/abstracts/search?q=waves%20pressure%20metering" title=" waves pressure metering"> waves pressure metering</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20seed%20measurement" title=" wind seed measurement"> wind seed measurement</a> </p> <a href="https://publications.waset.org/abstracts/82845/simultaneous-measurement-of-wave-pressure-and-wind-speed-with-the-specific-instrument-and-the-unit-of-measurement-description" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4736</span> Optimal Opportunistic Maintenance Policy for a Two-Unit System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nooshin%20Salari">Nooshin Salari</a>, <a href="https://publications.waset.org/abstracts/search?q=Viliam%20Makis"> Viliam Makis</a>, <a href="https://publications.waset.org/abstracts/search?q=Jane%20Doe"> Jane Doe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a maintenance policy for a system consisting of two units. Unit 1 is gradually deteriorating and is subject to soft failure. Unit 2 has a general lifetime distribution and is subject to hard failure. Condition of unit 1 of the system is monitored periodically and it is considered as failed when its deterioration level reaches or exceeds a critical level N. At the failure time of unit 2 system is considered as failed, and unit 2 will be correctively replaced by the next inspection epoch. Unit 1 or 2 are preventively replaced when deterioration level of unit 1 or age of unit 2 exceeds the related preventive maintenance (PM) levels. At the time of corrective or preventive replacement of unit 2, there is an opportunity to replace unit 1 if its deterioration level reaches the opportunistic maintenance (OM) level. If unit 2 fails in an inspection interval, system stops operating although unit 1 has not failed. A mathematical model is derived to find the preventive and opportunistic replacement levels for unit 1 and preventive replacement age for unit 2, that minimize the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. Numerical example is provided to illustrate the performance of the proposed model and the comparison of the proposed model with an optimal policy without opportunistic maintenance level for unit 1 is carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition-based%20maintenance" title="condition-based maintenance">condition-based maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=opportunistic%20maintenance" title=" opportunistic maintenance"> opportunistic maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=two-unit%20system" title=" two-unit system"> two-unit system</a> </p> <a href="https://publications.waset.org/abstracts/62311/optimal-opportunistic-maintenance-policy-for-a-two-unit-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4735</span> [Keynote Talk]: A Comparative Study on Air Permeability Properties of Multilayered Nonwoven Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kucukali%20Ozturk">M. Kucukali Ozturk</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Nergis"> B. Nergis</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Candan"> C. Candan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air permeability plays an important role for applications such as filtration, thermal and acoustic insulation. The study discussed in this paper was conducted in an attempt to investigate air permeability property of various combinations of nonwovens. The PROWHITE air permeability tester was used for the measurement of the air permeability of the samples in accordance with the relevant standards and a comparative study of the results were made. It was found that the fabric mass per unit area was closely related to the air-permeability. The air permeability decreased with the increase in mass per unit area. Additionally, the air permeability of nonwoven fabrics decreased with the increase in thickness. Moreover, air permeability of multilayered SMS nonwoven structures was lower than those of single layered ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20permeability" title="air permeability">air permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20per%20unit%20area" title=" mass per unit area"> mass per unit area</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20structure" title=" nonwoven structure"> nonwoven structure</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20nonwoven" title=" polypropylene nonwoven"> polypropylene nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a> </p> <a href="https://publications.waset.org/abstracts/62811/keynote-talk-a-comparative-study-on-air-permeability-properties-of-multilayered-nonwoven-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4734</span> Long-Term Sitting Posture Identifier Connected with Cloud Service</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manikandan%20S.%20P.">Manikandan S. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharmila%20N."> Sharmila N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pain in the neck, intermediate and anterior, and even low back may occur in one or more locations. Numerous factors can lead to back discomfort, which can manifest into sensations in the other parts of your body. Up to 80% of people will have low back problems at a certain stage of their lives, making spine-related pain a highly prevalent ailment. Roughly twice as commonly as neck pain, low back discomfort also happens about as often as knee pain. According to current studies, using digital devices for extended periods of time and poor sitting posture are the main causes of neck and low back pain. There are numerous monitoring techniques provided to enhance the sitting posture for the aforementioned problems. A sophisticated technique to monitor the extended sitting position is suggested in this research based on this problem. The system is made up of an inertial measurement unit, a T-shirt, an Arduino board, a buzzer, and a mobile app with cloud services. Based on the anatomical position of the spinal cord, the inertial measurement unit was positioned on the inner back side of the T-shirt. The IMU (inertial measurement unit) sensor will evaluate the hip position, imbalanced shoulder, and bending angle. Based on the output provided by the IMU, the data will be analyzed by Arduino, supplied through the cloud, and shared with a mobile app for continuous monitoring. The buzzer will sound if the measured data is mismatched with the human body's natural position. The implementation and data prediction with design to identify balanced and unbalanced posture using a posture monitoring t-shirt will be further discussed in this research article. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IMU" title="IMU">IMU</a>, <a href="https://publications.waset.org/abstracts/search?q=posture" title=" posture"> posture</a>, <a href="https://publications.waset.org/abstracts/search?q=IOT" title=" IOT"> IOT</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a> </p> <a href="https://publications.waset.org/abstracts/162014/long-term-sitting-posture-identifier-connected-with-cloud-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4733</span> Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubhakar%20Gupta">Shubhakar Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhruv%20Prakash"> Dhruv Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Apoorv%20Mehta"> Apoorv Mehta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modular%20robotics" title="modular robotics">modular robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20detection" title=" terrain detection"> terrain detection</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20classification" title=" terrain classification"> terrain classification</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/118337/modular-robotics-and-terrain-detection-using-inertial-measurement-unit-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4732</span> Wave Pressure Metering with the Specific Instrument and Measure Description Determined by the Shape and Surface of the Instrument including the Number of Sensors and Angle between Them</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Branimir%20Jurun">Branimir Jurun</a>, <a href="https://publications.waset.org/abstracts/search?q=Elza%20Jurun"> Elza Jurun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Focus of this paper is description and functioning manner of the instrument for wave pressure metering. Moreover, an essential component of this paper is the proposal of a metering unit for the direct wave pressure measurement determined by the shape and surface of the instrument including the number of sensors and angle between them. Namely, far applied instruments by means of height, length, direction, wave time period and other components determine wave pressure on a particular area. This instrument, allows the direct measurement i.e. measurement without additional calculation, of the wave pressure expressed in a standardized unit of measure. That way the instrument has a standardized form, surface, number of sensors and the angle between them. In addition, it is made with the status that follows the wave and always is on the water surface. Database quality which is listed by the instrument is made possible by using the Arduino chip. This chip is programmed for receiving by two data from each of the sensors each second. From these data by a pre-defined manner a unique representative value is estimated. By this procedure all relevant wave pressure measurement results are directly and immediately registered. Final goal of establishing such a rich database is a comprehensive statistical analysis that ranges from multi-criteria analysis across different modeling and parameters testing to hypothesis accepting relating to the widest variety of man-made activities such as filling of beaches, security cages for aquaculture, bridges construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instrument" title="instrument">instrument</a>, <a href="https://publications.waset.org/abstracts/search?q=metering" title=" metering"> metering</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=waves" title=" waves"> waves</a> </p> <a href="https://publications.waset.org/abstracts/57868/wave-pressure-metering-with-the-specific-instrument-and-measure-description-determined-by-the-shape-and-surface-of-the-instrument-including-the-number-of-sensors-and-angle-between-them" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4731</span> Cogeneration Unit for Small Stove</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20Spilacek">Michal Spilacek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Brazdil"> Marian Brazdil</a>, <a href="https://publications.waset.org/abstracts/search?q=Otakar%20Stelcl"> Otakar Stelcl</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Pospisil"> Jiri Pospisil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper shows an experimental testing of a small unit for combustion of solid fuels, such as charcoal and wood logs, that can provide electricity. One of the concepts is that the unit does not require a qualified personnel for its operation. The unit itself is composed of two main parts. The design requires a heat producing stove and an electricity producing thermoelectric generator. After the construction the unit was tested and the results shows that the emission release is within the legislative requirements for emission production and environmental protection. That qualifies such unit for indoor application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-cogeneration" title="micro-cogeneration">micro-cogeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20generator" title=" thermoelectric generator"> thermoelectric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20combustion" title=" biomass combustion"> biomass combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20stove" title=" wood stove"> wood stove</a> </p> <a href="https://publications.waset.org/abstracts/27174/cogeneration-unit-for-small-stove" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4730</span> Comparison of Number of Waves Surfed and Duration Using Global Positioning System and Inertial Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Madureira">Jo茫o Madureira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Lagido"> Ricardo Lagido</a>, <a href="https://publications.waset.org/abstracts/search?q=In%C3%AAs%20Sousa"> In锚s Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fraunhofer%20Portugal"> Fraunhofer Portugal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surf is an increasingly popular sport and its performance evaluation is often qualitative. This work aims at using a smartphone to collect and analyze the GPS and inertial sensors data in order to obtain quantitative metrics of the surfing performance. Two approaches are compared for detection of wave rides, computing the number of waves rode in a surfing session, the starting time of each wave and its duration. The first approach is based on computing the velocity from the Global Positioning System (GPS) signal and finding the velocity thresholds that allow identifying the start and end of each wave ride. The second approach adds information from the Inertial Measurement Unit (IMU) of the smartphone, to the velocity thresholds obtained from the GPS unit, to determine the start and end of each wave ride. The two methods were evaluated using GPS and IMU data from two surfing sessions and validated with similar metrics extracted from video data collected from the beach. The second method, combining GPS and IMU data, was found to be more accurate in determining the number of waves, start time and duration. This paper shows that it is feasible to use smartphones for quantification of performance metrics during surfing. In particular, detection of the waves rode and their duration can be accurately determined using the smartphone GPS and IMU. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20measurement%20unit%20%28IMU%29" title="inertial measurement unit (IMU)">inertial measurement unit (IMU)</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20positioning%20system%20%28GPS%29" title=" global positioning system (GPS)"> global positioning system (GPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone" title=" smartphone"> smartphone</a>, <a href="https://publications.waset.org/abstracts/search?q=surfing%20performance" title=" surfing performance"> surfing performance</a> </p> <a href="https://publications.waset.org/abstracts/21286/comparison-of-number-of-waves-surfed-and-duration-using-global-positioning-system-and-inertial-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4729</span> Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bongsoo%20Jeon">Bongsoo Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayoung%20Kim"> Jayoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihong%20Lee"> Jihong Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor (exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20measurement%20unit" title="inertial measurement unit">inertial measurement unit</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20range%20finder" title=" laser range finder"> laser range finder</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20recognition%20of%20the%20ground%20shape" title=" real-time recognition of the ground shape"> real-time recognition of the ground shape</a>, <a href="https://publications.waset.org/abstracts/search?q=proprioceptive%20sensor" title=" proprioceptive sensor"> proprioceptive sensor</a> </p> <a href="https://publications.waset.org/abstracts/2646/real-time-recognition-of-the-terrain-configuration-to-improve-driving-stability-for-unmanned-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4728</span> A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Yuh%20Jywe">Wen-Yuh Jywe</a>, <a href="https://publications.waset.org/abstracts/search?q=Bor-Jeng%20Lin"> Bor-Jeng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Chung%20Shen"> Jing-Chung Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeng-Dao%20Lee"> Jeng-Dao Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsueh-Liang%20Huang"> Hsueh-Liang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tung-Hsien%20Hsieh"> Tung-Hsien Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway. The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4 渭m in the measurement range of 100 mm. The maximum measuring speed of the proposed automatic measurement instrument is 1 m/sec. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-D%20measurement" title="2-D measurement">2-D measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20guideway" title=" linear guideway"> linear guideway</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20errors" title=" motion errors"> motion errors</a>, <a href="https://publications.waset.org/abstracts/search?q=running%20straightness" title=" running straightness"> running straightness</a> </p> <a href="https://publications.waset.org/abstracts/2973/a-simple-low-cost-2-d-optical-measurement-system-for-linear-guideways" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4727</span> Unit Root Tests Based On the Robust Estimator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wararit%20Panichkitkosolkul">Wararit Panichkitkosolkul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p class="Abstract" style="text-indent:10.2pt">The unit root tests based on the robust estimator for the first-order autoregressive process are proposed and compared with the unit root tests based on the ordinary least squares (OLS) estimator. The percentiles of the null distributions of the unit root test are also reported. The empirical probabilities of Type I error and powers of the unit root tests are estimated via Monte Carlo simulation. Simulation results show that all unit root tests can control the probability of Type I error for all situations. The empirical power of the unit root tests based on the robust estimator are higher than the unit root tests based on the OLS estimator.<o:p></o:p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoregressive" title="autoregressive">autoregressive</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20least%20squares" title=" ordinary least squares"> ordinary least squares</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20i%20error" title=" type i error"> type i error</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20of%20the%20test" title=" power of the test"> power of the test</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/3693/unit-root-tests-based-on-the-robust-estimator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4726</span> A Comparative Study of Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) for Airflow Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sijie%20Fu">Sijie Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal-Henry%20Biwol%C3%A9"> Pascal-Henry Biwol茅</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Mathis"> Christian Mathis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among modern airflow measurement methods, Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), as visualized and non-instructive measurement techniques, are playing more important role. This paper conducts a comparative experimental study for airflow measurement employing both techniques with the same condition. Velocity vector fields, velocity contour fields, voticity profiles and turbulence profiles are selected as the comparison indexes. The results show that the performance of both PIV and PTV techniques for airflow measurement is satisfied, but some differences between the both techniques are existed, it suggests that selecting the measurement technique should be based on a comprehensive consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airflow%20measurement" title="airflow measurement">airflow measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=PTV" title=" PTV"> PTV</a> </p> <a href="https://publications.waset.org/abstracts/17111/a-comparative-study-of-particle-image-velocimetry-piv-and-particle-tracking-velocimetry-ptv-for-airflow-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4725</span> Reliability of Social Support Measurement Modification of the BC-SSAS among Women with Breast Cancer Who Undergone Chemotherapy in Selected Hospital, Central Java, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Dewi%20Rahmawaty%20Aktyani%20Putri">R. R. Dewi Rahmawaty Aktyani Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=Earmporn%20Thongkrajai"> Earmporn Thongkrajai</a>, <a href="https://publications.waset.org/abstracts/search?q=Dedy%20Purwito"> Dedy Purwito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There were many instruments have been developed to assess social support which has the different dimension in breast cancer patients. The Issue of measurement is a challenge to determining the component of dimensional concept, defining the unit of measurement, and establishing the validity and reliability of the measurement. However, the instruments where need to know how much support which obtained and perceived among women with breast cancer who undergone chemotherapy which it can help nurses to prevent of non-adherence in chemotherapy. This study aimed to measure the reliability of BC-SSAS instrument among 30 Indonesian women with breast cancer aged 18 years and above who undergone chemotherapy for six cycles in the oncological unit of Outpatient Department (OPD), Margono Soekardjo Hospital, Central Java, Indonesia. Data were collected during October to December 2015 by using modified the Breast Cancer Social Support Assessment (BC-SSAS). The Cronbach鈥檚 alpha analysis was carried out to measure internal consistency for reliability test of BC-SSAS instrument. This study used five experts for content validity index. The results showed that for content validity, I-CVI was 0.98 and S-CVI was 0.98; Cronbach鈥檚 alpha value was 0.971 and the Cronbach鈥檚 alpha coefficients for the subscales were high, with 0.903 for emotional support, 0.865 for informational support, 0.901 for tangible support, 0.897 for appraisal support and 0.884 for positive interaction support. The results confirmed that the BC-SSAS instrument has high reliability. BC-SSAS instruments were reliable and can be used in health care services to measure the social support received and perceived among women with breast cancer who undergone chemotherapy so that preventive interventions can be developed and the quality of health services can be improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BC-SSAS" title="BC-SSAS">BC-SSAS</a>, <a href="https://publications.waset.org/abstracts/search?q=women%20with%20breast%20cancer" title=" women with breast cancer"> women with breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=chemotherapy" title=" chemotherapy"> chemotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesia" title=" Indonesia"> Indonesia</a> </p> <a href="https://publications.waset.org/abstracts/46949/reliability-of-social-support-measurement-modification-of-the-bc-ssas-among-women-with-breast-cancer-who-undergone-chemotherapy-in-selected-hospital-central-java-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4724</span> Dispersion-Less All Reflective Split and Delay Unit for Ultrafast Metrology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akansha%20Tyagi">Akansha Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehar%20S.%20Sidhu"> Mehar S. Sidhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankur%20Mandal"> Ankur Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kapoor"> Sanjay Kapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Dahiya"> Sunil Dahiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20M.%20Rost"> Jan M. Rost</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Pfeifer"> Thomas Pfeifer</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20P.%20Singh"> Kamal P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An all-reflective split and delay unit is designed for dispersion free measurement of broadband ultrashort pulses using a pair of reflective knife edge prism for splitting and recombining of the measuring pulse. It is based on symmetrical wavefront splitting of the measuring pulse having two separate arms to independently shape both split parts. We have validated our delay line with NIR 鈥揻emtosecond pulse measurement centered at 800 nm using second harmonic-Interferometric frequency resolved optical gating (SH-IFROG). The delay line is compact, easy to align and provides attosecond stability and precision and thus make it more versatile for wide range of applications in ultrafast measurements. We envision that the present delay line will find applications in IR-IR controlling for high harmonic generation (HHG) and attosecond IR-XUV pump-probe measurements with solids and gases providing attosecond resolution and wide delay range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HHG" title="HHG">HHG</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a>, <a href="https://publications.waset.org/abstracts/search?q=pump-probe%20spectroscopy" title=" pump-probe spectroscopy"> pump-probe spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafast%20metrology" title=" ultrafast metrology"> ultrafast metrology</a> </p> <a href="https://publications.waset.org/abstracts/147793/dispersion-less-all-reflective-split-and-delay-unit-for-ultrafast-metrology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4723</span> A Measuring Industrial Resiliency by Using Data Envelopment Analysis Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ida%20Bagus%20Made%20Putra%20Jandhana">Ida Bagus Made Putra Jandhana</a>, <a href="https://publications.waset.org/abstracts/search?q=Teuku%20Yuri%20M.%20Zagloel"> Teuku Yuri M. Zagloel</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Nurchayo"> Rahmat Nurchayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Having several crises that affect industrial sector performance in the past decades, decision makers should utilize measurement application that enables them to measure industrial resiliency more precisely. It provides not only a framework for the development of resilience measurement application, but also several theories for the concept building blocks, such as performance measurement management, and resilience engineering in real world environment. This research is a continuation of previously published paper on performance measurement in the industrial sector. Finally, this paper contributes an alternative performance measurement method in industrial sector based on resilience concept. Moreover, this research demonstrates how applicable the concept of resilience engineering is and its method of measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial" title="industrial">industrial</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=sector" title=" sector"> sector</a> </p> <a href="https://publications.waset.org/abstracts/79172/a-measuring-industrial-resiliency-by-using-data-envelopment-analysis-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit&page=158">158</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit&page=159">159</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phasor%20measurement%20unit&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>