CINXE.COM

Amharic-arabic Neural Machine Translation

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>Amharic-arabic Neural Machine Translation</title> <!-- common meta tags --> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <meta name="title" content="Amharic-arabic Neural Machine Translation"> <meta name="description" content="Many automatic translation works have been addressed between major European language pairs, by taking advantage of large scale parallel corpora, but very few research works are conducted on the Amharic-Arabic language pair due to its parallel data scarcity. Two Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) based Neural Machine Translation (NMT) models are developed using Attention-based Encoder-Decoder architecture which is adapted from the open-source OpenNMT system. In order to perform the experiment, a small parallel Quranic text corpus is constructed by modifying the existing monolingual Arabic text and its equivalent translation of Amharic language text corpora available on Tanzile. LSTM and GRU based NMT models and Google Translation system are compared and found that LSTM based OpenNMT outperforms GRU based OpenNMT and Google Translation system, with a BLEU score of 12%, 11%, and 6% respectively." /> <meta name="keywords" content="Amharic, Arabic, Neural Machine Translation, OpenNMT"/> <!-- end common meta tags --> <!-- Dublin Core(DC) meta tags --> <meta name="dc.title" content="Amharic-arabic Neural Machine Translation"> <meta name="dc.creator" content="Ibrahim Gashaw"> <meta name="dc.creator" content="H L Shashirekha"> <meta name="dc.type" content="Article"> <meta name="dc.source" content="International Conference on Data Mining and Applications (DMAP 2019), Vol.9, No.16"> <meta name="dc.date" content="2019-12-14"> <meta name="dc.identifier" content="10.5121/csit.2019.91606"> <meta name="dc.publisher" content="AIRCC Publishing Corporation"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf"> <meta name="dc.language" content="en"> <meta name="dc.description" content="Many automatic translation works have been addressed between major European language pairs, by taking advantage of large scale parallel corpora, but very few research works are conducted on the Amharic-Arabic language pair due to its parallel data scarcity. Two Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) based Neural Machine Translation (NMT) models are developed using Attention-based Encoder-Decoder architecture which is adapted from the open-source OpenNMT system. In order to perform the experiment, a small parallel Quranic text corpus is constructed by modifying the existing monolingual Arabic text and its equivalent translation of Amharic language text corpora available on Tanzile. LSTM and GRU based NMT models and Google Translation system are compared and found that LSTM based OpenNMT outperforms GRU based OpenNMT and Google Translation system, with a BLEU score of 12%, 11%, and 6% respectively."> <meta name="dc.subject" content="Amharic"> <meta name="dc.subject" content="Arabic"> <meta name="dc.subject" content="Neural Machine Translation"> <meta name="dc.subject" content="OpenNMT"> <!-- End Dublin Core(DC) meta tags --> <!-- Prism meta tags --> <meta name="prism.publicationName" content="International Conference on Data Mining and Applications (DMAP 2019)"> <meta name="prism.publicationDate" content="2019-12-14"> <meta name="prism.volume" content="9"> <meta name="prism.number" content="16"> <meta name="prism.section" content="Article"> <meta name="prism.startingPage" content="55"> <!-- End Prism meta tags --> <!-- citation meta tags --> <meta name="citation_journal_title" content="International Conference on Data Mining and Applications (DMAP 2019)"> <meta name="citation_publisher" content="AIRCC Publishing Corporation"> <meta name="citation_authors" content="Ibrahim Gashaw and H L Shashirekha;"> <meta name="citation_title" content="Amharic-arabic Neural Machine Translation"> <meta name="citation_online_date" content="2019-12-14"> <meta name="citation_volume" content="9"> <meta name="citation_issue" content="16"> <meta name="citation_firstpage" content="55"> <meta name="citation_author" content="Ibrahim Gashaw"> <meta name="citation_author" content="H L Shashirekha"> <meta name="citation_doi" content="10.5121/csit.2019.91606"> <meta name="citation_abstract_html_url" content="http://aircconline.com/csit/abstract/v9n16/csit91606.html"> <meta name="citation_pdf_url" content="http://aircconline.com/csit/papers/vol9/csit91606.pdf"> <!-- end citation meta tags --> <!-- Og meta tags --> <meta property="og:site_name" content="AIRCC" /> <meta property="og:type" content="article" /> <meta property="og:url" content="http://aircconline.com/csit/abstract/v9n16/csit91606.html"/> <meta property="og:title" content="Amharic-arabic Neural Machine Translation"> <meta property="og:description" content="Many automatic translation works have been addressed between major European language pairs, by taking advantage of large scale parallel corpora, but very few research works are conducted on the Amharic-Arabic language pair due to its parallel data scarcity. Two Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) based Neural Machine Translation (NMT) models are developed using Attention-based Encoder-Decoder architecture which is adapted from the open-source OpenNMT system. In order to perform the experiment, a small parallel Quranic text corpus is constructed by modifying the existing monolingual Arabic text and its equivalent translation of Amharic language text corpora available on Tanzile. LSTM and GRU based NMT models and Google Translation system are compared and found that LSTM based OpenNMT outperforms GRU based OpenNMT and Google Translation system, with a BLEU score of 12%, 11%, and 6% respectively." /> <!-- end og meta tags --> <!-- INDEX meta tags --> <meta name="google-site-verification" content="t8rHIcM8EfjIqfQzQ0IdYIiA9JxDD0uUZAitBCzsOIw" /> <meta name="yandex-verification" content="e3d2d5a32c7241f4" /> <!-- end INDEX meta tags --> <link rel="icon" type="image/ico" href="../img/ico.ico"/> <link rel="stylesheet" type="text/css" href="../main1.css" media="screen" /> <style type="text/css"> a{ color:white; text-decoration:none; line-height:20px; } ul li a{ font-weight:bold; color:#000; list-style:none; text-decoration:none; size:10px;} .imagess { height:90px; text-align:left; margin:0px 5px 2px 8px; float:right; border:none; } #left p { font-family: CALIBRI; font-size: 16px; margin-left: 20px; font-weight: 500; } .right { margin-right: 20px; } #button{ float: left; font-size: 14px; margin-left: 10px; height: 28px; width: auto; background-color: #1e86c6; } </style> </head> <body> <div class="font"> <div id="wap"> <div id="page"> <div id="top"> <form action="https://airccj.org/csecfp/library/Search.php" method="get" target="_blank" > <table width="100%" cellspacing="0" cellpadding="0" > <tr class="search_input"> <td width="665" align="right">&nbsp;</td> <td width="236" > <input name="title" type="text" value="Enter the paper title" class="search_textbox" onclick="if(this.value=='Enter the paper title'){this.value=''}" onblur="if(this.value==''){this.value='Enter the paper title'}" /> </td> <td width="59"> <input type="image" src="../img/go.gif" /> </td> </tr> <tr> <td colspan="3" valign="top"><img src="../img/top1.gif" alt="Academy & Industry Research Collaboration Center (AIRCC)" /></td> </tr> </table> </form> </div> <div id="font-face"> <div id="menu"> <a href="http://airccse.org">Home</a> <a href="http://airccse.org/journal.html">Journals</a> <a href="http://airccse.org/ethics.html">Ethics</a> <a href="http://airccse.org/conference.html">Conferences</a> <a href="http://airccse.org/past.html">Past&nbsp;Events</a> <a href="http://airccse.org/b.html">Submission</a> </div> <div id="content"> <div id="left"> <h2 class="lighter"><font size="2">Volume 9, Number 16, December 2019</font></h2> <h4 style="text-align:center;height:auto;"><a>Amharic-arabic Neural Machine Translation</a></h4> <h3>&nbsp;&nbsp;Authors</h3> <p class="#left right" style="text-align:">Ibrahim Gashaw and H L Shashirekha, Mangalore University, India </p> <h3>&nbsp;&nbsp;Abstract</h3> <p class="#left right" style="text-align:justify">Many automatic translation works have been addressed between major European language pairs, by taking advantage of large scale parallel corpora, but very few research works are conducted on the Amharic-Arabic language pair due to its parallel data scarcity. Two Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) based Neural Machine Translation (NMT) models are developed using Attention-based Encoder-Decoder architecture which is adapted from the open-source OpenNMT system. In order to perform the experiment, a small parallel Quranic text corpus is constructed by modifying the existing monolingual Arabic text and its equivalent translation of Amharic language text corpora available on Tanzile. LSTM and GRU based NMT models and Google Translation system are compared and found that LSTM based OpenNMT outperforms GRU based OpenNMT and Google Translation system, with a BLEU score of 12%, 11%, and 6% respectively. </p> <h3>&nbsp;&nbsp;Keywords</h3> <p class="#left right" style="text-align:justify">Amharic, Arabic, Neural Machine Translation, OpenNMT </p><br> <button type="button" id="button"><a target="blank" href="/csit/papers/vol9/csit91606.pdf">Full Text</a></button> &nbsp;&nbsp;<button type="button" id="button"><a href="http://airccse.org/csit/V9N16.html">Volume 9, Number 16</a></button> <br><br><br><br><br> </div> <div id="right"> <div class="menu_right"> <ul> <li id="id"><a href="http://airccse.org/editorial.html">Editorial Board</a></li> <li><a href="http://airccse.org/arch.html">Archives</a></li> <li><a href="http://airccse.org/indexing.html">Indexing</a></li> <li><a href="http://airccse.org/faq.html" target="_blank">FAQ</a></li> </ul> </div> <h2 class="h2" align="center">Conference Proceedings</h2> <a href="http://airccse.org/cscp.html"><img src="cscf.jpg" class="img" /></a> <div class="clear_left"></div> <br> </div> <div class="clear"></div> <div id="footer"> <table width="100%" > <tr> <td width="46%" class="F_menu"><a href="http://airccse.org/subscription.html">Subscription</a> <a href="http://airccse.org/membership.html">Membership</a> <a href="http://airccse.org/cscp.html">AIRCC CSCP</a> <a href="http://airccse.org/acontact.html">Contact Us</a> </td> <td width="54%" align="right"><a href="http://airccse.org/index.php"><img src="/csit/abstract/img/logo.gif" alt="" width="21" height="24" /></a><a href="http://www.facebook.com/AIRCCSE"><img src="/csit/abstract/img/facebook.jpeg" alt="" width="21" height="24" /></a><a href="https://twitter.com/AIRCCFP"><img src="/csit/abstract/img/twitter.jpeg" alt="" width="21" height="24" /></a><a href="http://cfptech.wordpress.com/"><img src="/csit/abstract/img/index1.jpeg" alt="" width="21" height="24" /></a></td> </tr> <tr><td height="25" colspan="2"> <p align="center">All Rights Reserved &reg; AIRCC</p> </td></tr> </table> </div> </div> </div> </div> </div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10