CINXE.COM

algebraic approaches to differential calculus in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> algebraic approaches to differential calculus in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> algebraic approaches to differential calculus </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title></title></head> <body> <p>Derivatives and differentials are usually expressed in terms of limits in the sense of analysis. However it became clear in about the last half century that much of the knowledge on usual <a class="existingWikiWord" href="/nlab/show/differential+calculus">differential calculus</a> can be inferred from using just algebraic properties of differentials and derivatives, most notably the Leibniz rule for differentiating products (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi><mo stretchy="false">(</mo><mi>f</mi><mi>g</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>D</mi><mi>f</mi><mo stretchy="false">)</mo><mi>g</mi><mo>+</mo><mi>f</mi><mo stretchy="false">(</mo><mi>D</mi><mi>g</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">D (f g) = (D f) g + f (D g)</annotation></semantics></math>); an alternative <a class="existingWikiWord" href="/nlab/show/synthetic+differential+geometry">synthetic</a> formalism also appeared which did not use limiting procedures as well.</p> <p>A <a class="existingWikiWord" href="/nlab/show/derivation">derivation</a> of an <a class="existingWikiWord" href="/nlab/show/associative+algebra">associative algebra</a> is simply a linear <a class="existingWikiWord" href="/nlab/show/endomorphism">endomorphism</a> satisfying the Leibniz rule. Then for example the <a class="existingWikiWord" href="/nlab/show/tangent+vector+fields">tangent vector fields</a> on a <a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a> are obtained as derivations of the algebra of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mn>∞</mn></msup></mrow><annotation encoding="application/x-tex">C^\infty</annotation></semantics></math>-functions on the manifold. The differential of a map is a linearized approximation. This is clear in various non-classical analytic setups, for example for maps between <a class="existingWikiWord" href="/nlab/show/Banach+spaces">Banach spaces</a> and for differentiable <a class="existingWikiWord" href="/nlab/show/manifolds">manifolds</a>.</p> <p>This linearization idea has been obtained at the level of <a class="existingWikiWord" href="/nlab/show/sheaves">sheaves</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi></mrow><annotation encoding="application/x-tex">\mathcal{O}</annotation></semantics></math>-modules by <a class="existingWikiWord" href="/nlab/show/Grothendieck">Grothendieck</a> for algebraic varieties a the view toward the differential calculus for varieties in prime characteristics. It is interesting that he related differential calculus to resolutions of the diagonal, where he considered the sheaves of modules supported on <a class="existingWikiWord" href="/nlab/show/infinitesimal+neighborhood">infinitesimal neighborhood</a>s of diagonal. Indeed, to define a derivative in analysis, one needs to start with consideration of differences of values of a function at points which are close to one to another, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>+</mo><mi>Δ</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">x + \Delta x</annotation></semantics></math>, and this means that means that the pair <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>+</mo><mi>Δ</mi><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x, x + \Delta x)</annotation></semantics></math> is close to the diagonal of the cartesian square <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>×</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">X \times X</annotation></semantics></math>. In <a class="existingWikiWord" href="/nlab/show/numerical+analysis">numerical analysis</a>, various approximation schemas for higher order differential operators are involved which obviously live around higher diagonals in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>X</mi> <mi>n</mi></msup><mo>=</mo><mi>X</mi><mo>×</mo><mi>X</mi><mo>×</mo><mi>…</mi><mo>×</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">X^n = X \times X \times \ldots \times X</annotation></semantics></math> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> times). One of the products of that thinking is Grothendieck’s notion of a <a class="existingWikiWord" href="/nlab/show/regular+differential+operator">regular differential operator</a>. This led later to the creation of the theory of <a class="existingWikiWord" href="/nlab/show/D-modules">D-modules</a> which are sheaves of modules over the <a class="existingWikiWord" href="/nlab/show/sheaf">sheaf</a> of rings of regular differential operators over a scheme, or a complex analytic manifold.</p> <p>We plan in the nLab to cover many aspects of the interaction between geometry and differential calculi of various sorts including <a class="existingWikiWord" href="/nlab/show/synthetic+differential+geometry">synthetic differential geometry</a> and algebraic counterparts of notions from differential calculi. It is hard to say, however, where <a class="existingWikiWord" href="/nlab/show/homological+algebra">homological algebra</a> belongs: the differential in the sense of homological algebra is rather a notion which can be systematized into the more general subject of <a class="existingWikiWord" href="/nlab/show/homotopical+algebra">homotopical algebra</a>, but in some cases it is related to analogues of <a class="existingWikiWord" href="/nlab/show/exterior+differentiation">exterior differentiation</a> for the de Rham <a class="existingWikiWord" href="/nlab/show/complex">complex</a> of <a class="existingWikiWord" href="/nlab/show/differential+forms">differential forms</a> (say on manifolds). But there is also an analogue of the <a class="existingWikiWord" href="/nlab/show/Taylor+series">Taylor series</a> for functors in some homotopical contexts (say <a class="existingWikiWord" href="/nlab/show/Goodwillie+calculus">Goodwillie calculus</a>).</p> <p>One should also point out that an elaborate schema for differential calculus in noncommutative geometry has been proposed by Tsygan in terms of algebras with higher brackets. In one version, a differential calculus is given there by a Gerstenhaber algebra and a Batalin-Vilkovisky module over it.</p> <p>See <a class="existingWikiWord" href="/nlab/show/derivation">derivation</a>, <a class="existingWikiWord" href="/nlab/show/regular+differential+operator">regular differential operator</a>, <a class="existingWikiWord" href="/nlab/show/differential+form">differential form</a>, <a class="existingWikiWord" href="/nlab/show/differential+bimodule">differential bimodule</a>, <a class="existingWikiWord" href="/nlab/show/universal+differential+envelope">universal differential envelope</a>, <a class="existingWikiWord" href="/nlab/show/differential+forms+in+synthetic+differential+geometry">differential forms in synthetic differential geometry</a>, <a class="existingWikiWord" href="/nlab/show/connection">connection</a>, <a class="existingWikiWord" href="/nlab/show/connection+for+a+differential+graded+algebra">connection for a differential graded algebra</a>, <a class="existingWikiWord" href="/nlab/show/D-module">D-module</a>, <a class="existingWikiWord" href="/nlab/show/Fox+derivative">Fox derivative</a>, <a class="existingWikiWord" href="/nlab/show/crystal">crystal</a>, <a class="existingWikiWord" href="/nlab/show/Fermat+theory">Fermat theory</a>…</p> </body></html> </div> <div class="revisedby"> <p> Last revised on February 20, 2014 at 09:06:47. See the <a href="/nlab/history/algebraic+approaches+to+differential+calculus" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/algebraic+approaches+to+differential+calculus" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/algebraic+approaches+to+differential+calculus/11" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/algebraic+approaches+to+differential+calculus" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/algebraic+approaches+to+differential+calculus" accesskey="S" class="navlink" id="history" rel="nofollow">History (11 revisions)</a> <a href="/nlab/show/algebraic+approaches+to+differential+calculus/cite" style="color: black">Cite</a> <a href="/nlab/print/algebraic+approaches+to+differential+calculus" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/algebraic+approaches+to+differential+calculus" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10