CINXE.COM
Potencijalni red - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="bs" dir="ltr"> <head> <meta charset="UTF-8"> <title>Potencijalni red - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )bswikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","januar","februar","mart","april","maj","juni","juli","august","septembar","oktobar","novembar","decembar"],"wgRequestId":"54f94170-fe5f-42e3-a112-ded4a87ddd7e","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Potencijalni_red","wgTitle":"Potencijalni red","wgCurRevisionId":3627012,"wgRevisionId":3627012,"wgArticleId":82625,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Članci koji trebaju izvor","Članci s identifikatorima MA","Članci s identifikatorima NKC","Matematička analiza","Matematički redovi"],"wgPageViewLanguage":"bs","wgPageContentLanguage":"bs","wgPageContentModel":"wikitext","wgRelevantPageName":"Potencijalni_red","wgRelevantArticleId":82625,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgStableRevisionId":3627012,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"bs","pageLanguageDir":"ltr","pageVariantFallbacks":"bs"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":8000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q206925","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false,"wgSiteNoticeId":"2.3"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","mediawiki.action.styles":"ready","mediawiki.interface.helpers.styles":"ready","mediawiki.codex.messagebox.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.flaggedRevs.basic":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.ReferenceTooltips","ext.gadget.Pgnviewer","ext.gadget.switcher", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=bs&modules=ext.dismissableSiteNotice.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.action.styles%7Cmediawiki.codex.messagebox.styles%7Cmediawiki.interface.helpers.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=bs&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=bs&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="noindex,nofollow,max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/6/62/Exp_series.gif"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1611"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/6/62/Exp_series.gif"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1074"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="859"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Potencijalni red - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//bs.m.wikipedia.org/wiki/Potencijalni_red"> <link rel="alternate" type="application/x-wiki" title="Uredi" href="/w/index.php?title=Potencijalni_red&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (bs)"> <link rel="EditURI" type="application/rsd+xml" href="//bs.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://bs.wikipedia.org/wiki/Potencijalni_red"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.bs"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom izvor" href="/w/index.php?title=Posebno:Nedavne_izmjene&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Potencijalni_red rootpage-Potencijalni_red skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Idi na sadržaj</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sajt"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Glavni meni" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Glavni meni</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Glavni meni</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">premjesti na bočnu traku</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">sakrij</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigacija </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Po%C4%8Detna_strana" title="Posjeti početnu stranicu [z]" accesskey="z"><span>Početna strana</span></a></li><li id="n-sidebar-featured" class="mw-list-item"><a href="/wiki/Wikipedia:Istaknuti_%C4%8Dlanci"><span>Istaknuti članci</span></a></li><li id="n-sidebar-portals" class="mw-list-item"><a href="/wiki/Wikipedia:Portal"><span>Portali</span></a></li><li id="n-sidebar-categories" class="mw-list-item"><a href="/wiki/Wikipedia:Kategorije"><span>Kategorije</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Posebno:Nedavne_izmjene" title="Spisak nedavnih izmjena na wiki. [r]" accesskey="r"><span>Nedavne izmjene</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Posebno:Nasumi%C4%8Dna_stranica" title="Učitaj nasumičnu stranicu [x]" accesskey="x"><span>Nasumična stranica</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Interakcija </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Pomo%C4%87:Sadr%C5%BEaj" title="Mjesto gdje možete nešto da naučite."><span>Pomoć</span></a></li><li id="n-sidebar-sandbox" class="mw-list-item"><a href="/wiki/Wikipedia:Igrali%C5%A1te"><span>Igralište</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Vrata_zajednice" title="O projektu, šta možete da uradite, gdje se šta nalazi"><span>Vrata zajednice</span></a></li><li id="n-sidebar-village-pump" class="mw-list-item"><a href="/wiki/Wikipedia:%C4%8Car%C5%A1ija"><span>Čaršija</span></a></li><li id="n-sidebar-news" class="mw-list-item"><a href="/wiki/Wikipedia:Novosti"><span>Novosti</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Po%C4%8Detna_strana" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="Slobodna enciklopedija" src="/static/images/mobile/copyright/wikipedia-tagline-bs.svg" width="118" height="13" style="width: 7.375em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Posebno:Pretraga" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Pretraži Wikipediju [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Pretraga</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Pretraži Wikipediju" aria-label="Pretraži Wikipediju" autocapitalize="sentences" title="Pretraži Wikipediju [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Posebno:Pretraga"> </div> <button class="cdx-button cdx-search-input__end-button">Traži</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Lični alati"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Izgled"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Izgled" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Izgled</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_bs.wikipedia.org&uselang=bs" class=""><span>Donacije</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Posebno:Napravi_ra%C4%8Dun&returnto=Potencijalni+red&returntoquery=oldid%3D3627012" title="Predlažemo vam da napravite račun i prijavite se; međutim, to nije obavezno" class=""><span>Napravi korisnički račun</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Posebno:Korisni%C4%8Dka_prijava&returnto=Potencijalni+red&returntoquery=oldid%3D3627012" title="Predlažemo vam da se prijavite, iako to nije obavezno [o]" accesskey="o" class=""><span>Prijavi me</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Više opcija" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Lični alati" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Lični alati</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Korisnički meni" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_bs.wikipedia.org&uselang=bs"><span>Donacije</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Posebno:Napravi_ra%C4%8Dun&returnto=Potencijalni+red&returntoquery=oldid%3D3627012" title="Predlažemo vam da napravite račun i prijavite se; međutim, to nije obavezno"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Napravi korisnički račun</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Posebno:Korisni%C4%8Dka_prijava&returnto=Potencijalni+red&returntoquery=oldid%3D3627012" title="Predlažemo vam da se prijavite, iako to nije obavezno [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Prijavi me</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Stranice za odjavljene urednike <a href="/wiki/Pomo%C4%87:Uvod" aria-label="Saznajte više o uređivanju"><span>detaljnije</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Posebno:Moji_doprinosi" title="Spisak izmjena napravljenih s ove IP-adrese [y]" accesskey="y"><span>Doprinosi</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Posebno:Moj_razgovor" title="Rasprava o izmjenama s ove IP-adrese [n]" accesskey="n"><span>Razgovor</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003Ezatvori\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"sitenotice\" lang=\"bs\" dir=\"ltr\"\u003E\u003Ctable class=\"fmbox fmbox-system\" role=\"presentation\" style=\"border:1px solid #409262; text-align:center;\"\u003E\u003Ctbody\u003E\u003Ctr\u003E\u003Ctd class=\"mbox-image\"\u003E\u003Cspan typeof=\"mw:File\"\u003E\u003Ca href=\"/wiki/Datoteka:Wikipedia_Asian_Month_Logo.svg\" class=\"mw-file-description\"\u003E\u003Cimg src=\"//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Wikipedia_Asian_Month_Logo.svg/40px-Wikipedia_Asian_Month_Logo.svg.png\" decoding=\"async\" width=\"40\" height=\"43\" class=\"mw-file-element\" srcset=\"//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Wikipedia_Asian_Month_Logo.svg/60px-Wikipedia_Asian_Month_Logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/71/Wikipedia_Asian_Month_Logo.svg/80px-Wikipedia_Asian_Month_Logo.svg.png 2x\" data-file-width=\"512\" data-file-height=\"555\" /\u003E\u003C/a\u003E\u003C/span\u003E\u003C/td\u003E\u003Ctd class=\"mbox-text\"\u003EOd 1. do 30. novembra 2024. učestvujte u projektu \u003Ca href=\"/wiki/Wikipedia:Azijski_mjesec/2024.\" title=\"Wikipedia:Azijski mjesec/2024.\"\u003E\"Azijski mjesec\"\u003C/a\u003E.\u003C/td\u003E\u003C/tr\u003E\u003C/tbody\u003E\u003C/table\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sajt"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Sadržaj" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Sadržaj</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">premjesti na bočnu traku</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">sakrij</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Početak</div> </a> </li> <li id="toc-Primjeri" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Primjeri"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Primjeri</span> </div> </a> <ul id="toc-Primjeri-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Radijus_konvergencije" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Radijus_konvergencije"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Radijus konvergencije</span> </div> </a> <ul id="toc-Radijus_konvergencije-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Operacije_sa_potencijalnim_redovima" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Operacije_sa_potencijalnim_redovima"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Operacije sa potencijalnim redovima</span> </div> </a> <button aria-controls="toc-Operacije_sa_potencijalnim_redovima-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Uključi/isključi podsekciju Operacije sa potencijalnim redovima</span> </button> <ul id="toc-Operacije_sa_potencijalnim_redovima-sublist" class="vector-toc-list"> <li id="toc-Sabiranje_i_oduzimanje" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sabiranje_i_oduzimanje"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Sabiranje i oduzimanje</span> </div> </a> <ul id="toc-Sabiranje_i_oduzimanje-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Množenje_i_dijeljenje" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Množenje_i_dijeljenje"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Množenje i dijeljenje</span> </div> </a> <ul id="toc-Množenje_i_dijeljenje-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Diferenciranje_i_integracija" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Diferenciranje_i_integracija"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Diferenciranje i integracija</span> </div> </a> <ul id="toc-Diferenciranje_i_integracija-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Analitičke_funkcije" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Analitičke_funkcije"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Analitičke funkcije</span> </div> </a> <ul id="toc-Analitičke_funkcije-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formalni_potencijalni_redovi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formalni_potencijalni_redovi"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Formalni potencijalni redovi</span> </div> </a> <ul id="toc-Formalni_potencijalni_redovi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Potencijalni_redovi_više_Promjenljivih" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Potencijalni_redovi_više_Promjenljivih"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Potencijalni redovi više Promjenljivih</span> </div> </a> <ul id="toc-Potencijalni_redovi_više_Promjenljivih-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reference" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Reference"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Reference</span> </div> </a> <ul id="toc-Reference-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vanjski_linkovi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Vanjski_linkovi"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Vanjski linkovi</span> </div> </a> <ul id="toc-Vanjski_linkovi-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Sadržaj" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Uključi/isključi sadržaj" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Uključi/isključi sadržaj</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Potencijalni red</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Idi na članak na drugom jeziku. Dostupno na 45 jezika" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-45" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">45 jezika</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AA%D8%B3%D9%84%D8%B3%D9%84%D8%A9_%D9%82%D9%88%D9%89" title="متسلسلة قوى – arapski" lang="ar" hreflang="ar" data-title="متسلسلة قوى" data-language-autonym="العربية" data-language-local-name="arapski" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Q%C3%BCvv%C9%99t_s%C4%B1ralar%C4%B1" title="Qüvvət sıraları – azerbejdžanski" lang="az" hreflang="az" data-title="Qüvvət sıraları" data-language-autonym="Azərbaycanca" data-language-local-name="azerbejdžanski" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A1%D1%82%D1%83%D0%BF%D0%B5%D0%BD%D0%BD%D1%8B_%D1%80%D0%B0%D0%B4" title="Ступенны рад – bjeloruski" lang="be" hreflang="be" data-title="Ступенны рад" data-language-autonym="Беларуская" data-language-local-name="bjeloruski" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A1%D1%82%D1%83%D0%BF%D0%B5%D0%BD%D0%B5%D0%B2%D1%8B_%D1%88%D1%8D%D1%80%D0%B0%D0%B3" title="Ступеневы шэраг – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Ступеневы шэраг" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A1%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D0%B5%D0%BD_%D1%80%D0%B5%D0%B4" title="Степенен ред – bugarski" lang="bg" hreflang="bg" data-title="Степенен ред" data-language-autonym="Български" data-language-local-name="bugarski" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/S%C3%A8rie_de_pot%C3%A8ncies_enteres" title="Sèrie de potències enteres – katalonski" lang="ca" hreflang="ca" data-title="Sèrie de potències enteres" data-language-autonym="Català" data-language-local-name="katalonski" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Mocninn%C3%A1_%C5%99ada" title="Mocninná řada – češki" lang="cs" hreflang="cs" data-title="Mocninná řada" data-language-autonym="Čeština" data-language-local-name="češki" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BF%D0%B0%D1%88%D0%BB%D0%B0_%D1%80%D0%B5%D1%82" title="Капашла рет – čuvaški" lang="cv" hreflang="cv" data-title="Капашла рет" data-language-autonym="Чӑвашла" data-language-local-name="čuvaški" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Potensr%C3%A6kke" title="Potensrække – danski" lang="da" hreflang="da" data-title="Potensrække" data-language-autonym="Dansk" data-language-local-name="danski" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Potenzreihe" title="Potenzreihe – njemački" lang="de" hreflang="de" data-title="Potenzreihe" data-language-autonym="Deutsch" data-language-local-name="njemački" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CF%85%CE%BD%CE%B1%CE%BC%CE%BF%CF%83%CE%B5%CE%B9%CF%81%CE%AD%CF%82" title="Δυναμοσειρές – grčki" lang="el" hreflang="el" data-title="Δυναμοσειρές" data-language-autonym="Ελληνικά" data-language-local-name="grčki" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Power_series" title="Power series – engleski" lang="en" hreflang="en" data-title="Power series" data-language-autonym="English" data-language-local-name="engleski" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Serie_de_potencias" title="Serie de potencias – španski" lang="es" hreflang="es" data-title="Serie de potencias" data-language-autonym="Español" data-language-local-name="španski" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Astmerida" title="Astmerida – estonski" lang="et" hreflang="et" data-title="Astmerida" data-language-autonym="Eesti" data-language-local-name="estonski" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Berretura-serie" title="Berretura-serie – baskijski" lang="eu" hreflang="eu" data-title="Berretura-serie" data-language-autonym="Euskara" data-language-local-name="baskijski" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B3%D8%B1%DB%8C_%D8%AA%D9%88%D8%A7%D9%86%DB%8C" title="سری توانی – perzijski" lang="fa" hreflang="fa" data-title="سری توانی" data-language-autonym="فارسی" data-language-local-name="perzijski" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Potenssisarja" title="Potenssisarja – finski" lang="fi" hreflang="fi" data-title="Potenssisarja" data-language-autonym="Suomi" data-language-local-name="finski" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/S%C3%A9rie_enti%C3%A8re" title="Série entière – francuski" lang="fr" hreflang="fr" data-title="Série entière" data-language-autonym="Français" data-language-local-name="francuski" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%98%D7%95%D7%A8_%D7%97%D7%96%D7%A7%D7%95%D7%AA" title="טור חזקות – hebrejski" lang="he" hreflang="he" data-title="טור חזקות" data-language-autonym="עברית" data-language-local-name="hebrejski" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%98%E0%A4%BE%E0%A4%A4_%E0%A4%B6%E0%A5%8D%E0%A4%B0%E0%A5%87%E0%A4%A3%E0%A5%80" title="घात श्रेणी – hindi" lang="hi" hreflang="hi" data-title="घात श्रेणी" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Hatv%C3%A1nysor" title="Hatványsor – mađarski" lang="hu" hreflang="hu" data-title="Hatványsor" data-language-autonym="Magyar" data-language-local-name="mađarski" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B1%D5%BD%D5%BF%D5%AB%D5%B3%D5%A1%D5%B6%D5%A1%D5%B5%D5%AB%D5%B6_%D5%B7%D5%A1%D6%80%D6%84" title="Աստիճանային շարք – armenski" lang="hy" hreflang="hy" data-title="Աստիճանային շարք" data-language-autonym="Հայերեն" data-language-local-name="armenski" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Deret_pangkat" title="Deret pangkat – indonezijski" lang="id" hreflang="id" data-title="Deret pangkat" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonezijski" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Veldar%C3%B6%C3%B0" title="Veldaröð – islandski" lang="is" hreflang="is" data-title="Veldaröð" data-language-autonym="Íslenska" data-language-local-name="islandski" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Serie_di_potenze" title="Serie di potenze – italijanski" lang="it" hreflang="it" data-title="Serie di potenze" data-language-autonym="Italiano" data-language-local-name="italijanski" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%86%AA%E7%B4%9A%E6%95%B0" title="冪級数 – japanski" lang="ja" hreflang="ja" data-title="冪級数" data-language-autonym="日本語" data-language-local-name="japanski" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A9%B1%EA%B8%89%EC%88%98" title="멱급수 – korejski" lang="ko" hreflang="ko" data-title="멱급수" data-language-autonym="한국어" data-language-local-name="korejski" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Machtreeks" title="Machtreeks – nizozemski" lang="nl" hreflang="nl" data-title="Machtreeks" data-language-autonym="Nederlands" data-language-local-name="nizozemski" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Potensrekkje" title="Potensrekkje – norveški (Nynorsk)" lang="nn" hreflang="nn" data-title="Potensrekkje" data-language-autonym="Norsk nynorsk" data-language-local-name="norveški (Nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Potensrekke" title="Potensrekke – norveški (Bokmal)" lang="nb" hreflang="nb" data-title="Potensrekke" data-language-autonym="Norsk bokmål" data-language-local-name="norveški (Bokmal)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Szereg_pot%C4%99gowy" title="Szereg potęgowy – poljski" lang="pl" hreflang="pl" data-title="Szereg potęgowy" data-language-autonym="Polski" data-language-local-name="poljski" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/S%C3%A9rie_de_pot%C3%AAncias" title="Série de potências – portugalski" lang="pt" hreflang="pt" data-title="Série de potências" data-language-autonym="Português" data-language-local-name="portugalski" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Serie_de_puteri" title="Serie de puteri – rumunski" lang="ro" hreflang="ro" data-title="Serie de puteri" data-language-autonym="Română" data-language-local-name="rumunski" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D0%BD%D0%BE%D0%B9_%D1%80%D1%8F%D0%B4" title="Степенной ряд – ruski" lang="ru" hreflang="ru" data-title="Степенной ряд" data-language-autonym="Русский" data-language-local-name="ruski" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Power_series" title="Power series – Simple English" lang="en-simple" hreflang="en-simple" data-title="Power series" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Poten%C4%8Dna_vrsta" title="Potenčna vrsta – slovenski" lang="sl" hreflang="sl" data-title="Potenčna vrsta" data-language-autonym="Slovenščina" data-language-local-name="slovenski" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A1%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D0%B8_%D1%80%D0%B5%D0%B4" title="Степени ред – srpski" lang="sr" hreflang="sr" data-title="Степени ред" data-language-autonym="Српски / srpski" data-language-local-name="srpski" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Potensserie" title="Potensserie – švedski" lang="sv" hreflang="sv" data-title="Potensserie" data-language-autonym="Svenska" data-language-local-name="švedski" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%85%E0%AE%9F%E0%AF%81%E0%AE%95%E0%AF%8D%E0%AE%95%E0%AF%81%E0%AE%A4%E0%AF%8D_%E0%AE%A4%E0%AF%8A%E0%AE%9F%E0%AE%B0%E0%AF%8D_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="அடுக்குத் தொடர் (கணிதம்) – tamilski" lang="ta" hreflang="ta" data-title="அடுக்குத் தொடர் (கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="tamilski" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Makapangyarihang_serye" title="Makapangyarihang serye – tagalog" lang="tl" hreflang="tl" data-title="Makapangyarihang serye" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Kuvvet_serisi" title="Kuvvet serisi – turski" lang="tr" hreflang="tr" data-title="Kuvvet serisi" data-language-autonym="Türkçe" data-language-local-name="turski" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D0%B5%D0%B2%D0%B8%D0%B9_%D1%80%D1%8F%D0%B4" title="Степеневий ряд – ukrajinski" lang="uk" hreflang="uk" data-title="Степеневий ряд" data-language-autonym="Українська" data-language-local-name="ukrajinski" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%82%D9%88%D8%AA%DB%8C_%D8%B3%D9%84%D8%B3%D9%84%DB%81" title="قوتی سلسلہ – urdu" lang="ur" hreflang="ur" data-title="قوتی سلسلہ" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz badge-Q70893996 mw-list-item" title=""><a href="https://uz.wikipedia.org/wiki/Darajali_qatorlar" title="Darajali qatorlar – uzbečki" lang="uz" hreflang="uz" data-title="Darajali qatorlar" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="uzbečki" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%B9%82%E7%BA%A7%E6%95%B0" title="幂级数 – kineski" lang="zh" hreflang="zh" data-title="幂级数" data-language-autonym="中文" data-language-local-name="kineski" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q206925#sitelinks-wikipedia" title="Uredi međujezičke linkove" class="wbc-editpage">Uredi veze</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Imenski prostori"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Potencijalni_red" title="Prikaži stranicu sa sadržajem [c]" accesskey="c"><span>Stranica</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Razgovor:Potencijalni_red" rel="discussion" title="Razgovor o sadržaju [r]" accesskey="r"><span>Razgovor</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Promijeni varijantu jezika" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">bosanski</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Pregledi"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Potencijalni_red"><span>Čitaj</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Potencijalni_red&veaction=edit" title="Uredite ovu stranicu [v]" accesskey="v"><span>Uredi</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Potencijalni_red&action=edit" title="Uredite izvorni kod ove stranice [e]" accesskey="e"><span>Uredi izvor</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Potencijalni_red&action=history" title="Prethodne izmjene ove stranice [h]" accesskey="h"><span>Historija</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Alati" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Alati</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Alati</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">premjesti na bočnu traku</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">sakrij</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Radnje </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Potencijalni_red"><span>Čitaj</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Potencijalni_red&veaction=edit" title="Uredite ovu stranicu [v]" accesskey="v"><span>Uredi</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Potencijalni_red&action=edit" title="Uredite izvorni kod ove stranice [e]" accesskey="e"><span>Uredi izvor</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Potencijalni_red&action=history"><span>Historija</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Općenito </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Posebno:%C5%A0ta_vodi_ovamo/Potencijalni_red" title="Spisak svih članaka koji su povezani s ovim [j]" accesskey="j"><span>Šta vodi ovamo</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Posebno:Srodne_izmjene/Potencijalni_red" rel="nofollow" title="Nedavne izmjene na stranicama koje su povezane sa ovom [k]" accesskey="k"><span>Srodne izmjene</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:Upload" title="Postavi slike i druge medije [u]" accesskey="u"><span>Postavi datoteku</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Posebno:Posebne_stranice" title="Spisak svih posebnih stranica [q]" accesskey="q"><span>Posebne stranice</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Potencijalni_red&oldid=3627012" title="Trajni link ove verzije stranice"><span>Trajni link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Potencijalni_red&action=info" title="Više informacija o ovoj stranici"><span>Informacije o stranici</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Posebno:Citiraj&page=Potencijalni_red&id=3627012&wpFormIdentifier=titleform" title="Informacije kako citirati ovu stranicu"><span>Citiraj ovu stranicu</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Posebno:Skra%C4%87iva%C4%8D_adresa&url=https%3A%2F%2Fbs.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DPotencijalni_red%26oldid%3D3627012"><span>Skraćeni link</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Posebno:QrCode&url=https%3A%2F%2Fbs.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DPotencijalni_red%26oldid%3D3627012"><span>Preuzmi QR kod</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Štampanje / izvoz </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Posebno:Kolekcija&bookcmd=book_creator&referer=Potencijalni+red"><span>Napravi knjigu</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Posebno:DownloadAsPdf&page=Potencijalni_red&action=show-download-screen"><span>Preuzmi kao PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Potencijalni_red&printable=yes" title="Verzija ove stranice za štampanje [p]" accesskey="p"><span>Za štampanje</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Na drugim projektima </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Power_series" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q206925" title="Link na povezane podatke spremišnih stavki [g]" accesskey="g"><span>Stavka na Wikipodacima</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Izgled"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Izgled</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">premjesti na bočnu traku</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">sakrij</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">S Wikipedije, slobodne enciklopedije</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><div class="cdx-message cdx-message--block cdx-message--warning mw-revision"><span class="cdx-message__icon"></span><div class="cdx-message__content"><div id="mw-revision-info">Datum izmjene: 19 juni 2024 u 11:36; autor: <a href="/wiki/Korisnik:Palapa" class="mw-userlink" title="Korisnik:Palapa" data-mw-revid="3627012"><bdi>Palapa</bdi></a> <span class="mw-usertoollinks">(<a href="/wiki/Razgovor_s_korisnikom:Palapa" class="mw-usertoollinks-talk" title="Razgovor s korisnikom:Palapa">razgovor</a> | <a href="/wiki/Posebno:Doprinosi/Palapa" class="mw-usertoollinks-contribs" title="Posebno:Doprinosi/Palapa">doprinosi</a>)</span></div><div id="mw-revision-nav">(<a href="/w/index.php?title=Potencijalni_red&diff=prev&oldid=3627012" title="Potencijalni red">razl</a>) <a href="/w/index.php?title=Potencijalni_red&direction=prev&oldid=3627012" title="Potencijalni red">← Starija izmjena</a> | Trenutna verzija (razl) | Novija izmjena → (razl)</div></div></div></div></div> <div id="mw-content-text" class="mw-body-content"><div id="mw-fr-revision-tag-old" class="cdx-message mw-fr-message-box cdx-message--block cdx-message--notice flaggedrevs_notice plainlinks noprint"><span class="cdx-message__icon"></span><div class="cdx-message__content"><a class="external text" href="https://bs.wikipedia.org/w/index.php?title=Potencijalni_red&stableid=3627012">Pregledana verzija</a> ove stranice, <a class="external text" href="https://bs.wikipedia.org/w/index.php?title=Posebno:Zapisnik&type=review&page=Potencijalni_red">odobrena</a> dana <i>19 juni 2024</i>, zasnovana je na ovoj izmjeni.</div></div><div class="mw-content-ltr mw-parser-output" lang="bs" dir="ltr"><table class="plainlinks metadata ambox ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><div style="width:52px"><span typeof="mw:File"><a href="/wiki/Datoteka:Question_book-new.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span"><b>Ovaj članak ili neki od njegovih odlomaka nije dovoljno potkrijepljen <a href="/wiki/Wikipedia:Provjerljivost" title="Wikipedia:Provjerljivost">izvorima</a></b> (literatura, veb-sajtovi ili drugi izvori).<span class="hide-when-compact"> Ako se pravilno ne potkrijepe <a href="/wiki/Wikipedia:Pouzdani_izvori" title="Wikipedia:Pouzdani izvori">pouzdanim</a> izvorima, sporne rečenice i navodi mogli bi biti izbrisani. Pomozite Wikipediji tako što ćete navesti validne izvore putem <a href="/wiki/Wikipedia:Citiranje_izvora" class="mw-redirect" title="Wikipedia:Citiranje izvora">referenci</a> te nakon toga možete ukloniti ovaj šablon.</span></div></td></tr></tbody></table> <p>U <a href="/wiki/Matematika" title="Matematika">matematici</a>, <b>potencijalni red</b> (ili <b>stepeni red</b>) (jedne promjenljive) je <a href="/wiki/Red_(matematika)" title="Red (matematika)">red</a> oblika </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}\left(x-c\right)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}\left(x-c\right)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdf9db182bee3ffbbfb411e080e9b83c44eca1b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:71.298ex; height:6.843ex;" alt="{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}\left(x-c\right)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots }"></span></dd></dl> <p>gdje <i>a<sub>n</sub></i> predstavlja koeficijent <i>n</i>-tog sabirka, <i>C</i> je konstanta, a <i>x</i> je a blizu <i>c</i>. Ovi redovi se često javljaju u vidu <a href="/wiki/Taylorov_red" title="Taylorov red">Taylorovih redova</a> neke date <a href="/wiki/Funkcija_(matematika)" title="Funkcija (matematika)">funkcije</a>; u članku o <a href="/wiki/Taylorov_red" title="Taylorov red">Taylorovim redovima</a> se mogu naći primjeri. </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Datoteka:Exp_series.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/62/Exp_series.gif/220px-Exp_series.gif" decoding="async" width="220" height="295" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/6/62/Exp_series.gif 1.5x" data-file-width="292" data-file-height="392" /></a><figcaption><a href="/wiki/Eksponencijalna_funkcija" title="Eksponencijalna funkcija">Eksponencijalna funkcija</a> (plavo) i suma prvih <i>n</i>+1 članova njenog <a href="/wiki/Maclaurinov_red" class="mw-redirect" title="Maclaurinov red">Maclaurinovog potencijalnog reda</a> (crveno).</figcaption></figure> <p>Jako često se uzima da je <i>c</i> jednako nuli, naprimjer, kada se razmatraju <a href="/wiki/Maclaurinov_red" class="mw-redirect" title="Maclaurinov red">Maclaurinovi redovi</a>. U ovim slučajevima, potencijalni red ima jednostavniji oblik </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+\cdots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+\cdots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4458c839fb487f5ec677e07dcf380f76062f5c7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:49.705ex; height:6.843ex;" alt="{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+\cdots .}"></span></dd></dl></dd></dl> <p>Ovakvi potencijalni redovi se javljaju uglavnom u analizi, ali također i u <a href="/wiki/Kombinatorika" title="Kombinatorika">kombinatorici</a> (kao <a href="/w/index.php?title=Generatorna_funkcija&action=edit&redlink=1" class="new" title="Generatorna funkcija (stranica ne postoji)">generatorne funkcije</a>) i u obradi signala. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Primjeri">Primjeri</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Potencijalni_red&veaction=edit&section=1" title="Uredi odlomak "Primjeri"" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Potencijalni_red&action=edit&section=1" title="Edit section's source code: Primjeri"><span>uredi izvor</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Svaki <a href="/wiki/Polinom" title="Polinom">polinom</a> se lahko može izraziti kao potencijalni red kod tačke <i>c</i>, mada mu je većina koeficijenata jednaka nuli. Na primjer, polinom <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x^{2}+2x+3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x^{2}+2x+3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0284972054705bc9239b4faee4f217523e11135" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.235ex; height:3.176ex;" alt="{\displaystyle f(x)=x^{2}+2x+3}"></span> se može zapisati kao potencijalni red oko <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ee918699d0cb4b8c633cc1f520a8a7a174f44a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.268ex; height:2.176ex;" alt="{\displaystyle c=0}"></span> oblika </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=3+2x+1x^{2}+0x^{3}+0x^{4}+\cdots \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>0</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>0</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=3+2x+1x^{2}+0x^{3}+0x^{4}+\cdots \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23f2bee2ff97299a867f03c38fa8c8e2256b9529" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.122ex; height:3.176ex;" alt="{\displaystyle f(x)=3+2x+1x^{2}+0x^{3}+0x^{4}+\cdots \,}"></span></dd></dl></dd></dl> <p>ili oko centra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e3467f9e219a5ea38a30da5c3a02c2c23f61a79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.268ex; height:2.176ex;" alt="{\displaystyle c=1}"></span> kao </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=6+4(x-1)+1(x-1)^{2}+0(x-1)^{3}+0(x-1)^{4}+\cdots \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>6</mn> <mo>+</mo> <mn>4</mn> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>0</mn> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>0</mn> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=6+4(x-1)+1(x-1)^{2}+0(x-1)^{3}+0(x-1)^{4}+\cdots \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2987581ccdcb37a5f9134f463f068066e58b5d5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:62.371ex; height:3.176ex;" alt="{\displaystyle f(x)=6+4(x-1)+1(x-1)^{2}+0(x-1)^{3}+0(x-1)^{4}+\cdots \,}"></span></dd></dl></dd></dl> <p>ili oko bilo kog drugog centra <i>c</i>. Stepeni redovi se mogu posmatrati kao <i>polinomi beskonačnog reda</i>, mada oni nisu polinomi. </p><p>Formula <a href="/wiki/Geometrijski_red" title="Geometrijski red">geometrijskog reda</a> </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{1-x}}=\sum _{n=0}^{\infty }x^{n}=1+x+x^{2}+x^{3}+\cdots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{1-x}}=\sum _{n=0}^{\infty }x^{n}=1+x+x^{2}+x^{3}+\cdots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8269f51f1ff57b747d0ed49c869cc2005910e75c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.035ex; height:6.843ex;" alt="{\displaystyle {\frac {1}{1-x}}=\sum _{n=0}^{\infty }x^{n}=1+x+x^{2}+x^{3}+\cdots ,}"></span></dd></dl></dd></dl> <p>koja važi za <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x|<1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x|<1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f9498d60b2319a4ae7c5607794b537c559a976d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.884ex; height:2.843ex;" alt="{\displaystyle |x|<1}"></span>, je jedna od najvažnijih primjera potencijalnog reda, kao i formula eksponencijalne funkcije </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed65a70c3c13bbc41efbe50fe0ad9e69c69ddc1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:39.63ex; height:6.843ex;" alt="{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots ,}"></span></dd></dl></dd></dl> <p>i sinusna formula </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(x)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mrow> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(x)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ec44696a78ce7ee9452c79d4ca254164e7e21f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:54.347ex; height:7.009ex;" alt="{\displaystyle \sin(x)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots ,}"></span></dd></dl></dd></dl> <p>koja važi za svako realno x. Ovi potencijalni redovi su također i primjeri <a href="/wiki/Taylorov_red" title="Taylorov red">Taylorovih redova</a>. Međutim, postoje potencijalni redovi koji nisu Taylorovi redovi ni jedne funkcije, naprimjer </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }n!x^{n}=1+x+2!x^{2}+3!x^{3}+\cdots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mi>n</mi> <mo>!</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mo>!</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> <mo>!</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }n!x^{n}=1+x+2!x^{2}+3!x^{3}+\cdots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/467ef7f9046b871927f7a947da9d52f3cbf18785" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:37.428ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }n!x^{n}=1+x+2!x^{2}+3!x^{3}+\cdots .}"></span></dd></dl></dd></dl> <p>Negativni potencijalni nisu dozvoljeni u potencijalnim redovima, naprimjer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+x^{-1}+x^{-2}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+x^{-1}+x^{-2}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d16df1759cce4111a96d81565122f80ed159a5dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.732ex; height:2.843ex;" alt="{\displaystyle 1+x^{-1}+x^{-2}+\cdots }"></span> se ne smatra potencijalnim redom (mada jeste <a href="/w/index.php?title=Laurentov_red&action=edit&redlink=1" class="new" title="Laurentov red (stranica ne postoji)">Laurentov red</a>). Slično, razlomljeni potencijalnovi, kao što je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32077e2f0f843fd11f5440a9818e6b2d353fb6c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.028ex; height:2.843ex;" alt="{\displaystyle x^{1/2}}"></span> nisu dozvoljeni (vidi <a href="/w/index.php?title=Piseov_red&action=edit&redlink=1" class="new" title="Piseov red (stranica ne postoji)">Piseov red</a>). Koeficijenti <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/790f9209748c2dca7ed7b81932c37c02af1dbc31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.448ex; height:2.009ex;" alt="{\displaystyle a_{n}}"></span> ne smiju da zavise od <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, stoga naprimjer: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(x)x+\sin(2x)x^{2}+\sin(3x)x^{3}+\cdots \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(x)x+\sin(2x)x^{2}+\sin(3x)x^{3}+\cdots \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de7e438f1b4d5ded70bc0e489163a5939810453b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.038ex; height:3.176ex;" alt="{\displaystyle \sin(x)x+\sin(2x)x^{2}+\sin(3x)x^{3}+\cdots \,}"></span> nije potencijalni red.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Radijus_konvergencije">Radijus konvergencije</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Potencijalni_red&veaction=edit&section=2" title="Uredi odlomak "Radijus konvergencije"" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Potencijalni_red&action=edit&section=2" title="Edit section's source code: Radijus konvergencije"><span>uredi izvor</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Stepeni red sigurno konvergira za neke vrijednosti promjenljive <i>x</i> (barem za <i>x</i> = <i>c</i>) a za ostale može da divergira. Uvek postoji broj <i>r</i>, 0 ≤ <i>r</i> ≤ ∞ takav da red konvergira kad god je |<i>x</i> − <i>c</i>| < <i>r</i> i divergira kad god |<i>x</i> − <i>c</i>| > <i>r</i>. Broj <i>r</i> se naziva <b><a href="/w/index.php?title=Radijus_konvergencije&action=edit&redlink=1" class="new" title="Radijus konvergencije (stranica ne postoji)">radijus konvergencije</a></b> (ili stpen konvergencije) potencijalnog reda; u općem slučaju, radijus konvergencije je određen izrazom </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=\liminf _{n\to \infty }\left|a_{n}\right|^{-{\frac {1}{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim inf</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msup> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=\liminf _{n\to \infty }\left|a_{n}\right|^{-{\frac {1}{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4628c7d5ce3626b80cd5b26c78079f4339a16f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.692ex; height:5.009ex;" alt="{\displaystyle r=\liminf _{n\to \infty }\left|a_{n}\right|^{-{\frac {1}{n}}}}"></span></dd></dl> <p>ili, ekvivalentno, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{-1}=\limsup _{n\to \infty }\left|a_{n}\right|^{\frac {1}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msup> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{-1}=\limsup _{n\to \infty }\left|a_{n}\right|^{\frac {1}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad4a17d2e71a132bdb6657203ab6cf0181e07cf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.597ex; height:5.509ex;" alt="{\displaystyle r^{-1}=\limsup _{n\to \infty }\left|a_{n}\right|^{\frac {1}{n}}}"></span> </p><p>(pogledajte <a href="/w/index.php?title=Limes_superior_i_limes_inferior&action=edit&redlink=1" class="new" title="Limes superior i limes inferior (stranica ne postoji)">limes superior i limes inferior</a>). Brz način da se izračuna je </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{-1}=\lim _{n\to \infty }\left|{a_{n+1} \over a_{n}}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mfrac> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{-1}=\lim _{n\to \infty }\left|{a_{n+1} \over a_{n}}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8568457570425b3e09107af3d4b0beb4c7a27791" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:17.818ex; height:5.509ex;" alt="{\displaystyle r^{-1}=\lim _{n\to \infty }\left|{a_{n+1} \over a_{n}}\right|}"></span></dd></dl> <p>ako ovaj limes postoji. </p><p>Red <a href="/wiki/Apsolutna_konvergencija" title="Apsolutna konvergencija">konvergira apsolutno</a> za |<i>x</i> - <i>c</i>| < <i>r</i> i <a href="/w/index.php?title=Uniformna_konvergencija&action=edit&redlink=1" class="new" title="Uniformna konvergencija (stranica ne postoji)">uniformno</a> na svakom neprekidnom <a href="/w/index.php?title=Podskup&action=edit&redlink=1" class="new" title="Podskup (stranica ne postoji)">podskupu</a> {<i>x</i> : |<i>x</i> − <i>c</i>| < <i>r</i>}. </p><p>Za |<i>x</i> - <i>c</i>| = <i>r</i>, se ne može u općem slučaju reći da li red konvergira ili divergira. Međutim, <a href="/wiki/Abelov_teorem" class="mw-redirect" title="Abelov teorem">Abelov teorem</a> kaže da je suma reda neprekidna na <i>x</i> ako red konvergira na <i>x</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Operacije_sa_potencijalnim_redovima">Operacije sa potencijalnim redovima</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Potencijalni_red&veaction=edit&section=3" title="Uredi odlomak "Operacije sa potencijalnim redovima"" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Potencijalni_red&action=edit&section=3" title="Edit section's source code: Operacije sa potencijalnim redovima"><span>uredi izvor</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Sabiranje_i_oduzimanje">Sabiranje i oduzimanje</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Potencijalni_red&veaction=edit&section=4" title="Uredi odlomak "Sabiranje i oduzimanje"" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Potencijalni_red&action=edit&section=4" title="Edit section's source code: Sabiranje i oduzimanje"><span>uredi izvor</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Kada se dvije funkcije, <i>f</i> i <i>g</i> dekomponuju u potencijalni red oko istog centra <i>c</i>, potencijalni red zbira ili razlike funkcija se može naći sabiranjem ili oduzimanjem član po član. To jest, ako: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}(x-c)^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}(x-c)^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b75f7c4f124d6b5b389811fb1763f9b301de8ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.911ex; height:6.843ex;" alt="{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}(x-c)^{n}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)=\sum _{n=0}^{\infty }b_{n}(x-c)^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)=\sum _{n=0}^{\infty }b_{n}(x-c)^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90cbd9155c76abcb17808b88077ee2b4815dc8bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.516ex; height:6.843ex;" alt="{\displaystyle g(x)=\sum _{n=0}^{\infty }b_{n}(x-c)^{n}}"></span></dd></dl> <p>onda </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)\pm g(x)=\sum _{n=0}^{\infty }(a_{n}\pm b_{n})(x-c)^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>±<!-- ± --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>±<!-- ± --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)\pm g(x)=\sum _{n=0}^{\infty }(a_{n}\pm b_{n})(x-c)^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74b012fe51ad9ef5c4195f5cab50b6f6713b5cca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.485ex; height:6.843ex;" alt="{\displaystyle f(x)\pm g(x)=\sum _{n=0}^{\infty }(a_{n}\pm b_{n})(x-c)^{n}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Množenje_i_dijeljenje"><span id="Mno.C5.BEenje_i_dijeljenje"></span>Množenje i dijeljenje</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Potencijalni_red&veaction=edit&section=5" title="Uredi odlomak "Množenje i dijeljenje"" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Potencijalni_red&action=edit&section=5" title="Edit section's source code: Množenje i dijeljenje"><span>uredi izvor</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Uz iste definicije kao i gore, potencijalni red proizvoda ili količnika funkcija se može dobiti na slijedeći način: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)g(x)=\left(\sum _{n=0}^{\infty }a_{n}(x-c)^{n}\right)\left(\sum _{n=0}^{\infty }b_{n}(x-c)^{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)g(x)=\left(\sum _{n=0}^{\infty }a_{n}(x-c)^{n}\right)\left(\sum _{n=0}^{\infty }b_{n}(x-c)^{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c44c3d98904f9e036d6021244c383321c138584" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:48.079ex; height:7.509ex;" alt="{\displaystyle f(x)g(x)=\left(\sum _{n=0}^{\infty }a_{n}(x-c)^{n}\right)\left(\sum _{n=0}^{\infty }b_{n}(x-c)^{n}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }a_{i}b_{j}(x-c)^{i+j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mi>j</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }a_{i}b_{j}(x-c)^{i+j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/384d842083bb90d68421ba393ddb2afa26c68a52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:23.616ex; height:7.176ex;" alt="{\displaystyle =\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }a_{i}b_{j}(x-c)^{i+j}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\sum _{n=0}^{\infty }\left(\sum _{i=0}^{n}a_{i}b_{n-i}\right)(x-c)^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =\sum _{n=0}^{\infty }\left(\sum _{i=0}^{n}a_{i}b_{n-i}\right)(x-c)^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4492f22d38e0757d0d14eb60dd177f32b19e420c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.949ex; height:7.509ex;" alt="{\displaystyle =\sum _{n=0}^{\infty }\left(\sum _{i=0}^{n}a_{i}b_{n-i}\right)(x-c)^{n}.}"></span></dd></dl> <p>Niz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{n}:=\sum _{i=0}^{n}a_{i}b_{n-i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>:=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{n}:=\sum _{i=0}^{n}a_{i}b_{n-i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d61034d2b349f921358bb24ed62264b1252fa68b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.838ex; height:6.843ex;" alt="{\displaystyle m_{n}:=\sum _{i=0}^{n}a_{i}b_{n-i}}"></span> je poznat kao <a href="/w/index.php?title=Konvolucija&action=edit&redlink=1" class="new" title="Konvolucija (stranica ne postoji)">konvolucija</a> nizova <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/790f9209748c2dca7ed7b81932c37c02af1dbc31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.448ex; height:2.009ex;" alt="{\displaystyle a_{n}}"></span> i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28e2d72f6dd9375c8f1f59f1effd9b4e5492ac97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.216ex; height:2.509ex;" alt="{\displaystyle b_{n}}"></span>. </p><p>Primijetimo, za dijeljenje: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {f(x) \over g(x)}={\sum _{n=0}^{\infty }a_{n}(x-c)^{n} \over \sum _{n=0}^{\infty }b_{n}(x-c)^{n}}=\sum _{n=0}^{\infty }d_{n}(x-c)^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {f(x) \over g(x)}={\sum _{n=0}^{\infty }a_{n}(x-c)^{n} \over \sum _{n=0}^{\infty }b_{n}(x-c)^{n}}=\sum _{n=0}^{\infty }d_{n}(x-c)^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e83a0dfe40e9355da047dfe1328dff55ac5c2bd9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:43.474ex; height:7.009ex;" alt="{\displaystyle {f(x) \over g(x)}={\sum _{n=0}^{\infty }a_{n}(x-c)^{n} \over \sum _{n=0}^{\infty }b_{n}(x-c)^{n}}=\sum _{n=0}^{\infty }d_{n}(x-c)^{n}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\left(\sum _{n=0}^{\infty }b_{n}(x-c)^{n}\right)\left(\sum _{n=0}^{\infty }d_{n}(x-c)^{n}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\left(\sum _{n=0}^{\infty }b_{n}(x-c)^{n}\right)\left(\sum _{n=0}^{\infty }d_{n}(x-c)^{n}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d48f3dab1f299fd5f6a5e0d9fd0558104de9e5c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:43.803ex; height:7.509ex;" alt="{\displaystyle f(x)=\left(\sum _{n=0}^{\infty }b_{n}(x-c)^{n}\right)\left(\sum _{n=0}^{\infty }d_{n}(x-c)^{n}\right)}"></span></dd></dl> <p>a zatim se koriste gornji izrazi, upoređujući koeficijente. </p> <div class="mw-heading mw-heading3"><h3 id="Diferenciranje_i_integracija">Diferenciranje i integracija</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Potencijalni_red&veaction=edit&section=6" title="Uredi odlomak "Diferenciranje i integracija"" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Potencijalni_red&action=edit&section=6" title="Edit section's source code: Diferenciranje i integracija"><span>uredi izvor</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ako je funkcija data kao stepeeni red, ona je <a href="/wiki/Neprekidna_funkcija" title="Neprekidna funkcija">neprekidna</a> gdje god konvergira, i diferencijabilna je na unutrašnjosti ovog skupa. Može se diferencirati ili integraliti vrlo jednostavno, član po član: </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{\prime }(x)=\sum _{n=1}^{\infty }a_{n}n\left(x-c\right)^{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">′<!-- ′ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>n</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{\prime }(x)=\sum _{n=1}^{\infty }a_{n}n\left(x-c\right)^{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7ade8cfa922b4ec67e056cf6afbd121e8d233ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.133ex; height:6.843ex;" alt="{\displaystyle f^{\prime }(x)=\sum _{n=1}^{\infty }a_{n}n\left(x-c\right)^{n-1}}"></span></dd></dl></dd></dl> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int f(x)\,dx=\sum _{n=0}^{\infty }{\frac {a_{n}\left(x-c\right)^{n+1}}{n+1}}+C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int f(x)\,dx=\sum _{n=0}^{\infty }{\frac {a_{n}\left(x-c\right)^{n+1}}{n+1}}+C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bbc65a98d91cc712de4b49dffb1f740e951f302" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.968ex; height:7.176ex;" alt="{\displaystyle \int f(x)\,dx=\sum _{n=0}^{\infty }{\frac {a_{n}\left(x-c\right)^{n+1}}{n+1}}+C}"></span></dd></dl></dd></dl> <p>Oba ova reda imaju isti radijus konvergencije kao i početni. </p> <div class="mw-heading mw-heading2"><h2 id="Analitičke_funkcije"><span id="Analiti.C4.8Dke_funkcije"></span>Analitičke funkcije</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Potencijalni_red&veaction=edit&section=7" title="Uredi odlomak "Analitičke funkcije"" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Potencijalni_red&action=edit&section=7" title="Edit section's source code: Analitičke funkcije"><span>uredi izvor</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Funkcija <i>f</i> definisana na nekom <a href="/w/index.php?title=Otvoren_skup&action=edit&redlink=1" class="new" title="Otvoren skup (stranica ne postoji)">otvorenom podskupu</a> <i>U</i> od <b>R</b> ili <b>C</b> se naziva <b>analitičkom</b> ako je lokalno zadata potencijalnim redom. Ovo znači da svako <i>a</i> ∈ <i>U</i> ima otvorenu <a href="/w/index.php?title=Okolina_(topologija)&action=edit&redlink=1" class="new" title="Okolina (topologija) (stranica ne postoji)">okolinu</a> <i>V</i> ⊆ <i>U</i>, takvu da postoji potencijalni red sa centrom <i>a</i> koji konvergira funkciji <i>f</i>(<i>x</i>) za svako <i>x</i> ∈ <i>V</i>. </p><p>Svaki potencijalni red sa pozitivnim radijusom konvergencije je analitički na <a href="/w/index.php?title=Topolo%C5%A1ka_unutra%C5%A1njost&action=edit&redlink=1" class="new" title="Topološka unutrašnjost (stranica ne postoji)">unutrašnjosti</a> svoje oblasti konvergencije. Sve <a href="/w/index.php?title=Holomorfna_funkcija&action=edit&redlink=1" class="new" title="Holomorfna funkcija (stranica ne postoji)">holomorfne funkcije</a> su kompleksno-analitičke. Sume i proizvodi analitičkih funkcija su analitičke, kao i količnici, sve dok nazivnik nije nula. </p> <div class="mw-heading mw-heading2"><h2 id="Formalni_potencijalni_redovi">Formalni potencijalni redovi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Potencijalni_red&veaction=edit&section=8" title="Uredi odlomak "Formalni potencijalni redovi"" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Potencijalni_red&action=edit&section=8" title="Edit section's source code: Formalni potencijalni redovi"><span>uredi izvor</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>U <a href="/wiki/Apstraktna_algebra" title="Apstraktna algebra">apstraktnoj algebri</a>, pokušava se da se izvuče suština potencijalnih redova, bez ograničavanja na <a href="/wiki/Polje_(matematika)" title="Polje (matematika)">polja</a> realnih i kompleksnih brojeva i bez potrebe da se govori o konvergenciji. Ovo dovodi do koncepta <a href="/w/index.php?title=Formalni_potencijalni_red&action=edit&redlink=1" class="new" title="Formalni potencijalni red (stranica ne postoji)">formalnog potencijalnog reda</a>. Ovaj koncept je od velikog značaja u <a href="/wiki/Kombinatorika" title="Kombinatorika">kombinatorici</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Potencijalni_redovi_više_Promjenljivih"><span id="Potencijalni_redovi_vi.C5.A1e_Promjenljivih"></span>Potencijalni redovi više Promjenljivih</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Potencijalni_red&veaction=edit&section=9" title="Uredi odlomak "Potencijalni redovi više Promjenljivih"" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Potencijalni_red&action=edit&section=9" title="Edit section's source code: Potencijalni redovi više Promjenljivih"><span>uredi izvor</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Stepeni redovi više Promjenljivih su definisani na slijedeći način </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x_{1},\dots ,x_{n})=\sum _{j_{1},\dots ,j_{n}=0}^{\infty }a_{j_{1},\dots ,j_{n}}\prod _{k=1}^{n}\left(x_{k}-c_{k}\right)^{j_{k}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x_{1},\dots ,x_{n})=\sum _{j_{1},\dots ,j_{n}=0}^{\infty }a_{j_{1},\dots ,j_{n}}\prod _{k=1}^{n}\left(x_{k}-c_{k}\right)^{j_{k}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d39fcfaf7da4164828fd1b2b28ad32a4ed68136" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:47.553ex; height:7.343ex;" alt="{\displaystyle f(x_{1},\dots ,x_{n})=\sum _{j_{1},\dots ,j_{n}=0}^{\infty }a_{j_{1},\dots ,j_{n}}\prod _{k=1}^{n}\left(x_{k}-c_{k}\right)^{j_{k}},}"></span></dd></dl></dd></dl> <p>gdje je promjenljiva <i>j</i> = (<i>j</i><sub>1</sub>, ..., <i>j</i><sub><i>n</i></sub>) vektor prirodnih brojeva, koeficijenti <i>a</i><sub>(<i>j<sub>1</sub>,...,j<sub>n</sub></i>)</sub> su obično realni ili kompleksni brojevi, a centar <i>c</i> = (<i>c</i><sub>1</sub>, ..., <i>c</i><sub><i>n</i></sub>) i argument <i>x</i> = (<i>x</i><sub>1</sub>, ..., <i>x</i><sub><i>n</i></sub>) su obično realni ili kompleksni vektori. Jednostavnija oznaka je </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\sum _{\alpha \in \mathbb {N} ^{n}}a_{\alpha }\left(x-c\right)^{\alpha }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\sum _{\alpha \in \mathbb {N} ^{n}}a_{\alpha }\left(x-c\right)^{\alpha }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cdbf769c672ac2280238227c65c8b049a00843c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:23.634ex; height:5.676ex;" alt="{\displaystyle f(x)=\sum _{\alpha \in \mathbb {N} ^{n}}a_{\alpha }\left(x-c\right)^{\alpha }.}"></span></dd></dl></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Reference">Reference</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Potencijalni_red&veaction=edit&section=10" title="Uredi odlomak "Reference"" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Potencijalni_red&action=edit&section=10" title="Edit section's source code: Reference"><span>uredi izvor</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r3312388">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> </div> <div class="mw-heading mw-heading2"><h2 id="Vanjski_linkovi">Vanjski linkovi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Potencijalni_red&veaction=edit&section=11" title="Uredi odlomak "Vanjski linkovi"" class="mw-editsection-visualeditor"><span>uredi</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Potencijalni_red&action=edit&section=11" title="Edit section's source code: Vanjski linkovi"><span>uredi izvor</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/FormalPowerSeries.html">Formalni potencijalni redovi na stranici <i>MathWorld</i></a></li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/PowerSeries.html">Stepeni redovi na stranici <i>MathWorld</i></a></li></ul> <div role="navigation" class="navbox authority-control" aria-labelledby="Normativna_kontrola_frameless_&#124;text-top_&#124;10px_&#124;alt=Uredi_na_Wikipodacima_&#124;link=https&#58;//www.wikidata.org/wiki/Q206925#identifiers&#124;Uredi_na_Wikipodacima" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="Normativna_kontrola_frameless_&#124;text-top_&#124;10px_&#124;alt=Uredi_na_Wikipodacima_&#124;link=https&#58;//www.wikidata.org/wiki/Q206925#identifiers&#124;Uredi_na_Wikipodacima" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Pomo%C4%87:Normativna_kontrola" title="Pomoć:Normativna kontrola">Normativna kontrola</a> <span class="mw-valign-text-top" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q206925#identifiers" title="Uredi na Wikipodacima"><img alt="Uredi na Wikipodacima" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="nowrap"><a href="/w/index.php?title=MA_(identifikator)&action=edit&redlink=1" class="new" title="MA (identifikator) (stranica ne postoji)">MA</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://academic.microsoft.com/v2/detail/73905626">73905626</a></span></span></li> <li><span class="nowrap"><a href="/wiki/NKC_(identifikator)" class="mw-redirect" title="NKC (identifikator)">NKC</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph135407&CON_LNG=ENG">ph135407</a></span></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5c59558b9d‐sxg2k Cached time: 20241201222859 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.137 seconds Real time usage: 0.378 seconds Preprocessor visited node count: 342/1000000 Post‐expand include size: 5652/2097152 bytes Template argument size: 11/2097152 bytes Highest expansion depth: 6/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 2178/5000000 bytes Lua time usage: 0.044/10.000 seconds Lua memory usage: 1391910/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 100.483 1 -total 49.58% 49.823 1 Šablon:Normativna_kontrola 32.82% 32.974 1 Šablon:Nedostaju_izvori 30.60% 30.746 1 Šablon:Ambox/igralište 15.91% 15.987 1 Šablon:Refspisak --> <!-- Saved in parser cache with key bswiki:pcache:idhash:82625-0!canonical and timestamp 20241201222859 and revision id 3627012. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Preuzeto iz "<a dir="ltr" href="https://bs.wikipedia.org/w/index.php?title=Potencijalni_red&oldid=3627012">https://bs.wikipedia.org/w/index.php?title=Potencijalni_red&oldid=3627012</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Posebno:Kategorije" title="Posebno:Kategorije">Kategorije</a>: <ul><li><a href="/wiki/Kategorija:Matemati%C4%8Dka_analiza" title="Kategorija:Matematička analiza">Matematička analiza</a></li><li><a href="/wiki/Kategorija:Matemati%C4%8Dki_redovi" title="Kategorija:Matematički redovi">Matematički redovi</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Sakrivene kategorije: <ul><li><a href="/wiki/Kategorija:%C4%8Clanci_koji_trebaju_izvor" title="Kategorija:Članci koji trebaju izvor">Članci koji trebaju izvor</a></li><li><a href="/wiki/Kategorija:%C4%8Clanci_s_identifikatorima_MA" title="Kategorija:Članci s identifikatorima MA">Članci s identifikatorima MA</a></li><li><a href="/wiki/Kategorija:%C4%8Clanci_s_identifikatorima_NKC" title="Kategorija:Članci s identifikatorima NKC">Članci s identifikatorima NKC</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Ova stranica je posljednji put izmijenjena na datum 19 juni 2024 u 11:36.</li> <li id="footer-info-copyright">Tekst je dostupan pod <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/">slobodnom licencom Autorstvo-Dijeliti pod istim uvjetima</a>; mogu se primijeniti i dodatni uvjeti. Korištenjem ovog sajta slažete se s <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">uvjetima korištenja</a> i <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">pravilima o privatnosti</a>. Wikipedia® je zaštitni znak neprofitne organizacije <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org/">Wikimedia Foundation, Inc.</a></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Pravila o privatnosti</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia">O Wikipediji</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Odricanje_odgovornosti">Odricanje odgovornosti</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kodeks ponašanja</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Razvojni programeri</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/bs.wikipedia.org">Statistika</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Izjava o kolačićima</a></li> <li id="footer-places-mobileview"><a href="//bs.m.wikipedia.org/w/index.php?title=Potencijalni_red&oldid=3627012&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobilni prikaz</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-sxg2k","wgBackendResponseTime":572,"wgPageParseReport":{"limitreport":{"cputime":"0.137","walltime":"0.378","ppvisitednodes":{"value":342,"limit":1000000},"postexpandincludesize":{"value":5652,"limit":2097152},"templateargumentsize":{"value":11,"limit":2097152},"expansiondepth":{"value":6,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":2178,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 100.483 1 -total"," 49.58% 49.823 1 Šablon:Normativna_kontrola"," 32.82% 32.974 1 Šablon:Nedostaju_izvori"," 30.60% 30.746 1 Šablon:Ambox/igralište"," 15.91% 15.987 1 Šablon:Refspisak"]},"scribunto":{"limitreport-timeusage":{"value":"0.044","limit":"10.000"},"limitreport-memusage":{"value":1391910,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-5c59558b9d-sxg2k","timestamp":"20241201222859","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Potencijalni red","url":"https:\/\/bs.wikipedia.org\/wiki\/Potencijalni_red","sameAs":"http:\/\/www.wikidata.org\/entity\/Q206925","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q206925","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2008-11-04T11:13:07Z","dateModified":"2024-06-19T10:36:02Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/6\/62\/Exp_series.gif"}</script> </body> </html>