CINXE.COM

Search results for: cavity enhancement

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cavity enhancement</title> <meta name="description" content="Search results for: cavity enhancement"> <meta name="keywords" content="cavity enhancement"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cavity enhancement" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cavity enhancement"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1779</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cavity enhancement</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1779</span> Heat Transfer Enhancement by Localized Time Varying Thermal Perturbations at Hot and Cold Walls in a Rectangular Differentially Heated Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Thiers">Nicolas Thiers</a>, <a href="https://publications.waset.org/abstracts/search?q=Romain%20Gers"> Romain Gers</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Skurtys"> Olivier Skurtys</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we study numerically the effect of a thermal perturbation on the heat transfer in a rectangular differentially heated cavity of aspect ratio 4, filled by air. In order to maintain the center symmetry, the thermal perturbation is imposed by a square wave at both active walls, at the same relative position of the hot or cold boundary layers. The influences of the amplitude and the vertical location of the perturbation are investigated. The air flow is calculated solving the unsteady Boussinesq-Navier-Stokes equations using the PN - PN-2 Spectral Element Method (SEM) programmed in the Nek5000 opencode, at RaH= 9x107, just before the first bifurcation which leads to periodical flow. The results show that the perturbation has a major impact for the highest amplitude, and at about three quarters of the cavity height, upstream, in both hot and cold boundary layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20numerical%20simulation" title="direct numerical simulation">direct numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20thermal%20perturbations" title=" localized thermal perturbations"> localized thermal perturbations</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20differentially-heated%20cavity" title=" rectangular differentially-heated cavity"> rectangular differentially-heated cavity</a> </p> <a href="https://publications.waset.org/abstracts/109171/heat-transfer-enhancement-by-localized-time-varying-thermal-perturbations-at-hot-and-cold-walls-in-a-rectangular-differentially-heated-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1778</span> Study of the Electromagnetic Resonances of a Cavity with an Aperture Using Numerical Method and Equivalent Circuit Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Chu%20Yin">Ming-Chu Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping-An%20Du"> Ping-An Du</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shielding ability of a shielding cavity is affected greatly by its resonances, which include resonance modes and frequencies. The equivalent circuit method and numerical method of transmission line matrix (TLM) are used to analyze the effect of aperture-cavity coupling on electromagnetic resonances of a cavity with an aperture in this paper. Both theoretical and numerical results show that the resonance modes of a shielding cavity with an aperture can be considered as the combination of cavity and aperture inherent resonance modes with resonance frequencies shifting, and the reason of this shift is aperture-cavity coupling. Because aperture sizes are important parameters to aperture-cavity coupling, variation rules of electromagnetic resonances of a shielding cavity with its aperture sizes are given, which will be useful for the design of shielding cavities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aperture-cavity%20coupling" title="aperture-cavity coupling">aperture-cavity coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuit%20method" title=" equivalent circuit method"> equivalent circuit method</a>, <a href="https://publications.waset.org/abstracts/search?q=resonances" title=" resonances"> resonances</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding%20equipment" title=" shielding equipment"> shielding equipment</a> </p> <a href="https://publications.waset.org/abstracts/34273/study-of-the-electromagnetic-resonances-of-a-cavity-with-an-aperture-using-numerical-method-and-equivalent-circuit-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1777</span> Numerical Study on the Cavity-Induced Piping Failure of Embankment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Kim">H. J. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Park"> G. C. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Kim"> K. C. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Shin"> J. H. Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cavities are frequently found beneath conduits on pile foundations in old embankments. Cavity reduces seepage length significantly and consequently causes piping failure of embankments. Case studies of embankment failures indicate that the relative settlement between ground and pile supported-concrete conduit was the main reason of the cavity. In this paper, an attempt to simulate the cavity-induced piping failure mechanism was made using finite element numerical method. Piping potential is examined by carrying out parametric study for influencing factors such as cavity length, water level, and flow conditions. The concentration of hydraulic gradient adjacent to cavity was found. It is found that the hydraulic gradient close to the cavity exceeds considerably the critical hydraulic gradient causing piping. Piping failure potential due to the existence of cavity is evaluated and contour map for the potential risk of an embankment for piping failure is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavity" title="cavity">cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20gradient" title=" hydraulic gradient"> hydraulic gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=levee" title=" levee"> levee</a>, <a href="https://publications.waset.org/abstracts/search?q=piping" title=" piping"> piping</a> </p> <a href="https://publications.waset.org/abstracts/33770/numerical-study-on-the-cavity-induced-piping-failure-of-embankment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1776</span> Cavity-Type Periodically-Poled LiNbO3 Device for Highly-Efficient Third-Harmonic Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita">Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We develop a periodically-poled LiNbO3 (PPLN) device for highly-efficient third-harmonic generation (THG), where the THG efficiency is enhanced with a cavity. THG can usually be produced via &chi;(3)-nonlinear materials by optical pumping with very high pump-power. Instead, we here propose THG by moderate-power pumping through a specially-designed PPLN device containing only &chi;(2)-nonlinearity, where sum-frequency generation in the &chi;(2) process is employed for the mixing of a pump beam and a second-harmonic-generation (SHG) beam produced from the pump beam. The cavity is designed to increase the SHG power with dichroic mirrors attached to both ends of the device that perfectly reflect the SHG beam back to the device and yet let the pump and THG beams pass through the mirrors. This brings about a THG-power enhancement because of THG power proportional to the enhanced SHG power. We examine the THG-efficiency dependence on the mirror reflectance and show that very high THG-efficiency is obtained at moderate pump-power when compared with that of a cavity-free PPLN device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavity" title="cavity">cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=periodically-poled%20LiNbO%E2%82%83" title=" periodically-poled LiNbO₃"> periodically-poled LiNbO₃</a>, <a href="https://publications.waset.org/abstracts/search?q=sum-frequency%20generation" title=" sum-frequency generation"> sum-frequency generation</a>, <a href="https://publications.waset.org/abstracts/search?q=third-harmonic%20generation" title=" third-harmonic generation"> third-harmonic generation</a> </p> <a href="https://publications.waset.org/abstracts/77505/cavity-type-periodically-poled-linbo3-device-for-highly-efficient-third-harmonic-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1775</span> Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suwimon%20Saneewong%20Na%20Ayuttaya">Suwimon Saneewong Na Ayuttaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Chainarong%20Chaktranond"> Chainarong Chaktranond</a>, <a href="https://publications.waset.org/abstracts/search?q=Phadungsak%20Rattanadecho"> Phadungsak Rattanadecho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180°. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60°C, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60°, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirling%20flow" title="swirling flow">swirling flow</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamic" title=" electrohydrodynamic"> electrohydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/9317/comparison-on-electrode-and-ground-arrangements-effect-on-heat-transfer-under-electric-force-in-a-channel-and-a-cavity-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1774</span> Cost-Effective Indoor-Air Quality (IAQ) Monitoring via Cavity Enhanced Photoacoustic Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jifang%20Tao">Jifang Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Gao"> Fei Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Cai"> Hong Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Jin%20Zheng"> Yuan Jin Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Dong%20Gu"> Yuan Dong Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic technology is used to measure effect absorption of a light by means of acoustic detection, which provides a high sensitive, low-cross response, cost-effective solution for gas molecular detection. In this paper, we proposed an integrated photoacoustic sensor for Indoor-air quality (IAQ) monitoring. The sensor consists of an acoustically resonant cavity, a high silicon acoustic transducer chip, and a low-cost light source. The light is modulated at the resonant frequency of the cavity to create an enhanced periodic heating and result in an amplified acoustic pressure wave. The pressure is readout by a novel acoustic transducer with low noise. Based on this photoacoustic sensor, typical indoor gases, including CO2, CO, O2, and H2O have been successfully detected, and their concentration are also evaluated with very high accuracy. It has wide potential applications in IAQ monitoring for agriculture, food industry, and ventilation control systems used in public places, such as schools, hospitals and airports. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor-air%20quality%20%28IAQ%29%20monitoring" title="indoor-air quality (IAQ) monitoring">indoor-air quality (IAQ) monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20gas%20sensor" title=" photoacoustic gas sensor"> photoacoustic gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement" title=" cavity enhancement"> cavity enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20gas%20sensor" title=" integrated gas sensor"> integrated gas sensor</a> </p> <a href="https://publications.waset.org/abstracts/35061/cost-effective-indoor-air-quality-iaq-monitoring-via-cavity-enhanced-photoacoustic-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">658</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1773</span> Hydrodynamics of Wound Ballistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harpreet%20Kaur">Harpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Er.%20Arjun"> Er. Arjun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirandeep%20Kaur"> Kirandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Mittal"> P. K. Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of a human body from 20% gelatin & 80% water mixture is examined from wound ballistics point of view. Parameters such as incapacitation energy & temporary to permanent cavity size & tools of hydrodynamics have been employed to arrive at a model of human body similar to the one adopted by NATO. Calculations using equations of motion yield a value of 339 µs in which a temporary cavity with maximum size settles down to permanent cavity. This occurs for a 10mm size bullets & settle down to permanent cavity in case of 4 different bullets i.e. 5.45, 5.56, 7.62,10 mm sizes The obtained results are in excellent agreement with the body as right circular cylinder of 15 cm height & 10 cm diameter. An effort is made here in this work to present a sound theoretical base to parameters commonly used in wound ballistics from field experience discussed by Col Coats & Major Beyer. Keywords. Gelatin, gunshot, hydrodynamic model, oscillation time, temporary cavity and permanent cavity, Wound Ballistic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gelatin" title="gelatin">gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=gunshot" title=" gunshot"> gunshot</a>, <a href="https://publications.waset.org/abstracts/search?q=wound" title=" wound"> wound</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity" title=" cavity"> cavity</a> </p> <a href="https://publications.waset.org/abstracts/175051/hydrodynamics-of-wound-ballistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1772</span> Neuroendocrine Tumors of the Oral Cavity: A Summarized Overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sona%20Babu%20Rathinam">Sona Babu Rathinam</a>, <a href="https://publications.waset.org/abstracts/search?q=Lavanya%20Dharmendran"> Lavanya Dharmendran</a>, <a href="https://publications.waset.org/abstracts/search?q=Therraddi%20Mutthu"> Therraddi Mutthu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: The purpose of this paper is to provides an overview of the neuroendocrine tumors that arise in the oral cavity. Material and Methods: An overview of the relevant papers on neuroendocrine tumors of the oral cavity by various authors was studied and summarized. Results: On the basis of the relevant studies, this paper provides an overview of the classification and histological differentiation of the neuroendocrine tumors that arise in the oral cavity. Conclusions: The basis of classification of neuroendocrine tumors is largely determined by their histologic differentiation. Though they reveal biologic heterogeneity, there should be an awareness of the occurrence of such lesions in the oral cavity to enable them to be detected and treated early. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malignant%20peripheral%20nerve%20sheath%20tumor" title="malignant peripheral nerve sheath tumor">malignant peripheral nerve sheath tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=olfactory%20neuroblastoma" title=" olfactory neuroblastoma"> olfactory neuroblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=paraganglioma" title=" paraganglioma"> paraganglioma</a>, <a href="https://publications.waset.org/abstracts/search?q=schwannoma" title=" schwannoma"> schwannoma</a> </p> <a href="https://publications.waset.org/abstracts/168796/neuroendocrine-tumors-of-the-oral-cavity-a-summarized-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1771</span> Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cha%E2%80%99o-Kuang%20Chen">Cha’o-Kuang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Chang%20Cho"> Ching-Chang Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluid" title="non-Newtonian fluid">non-Newtonian fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=power-law%20fluid" title=" power-law fluid"> power-law fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity" title=" cavity"> cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=wavy%20wall" title=" wavy wall"> wavy wall</a> </p> <a href="https://publications.waset.org/abstracts/6789/natural-convection-in-wavy-wall-cavities-filled-with-power-law-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1770</span> Combline Cavity Bandpass Filter Design and Implementation Using EM Simulation Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taha%20Ahmed%20%C3%96zbey">Taha Ahmed Özbey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20Nazl%C4%B1bilek"> Sedat Nazlıbilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Alparslan%20%C3%87a%C4%9Fr%C4%B1%20Yap%C4%B1c%C4%B1"> Alparslan Çağrı Yapıcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combline cavity filters have gained significant attention in recent years due to their exceptional narrowband characteristics, high unloaded Q, remarkable out-of-band rejection, and versatile post-manufacturing tuning capabilities. These filters play a vital role in various wireless communication systems, radar applications, and other advanced technologies where stringent frequency selectivity and superior performance are required. This paper represents combined cavity filter design and implementation by coupling matrix synthesis. Limited filter length, 50 dB out-of-band rejection, and agile design were aimed. To do so, CAD tools and intuitive methods were used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavity" title="cavity">cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=band%20pass%20filter" title=" band pass filter"> band pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20combline%20filter" title=" cavity combline filter"> cavity combline filter</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20matrix%20synthesis" title=" coupling matrix synthesis"> coupling matrix synthesis</a> </p> <a href="https://publications.waset.org/abstracts/171516/combline-cavity-bandpass-filter-design-and-implementation-using-em-simulation-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1769</span> Computational Analysis of Cavity Effect over Aircraft Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Booma%20Devi">P. Booma Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilip%20A.%20Shah"> Dilip A. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lift" title="lift">lift</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20reduce" title=" drag reduce"> drag reduce</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20dimple" title=" square dimple"> square dimple</a>, <a href="https://publications.waset.org/abstracts/search?q=triangle%20dimple" title=" triangle dimple"> triangle dimple</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20of%20stall%20angle" title=" enhancement of stall angle"> enhancement of stall angle</a> </p> <a href="https://publications.waset.org/abstracts/51224/computational-analysis-of-cavity-effect-over-aircraft-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1768</span> Combined Surface Tension and Natural Convection of Nanofluids in a Square Open Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habibis%20Saleh">Habibis Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishak%20Hashim"> Ishak Hashim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combined surface tension and natural convection heat transfer in an open cavity is studied numerically in this article. The cavity is filled with water-{Cu} nanofluids. The left wall is kept at low temperature, the right wall at high temperature and the bottom and top walls are adiabatic. The top free surface is assumed to be flat and non--deformable. Finite difference method is applied to solve the dimensionless governing equations. It is found that the insignificant effect of adding the nanoparticles were obtained about $Ma_{bf}=250$. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title="natural convection">natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=marangoni%20convection" title=" marangoni convection"> marangoni convection</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title=" nanofluids"> nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20open%20cavity" title=" square open cavity"> square open cavity</a> </p> <a href="https://publications.waset.org/abstracts/16711/combined-surface-tension-and-natural-convection-of-nanofluids-in-a-square-open-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1767</span> Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Khaleel%20Kareem">Ali Khaleel Kareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Shian%20Gao"> Shian Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Qasim%20Ahmed"> Ahmed Qasim Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 &le; &Omega; &le; 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-&epsilon; model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20roughness" title="artificial roughness">artificial roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=lid-driven%20cavity" title=" lid-driven cavity"> lid-driven cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection%20heat%20transfer" title=" mixed convection heat transfer"> mixed convection heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20cylinder" title=" rotating cylinder"> rotating cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=URANS%20method" title=" URANS method"> URANS method</a> </p> <a href="https://publications.waset.org/abstracts/91416/mixed-convection-enhancement-in-a-3d-lid-driven-cavity-containing-a-rotating-cylinder-by-applying-an-artificial-roughness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1766</span> Temperature-Stable High-Speed Vertical-Cavity Surface-Emitting Lasers with Strong Carrier Confinement </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yun%20Sun">Yun Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Xun"> Meng Xun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingtao%20Zhou"> Jingtao Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Li"> Ming Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Kan"> Qiang Kan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Jin"> Zhi Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyu%20Liu"> Xinyu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dexin%20Wu"> Dexin Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Higher speed short-wavelength vertical-cavity surface-emitting lasers (VCSELs) working at high temperature are required for future optical interconnects. In this work, the high-speed 850 nm VCSELs are designed, fabricated and characterized. The temperature dependent static and dynamic performance of devices are investigated by using current-power-voltage and small signal modulation measurements. Temperature-stable high-speed properties are obtained by employing highly strained multiple quantum wells and short cavity length of half wavelength. The temperature dependent photon lifetimes and carrier radiative times are determined from damping factor and resonance frequency obtained by fitting the intrinsic optical bandwidth with the two-pole transfer function. In addition, an analytical theoretical model including the strain effect is development based on model-solid theory. The calculation results indicate that the better high temperature performance of VCSELs can be attributed to the strong confinement of holes in the quantum wells leading to enhancement of the carrier transit time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20cavity%20surface%20emitting%20lasers" title="vertical cavity surface emitting lasers">vertical cavity surface emitting lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20modulation" title=" high speed modulation"> high speed modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20interconnects" title=" optical interconnects"> optical interconnects</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20lasers" title=" semiconductor lasers"> semiconductor lasers</a> </p> <a href="https://publications.waset.org/abstracts/104556/temperature-stable-high-speed-vertical-cavity-surface-emitting-lasers-with-strong-carrier-confinement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1765</span> Material Detection by Phase Shift Cavity Ring-Down Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20Muhammad%20Armaghan%20Ayaz">Rana Muhammad Armaghan Ayaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yigit%20Uysall%C4%B1"> Yigit Uysallı</a>, <a href="https://publications.waset.org/abstracts/search?q=Nima%20Bavili"> Nima Bavili</a>, <a href="https://publications.waset.org/abstracts/search?q=Berna%20Morova"> Berna Morova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20Kiraz"> Alper Kiraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=materials" title="materials">materials</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20shift" title=" phase shift"> phase shift</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance%20wavelength" title=" resonance wavelength"> resonance wavelength</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20approach" title=" time domain approach"> time domain approach</a> </p> <a href="https://publications.waset.org/abstracts/107606/material-detection-by-phase-shift-cavity-ring-down-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1764</span> Hydrodynamics of Wound Ballistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harpreet%20Kaur">Harpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Er.%20Arjun"> Er. Arjun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirandeep%20Kaur"> Kirandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Mittal"> P. K. Mittal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of a human body from a 20% gelatin & 80% water mixture is examined from a wound ballistics point of view. Parameters such as incapacitation energy & temporary to permanent cavity size & tools of hydrodynamics have been employed to arrive at a model of the human body similar to the one adopted by NATO. Calculations using equations of motion yield a value of 339 µs in which a temporary cavity with maximum size settles down to a permanent cavity. This occurs for 10mm size bullets & settles down to a permanent cavity in the case of 4 different bullets, i.e., 5.45, 5.56, 7.62,10 mm sizes. The obtained results are in excellent agreement with the body as a right circular cylinder of 15 cm height & 10 cm diameter. An effort is made here in this work to present a sound theoretical base to parameters commonly used in wound ballistics from field experience discussed by Col Coats & Major Beyer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gelatine" title="gelatine">gelatine</a>, <a href="https://publications.waset.org/abstracts/search?q=gunshot" title=" gunshot"> gunshot</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20model" title=" hydrodynamic model"> hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation%20time" title=" oscillation time"> oscillation time</a>, <a href="https://publications.waset.org/abstracts/search?q=temporary%20and%20permanent%20cavity" title=" temporary and permanent cavity"> temporary and permanent cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20ballistics" title=" wound ballistics"> wound ballistics</a> </p> <a href="https://publications.waset.org/abstracts/173570/hydrodynamics-of-wound-ballistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1763</span> Numerical Modeling of Turbulent Natural Convection in a Square Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Sedighi">Mohammadreza Sedighi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Said%20Saidi"> Mohammad Said Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesamoddin%20Salarian"> Hesamoddin Salarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study has been performed to investigate the effect of using different turbulent models on natural convection flow field and temperature distributions in partially heated square cavity compare to benchmark. The temperature of the right vertical wall is lower than that of heater while other walls are insulated. The commercial CFD codes are used to model. Standard k-w model provided good agreement with the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buoyancy" title="Buoyancy">Buoyancy</a>, <a href="https://publications.waset.org/abstracts/search?q=Cavity" title=" Cavity"> Cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=Heat%20Transfer" title=" Heat Transfer"> Heat Transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Natural%20Convection" title=" Natural Convection"> Natural Convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Turbulence" title=" Turbulence "> Turbulence </a> </p> <a href="https://publications.waset.org/abstracts/22257/numerical-modeling-of-turbulent-natural-convection-in-a-square-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1762</span> Analysis of Flow Dynamics of Heated and Cooled Pylon Upstream to the Cavity past Supersonic Flow with Wall Heating and Cooling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20Asokan">Vishnu Asokan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaid%20M.%20Paloba"> Zaid M. Paloba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow over cavities is an important area of research due to the significant change in flow physics caused by cavity aspect ratio, free stream Mach number and the nature of upstream boundary layer approaching the cavity leading edge. Cavity flow finds application in aircraft wheel well, weapons bay, combustion chamber of scramjet engines, etc. These flows are highly unsteady, compressible and turbulent and it involves mass entrainment coupled with acoustics phenomenon. Variation of flow dynamics in an angled cavity with a heated and cooled pylon upstream to the cavity with spatial combinations of heat flux addition and removal to the wall studied numerically. The goal of study is to investigate the effect of energy addition, removal to the cavity walls and pylon cavity flow dynamics. Preliminary steady state numerical simulations on inclined cavities with heat addition have shown that wall pressure profiles, as well as the recirculation, are influenced by heat transfer to the compressible fluid medium. Such a hybrid control of cavity flow dynamics in the form of heat transfer and pylon geometry can open out greater opportunities in enhancement of mixing and flame holding requirements of supersonic combustors. Addition of pylon upstream to the cavity reduces the acoustic oscillations emanating from the geometry. A numerical unsteady analysis of supersonic flow past cavities exposed to cavity wall heating and cooling with heated and cooled pylon helps to get a clear idea about the oscillation suppression in the cavity. A Cavity of L/D 4 and aft wall angle 22 degree with an upstream pylon of h/D=1.5 mm with a wall angle 29 degree exposed to supersonic flow of Mach number 2 and heat flux of 40 W/cm² and -40 W/cm² modeled for the above study. In the preliminary study, the domain is modeled and validated numerically with a turbulence model of SST k-ω using an HLLC implicit scheme. Both qualitative and quantitative flow data extracted and analyzed using advanced CFD tools. Flow visualization is done using numerical Schlieren method as the fluid medium gives the density variation. The heat flux addition to the wall increases the secondary vortex size of the cavity and removal of energy leads to the reduction in vortex size. The flow field turbulence seems to be increasing at higher heat flux. The shear layer thickness increases as heat flux increases. The steady state analysis of wall pressure shows that there is variation on wall pressure as heat flux increases. Shift in frequency of unsteady wall pressure analysis is an interesting observation for the above study. The time averaged skin friction seems to be reducing at higher heat flux due to the variation in viscosity of fluid inside the cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20addition" title="energy addition">energy addition</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20shift" title=" frequency shift"> frequency shift</a>, <a href="https://publications.waset.org/abstracts/search?q=Numerical%20Schlieren" title=" Numerical Schlieren"> Numerical Schlieren</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20layer" title=" shear layer"> shear layer</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20evolution" title=" vortex evolution"> vortex evolution</a> </p> <a href="https://publications.waset.org/abstracts/110270/analysis-of-flow-dynamics-of-heated-and-cooled-pylon-upstream-to-the-cavity-past-supersonic-flow-with-wall-heating-and-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1761</span> Analysis of Scattering Behavior in the Cavity of Phononic Crystals with Archimedean Tilings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Hua%20Chen">Yi-Hua Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiang-Wen%20Tang"> Hsiang-Wen Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=I-Ling%20Chang"> I-Ling Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lien-Wen%20Chen"> Lien-Wen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The defect mode of two-dimensional phononic crystals with Archimedean tilings was explored in the present study. Finite element method and supercell method were used to obtain dispersion relation of phononic crystals. The simulations of the acoustic wave propagation within phononic crystals are demonstrated. Around the cavity which is created by removing several cylinders in the perfect Archimedean tilings, whispering-gallery mode (WGM) can be observed. The effects of the cavity geometry on the WGM modes are investigated. The WGM modes with high Q-factor and high cavity pressure can be obtained by phononic crystals with Archimedean tilings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20mode" title="defect mode">defect mode</a>, <a href="https://publications.waset.org/abstracts/search?q=Archimedean%20tilings" title=" Archimedean tilings"> Archimedean tilings</a>, <a href="https://publications.waset.org/abstracts/search?q=phononic%20crystals" title=" phononic crystals"> phononic crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=whispering-gallery%20modes" title=" whispering-gallery modes"> whispering-gallery modes</a> </p> <a href="https://publications.waset.org/abstracts/47506/analysis-of-scattering-behavior-in-the-cavity-of-phononic-crystals-with-archimedean-tilings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1760</span> Modelling of Cavity Growth in Underground Coal Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Aghalayam">Preeti Aghalayam</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Shah"> Jay Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underground coal gasification (UCG) is the in-situ gasification of unmineable coals to produce syngas. In UCG, gasifying agents are injected into the coal seam, and a reactive cavity is formed due to coal consumption. The cavity formed is typically hemispherical, and this report consists of the MATLAB model of the UCG cavity to predict the composition of the output gases. There are seven radial and two time-variant ODEs. A MATLAB solver (ode15s) is used to solve the radial ODEs from the above equations. Two for-loops are implemented in the model, i.e., one for time variations and another for radial variation. In the time loop, the radial odes are solved using the MATLAB solver. The radial loop is nested inside the time loop, and the density odes are numerically solved using the Euler method. The model is validated by comparing it with the literature results of laboratory-scale experiments. The model predicts the radial and time variation of the product gases inside the cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gasification%20agent" title="gasification agent">gasification agent</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20model" title=" MATLAB model"> MATLAB model</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20coal%20gasification%20%28UCG%29" title=" underground coal gasification (UCG)"> underground coal gasification (UCG)</a> </p> <a href="https://publications.waset.org/abstracts/142719/modelling-of-cavity-growth-in-underground-coal-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1759</span> Numerical Study of Natural Convection Heat Transfer Performance in an Inclined Cavity: Nanofluid and Random Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hicham%20Salhi">Hicham Salhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Si-Ameur"> Mohamed Si-Ameur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadjib%20Chafai"> Nadjib Chafai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural convection of a nanofluid consisting of water and nanoparticles (Ag or TiO2) in an inclined enclosure cavity, has been studied numerically, heated by a (random temperature, based on the random function). The governing equations are solved numerically using the finite-volume. Results are presented in the form of streamlines, isotherms, and average Nusselt number. In addition, a parametric study is carried out to examine explicitly the volume fraction effects of nanoparticles (Ψ= 0.1, 0.2), the Rayleigh number (Ra=103, 104, 105, 106),the inclination angle of the cavity( égale à 0°, 30°, 45°, 90°, 135°, 180°), types of temperature (constant ,random), types of (NF) (Ag andTiO2). The results reveal that (NPs) addition remarkably enhances heat transfer in the cavity especially for (Ψ= 0.2). Besides, the effect of inclination angle and type of temperature is more pronounced at higher Rayleigh number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20cavity" title=" inclined cavity"> inclined cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20temperature" title=" random temperature"> random temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-volume" title=" finite-volume"> finite-volume</a> </p> <a href="https://publications.waset.org/abstracts/45433/numerical-study-of-natural-convection-heat-transfer-performance-in-an-inclined-cavity-nanofluid-and-random-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1758</span> Analysis of Heat Transfer in a Closed Cavity Ventilated Inside </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benseghir%20Omar">Benseghir Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahmed%20Mohamed"> Bahmed Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we presented a numerical study of the phenomenon of heat transfer through the laminar, incompressible and steady mixed convection in a closed square cavity with the left vertical wall of the cavity is subjected to a warm temperature, while the right wall is considered to be cold. The horizontal walls are assumed adiabatic. The governing equations were discretized by finite volume method on a staggered mesh and the SIMPLER algorithm was used for the treatment of velocity-pressure coupling. The numerical simulations were performed for a wide range of Reynolds numbers 1, 10, 100, and 1000 numbers are equal to 0.01,0.1 Richardson, 0.5,1 and 10.The analysis of the results shows a flow bicellular (two cells), one is created by the speed of the fan placed in the inner cavity, one on the left is due to the difference between the temperatures right wall and the left wall. Knowledge of the intensity of each of these cells allowed us to get an original result. And the values obtained from each of Nuselt convection which allow to know the rate of heat transfer in the cavity.Finally we find that there is a significant influence on the position of the fan on the heat transfer (Nusselt evolution) for values of Reynolds studied and for low values of Richardson handed this influence is negligible for high values of the latter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20transfer" title="thermal transfer">thermal transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20cavity" title=" square cavity"> square cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a> </p> <a href="https://publications.waset.org/abstracts/23319/analysis-of-heat-transfer-in-a-closed-cavity-ventilated-inside" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1757</span> The Comparison of Primary B-Cell and NKT-Cell Non-Hodgkin Lymphomas in Nasopharynx, Nasal Cavity, and Paranasal Sinuses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiajia%20Peng">Jiajia Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianqing%20Qiu"> Jianqing Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianjun%20Ren"> Jianjun Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Zhao"> Yu Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: We aimed to compare clinical and survival differences between B-cell (B-NHL) and NKT-cell non-Hodgkin lymphomas (NKT-NHL) located in the nasal cavity, nasopharynx and paranasal sinuses, which are always categorized as one sinonasal type. Methods: Patients diagnosed with primary B-NHL and NKT-NHL in the nasal cavity, nasopharynx, and paranasal sinuses from the SEER database were included. We identified these patients based on histological types and anatomical sites and subsequently conducted univariate and multivariate Cox regression and Kaplan–Meier analyses to examine cancer-special survival (CSS) outcomes. Results: Overall, most B-NHL cases originated from the nasopharynx, while the majority of NKT-NHL cases occurred in the nasal cavity. Notably, the CSS outcomes improved significantly in all sinonasal B-NHL cases over time, whereas no such improvement trend was observed in each sinonasal NKT-NHL type. Additionally, increasing age was linked with an elevated risk of death in B-NHL, particularly in the nasal cavity (HR:3.37), rather than in NKT-NHL. Compared with B-NHL, the adverse effect of the higher stage on CSS was more evident in NKT-NHL, particularly in its nasopharynx site (HR: 5.12). Furthermore, radiotherapy was beneficial for survival in patients with sinonasal B-NHL and NKT-NHL, except in those with NKT-NHL in the nasopharynx site. However, chemotherapy has only been beneficial for CSS in patients with B-NHL in paranasal sinuses (HR: 0.42) since 2010, rather than in other types of B-NHL or NKT-NHL. Conclusions: Although B-NHL and NKT-NHL in the nasal cavity, nasopharynx and paranasal sinuses have similar anatomical locations, their clinic demographics and prognoses are largely different and should be treated and studied as distinct diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B-cell%20non-Hodgkin%20lymphomas" title="B-cell non-Hodgkin lymphomas">B-cell non-Hodgkin lymphomas</a>, <a href="https://publications.waset.org/abstracts/search?q=NKT-cell%20non-Hodgkin%20lymphomas" title=" NKT-cell non-Hodgkin lymphomas"> NKT-cell non-Hodgkin lymphomas</a>, <a href="https://publications.waset.org/abstracts/search?q=nasal%20cavity%20lymphomas" title=" nasal cavity lymphomas"> nasal cavity lymphomas</a>, <a href="https://publications.waset.org/abstracts/search?q=nasal%20sinuses%20lymphomas" title=" nasal sinuses lymphomas"> nasal sinuses lymphomas</a>, <a href="https://publications.waset.org/abstracts/search?q=nasopharynx%20lymphomas" title=" nasopharynx lymphomas"> nasopharynx lymphomas</a> </p> <a href="https://publications.waset.org/abstracts/156905/the-comparison-of-primary-b-cell-and-nkt-cell-non-hodgkin-lymphomas-in-nasopharynx-nasal-cavity-and-paranasal-sinuses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1756</span> Chaos in a Stadium-Shaped 2-D Quantum Dot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roger%20Yu">Roger Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical scheme has been developed to solve wave equations for chaotic systems such as stadium-shaped cavity. The same numerical method can also be used for finding wave properties of rectangle cavities with randomly placed obstacles. About 30k eigenvalues have been obtained accurately on a normal circumstance. For comparison, we also initiated an experimental study which determines both eigenfrequencies and eigenfunctions of a stadium-shaped cavity using pulse and normal mode analyzing techniques. The acoustic cavity was made adjustable so that the transition from nonchaotic (circle) to chaotic (stadium) waves can be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title="quantum dot">quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a> </p> <a href="https://publications.waset.org/abstracts/148129/chaos-in-a-stadium-shaped-2-d-quantum-dot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1755</span> Design and Analysis of Metamaterial Based Vertical Cavity Surface Emitting Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishraq%20M.%20Anjum">Ishraq M. Anjum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distributed Bragg reflectors are used in vertical-cavity surface-emitting lasers (VCSELs) in order to achieve very high reflectivity. Use of metamaterial in place of distributed Bragg reflector can reduce the device size significantly. A silicon-based metamaterial near perfect reflector is designed to be used in place of distributed Bragg reflectors in VCSELs. Mie resonance in dielectric microparticles is exploited in order to design the metamaterial. A reflectivity of 98.31% is achieved using finite-difference time-domain method. An 808nm double intra-cavity contacted VCSEL structure with 1.5 λ cavity is proposed using this metamaterial near perfect reflector. The active region is designed to be composed of seven GaAs/AlGaAs quantum wells. Upon numerical investigation of the designed VCSEL structure, the threshold current is found to be 2.96 mA at an aperture of 40 square micrometers and the maximum output power is found to be 71 mW at a current of 141 mA. Miniaturization of conventional VCSELs is possible using this design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GaAs" title="GaAs">GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=LASER" title=" LASER"> LASER</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=VCSEL" title=" VCSEL"> VCSEL</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20cavity%20surface%20emitting%20laser" title=" vertical cavity surface emitting laser"> vertical cavity surface emitting laser</a> </p> <a href="https://publications.waset.org/abstracts/103827/design-and-analysis-of-metamaterial-based-vertical-cavity-surface-emitting-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1754</span> Non-Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heval%20Serhat%20Uluk">Heval Serhat Uluk</a>, <a href="https://publications.waset.org/abstracts/search?q=Sam%20M.%20Dakka"> Sam M. Dakka</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuldeep%20Singh"> Kuldeep Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Jefferson-Loveday"> Richard Jefferson-Loveday</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors were simulated to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6, and 1 and for air mass flow rates of 14 m/s, 28 m/s, and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion" title=" propulsion"> propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=trapped%20vortex%20combustor" title=" trapped vortex combustor"> trapped vortex combustor</a> </p> <a href="https://publications.waset.org/abstracts/168401/non-reacting-numerical-simulation-of-axisymmetric-trapped-vortex-combustor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1753</span> Application of Strong Optical Feedback to Enhance the Modulation Bandwidth of Semiconductor Lasers to the Millimeter-Wave Band</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Ahmed">Moustafa Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Bakry"> Ahmed Bakry</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumio%20Koyama"> Fumio Koyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report on the use of strong external optical feedback to enhance the modulation response of semiconductor lasers over a frequency passband around modulation frequencies higher than 60 GHz. We show that this modulation enhancement is a type of photon-photon resonance (PPR) of oscillating modes in the external cavity formed between the laser and the external reflector. The study is based on a time-delay rate equation model that takes into account both the strong feedback and multiple reflections in the external cavity. We examine the harmonic and intermodulation distortions associated with single and two-tone modulations in the mm-wave band of the resonant modulation. We show that compared with solitary lasers modulated around the carrier-photon resonance frequency, the present mm-wave modulated signal has lower distortions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser" title="semiconductor laser">semiconductor laser</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20feedback" title=" optical feedback"> optical feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation" title=" modulation"> modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20distortion" title=" harmonic distortion"> harmonic distortion</a> </p> <a href="https://publications.waset.org/abstracts/10588/application-of-strong-optical-feedback-to-enhance-the-modulation-bandwidth-of-semiconductor-lasers-to-the-millimeter-wave-band" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">747</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1752</span> Supersonic Combustion (Scramjet) Containing Flame-Holder with Slot Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupriya">Anupriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikramjit%20Sinfh"> Bikramjit Sinfh</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhay%20Shyam"> Radhay Shyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve mixing phenomena and combustion processes in supersonic flow, the current work has concentrated on identifying the ideal cavity parameters using CFD ANSYS Fluent. Offset ratios (OR) and aft ramp angles () have been manipulated in simulations of several models, but the length-to-depth ratio has remained the same. The length-to-depth ratio of all cavity flows is less than 10, making them all open. Hydrogen fuel was injected into a supersonic air flow with a Mach number of 3.75 using a chamber with a 1 mm diameter and a transverse slot nozzle. The free stream had conditions of a pressure of 1.2 MPa, a temperature of 299K, and a Reynolds number of 2.07x107. This method has the ability to retain a flame since the cavity facilitates rapid mixing of fuel and oxidizer and decreases total pressure losses. The impact of the cavity on combustion efficiency and total pressure loss is discussed, and the results are compared to those of a model without a cavity. Both the mixing qualities and the combustion processes were enhanced in the model with the cavity. The overall pressure loss as well as the effectiveness of the combustion process both increase with the increase in the ramp angle to the rear. When OR is increased, however, resistance to the supersonic flow field is reduced, which has a detrimental effect on both parameters. For a given ramp height, larger pressure losses were observed at steeper ramp angles due to increased eddy-viscous turbulent flow and increased wall drag. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=total%20pressure%20loss" title="total pressure loss">total pressure loss</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20holder" title=" flame holder"> flame holder</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20combustion" title=" supersonic combustion"> supersonic combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20efficiency" title=" combustion efficiency"> combustion efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity" title=" cavity"> cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a> </p> <a href="https://publications.waset.org/abstracts/154492/supersonic-combustion-scramjet-containing-flame-holder-with-slot-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1751</span> Three-Dimensional Unsteady Natural Convection and Entropy Generation in an Inclined Cubical Trapezoidal Cavity Subjected to Uniformly Heated Bottom Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farshid%20Fathinia">Farshid Fathinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ≤ Ra ≤ 105, while the trapezoidal cavity inclination angle is varied as 0° ≤ ϕ ≤ 180°. Prandtl number is considered constant at Pr = 0.71. The second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers are presented and discussed.While, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low.Moreover, when the Rayleigh number increases the average Nusselt number increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transient%20natural%20convection" title="transient natural convection">transient natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20cavity" title=" trapezoidal cavity"> trapezoidal cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20flow" title=" three-dimensional flow"> three-dimensional flow</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title=" entropy generation"> entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law" title=" second law "> second law </a> </p> <a href="https://publications.waset.org/abstracts/24831/three-dimensional-unsteady-natural-convection-and-entropy-generation-in-an-inclined-cubical-trapezoidal-cavity-subjected-to-uniformly-heated-bottom-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1750</span> A Tunable Long-Cavity Passive Mode-Locked Fiber Laser Based on Nonlinear Amplifier Loop Mirror</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinghe%20Wang">Pinghe Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we demonstrate a tunable long-cavity passive mode-locked fiber laser. The mode locker is a nonlinear amplifying loop mirror (NALM). The cavity frequency of the laser is 465 kHz because that 404m SMF is inserted in the cavity. A tunable bandpass filter with ~1nm 3dB bandwidth is inserted into the cavity to realize tunable mode locking. The passive mode-locked laser at a fixed wavelength is investigated in detail. The experimental results indicate that the laser operates in dissipative soliton resonance (DSR) region. When the pump power is 400mW, the laser generates the rectangular pulses with 10.58 ns pulse duration, 70.28nJ single-pulse energy. When the pump power is 400mW, the laser keeps stable mode locking status in the range from 1523.4nm to 1575nm. During the whole tuning range, the SNR, the pulse duration, the output power and single pulse energy have a little fluctuation because that the gain of the EDF changes with the wavelength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20laser" title="fiber laser">fiber laser</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20soliton%20resonance" title=" dissipative soliton resonance"> dissipative soliton resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20locking" title=" mode locking"> mode locking</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable" title=" tunable"> tunable</a> </p> <a href="https://publications.waset.org/abstracts/78191/a-tunable-long-cavity-passive-mode-locked-fiber-laser-based-on-nonlinear-amplifier-loop-mirror" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement&amp;page=59">59</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement&amp;page=60">60</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cavity%20enhancement&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10