CINXE.COM

Document Zbl 1361.60062 - zbMATH Open

<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <title>Document Zbl 1361.60062 - zbMATH Open</title> <meta name="viewport" content="width=device-width, minimum-scale=0.1, maximum-scale=5.0"> <meta name="robots" content="noarchive, noindex"> <meta name="referrer" content="origin-when-cross-origin"> <link href="https://static.zbmath.org/contrib/bootstrap/v3.3.7/css/bootstrap.min.css" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/contrib/bootstrap/v3.3.7/css/bootstrap-theme.min.css" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/contrib/bootstrap-lightbox/v0.7.0/bootstrap-lightbox.min.css" rel="stylesheet" media="screen,print"> <link rel="stylesheet" href="https://static.zbmath.org/contrib/bootstrap-select/v1.13.14/css/bootstrap-select.min.css"> <link href="/static/css/smoothness/jquery-ui-1.10.1.custom.min.css" rel="stylesheet" media="screen"> <link href="/static/styles.css?v=20250402" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/zbMathJax/v0.1.38/zbmathjax.css" rel="stylesheet" media="screen,print"> <link rel="shortcut icon" href="/static/zbmath.ico"> <script type="application/ld+json"> { "@context": "http://schema.org", "@type": "Organization", "url": "https://zbmath.org/", "logo": "https://zbmath.org/static/zbMATH.png" } </script> </head> <body> <div id="line"></div> <span id="clear" style="cursor: pointer;">&times;</span> <div id="page"> <div id="head"> <nav id="menu" class="navbar navbar-default"> <div class="container-fluid"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#zbnav" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <a class="navbar-brand" href="#"> <img class="logo" src="/static/zbmath.gif" alt="zbMATH Open logo"> </a> </div> <div id="zbnav" class="collapse navbar-collapse"> <ul class="nav navbar-nav pages"> <li class="about"> <a href="/about/">About</a> </li> <li class="frequently-asked-questions"> <a href="/faq/">FAQ</a> </li> <li class="general-help"> <a href="/general-help/">General Help</a> </li> <li class="reviewer-service"> <a href="https://zbmath.org/reviewer-service/" target="_self" >Reviewer Service</a> </li> <li> <a href="/tools-and-resources/">Tools &amp; Resources</a> </li> <li class="contact"> <a href="/contact/">Contact</a> </li> </ul> <ul class="nav navbar-nav navbar-right prefs"> <li class="preferences dropdown"> <a data-toggle="dropdown" href="#">Preferences <i class="caret"></i></a> <ul class="dropdown-menu preferences"> <li> <form id="preferences" class="navbar-form" method="post" action="/preferences/" onsubmit="return confirm('This website uses cookies for the purposes of storing preference information on your device. Do you agree to this?\n\nPlease refer to our Privacy Policy to learn more about our use of cookies.')" > <input type="hidden" name="path" value="/1361.60062?"> <span class=""> <label class="title">Search Form</label> <div class="form-group"> <input id="search-multi-line" type="radio" name="search" value="multi-line" checked> <label for="search-multi-line" class="radio">Multi-Line Search (default)</label> </div> <div class="form-group"> <input id="search-one-line" type="radio" name="search" value="one-line"> <label for="search-one-line" class="radio">One-Line Search</label> </div> </span> <span class="count"> <label class="title">Hits per Page</label> <div class="form-group"> <input id="count-10" type="radio" name="count" value="10"> <label for="count-10" class="radio">10</label> </div> <div class="form-group"> <input id="count-20" type="radio" name="count" value="20"> <label for="count-20" class="radio">20</label> </div> <div class="form-group"> <input id="count-50" type="radio" name="count" value="50"> <label for="count-50" class="radio">50</label> </div> <div class="form-group"> <input id="count-100" type="radio" name="count" value="100" checked> <label for="count-100" class="radio">100 (default)</label> </div> <div class="form-group"> <input id="count-200" type="radio" name="count" value="200"> <label for="count-200" class="radio">200</label> </div> </span> <span class="format"> <label class="title">Display Format</label> <div class="form-group"> <input id="format-mathjax" type="radio" name="format" value="mathjax" checked> <label for="format-mathjax" class="radio">MathJax (default)</label> </div> <div class="form-group"> <input id="format-amstex" type="radio" name="format" value="latex"> <label for="format-amstex" class="radio">LaTeX</label> </div> </span> <span class="ranking"> <label class="title">Documents Sorting</label> <div class="form-group"> <input id="documents-ranking-default" type="radio" name="documents_ranking" value="date" checked> <label for="documents-ranking-default" class="radio">Newest first (default)</label> </div> <div class="form-group"> <input id="documents-ranking-references" type="radio" name="documents_ranking" value="references"> <label for="documents-ranking-references" class="radio">Citations</label> </div> <div class="form-group"> <input id="documents-ranking-relevance" type="radio" name="documents_ranking" value="relevance"> <label for="documents-ranking-relevance" class="radio">Relevance</label> </div> </span> <span class="ranking"> <label class="title">Authors Sorting</label> <div class="form-group"> <input id="authors-ranking-default" type="radio" name="authors_ranking" value="alpha" checked> <label for="authors-ranking-default" class="radio">Alphabetically (default)</label> </div> <div class="form-group"> <input id="authors-ranking-references" type="radio" name="authors_ranking" value="references"> <label for="authors-ranking-references" class="radio">Citations</label> </div> </span> <span class="ranking"> <label class="title">Serials Sorting</label> <div class="form-group"> <input id="serials-ranking-default" type="radio" name="serials_ranking" value="alpha" checked> <label for="serials-ranking-default" class="radio">Alphabetically (default)</label> </div> <div class="form-group"> <input id="serials-ranking-references" type="radio" name="serials_ranking" value="references"> <label for="serials-ranking-references" class="radio">Citations</label> </div> </span> <span class="ranking"> <label class="title">Software Sorting</label> <div class="form-group"> <input id="software-ranking-default" type="radio" name="software_ranking" value="references" checked> <label for="software-ranking-default" class="radio">Citations (default)</label> </div> <div class="form-group"> <input id="software-ranking-alpha" type="radio" name="software_ranking" value="alpha"> <label for="software-ranking-alpha" class="radio">Alphabetically</label> </div> </span> <button type="submit" class="btn btn-default">OK</button> <div class="clearfix"> </form> </li> </ul> </li> </ul> </div> </div> </nav> <div id="tabs"> <h1 class="logo"> <a class="logo" href="/"> <img class="logo" src="/static/zbmath.gif" alt="zbMATH Open &mdash; the first resource for mathematics" > </a> </h1> <nav> <ul class="nav nav-tabs"> <li class="tab-documents active"> <a href="/">Documents</a> </li> <li class="tab-authors"> <a href="/authors/">Authors</a> </li> <li class="tab-serials"> <a href="/serials/">Serials</a> </li> <li class="tab-software"> <a href="/software/">Software</a> </li> <li class="tab-classification"> <a href="/classification/">Classification</a> </li> <li class="tab-formulae"> <a href="/formulae/">Formulæ</a> </li> </ul> </nav> <div class="clearfix"></div> </div> <div class="content-fixed"> <div class="content-formular"> <div style="display: none;"> <div class="row ml-0"id="multi-line-new-line" style="display: none;"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-0-f" aria-label="field"> <option data-type="input" value="any" selected>Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-0-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input"> <span class="multi-line-value" id="multi-line-type-range"><span style="padding-left: 5px;">from</span> <input name="ml-0-v1" class="form-control multi-line-input" type="text" value="" aria-label="value"> until <input name="ml-0-v2" class="form-control multi-line-input" type="text" value="" aria-label="value"></span> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-la" placeholder="use name or ISO code"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-rv" placeholder="enter name or zbMATH reviewer number"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-an" placeholder="Zbl, JFM or ERAM number"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-en" placeholder="e.g. DOI, ISBN, arXiv ID"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-sw" placeholder="use * to find all documents using software"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-br" placeholder="find documents about the life or work of a person"> <span class="multi-line-value" id="multi-line-type-multiselect-db"> <select class="multi-line-selectpicker" data-width="100%" multiple> <option value="zbl">Zbl</option> <option value="arxiv">arXiv</option> <option value="jfm">JFM</option> <option value="eram">ERAM</option> </select> <input type="hidden" class="multi-line-input" name="ml-0-v" value=""> </span> </div> <form name="documents" method="GET" action="/" autocomplete="off"> <div class="documents multi-line" style="display: none;"> <div class="forms"> <ul class="nav forms"> <li class="one-line"> <span tabindex="0" class="glyphicon glyphicon-question-sign" title="One-Line Search allows for free logical combinations of search fields" aria-label="One-Line Search allows for free logical combinations of search fields" data-placement="bottom"></span>&nbsp;<a style="display: inline-block;" href="#">One-Line Search <span class="glyphicon glyphicon-search"></span></a> </li> </ul> </div> <div class="clearfix"></div> <div class="container-fluid"> <input type="hidden" id="multi-line-ml" name="ml" value="3"> <div id="multi-line-row-wrapper"> <div class="row ml-1"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-1-f" aria-label="field"> <option data-type="input" value="any" selected>Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-1-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-1-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <div class="row ml-2"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-2-f" aria-label="field"> <option data-type="input" value="any">Anywhere</option> <option data-type="input" value="au" selected>Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-2-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-2-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <div class="row ml-3"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-3-f" aria-label="field"> <option data-type="input" value="any">Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti" selected>Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-3-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><div id="multi-line-plus"> <a href="#"><span class="glyphicon glyphicon-plus" aria-hidden="true"></span> add line</a> </div></div> </div> </div> <div class="row"> <div class="col-xs-12 form-inline"> <div class="form-group field checkboxes-wrapper" id="checkboxes-wrapper-test" style="visibility: hidden; position: fixed;"> <label>Document Type:</label> <div class="checkboxes"> <div class="slider"> <label title="search for Articles in Journals"> <input type="checkbox" class="form-control" value="j" checked> <span tabindex="0"><small></small></span> Journal Articles </label> </div> <div class="slider"> <label title="search for Articles in Conference Proceedings and Collected Volumes"> <input type="checkbox" class="form-control" value="a" checked> <span tabindex="0"><small></small></span> Collection Articles </label> </div> <div class="slider"> <label title="search for Monographs, Proceedings, Dissertations etc."> <input type="checkbox" class="form-control" value="b" checked> <span tabindex="0"><small></small></span> Books </label> </div> <div class="slider"> <label title="search for arXiv Preprints"> <input type="checkbox" class="form-control" value="p" checked> <span tabindex="0"><small></small></span> arXiv Preprints </label> </div> </div> </div> <div class="form-group field checkboxes-wrapper" id="checkboxes-wrapper-real"> <label>Document Type:</label> <div class="checkboxes"> <div class="slider"> <label for="dt-j" title="search for Articles in Journals"> <input type="checkbox" id="dt-j" name="dt" class="form-control" value="j" checked> <span tabindex="0"><small></small></span> Journal Articles </label> </div> <div class="slider"> <label for="dt-a" title="search for Articles in Conference Proceedings and Collected Volumes"> <input type="checkbox" id="dt-a" name="dt" class="form-control" value="a" checked> <span tabindex="0"><small></small></span> Collection Articles </label> </div> <div class="slider"> <label for="dt-b" title="search for Monographs, Proceedings, Dissertations etc."> <input type="checkbox" id="dt-b" name="dt" class="form-control" value="b" checked> <span tabindex="0"><small></small></span> Books </label> </div> <div class="slider"> <label for="dt-p" title="search for arXiv Preprints"> <input type="checkbox" id="dt-p" name="dt" class="form-control" value="p" checked> <span tabindex="0"><small></small></span> arXiv Preprints </label> </div> </div> </div> </div> </div> <div class="row"> <div class="col-xs-12 buttons"> <a tabindex="0" class="btn btn-default clear-all">Reset all <span class="glyphicon glyphicon-remove"></span></a> <div class="submit"> <button class="btn btn-default search" type="submit">Search <span class="glyphicon glyphicon-search"></span></button> </div> </div> </div> </div> </div> </form> <form class="form-inline" name="documents" method="GET" action="/"> <div class="documents one-line" style="display: block;"> <div class="forms"> <ul class="nav forms"> <li class="multi-line"><a href="#">New Multi-Line Search <span class="glyphicon glyphicon-list"></span></a></li> </ul> </div> <div id="search-row" class="input-group box"> <span> <div id="search-field"> <input class="query form-control" type="text" name="q" value="an:1361.60062" aria-label="Search for documents" placeholder="Search for documents" autocomplete="off"> </div> <div class="search-buttons input-group-btn"> <div class="btn-group"> <button class="btn btn-default search" type="submit"><span class="virtual">Search</span> <span class="glyphicon glyphicon-search" style="top: 2px;"></span></button> </div> </div> </span> <span> <div class="search-buttons input-group-btn"> <div class="btn-group"> <div class="btn-group fields"> <button class="btn btn-default dropdown-toggle" data-toggle="dropdown">Fields <i class="caret"></i></button> <ul id="fields" class="dropdown-menu pull-right"> <li><a href="#"><span class="token item">ab:</span><span>&nbsp;&nbsp;</span>review text</a></li> <li><a href="#"><span class="token item">an:</span><span>&nbsp;&nbsp;</span>zbmath id</a></li> <li><a href="#"><span class="token item">any:</span><span>&nbsp;&nbsp;</span>anywhere</a></li> <li><a href="#"><span class="token item">au:</span><span>&nbsp;&nbsp;</span>contributor name</a></li> <li><a href="#"><span class="token item">br:</span><span>&nbsp;&nbsp;</span>biographic reference name</a></li> <li><a href="#"><span class="token item">cc:</span><span>&nbsp;&nbsp;</span>msc title</a></li> <li><a href="#"><span class="token item">dt:</span><span>&nbsp;&nbsp;</span>document type</a></li> <li><a href="#"><span class="token item">doi:</span><span>&nbsp;&nbsp;</span>doi</a></li> <li><a href="#"><span class="token item">en:</span><span>&nbsp;&nbsp;</span>external id</a></li> <li><a href="#"><span class="token item">la:</span><span>&nbsp;&nbsp;</span>language</a></li> <li><a href="#"><span class="token item">pu:</span><span>&nbsp;&nbsp;</span>publisher</a></li> <li><a href="#"><span class="token item">py:</span><span>&nbsp;&nbsp;</span>year</a></li> <li><a href="#"><span class="token item">rv:</span><span>&nbsp;&nbsp;</span>reviewer name</a></li> <li><a href="#"><span class="token item">so:</span><span>&nbsp;&nbsp;</span>source</a></li> <li><a href="#"><span class="token item">sw:</span><span>&nbsp;&nbsp;</span>software name</a></li> <li><a href="#"><span class="token item">ti:</span><span>&nbsp;&nbsp;</span>title</a></li> <li><a href="#"><span class="token item">ut:</span><span>&nbsp;&nbsp;</span>keyword</a></li> </ul> </div> <div class="btn-group operators"> <button class="btn btn-default dropdown-toggle" data-toggle="dropdown">Operators <i class="caret"></i></button> <ul id="operators" class="dropdown-menu pull-right"> <li><a href="#"><span class="token item">a &amp; b</span><span>&nbsp;&nbsp;</span>logical and</a></li> <li><a href="#"><span class="token item">a | b</span><span>&nbsp;&nbsp;</span>logical or</a></li> <li><a href="#"><span class="token item">!ab</span><span>&nbsp;&nbsp;</span>logical not</a></li> <li><a href="#"><span class="token item">abc*</span><span>&nbsp;&nbsp;</span>right wildcard</a></li> <li><a href="#"><span class="token item">ab c</span><span>&nbsp;&nbsp;</span>phrase</a></li> <li><a href="#"><span class="token item">(ab c)</span><span>&nbsp;&nbsp;</span>parentheses</a></li> </ul> </div> </div> </div> <div class="special"> <ul class="nav help-button"> <li class="dropdown pull-right"> <a href="#">Help <i class="caret"></i></a> </li> </ul> </div> </span> </div> <div class="help"><h2>Examples</h2> <div id="help-terms" role="table"> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Geometry">Geometry</a></span> <span class="search-explanation" role="cell" role="cell">Search for the term <em>Geometry</em> in <strong>any</strong> field. Queries are <strong>case-independent</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Funct%2A">Funct*</a></span> <span class="search-explanation" role="cell" role="cell"><strong>Wildcard</strong> queries are specified by <u>*</u> (e.g. <em>functions</em>, <em>functorial</em>, etc.). Otherwise the search is <strong>exact</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Topological+group">Topological group</a></span> <span class="search-explanation" role="cell" role="cell"><strong>Phrases</strong>(multi - words) should be set in <u></u>straight quotation marks<u></u>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=au%3A+Bourbaki+%26+ti%3A+Algebra">au: Bourbaki &amp; ti: Algebra</a></span> <span class="search-explanation" role="cell" role="cell">Search for <strong><u>au</u>thor</strong> <em>Bourbaki</em> and <strong><u>ti</u>tle</strong> <em>Algebra</em>. The <strong>and -operator &</strong> is default and can be omitted.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Chebyshev+%7C+Tschebyscheff">Chebyshev | Tschebyscheff</a></span> <span class="search-explanation" role="cell" role="cell">The <strong>or</strong>-operator <strong>|</strong> allows to search for <em>Chebyshev</em> or <em>Tschebyscheff</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Quasi%2A+map%2A+py%3A+1989">Quasi* map* py: 1989</a></span> <span class="search-explanation" role="cell" role="cell">The resulting documents have <strong><u>p</u>ublication <u>y</u>ear</strong> <em>1989</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=so%3AEur%2A+J%2A+Mat%2A+Soc%2A+cc%3A14">so:Eur* J* Mat* Soc* cc:14</a></span> <span class="search-explanation" role="cell" role="cell">Search for publications in a particular <strong><u>so</u>urce</strong> with a <strong>Mathematics Subject <u>C</u>lassification <u>c</u>ode</strong> in <em>14</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=%27%27Partial+diff%2A+eq%2A%27%27+%21elliptic">&#39;&#39;Partial diff* eq*&#39;&#39; !elliptic</a></span> <span class="search-explanation" role="cell" role="cell">The <strong>not</strong> -operator <strong>!</strong> eliminates all results containing the word <em>elliptic</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=dt%3A+b+%26+au%3A+Hilbert">dt: b &amp; au: Hilbert</a></span> <span class="search-explanation" role="cell" role="cell">The <strong><u>d</u>ocument <u>t</u>ype</strong> is set to <u>b</u>ooks; alternatively: <u>j</u> for <strong><u>j</u>ournal articles</strong>, <u>a</u> for <strong>book <u>a</u>rticles</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=py%3A+2000+-+2015+cc%3A%2894A+%7C+11T%29">py: 2000 - 2015 cc:(94A | 11T)</a></span> <span class="search-explanation" role="cell" role="cell">Number <strong>ranges</strong> when searching for <strong><u>p</u>ublication <u>y</u>ear</strong> are accepted. Terms can be grouped within <strong><u>(</u>parentheses<u>)</u></strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=la%3A+chinese">la: chinese</a></span> <span class="search-explanation" role="cell" role="cell">Find documents in a given <strong><u>la</u>nguage</strong>. <a href='https://en.wikipedia.org/wiki/ISO_639-1'>ISO 639 - 1</a> (opens in new tab) language codes can also be used.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=st%3A+c+r+s">st: c r s</a></span> <span class="search-explanation" role="cell" role="cell">Find documents that are <strong><u>c</u>ited</strong>, have <strong><u>r</u>eferences</strong> and are from a <strong><u>s</u>ingle author</strong>.</span> </div> </div> <p style="margin-bottom:0.5cm;"></p> <h2>Fields</h2> <div id="help-fields" role="table"> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>ab</strong> </span> <span class="search-explanation" role="cell" role="cell"> Text from the summary or review (for phrases use &ldquo;...&rdquo;) </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>an</strong> </span> <span class="search-explanation" role="cell" role="cell"> zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>any</strong> </span> <span class="search-explanation" role="cell" role="cell"> Includes ab, au, cc, en, rv, so, ti, ut </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>arxiv</strong> </span> <span class="search-explanation" role="cell" role="cell"> arXiv preprint number </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>au</strong> </span> <span class="search-explanation" role="cell" role="cell"> Name(s) of the contributor(s) </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>br</strong> </span> <span class="search-explanation" role="cell" role="cell"> Name of a person with biographic references (to find documents about the life or work) </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>cc</strong> </span> <span class="search-explanation" role="cell" role="cell"> Code from the Mathematics Subject Classification (prefix with <strong>*</strong> to search only primary MSC) </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>ci</strong> </span> <span class="search-explanation" role="cell" role="cell"> zbMATH ID of a document cited in summary or review </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>db</strong> </span> <span class="search-explanation" role="cell" role="cell"> Database: documents in Zentralblatt für Mathematik/zbMATH Open (<em>db:Zbl</em>), Jahrbuch über die Fortschritte der Mathematik (<em>db:JFM</em>), Crelle's Journal (<em>db:eram</em>), arXiv (<em>db:arxiv</em>) </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>dt</strong> </span> <span class="search-explanation" role="cell" role="cell"> Type of the document: journal article (<em>dt:j</em>), collection article (<em>dt:a</em>), book (<em>dt:b</em>) </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>doi</strong> </span> <span class="search-explanation" role="cell" role="cell"> Digital Object Identifier (DOI) </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>ed</strong> </span> <span class="search-explanation" role="cell" role="cell"> Name of the editor of a book or special issue </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>en</strong> </span> <span class="search-explanation" role="cell" role="cell"> External document ID: DOI, arXiv ID, ISBN, and others </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>in</strong> </span> <span class="search-explanation" role="cell" role="cell"> zbMATH ID of the corresponding issue </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>la</strong> </span> <span class="search-explanation" role="cell" role="cell"> Language (use name, e.g., <em>la:French</em>, or <a href='https://en.wikipedia.org/wiki/ISO_639-1'>ISO 639-1</a>, e.g., <em>la:FR)</em> </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>li</strong> </span> <span class="search-explanation" role="cell" role="cell"> External link (URL) </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>na</strong> </span> <span class="search-explanation" role="cell" role="cell"> Number of authors of the document in question. Interval search with &ldquo;-&rdquo; </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>pt</strong> </span> <span class="search-explanation" role="cell" role="cell"> Reviewing state: Reviewed (<em>pt:r</em>), Title Only (<em>pt:t</em>), Pending (<em>pt:p</em>), Scanned Review (<em>pt:s</em>) </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>pu</strong> </span> <span class="search-explanation" role="cell" role="cell"> Name of the publisher </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>py</strong> </span> <span class="search-explanation" role="cell" role="cell"> Year of publication. Interval search with &ldquo;-&rdquo; </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>rft</strong> </span> <span class="search-explanation" role="cell" role="cell"> Text from the references of a document (for phrases use &ldquo;...&rdquo;) </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>rn</strong> </span> <span class="search-explanation" role="cell" role="cell"> Reviewer ID </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>rv</strong> </span> <span class="search-explanation" role="cell" role="cell"> Name or ID of the reviewer </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>se</strong> </span> <span class="search-explanation" role="cell" role="cell"> Serial ID </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>si</strong> </span> <span class="search-explanation" role="cell" role="cell"> swMATH ID of software referred to in a document </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>so</strong> </span> <span class="search-explanation" role="cell" role="cell"> Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc. </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>st</strong> </span> <span class="search-explanation" role="cell" role="cell"> State: is cited (<em>st:c</em>), has references (<em>st:r</em>), has single author (<em>st:s</em>) </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>sw</strong> </span> <span class="search-explanation" role="cell" role="cell"> Name of software referred to in a document </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>ti</strong> </span> <span class="search-explanation" role="cell" role="cell"> Title of the document </span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"> <strong>ut</strong> </span> <span class="search-explanation" role="cell" role="cell"> Keywords </span> </div> </div> <p style="margin-bottom:0.5cm;"></p> <h2>Operators</h2> <div id="operators-fields" role="table"> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"><strong>a &amp; b</strong></span> <span class="search-explanation" role="cell" role="cell">logical and</span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"><strong>a | b</strong></span> <span class="search-explanation" role="cell" role="cell">logical or</span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"><strong>!ab</strong></span> <span class="search-explanation" role="cell" role="cell">logical not</span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"><strong>abc*</strong></span> <span class="search-explanation" role="cell" role="cell">right wildcard</span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"><strong>ab c</strong></span> <span class="search-explanation" role="cell" role="cell">phrase</span> </div> <div class="help-item" role="row"> <span class="search-fields" role="rowheader"><strong>(ab c)</strong></span> <span class="search-explanation" role="cell" role="cell">parentheses</span> </div> </div> <p> See also our <a href="/general-help/">General Help</a>. </p></div> </div> </form> <div class="clearfix"></div> </div> <div class="content-shadow"></div> </div> </div> <div id="body"> <div id="main"> <div class="messages"> </div> <div id="documents"> <div class="content-main"> <div class="content-item"><div class="item"> <article> <div class="author"><a href="/authors/silvestrov.dmitrii-s" title="Author Profile">Silvestrov, Dmitrii</a>; <a href="/authors/silvestrov.sergei-d" title="Author Profile">Silvestrov, Sergei</a></div> <h2 class="title"> <strong>Asymptotic expansions for stationary distributions of perturbed semi-Markov processes.</strong> <i>(English)</i> <a class="label nowrap" href="/1361.60062">Zbl 1361.60062</a> </h2> <div class="source"> Silvestrov, Sergei (ed.) et al., Engineering mathematics II. Algebraic, stochastic and analysis structures for networks, data classification and optimization. Cham: Springer (ISBN 978-3-319-42104-9/hbk; 978-3-319-42105-6/ebook). Springer Proceedings in Mathematics &amp; Statistics 179, 151-222 (2016). </div> <div class="abstract"><div class="pre">Summary: New algorithms for computing asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction, which can be applied to processes with asymptotically coupled and uncoupled finite phase spaces.<br class="zbmathjax-paragraph">For the entire collection see [<a href="/1365.74007">Zbl&nbsp;1365.74007</a>].</div></div> <div class="clear"></div> <br> <div class="citations"><div class="clear"><a href="/?q=rf%3A6703848">Cited in <strong>11</strong> Documents</a></div></div> <div class="classification"> <h3>MSC:</h3> <table><tr> <td> <a class="mono" href="/classification/?q=cc%3A60J22" title="MSC2020">60J22</a> </td> <td class="space"> Computational methods in Markov chains </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A60K15" title="MSC2020">60K15</a> </td> <td class="space"> Markov renewal processes, semi-Markov processes </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A60J10" title="MSC2020">60J10</a> </td> <td class="space"> Markov chains (discrete-time Markov processes on discrete state spaces) </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A60J80" title="MSC2020">60J80</a> </td> <td class="space"> Branching processes (Galton-Watson, birth-and-death, etc.) </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A65C40" title="MSC2020">65C40</a> </td> <td class="space"> Numerical analysis or methods applied to Markov chains </td> </tr></table> </div><div class="keywords"> <h3>Keywords:</h3><a href="/?q=ut%3Asemi-Markov+process">semi-Markov process</a>; <a href="/?q=ut%3Abirth-death-type+process">birth-death-type process</a>; <a href="/?q=ut%3Astationary+distribution">stationary distribution</a>; <a href="/?q=ut%3ALaurent+asymptotic+expansion">Laurent asymptotic expansion</a>; <a href="/?q=ut%3Aalgorithms">algorithms</a>; <a href="/?q=ut%3Ahitting+time">hitting time</a>; <a href="/?q=ut%3Anonlinear+perturbation">nonlinear perturbation</a></div> <!-- Modal used to show zbmath metadata in different output formats--> <div class="modal fade" id="metadataModal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">Cite</h4> </div> <div class="modal-body"> <div class="form-group"> <label for="select-output" class="control-label">Format</label> <select id="select-output" class="form-control" aria-label="Select Metadata format"></select> </div> <div class="form-group"> <label for="metadataText" class="control-label">Result</label> <textarea class="form-control" id="metadataText" rows="10" style="min-width: 100%;max-width: 100%"></textarea> </div> <div id="metadata-alert" class="alert alert-danger" role="alert" style="display: none;"> <!-- alert for connection errors etc --> </div> </div> <div class="modal-footer"> <button type="button" class="btn btn-primary" onclick="copyMetadata()">Copy to clipboard</button> <button type="button" class="btn btn-default" data-dismiss="modal">Close</button> </div> </div> </div> </div> <div class="functions clearfix"> <div class="function"> <!-- Button trigger metadata modal --> <a type="button" class="btn btn-default btn-xs pdf" data-toggle="modal" data-target="#metadataModal" data-itemtype="Zbl" data-itemname="Zbl 1361.60062" data-ciurl="/ci/06703848" data-biburl="/bibtex/06703848.bib" data-amsurl="/amsrefs/06703848.bib" data-xmlurl="/xml/06703848.xml" > Cite </a> <a class="btn btn-default btn-xs pdf" data-container="body" type="button" href="/pdf/06703848.pdf" title="Zbl 1361.60062 as PDF">Review PDF</a> </div> <div class="fulltexts"> <span class="fulltext">Full Text:</span> <a class="btn btn-default btn-xs" type="button" href="https://doi.org/10.1007/978-3-319-42105-6_10" aria-label="DOI for “Asymptotic expansions for stationary distributions of perturbed semi-Markov processes”" title="10.1007/978-3-319-42105-6_10">DOI</a> <a class="btn btn-default btn-xs" type="button" href="https://arxiv.org/abs/1603.03891" title="Note: arXiv document may differ from published version">arXiv</a> </div> <div class="sfx" style="float: right;"> </div> </div> <div class="references"> <h3>References:</h3> <table><tr> <td>[1]</td> <td class="space">Abadov, Z.A.: Asymptotical expansions with explicit estimation of constants for exponential moments of sums of random variables defined on a markov chain and their applications to limit theorems for first hitting times. Candidate of Science dissertation, Kiev State University (1984)</td> </tr><tr> <td>[2]</td> <td class="space">Abbad, M., Filar, J.A.: Algorithms for singularly perturbed Markov control problems: a survey. In: Leondes, C.T. (ed.) Techniques in Discrete-Time Stochastic Control Systems. Control and Dynamic Systems, vol. 73, pp. 257&ndash;289. Academic Press, New York (1995) &middot; <a href="/0843.93094" class="nowrap">Zbl 0843.93094</a>&nbsp;&middot; <a href="https://doi.org/10.1016/S0090-5267(05)80010-6" class="nowrap">doi:10.1016/S0090-5267(05)80010-6</a></td> </tr><tr> <td>[3]</td> <td class="space">Albeverio, S., Koroliuk, V.S., Samoilenko, I.V.: Asymptotic expansion of semi-Markov random evolutions. Stochastics 81(5), 477&ndash;502 (2009) &middot; <a href="/1179.60058" class="nowrap">Zbl 1179.60058</a></td> </tr><tr> <td>[4]</td> <td class="space">Albrecht, A.R., Howlett, P.G., Pearce, C.E.M.: Necessary and sufficient conditions for the inversion of linearly-perturbed bounded linear operators on Banach space using Laurent series. J. Math. Anal. Appl. 383(1), 95&ndash;110 (2011) &middot; <a href="/1223.47014" class="nowrap">Zbl 1223.47014</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.jmaa.2011.05.007" class="nowrap">doi:10.1016/j.jmaa.2011.05.007</a></td> </tr><tr> <td>[5]</td> <td class="space">Albrecht, A.R., Howlett, P.G., Pearce, C.E.M.: The fundamental equations for inversion of operator pencils on Banach space. J. Math. Anal. Appl. 413(1), 411&ndash;421 (2014) &middot; <a href="/1308.47013" class="nowrap">Zbl 1308.47013</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.jmaa.2013.11.060" class="nowrap">doi:10.1016/j.jmaa.2013.11.060</a></td> </tr><tr> <td>[6]</td> <td class="space">Alimov, D., Shurenkov, V.M.: Markov renewal theorems in triangular array model. Ukr. Mat. Zh. 42, 1443&ndash;1448 (1990) (English translation in Ukr. Math. J. 42, 1283&ndash;1288) &middot; <a href="/0719.60070" class="nowrap">Zbl 0719.60070</a></td> </tr><tr> <td>[7]</td> <td class="space">Alimov, D., Shurenkov, V.M.: Asymptotic behavior of terminating Markov processes that are close to ergodic. Ukr. Mat. Zh. 42, 1701&ndash;1703 (1990) (English translation in Ukr. Math. J. 42 1535&ndash;1538) &middot; <a href="/0732.60098" class="nowrap">Zbl 0732.60098</a></td> </tr><tr> <td>[8]</td> <td class="space">Allen, B., Anderssen, R.S., Seneta, E.: Computation of stationary measures for infinite Markov chains. In: Neuts, M.F. (ed.) Algorithmic Methods in Probability. Studies in the Management Sciences, vol. 7, pp. 13&ndash;23. North-Holland, Amsterdam (1977) &middot; <a href="/0386.60048" class="nowrap">Zbl 0386.60048</a></td> </tr><tr> <td>[9]</td> <td class="space">Altman, E., Avrachenkov, K.E., Núñez-Queija, R.: Perturbation analysis for denumerable Markov chains with application to queueing models. Adv. Appl. Probab. 36(3), 839&ndash;853 (2004) &middot; <a href="/1062.60066" class="nowrap">Zbl 1062.60066</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0001867800013148" class="nowrap">doi:10.1017/S0001867800013148</a></td> </tr><tr> <td>[10]</td> <td class="space">Andersson, F., Silvestrov, S.: The mathematics of Internet search engines. Acta Appl. Math. 104, 211&ndash;242 (2008) &middot; <a href="/1184.68174" class="nowrap">Zbl 1184.68174</a>&nbsp;&middot; <a href="https://doi.org/10.1007/s10440-008-9254-y" class="nowrap">doi:10.1007/s10440-008-9254-y</a></td> </tr><tr> <td>[11]</td> <td class="space">Anisimov, V.V. Limit theorems for semi-Markov processes. I, II. Teor. Veroyatn. Mat. Stat. 2, I: 3&ndash;12; II: 13&ndash;21 (1970)</td> </tr><tr> <td>[12]</td> <td class="space">Anisimov, V.V.: Limit theorems for sums of random variables on a Markov chain, connected with the exit from a set that forms a single class in the limit. Teor. Veroyatn. Mat. Stat. 4, 3&ndash;17 (1971) (English translation in Theory Probab. Math. Statist. 4, 1&ndash;13)</td> </tr><tr> <td>[13]</td> <td class="space">Anisimov, V.V.: Limit theorems for sums of random variables that are given on a subset of states of a Markov chain up to the moment of exit, in a series scheme. Teor. Veroyatn. Mat. Stat. 4, 18&ndash;26 (1971) (English translation in Theory Probab. Math. Statist. 4, 15&ndash;22)</td> </tr><tr> <td>[14]</td> <td class="space">Anisimov, V.V.: Limit theorems for sums of random variables that are given on a countable subset of the states of a Markov chain up to the first exit time. Teor. Veroyatn. Mat. Stat. 8, 3&ndash;13 (1973)</td> </tr><tr> <td>[15]</td> <td class="space">Anisimov, V.V.: Asymptotical consolidation of states for random processes. Kibernetika (3), 109&ndash;117 (1973)</td> </tr><tr> <td>[16]</td> <td class="space">Anisimov, V.V.: Limit theorems for processes admitting the asymptotical consolidation of states. Theor. Veroyatn. Mat. Stat. 22, 3&ndash;15 (1980) (English translation in Theory Probab. Math. Statist. 22, 1&ndash;13)</td> </tr><tr> <td>[17]</td> <td class="space">Anisimov, V.V.: Approximation of Markov processes that can be asymptotically lumped. Teor. Veroyatn. Mat. Stat. 34, 1&ndash;12 (1986) (English translation in Theory Probab. Math. Statist. 34, 1&ndash;11)</td> </tr><tr> <td>[18]</td> <td class="space">Anisimov, V.V.: Random Processes with Discrete Components, 183 pp. Vysshaya Shkola and Izdatel&rsquo;stvo Kievskogo Universiteta, Kiev (1988)</td> </tr><tr> <td>[19]</td> <td class="space">Anisimov, V.V.: Switching Processes in Queueing Models. Applied Stochastic Methods. ISTE, London and Wiley, Hoboken, NJ (2008). 345 pp &middot; <a href="/1156.60002" class="nowrap">Zbl 1156.60002</a>&nbsp;&middot; <a href="https://doi.org/10.1002/9780470611340" class="nowrap">doi:10.1002/9780470611340</a></td> </tr><tr> <td>[20]</td> <td class="space">Anisimov, V.V., Chernyak, A.V.: Limit theorems for certain rare functionals on Markov chains and semi-Markov processes. Teor. Veroyatn. Mat. Stat. 26, 3&ndash;8 (1982) (English translation in Theory Probab. Math. Statist. 26, 1&ndash;6) &middot; <a href="/0487.60059" class="nowrap">Zbl 0487.60059</a></td> </tr><tr> <td>[21]</td> <td class="space">Anisimov, V.V., Voĭna, A.A., Lebedev, E.A.: Asymptotic estimation of integral functionals and consolidation of stochastic systems. Vestnik Kiev. Univ. Model. Optim. Slozhn. Sist. (2), 41&ndash;50 (1983) &middot; <a href="/0576.60026" class="nowrap">Zbl 0576.60026</a></td> </tr><tr> <td>[22]</td> <td class="space">Anisimov, V.V., Zakusilo, O.K., Donchenko, V.S.: Elements of Queueing and Asymptotical Analysis of Systems, 248 pp. Lybid&rsquo;, Kiev (1987)</td> </tr><tr> <td>[23]</td> <td class="space">Asmussen, S.: Busy period analysis, rare events and transient behavior in fluid flow models. J. Appl. Math. Stoch. Anal. 7(3), 269&ndash;299 (1994) &middot; <a href="/0826.60086" class="nowrap">Zbl 0826.60086</a>&nbsp;&middot; <a href="https://doi.org/10.1155/S1048953394000262" class="nowrap">doi:10.1155/S1048953394000262</a></td> </tr><tr> <td>[24]</td> <td class="space">Asmussen, S.: Applied Probability and Queues. Second edition, Applications of Mathematics, Stochastic Modelling and Applied Probability, vol. 51, xii+438 pp. Springer, New York (2003) &middot; <a href="/1029.60001" class="nowrap">Zbl 1029.60001</a></td> </tr><tr> <td>[25]</td> <td class="space">Asmussen, S., Albrecher, H.: Ruin Probabilities. Second edition, Advanced Series on Statistical Science &amp; Applied Probability, vol. 14, xviii+602 pp. World Scientific, Hackensack, NJ (2010) &middot; <a href="/1247.91080" class="nowrap">Zbl 1247.91080</a>&nbsp;&middot; <a href="https://doi.org/10.1142/7431" class="nowrap">doi:10.1142/7431</a></td> </tr><tr> <td>[26]</td> <td class="space">Avrachenkov, K.E.: Analytic perturbation theory and its applications. Ph.D. thesis, University of South Australia (1999)</td> </tr><tr> <td>[27]</td> <td class="space">Avrachenkov, K.E.: Singularly perturbed finite Markov chains with general ergodic structure. In: Boel, R., Stremersch, G. (eds.) Discrete Event Systems. Analysis and Control. Kluwer International Series in Engineering and Computer Science, vol. 569, pp. 429&ndash;432. Kluwer, Boston (2000)&nbsp;&middot; <a href="https://doi.org/10.1007/978-1-4615-4493-7_45" class="nowrap">doi:10.1007/978-1-4615-4493-7_45</a></td> </tr><tr> <td>[28]</td> <td class="space">Avrachenkov, K., Borkar, V., Nemirovsky, D.: Quasi-stationary distributions as centrality measures for the giant strongly connected component of a reducible graph. J. Comput. Appl. Math. 234(11), 3075&ndash;3090 (2010) &middot; <a href="/1215.05153" class="nowrap">Zbl 1215.05153</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.cam.2010.02.001" class="nowrap">doi:10.1016/j.cam.2010.02.001</a></td> </tr><tr> <td>[29]</td> <td class="space">Avrachenkov, K.E., Filar, J., Haviv, M.: Singular perturbations of Markov chains and decision processes. In: Feinberg, E.A., Shwartz, A. (eds.) Handbook of Markov Decision Processes. Methods and Applications. International Series in Operations Research &amp; Management Science, vol. 40, pp. 113&ndash;150. Kluwer, Boston (2002) &middot; <a href="/1014.90108" class="nowrap">Zbl 1014.90108</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-1-4615-0805-2_4" class="nowrap">doi:10.1007/978-1-4615-0805-2_4</a></td> </tr><tr> <td>[30]</td> <td class="space">Avrachenkov, K.E., Filar, J.A., Howlett, P.G.: Analytic Perturbation Theory and Its Applications, xii+372 pp. SIAM, Philadelphia, PA (2013) &middot; <a href="/1296.47001" class="nowrap">Zbl 1296.47001</a></td> </tr><tr> <td>[31]</td> <td class="space">Avrachenkov, K.E., Haviv, M.: Perturbation of null spaces with application to the eigenvalue problem and generalized inverses. Linear Algebr. Appl. 369, 1&ndash;25 (2003) &middot; <a href="/1029.15006" class="nowrap">Zbl 1029.15006</a>&nbsp;&middot; <a href="https://doi.org/10.1016/S0024-3795(02)00729-2" class="nowrap">doi:10.1016/S0024-3795(02)00729-2</a></td> </tr><tr> <td>[32]</td> <td class="space">Avrachenkov, K.E., Haviv, M.: The first Laurent series coefficients for singularly perturbed stochastic matrices. Linear Algebr. Appl. 386, 243&ndash;259 (2004) &middot; <a href="/1055.65012" class="nowrap">Zbl 1055.65012</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.laa.2003.12.047" class="nowrap">doi:10.1016/j.laa.2003.12.047</a></td> </tr><tr> <td>[33]</td> <td class="space">Avrachenkov, K.E., Haviv, M., Howlett, P.G.: Inversion of analytic matrix functions that are singular at the origin. SIAM J. Matrix Anal. Appl. 22(4), 1175&ndash;1189 (2001) &middot; <a href="/0985.15005" class="nowrap">Zbl 0985.15005</a>&nbsp;&middot; <a href="https://doi.org/10.1137/S0895479898337555" class="nowrap">doi:10.1137/S0895479898337555</a></td> </tr><tr> <td>[34]</td> <td class="space">Avrachenkov, K.E., Lasserre, J.B.: The fundamental matrix of singularly perturbed Markov chains. Adv. Appl. Probab. 31(3), 679&ndash;697 (1999) &middot; <a href="/0947.60073" class="nowrap">Zbl 0947.60073</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0001867800009368" class="nowrap">doi:10.1017/S0001867800009368</a></td> </tr><tr> <td>[35]</td> <td class="space">Avrachenkov, K.E., Lasserre, J.B.: Analytic perturbation of generalized inverses. Linear Algebr. Appl. 438(4), 1793&ndash;1813 (2013) &middot; <a href="/1347.15006" class="nowrap">Zbl 1347.15006</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.laa.2011.10.037" class="nowrap">doi:10.1016/j.laa.2011.10.037</a></td> </tr><tr> <td>[36]</td> <td class="space">Avrachenkov, K., Litvak, N., Son Pham, K.: Distribution of PageRank mass among principle components of the web. In: Chung, F.R.K., Bonato, A. (eds.) Algorithms and Models for the Web-Graph. Lecture Notes in Computer Science, vol. 4863, pp. 16&ndash;28. Springer, Berlin (2007) &middot; <a href="/1136.68319" class="nowrap">Zbl 1136.68319</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-3-540-77004-6_2" class="nowrap">doi:10.1007/978-3-540-77004-6_2</a></td> </tr><tr> <td>[37]</td> <td class="space">Avrachenkov, K., Litvak, N., Son Pham, K.: A singular perturbation approach for choosing the PageRank damping factor. Internet Math. 5(1&ndash;2), 47&ndash;69 (2008) &middot; <a href="/1206.68349" class="nowrap">Zbl 1206.68349</a>&nbsp;&middot; <a href="https://doi.org/10.1080/15427951.2008.10129300" class="nowrap">doi:10.1080/15427951.2008.10129300</a></td> </tr><tr> <td>[38]</td> <td class="space">Barbour, A.D., Pollett, P.K.: Total variation approximation for quasi-stationary distributions. J. Appl. Probab. 47(4), 934&ndash;946 (2010) &middot; <a href="/1213.60126" class="nowrap">Zbl 1213.60126</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0021900200007270" class="nowrap">doi:10.1017/S0021900200007270</a></td> </tr><tr> <td>[39]</td> <td class="space">Barbour, A.D., Pollett, P.K.: Total variation approximation for quasi-equilibrium distributions II. Stoch. Process. Appl. 122(11), 3740&ndash;3756 (2012) &middot; <a href="/1251.60060" class="nowrap">Zbl 1251.60060</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.spa.2012.07.004" class="nowrap">doi:10.1016/j.spa.2012.07.004</a></td> </tr><tr> <td>[40]</td> <td class="space">Barlow, J.: Perturbation results for nearly uncoupled Markov chains with applications to iterative methods. Numer. Math. 65(1), 51&ndash;62 (1993) &middot; <a href="/0792.65027" class="nowrap">Zbl 0792.65027</a>&nbsp;&middot; <a href="https://doi.org/10.1007/BF01385739" class="nowrap">doi:10.1007/BF01385739</a></td> </tr><tr> <td>[41]</td> <td class="space">Baumgärtel, H.: Analytic Perturbation Theory for Matrices and Operators. Operator Theory: Advances and Applications, vol. 15, 427 pp. Birkhäuser, Basel (1985) &middot; <a href="/0591.47013" class="nowrap">Zbl 0591.47013</a></td> </tr><tr> <td>[42]</td> <td class="space">Benois, O., Landim, C., Mourragui, M.: Hitting times of rare events in Markov chains. J. Stat. Phys. 153(6), 967&ndash;990 (2013) &middot; <a href="/1285.82033" class="nowrap">Zbl 1285.82033</a>&nbsp;&middot; <a href="https://doi.org/10.1007/s10955-013-0875-9" class="nowrap">doi:10.1007/s10955-013-0875-9</a></td> </tr><tr> <td>[43]</td> <td class="space">Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences.Classics in Applied Mathematics, vol. 9, xx+340 pp. SIAM, Philadelphia (1994). (A revised reprint ofNonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics, xviii+316 pp. Academic Press, New York, 1979)&nbsp;&middot; <a href="https://doi.org/10.1137/1.9781611971262" class="nowrap">doi:10.1137/1.9781611971262</a></td> </tr><tr> <td>[44]</td> <td class="space">Bielecki, T., Stettner, Ł.: On ergodic control problems for singularly perturbed Markov processes. Appl. Math. Optim. 20(2), 131&ndash;161 (1989) &middot; <a href="/0681.60089" class="nowrap">Zbl 0681.60089</a>&nbsp;&middot; <a href="https://doi.org/10.1007/BF01447652" class="nowrap">doi:10.1007/BF01447652</a></td> </tr><tr> <td>[45]</td> <td class="space">Blanchet, J., Zwart, B.: Asymptotic expansions of defective renewal equations with applications to perturbed risk models and processor sharing queues. Math. Methods Oper. Res. 72, 311&ndash;326 (2010) &middot; <a href="/1210.60097" class="nowrap">Zbl 1210.60097</a>&nbsp;&middot; <a href="https://doi.org/10.1007/s00186-010-0321-6" class="nowrap">doi:10.1007/s00186-010-0321-6</a></td> </tr><tr> <td>[46]</td> <td class="space">Bini, D.A., Latouche, G., Meini, B.: Numerical Methods for Structured Markov Chains. Numerical Mathematics and Scientific Computation, p. xii+327. Oxford Science Publications, Oxford University Press, New York (2005) &middot; <a href="/1076.60002" class="nowrap">Zbl 1076.60002</a>&nbsp;&middot; <a href="https://doi.org/10.1093/acprof:oso/9780198527688.001.0001" class="nowrap">doi:10.1093/acprof:oso/9780198527688.001.0001</a></td> </tr><tr> <td>[47]</td> <td class="space">Bobrova, A.F.: Estimates of accuracy of an asymptotic consolidation of countable Markov chains. Stability Problems for Stochastic Models, pp. 16&ndash;24. Trudy Seminara, VNIISI, Moscow (1983)</td> </tr><tr> <td>[48]</td> <td class="space">Borovkov, A.A.: Ergodicity and Stability of Stochastic Processes. Wiley Series in Probability and Statistics, vol. 314, p. xxiv+585. Wiley, Chichester (1998) (Translation from the 1994 Russian original) &middot; <a href="/0917.60005" class="nowrap">Zbl 0917.60005</a></td> </tr><tr> <td>[49]</td> <td class="space">Burnley, C.: Perturbation of Markov chains. Math. Mag. 60(1), 21&ndash;30 (1987) &middot; <a href="/0632.60068" class="nowrap">Zbl 0632.60068</a>&nbsp;&middot; <a href="https://doi.org/10.2307/2690133" class="nowrap">doi:10.2307/2690133</a></td> </tr><tr> <td>[50]</td> <td class="space">Cao, X.R.: The Maclaurin series for performance functions of Markov chains. Adv. Appl. Probab. 30, 676&ndash;692 (1998) &middot; <a href="/0916.60063" class="nowrap">Zbl 0916.60063</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0001867800008545" class="nowrap">doi:10.1017/S0001867800008545</a></td> </tr><tr> <td>[51]</td> <td class="space">Cao, W.L., Stewart, W.J.: Iterative aggregation/disaggregation techniques for nearly uncoupled Markov chains. J. Assoc. Comput. Mach. 32, 702&ndash;719 (1985) &middot; <a href="/0628.65145" class="nowrap">Zbl 0628.65145</a>&nbsp;&middot; <a href="https://doi.org/10.1145/3828.214137" class="nowrap">doi:10.1145/3828.214137</a></td> </tr><tr> <td>[52]</td> <td class="space">Chatelin, F., Miranker, W.L.: Aggregation/disaggregation for eigenvalue problems. SIAM J. Numer. Anal. 21(3), 567&ndash;582 (1984) &middot; <a href="/0574.65029" class="nowrap">Zbl 0574.65029</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0721039" class="nowrap">doi:10.1137/0721039</a></td> </tr><tr> <td>[53]</td> <td class="space">Coderch, M., Willsky, A.S., Sastry, S.S., Castañon, D.A.: Hierarchical aggregation of singularly perturbed finite state Markov processes. Stochastics 8, 259&ndash;289 (1983) &middot; <a href="/0517.60080" class="nowrap">Zbl 0517.60080</a>&nbsp;&middot; <a href="https://doi.org/10.1080/17442508308833242" class="nowrap">doi:10.1080/17442508308833242</a></td> </tr><tr> <td>[54]</td> <td class="space">Cole, J.D.: Perturbation Methods in Applied Mathematics, p. vi+260. Blaisdell, Waltham, Mass (1968)</td> </tr><tr> <td>[55]</td> <td class="space">Collet, P., Martínez, S., San Martín, J.: Quasi-Stationary Distributions. Markov Chains, Diffusions and Dynamical Systems. Probability and its Applications, p. xvi+280. Springer, Heidelberg (2013) &middot; <a href="/1261.60002" class="nowrap">Zbl 1261.60002</a></td> </tr><tr> <td>[56]</td> <td class="space">Courtois, P.J.: Error analysis in nearly-completely decomposable stochastic systems. Econometrica 43(4), 691&ndash;709 (1975) &middot; <a href="/0333.62070" class="nowrap">Zbl 0333.62070</a>&nbsp;&middot; <a href="https://doi.org/10.2307/1913078" class="nowrap">doi:10.2307/1913078</a></td> </tr><tr> <td>[57]</td> <td class="space">Courtois, P.J.: Decomposability: Queueing and Computer System Applications. ACM Monograph Series, p. xiii+201. Academic Press, New York (1977)</td> </tr><tr> <td>[58]</td> <td class="space">Courtois, P.J.: Error minimization in decomposable stochastic models. In: Ralph, L.D., Teunis, J.O. (eds.) Applied Probability - Computer Science: the Interface. Progress in Computer Science, 2, vol. I, pp. 189&ndash;210. Birkhäuser, Boston (1982)</td> </tr><tr> <td>[59]</td> <td class="space">Courtois, P.J., Louchard, G.: Approximation of eigen characteristics in nearly-completely decomposable stochastic systems. Stoch. Process. Appl. 4, 283&ndash;296 (1976) &middot; <a href="/0338.60046" class="nowrap">Zbl 0338.60046</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0304-4149(76)90016-8" class="nowrap">doi:10.1016/0304-4149(76)90016-8</a></td> </tr><tr> <td>[60]</td> <td class="space">Courtois, P.J., Semal, P.: Error bounds for the analysis by decomposition of non-negative matrices. In: Iazeolla, G., Courtois, P.J., Hordijk, A. (eds.) Mathematical Computer Performance and Reliability, pp. 209&ndash;224. North-Holland, Amsterdam (1984)</td> </tr><tr> <td>[61]</td> <td class="space">Courtois, P.J., Semal, P.: Block decomposition and iteration in stochastic matrices. Philips J. Res. 39(4&ndash;5), 178&ndash;194 (1984) &middot; <a href="/0556.65025" class="nowrap">Zbl 0556.65025</a></td> </tr><tr> <td>[62]</td> <td class="space">Courtois, P.J., Semal, P.: Bounds for the positive eigenvectors of nonnegative matrices and for their approximations by decomposition. J. Assoc. Comput. Mach. 31(4), 804&ndash;825 (1984) &middot; <a href="/0628.65029" class="nowrap">Zbl 0628.65029</a>&nbsp;&middot; <a href="https://doi.org/10.1145/1634.1637" class="nowrap">doi:10.1145/1634.1637</a></td> </tr><tr> <td>[63]</td> <td class="space">Courtois, P.J., Semal, P. Bounds for transient characteristics of large or infinite Markov chains. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Probability: Pure and Applied, vol. 8, pp. 413&ndash;434. Marcel Dekker, New York (1991) &middot; <a href="/0744.60073" class="nowrap">Zbl 0744.60073</a></td> </tr><tr> <td>[64]</td> <td class="space">Craven, B.D.: Perturbed Markov processes. Stoch. Models 19(2), 269&ndash;285 (2003) &middot; <a href="/1022.60066" class="nowrap">Zbl 1022.60066</a>&nbsp;&middot; <a href="https://doi.org/10.1081/STM-120020390" class="nowrap">doi:10.1081/STM-120020390</a></td> </tr><tr> <td>[65]</td> <td class="space">Darroch, J., Seneta, E.: On quasi-stationary distributions in absorbing discrete-time finite Markov chains. J. Appl. Probab. 2, 88&ndash;100 (1965) &middot; <a href="/0134.34704" class="nowrap">Zbl 0134.34704</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0021900200031600" class="nowrap">doi:10.1017/S0021900200031600</a></td> </tr><tr> <td>[66]</td> <td class="space">Darroch, J., Seneta, E.: On quasi-stationary distributions in absorbing continuous-time finite Markov chains. J. Appl. Probab. 4, 192&ndash;196 (1967) &middot; <a href="/0168.16303" class="nowrap">Zbl 0168.16303</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0021900200025341" class="nowrap">doi:10.1017/S0021900200025341</a></td> </tr><tr> <td>[67]</td> <td class="space">Delebecque, F.: A reduction process for perturbed Markov chains. SIAM J. Appl. Math. 43, 325&ndash;350 (1983) &middot; <a href="/0518.60080" class="nowrap">Zbl 0518.60080</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0143023" class="nowrap">doi:10.1137/0143023</a></td> </tr><tr> <td>[68]</td> <td class="space">Delebecque, F.: On the resolvent approach to the spectral decomposition of a regular matrix pencil. Linear Algebr. Appl. 129, 63&ndash;75 (1990) &middot; <a href="/0721.15004" class="nowrap">Zbl 0721.15004</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0024-3795(90)90298-Q" class="nowrap">doi:10.1016/0024-3795(90)90298-Q</a></td> </tr><tr> <td>[69]</td> <td class="space">Delebecque, F., Quadrat, J.P.: Optimal control of Markov chains admitting strong and weak interactions. Automatica 17(2), 281&ndash;296 (1981) &middot; <a href="/0467.49020" class="nowrap">Zbl 0467.49020</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0005-1098(81)90047-9" class="nowrap">doi:10.1016/0005-1098(81)90047-9</a></td> </tr><tr> <td>[70]</td> <td class="space">Drozdenko, M.: Weak convergence of first-rare-event times for semi-Markov processes I. Theory Stoch. Process. 13(4), 29&ndash;63 (2007) &middot; <a href="/1164.60065" class="nowrap">Zbl 1164.60065</a></td> </tr><tr> <td>[71]</td> <td class="space">Drozdenko, M.: Weak convergence of first-rare-event times for semi-Markov processes, vol. 49. Doctoral dissertation, Mälardalen University, Västerås (2007) &middot; <a href="/1164.60065" class="nowrap">Zbl 1164.60065</a></td> </tr><tr> <td>[72]</td> <td class="space">Drozdenko, M.: Weak convergence of first-rare-event times for semi-Markov processes II. Theory Stoch. Process. 15(2), 99&ndash;118 (2009) &middot; <a href="/1224.60224" class="nowrap">Zbl 1224.60224</a></td> </tr><tr> <td>[73]</td> <td class="space">Englund, E.: Perturbed renewal equations with application to M/M queueing systems. 1. Teor. \[ \check{\mathrm I}{\mathrm movirn} \] I movirn . Mat. Stat. 60, 31&ndash;37 (1999) (Also in Theory Probab. Math. Stat. 60, 35&ndash;42)</td> </tr><tr> <td>[74]</td> <td class="space">Englund, E.: Perturbed renewal equations with application to M/M queueing systems. 2. Teor. \[ \check{\mathrm I}{\mathrm movirn} \] I movirn . Mat. Stat. 61, 21&ndash;32 (1999) (Also in Theory Probab. Math. Stat. 61, 21&ndash;32)</td> </tr><tr> <td>[75]</td> <td class="space">Englund, E.: Nonlinearly perturbed renewal equations with applications to a random walk. In: Silvestrov, D., Yadrenko, M., Olenko A., Zinchenko, N. (eds.) Proceedings of the Third International School on Applied Statistics, Financial and Actuarial Mathematics, Feodosiya (2000). (Theory Stoch. Process. 6(22)(3&ndash;4), 33&ndash;60)</td> </tr><tr> <td>[76]</td> <td class="space">Englund, E.: Nonlinearly perturbed renewal equations with applications. Doctoral dissertation, Umeå University (2001)</td> </tr><tr> <td>[77]</td> <td class="space">Englund, E., Silvestrov, D.S.: Mixed large deviation and ergodic theorems for regenerative processes with discrete time. In: Jagers, P., Kulldorff, G., Portenko, N., Silvestrov, D. (eds.) Proceedings of the Second Scandinavian&ndash;Ukrainian Conference in Mathematical Statistics, Vol. I, Umeå, 1997. (Theory Stoch. Process. 3(19)(1&ndash;2), 164&ndash;176) &middot; <a href="/0946.60079" class="nowrap">Zbl 0946.60079</a></td> </tr><tr> <td>[78]</td> <td class="space">Engström, C., Silvestrov, S.: Generalisation of the damping factor in PageRank for weighted networks. In: Silvestrov, D., Martin-Löf, A. (eds.) Modern Problems in Insurance Mathematics. Chap. 19. EAA series, pp. 313&ndash;334. Springer, Cham (2014) &middot; <a href="/1341.68135" class="nowrap">Zbl 1341.68135</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-3-319-06653-0_19" class="nowrap">doi:10.1007/978-3-319-06653-0_19</a></td> </tr><tr> <td>[79]</td> <td class="space">Engström, C., Silvestrov, S.: PageRank, a look at small changes in a line of nodes and the complete graph. In: Silvestrov S., Rančić M. (eds.) Engineering Mathematics II. Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization. Springer, Heidelberg (2016) &middot; <a href="/1405.68019" class="nowrap">Zbl 1405.68019</a></td> </tr><tr> <td>[80]</td> <td class="space">Engström, C., Silvestrov, S.: PageRank, connecting a line of nodes with a complete graph. In: Silvestrov S., Rančić M. (eds.) Engineering Mathematics II. Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization. Springer, Heidelberg (2016) &middot; <a href="/1405.68020" class="nowrap">Zbl 1405.68020</a></td> </tr><tr> <td>[81]</td> <td class="space">Erdélyi, A.: Asymptotic Expansions, vi+108 pp. Dover, New York (1956) &middot; <a href="/0070.29002" class="nowrap">Zbl 0070.29002</a></td> </tr><tr> <td>[82]</td> <td class="space">Feinberg, B.N., Chiu, S.S.: A method to calculate steady-state distributions of large Markov chains by aggregating states. Oper. Res. 35(2), 282&ndash;290 (1987) &middot; <a href="/0636.90094" class="nowrap">Zbl 0636.90094</a>&nbsp;&middot; <a href="https://doi.org/10.1287/opre.35.2.282" class="nowrap">doi:10.1287/opre.35.2.282</a></td> </tr><tr> <td>[83]</td> <td class="space">Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I, xviii+509 pp. Wiley, New York (1968). (3rd edition of An Introduction to Probability Theory and Its Applications, vol. I, xii+419 pp. Wiley, New York, 1950) &middot; <a href="/0039.13201" class="nowrap">Zbl 0039.13201</a></td> </tr><tr> <td>[84]</td> <td class="space">Fuh, C.D.: Uniform Markov renewal theory and ruin probabilities in Markov random walks. Ann. Appl. Probab. 14(3), 1202&ndash;1241 (2004) &middot; <a href="/1052.60072" class="nowrap">Zbl 1052.60072</a>&nbsp;&middot; <a href="https://doi.org/10.1214/105051604000000260" class="nowrap">doi:10.1214/105051604000000260</a></td> </tr><tr> <td>[85]</td> <td class="space">Fuh, C.D.: Asymptotic expansions on moments of the first ladder height in Markov random walks with small drift. Adv. Appl. Probab. 39, 826&ndash;852 (2007) &middot; <a href="/1127.60084" class="nowrap">Zbl 1127.60084</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0001867800002068" class="nowrap">doi:10.1017/S0001867800002068</a></td> </tr><tr> <td>[86]</td> <td class="space">Fuh, C.D., Lai, T.L.: Asymptotic expansions in multidimensional Markov renewal theory and first passage times for Markov random walks. Adv. Appl. Probab. 33, 652&ndash;673 (2001) &middot; <a href="/0995.60081" class="nowrap">Zbl 0995.60081</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0001867800011058" class="nowrap">doi:10.1017/S0001867800011058</a></td> </tr><tr> <td>[87]</td> <td class="space">Funderlic, R.E., Meyer, C.D., Jr.: Sensitivity of the stationary distribution vector for an ergodic Markov chain. Linear Algebr. Appl. 76, 1&ndash;17 (1985) &middot; <a href="/0583.60064" class="nowrap">Zbl 0583.60064</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0024-3795(86)90210-7" class="nowrap">doi:10.1016/0024-3795(86)90210-7</a></td> </tr><tr> <td>[88]</td> <td class="space">Gaĭtsgori, V.G., Pervozvanskiĭ, A.A.: Aggregation of states in a Markov chain with weak interaction. Kibernetika (3), 91&ndash;98 (1975). (English translation in Cybernetics 11(3), 441&ndash;450)</td> </tr><tr> <td>[89]</td> <td class="space">Gaĭtsgori, V.G., Pervozvanskiy, A.A.: Decomposition and aggregation in problems with a small parameter. Izv. Akad. Nauk SSSR, Tekhn. Kibernet. (1), 33&ndash;46 (1983) (English translation in Eng. Cybern. 2(1), 26&ndash;38)</td> </tr><tr> <td>[90]</td> <td class="space">Gibson, D., Seneta, E.: Augmented truncations of infinite stochastic matrices. J. Appl. Probab. 24(3), 600&ndash;608 (1987) &middot; <a href="/0628.15019" class="nowrap">Zbl 0628.15019</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0021900200031338" class="nowrap">doi:10.1017/S0021900200031338</a></td> </tr><tr> <td>[91]</td> <td class="space">Glynn, P.: On exponential limit laws for hitting times of rare sets for Harris chains and processes. In: Glynn, P., Mikosch, T., Rolski, T. (eds). New Frontiers in Applied Probability: a Festschrift for Søren Asmussen. vol. 48A, 319&ndash;326 (2011). (J. Appl. Probab. Spec.) &middot; <a href="/1233.60013" class="nowrap">Zbl 1233.60013</a>&nbsp;&middot; <a href="https://doi.org/10.1239/jap/1318940474" class="nowrap">doi:10.1239/jap/1318940474</a></td> </tr><tr> <td>[92]</td> <td class="space">Golub, G.H., Seneta, E.: Computation of the stationary distribution of an infinite Markov matrix. Bull. Aust. Math. Soc. 8, 333&ndash;341 (1973) &middot; <a href="/0248.60064" class="nowrap">Zbl 0248.60064</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0004972700042623" class="nowrap">doi:10.1017/S0004972700042623</a></td> </tr><tr> <td>[93]</td> <td class="space">Golub, G.H., Van Loan, C.F: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, xiv+756 pp. Johns Hopkins University Press, Baltimore, MD (2013). (4th edition of Matrix Computations. Johns Hopkins Series in the Mathematical Sciences, vol. 3, xvi+476 pp. Johns Hopkins University Press, Baltimore, MD, 1983)</td> </tr><tr> <td>[94]</td> <td class="space">Grassman, W.K., Taksar, M.I., Heyman, D.P.: Regenerative analysis and steady state distributions for Markov chains. Oper. Res. 33, 1107&ndash;1116 (1985) &middot; <a href="/0576.60083" class="nowrap">Zbl 0576.60083</a>&nbsp;&middot; <a href="https://doi.org/10.1287/opre.33.5.1107" class="nowrap">doi:10.1287/opre.33.5.1107</a></td> </tr><tr> <td>[95]</td> <td class="space">Guo, D.Z.: On the sensitivity of the solution of nearly uncoupled Markov chains. SIAM J. Matrix Anal. Appl. 14(4), 1112&ndash;1123 (2006)</td> </tr><tr> <td>[96]</td> <td class="space">Gusak, D.V., Korolyuk, V.S.. Asymptotic behaviour of semi-Markov processes with a decomposable set of states. Teor. Veroyatn. Mat. Stat. 5, 43&ndash;50 (1971) (English translation in Theory Probab. Math. Stat. 5, 43&ndash;51) &middot; <a href="/0234.60105" class="nowrap">Zbl 0234.60105</a></td> </tr><tr> <td>[97]</td> <td class="space">Gut, A., Holst, L.: On the waiting time in a generalized roulette game. Stat. Probab. Lett. 2(4), 229&ndash;239 (1984) &middot; <a href="/0549.60039" class="nowrap">Zbl 0549.60039</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0167-7152(84)90021-X" class="nowrap">doi:10.1016/0167-7152(84)90021-X</a></td> </tr><tr> <td>[98]</td> <td class="space">Gyllenberg, M., Silvestrov, D.S.: Quasi-stationary distributions of a stochastic metapopulation model. J. Math. Biol. 33, 35&ndash;70 (1994) &middot; <a href="/0816.92016" class="nowrap">Zbl 0816.92016</a>&nbsp;&middot; <a href="https://doi.org/10.1007/BF00160173" class="nowrap">doi:10.1007/BF00160173</a></td> </tr><tr> <td>[99]</td> <td class="space">Gyllenberg, M., Silvestrov, D.S.: Quasi-stationary phenomena in semi-Markov models. In: Janssen, J., Limnios, N. (eds.) Proceedings of the Second International Symposium on Semi-Markov Models: Theory and Applications, Compiègne, pp. 87&ndash;93 (1998)</td> </tr><tr> <td>[100]</td> <td class="space">Gyllenberg, M., Silvestrov, D.S.: Quasi-stationary phenomena for semi-Markov processes. In: Janssen, J., Limnios, N. (eds.) Semi-Markov Models and Applications, pp. 33&ndash;60. Kluwer, Dordrecht (1999) &middot; <a href="/0966.60086" class="nowrap">Zbl 0966.60086</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-1-4613-3288-6_3" class="nowrap">doi:10.1007/978-1-4613-3288-6_3</a></td> </tr><tr> <td>[101]</td> <td class="space">Gyllenberg, M., Silvestrov, D.S.: Cramér-Lundberg and diffusion approximations for nonlinearly perturbed risk processes including numerical computation of ruin probabilities. In: Silvestrov, D., Yadrenko, M., Borisenko, O., Zinchenko, N. (eds.) Proceedings of the Second International School on Actuarial and Financial Mathematics, Kiev (1999). (Theory Stoch. Process., 5(21)(1&ndash;2), 6&ndash;21) &middot; <a href="/0952.60080" class="nowrap">Zbl 0952.60080</a></td> </tr><tr> <td>[102]</td> <td class="space">Gyllenberg, M., Silvestrov, D.S.: Nonlinearly perturbed regenerative processes and pseudo-stationary phenomena for stochastic systems. Stoch. Process. Appl. 86, 1&ndash;27 (2000) &middot; <a href="/1028.60067" class="nowrap">Zbl 1028.60067</a>&nbsp;&middot; <a href="https://doi.org/10.1016/S0304-4149(99)00084-8" class="nowrap">doi:10.1016/S0304-4149(99)00084-8</a></td> </tr><tr> <td>[103]</td> <td class="space">Gyllenberg, M., Silvestrov, D.S.: Cramér-Lundberg approximation for nonlinearly perturbed risk processes. Insur. Math. Econ. 26, 75&ndash;90 (2000) &middot; <a href="/0956.91044" class="nowrap">Zbl 0956.91044</a>&nbsp;&middot; <a href="https://doi.org/10.1016/S0167-6687(99)00043-8" class="nowrap">doi:10.1016/S0167-6687(99)00043-8</a></td> </tr><tr> <td>[104]</td> <td class="space">Gyllenberg, M., Silvestrov, D.S.: Quasi-Stationary Phenomena in Nonlinearly Perturbed Stochastic Systems. De Gruyter Expositions in Mathematics, vol. 44, ix+579 pp. Walter de Gruyter, Berlin (2008) &middot; <a href="/1175.60002" class="nowrap">Zbl 1175.60002</a>&nbsp;&middot; <a href="https://doi.org/10.1515/9783110208252" class="nowrap">doi:10.1515/9783110208252</a></td> </tr><tr> <td>[105]</td> <td class="space">Häggström, O.: Finite Markov Chains and Algorithmic Applications. London Mathematical Society Student Texts, vol. 52, 126 pp. Cambridge University Press, Cambridge (2002) &middot; <a href="/0999.60001" class="nowrap">Zbl 0999.60001</a>&nbsp;&middot; <a href="https://doi.org/10.1017/CBO9780511613586" class="nowrap">doi:10.1017/CBO9780511613586</a></td> </tr><tr> <td>[106]</td> <td class="space">Hanen, A.: Probème central limite dans le cas Markovien fini. La matrice limite n&rsquo;a qu&rsquo;une seule classe ergodique et pas d&rsquo;état transitoire. C. R. Acad. Sci. Paris 256, 68&ndash;70 (1963) &middot; <a href="/0106.33302" class="nowrap">Zbl 0106.33302</a></td> </tr><tr> <td>[107]</td> <td class="space">Hanen, A.: Problème central limite dans le cas Markovien fini. II. La matrice limite a plusieurs classes ergodiques et pas d&rsquo;états transitoires. C. R. Acad. Sci. Paris 256, 362&ndash;364 (1963) &middot; <a href="/0114.08902" class="nowrap">Zbl 0114.08902</a></td> </tr><tr> <td>[108]</td> <td class="space">Hanen, A.: Problème central limite dans le cas Markovien fini. Cas général. C. R. Acad. Sci. Paris 256, 575&ndash;577 (1963) &middot; <a href="/0126.33802" class="nowrap">Zbl 0126.33802</a></td> </tr><tr> <td>[109]</td> <td class="space">Hanen, A.: Théorèmes limites pour une suite de chaînes de Markov. Ann. Inst. H. Poincaré 18, 197&ndash;301 (1963) &middot; <a href="/0202.48206" class="nowrap">Zbl 0202.48206</a></td> </tr><tr> <td>[110]</td> <td class="space">Harrod, W.J., Plemmons, R.J.: Comparison of some direct methods for computing stationary distributions of Markov chains. SIAM J. Sci. Stat. Comput. 5, 453&ndash;469 (1984) &middot; <a href="/0574.65147" class="nowrap">Zbl 0574.65147</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0905033" class="nowrap">doi:10.1137/0905033</a></td> </tr><tr> <td>[111]</td> <td class="space">Hassin, R., Haviv, M.: Mean passage times and nearly uncoupled Markov chains. SIAM J. Discret. Math. 5, 386&ndash;397 (1992) &middot; <a href="/0754.60071" class="nowrap">Zbl 0754.60071</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0405030" class="nowrap">doi:10.1137/0405030</a></td> </tr><tr> <td>[112]</td> <td class="space">Haviv, M.: An approximation to the stationary distribution of a nearly completely decomposable Markov chain and its error analysis. SIAM J. Algebr. Discret. Methods 7(4), 589&ndash;593 (1986) &middot; <a href="/0654.60053" class="nowrap">Zbl 0654.60053</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0607065" class="nowrap">doi:10.1137/0607065</a></td> </tr><tr> <td>[113]</td> <td class="space">Haviv, M.: Aggregation/disaggregation methods for computing the stationary distribution of a Markov chain. SIAM J. Numer. Anal. 24(4), 952&ndash;966 (1987) &middot; <a href="/0637.65147" class="nowrap">Zbl 0637.65147</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0724062" class="nowrap">doi:10.1137/0724062</a></td> </tr><tr> <td>[114]</td> <td class="space">Haviv, M.: Error bounds on an approximation to the dominant eigenvector of a nonnegative matrix. Linear Multilinear Algebr. 23(2), 159&ndash;163 (1988) &middot; <a href="/0648.15005" class="nowrap">Zbl 0648.15005</a>&nbsp;&middot; <a href="https://doi.org/10.1080/03081088808817866" class="nowrap">doi:10.1080/03081088808817866</a></td> </tr><tr> <td>[115]</td> <td class="space">Haviv, M.: An aggregation/disaggregation algorithm for computing the stationary distribution of a large Markov chain. Commun. Stat. Stoch. Models 8(3), 565&ndash;575 (1992) &middot; <a href="/0756.60058" class="nowrap">Zbl 0756.60058</a>&nbsp;&middot; <a href="https://doi.org/10.1080/15326349208807239" class="nowrap">doi:10.1080/15326349208807239</a></td> </tr><tr> <td>[116]</td> <td class="space">Haviv, M.: On censored Markov chains, best augmentations and aggregation/disaggregation procedures. Aggregation and disaggregation in operations research. Comput. Oper. Res. 26(10&ndash;11), 1125&ndash;1132 (1999) &middot; <a href="/0940.90056" class="nowrap">Zbl 0940.90056</a>&nbsp;&middot; <a href="https://doi.org/10.1016/S0305-0548(99)00018-0" class="nowrap">doi:10.1016/S0305-0548(99)00018-0</a></td> </tr><tr> <td>[117]</td> <td class="space">Haviv, M.: More on Rayleigh-Ritz refinement technique for nearly uncoupled stochastic matrices. SIAM J. Matrix Anal. Appl. 10(3), 287&ndash;293 (2006) &middot; <a href="/0681.65019" class="nowrap">Zbl 0681.65019</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0610022" class="nowrap">doi:10.1137/0610022</a></td> </tr><tr> <td>[118]</td> <td class="space">Haviv, M., Ritov, Y.: An approximation to the stationary distribution of a nearly completely decomposable Markov chain and its error bound. SIAM J. Algebr. Discret. Methods 7(4), 583&ndash;588 (1986) &middot; <a href="/0654.60054" class="nowrap">Zbl 0654.60054</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0607064" class="nowrap">doi:10.1137/0607064</a></td> </tr><tr> <td>[119]</td> <td class="space">Haviv, M., Ritov, Y.: On series expansions and stochastic matrices. SIAM J. Matrix Anal. Appl. 14(3), 670&ndash;676 (1993) &middot; <a href="/0776.60081" class="nowrap">Zbl 0776.60081</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0614047" class="nowrap">doi:10.1137/0614047</a></td> </tr><tr> <td>[120]</td> <td class="space">Haviv, M., Ritov, Y.: Bounds on the error of an approximate invariant subspace for non-self-adjoint matrices. Numer. Math. 67(4), 491&ndash;500 (1994) &middot; <a href="/0809.65031" class="nowrap">Zbl 0809.65031</a>&nbsp;&middot; <a href="https://doi.org/10.1007/s002110050040" class="nowrap">doi:10.1007/s002110050040</a></td> </tr><tr> <td>[121]</td> <td class="space">Haviv, M., Ritov, Y., Rothblum, U.G.: Iterative methods for approximating the subdominant modulus of an eigenvalue of a nonnegative matrix. Linear Algebr. Appl. 87, 61&ndash;75 (1987) &middot; <a href="/0627.65035" class="nowrap">Zbl 0627.65035</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0024-3795(87)90158-3" class="nowrap">doi:10.1016/0024-3795(87)90158-3</a></td> </tr><tr> <td>[122]</td> <td class="space">Haviv, M., Ritov, Y., Rothblum, U.G.: Taylor expansions of eigenvalues of perturbed matrices with applications to spectral radii of nonnegative matrices. Linear Algebr. Appl. 168, 159&ndash;188 (1992) &middot; <a href="/0748.15019" class="nowrap">Zbl 0748.15019</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0024-3795(92)90293-J" class="nowrap">doi:10.1016/0024-3795(92)90293-J</a></td> </tr><tr> <td>[123]</td> <td class="space">Haviv, M., Rothblum, U.G.: Bounds on distances between eigenvalues. Linear Algebr. Appl. 63, 101&ndash;118 (1984) &middot; <a href="/0555.15010" class="nowrap">Zbl 0555.15010</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0024-3795(84)90138-1" class="nowrap">doi:10.1016/0024-3795(84)90138-1</a></td> </tr><tr> <td>[124]</td> <td class="space">Haviv, M., Van der Heyden, L.: Perturbation bounds for the stationary probabilities of a finite Markov chain. Adv. Appl. Probab. 16, 804&ndash;818 (1984) &middot; <a href="/0559.60055" class="nowrap">Zbl 0559.60055</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0001867800022941" class="nowrap">doi:10.1017/S0001867800022941</a></td> </tr><tr> <td>[125]</td> <td class="space">Hernández-Lerma, O. Lasserre, J.B.: Markov Chains and Invariant Probabilities. Progress in Mathematics, vol. 211, xvi+205 pp. Birkhäuser, Basel (2003) &middot; <a href="/1036.60003" class="nowrap">Zbl 1036.60003</a></td> </tr><tr> <td>[126]</td> <td class="space">Ho, Y.C., Cao, X.R.: Perturbation Analysis of Discrete Event Dynamic Systems. The Springer International Series in Engineering and Computer Science, 433 pp. Springer, New York (1991) &middot; <a href="/0744.90036" class="nowrap">Zbl 0744.90036</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-1-4615-4024-3" class="nowrap">doi:10.1007/978-1-4615-4024-3</a></td> </tr><tr> <td>[127]</td> <td class="space">Hoppensteadt, F., Salehi, H., Skorokhod, A.: On the asymptotic behavior of Markov chains with small random perturbations of transition probabilities. In: Gupta, A.K. (ed.) Multidimensional Statistical Analysis and Theory of Random Matrices: Proceedings of the Sixth Eugene Lukacs Symposium. Bowling Green, OH, 1996, pp. 93&ndash;100. VSP, Utrecht (1996) &middot; <a href="/0879.60065" class="nowrap">Zbl 0879.60065</a></td> </tr><tr> <td>[128]</td> <td class="space">Hoppensteadt, F., Salehi, H., Skorokhod, A.: Markov chain with small random perturbations with applications to bacterial genetics. Random Oper. Stoch. Equ. 4(3), 205&ndash;227 (1996) &middot; <a href="/0869.60062" class="nowrap">Zbl 0869.60062</a>&nbsp;&middot; <a href="https://doi.org/10.1515/rose.1996.4.3.205" class="nowrap">doi:10.1515/rose.1996.4.3.205</a></td> </tr><tr> <td>[129]</td> <td class="space">Hoppensteadt, F., Salehi, H., Skorokhod, A.: Discrete time semigroup transformations with random perturbations. J. Dyn. Differ. Equ. 9(3), 463&ndash;505 (1997) &middot; <a href="/0884.35180" class="nowrap">Zbl 0884.35180</a>&nbsp;&middot; <a href="https://doi.org/10.1007/BF02227491" class="nowrap">doi:10.1007/BF02227491</a></td> </tr><tr> <td>[130]</td> <td class="space">Hössjer, O.: Coalescence theory for a general class of structured populations with fast migration. Adv. Appl. Probab. 43(4), 1027&ndash;1047 (2011) &middot; <a href="/1358.92078" class="nowrap">Zbl 1358.92078</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0001867800005280" class="nowrap">doi:10.1017/S0001867800005280</a></td> </tr><tr> <td>[131]</td> <td class="space">Hössjer, O.: Spatial autocorrelation for subdivided populations with invariant migration schemes. Methodol. Comput. Appl. Probab. 16(4), 777&ndash;810 (2014) &middot; <a href="/1304.92113" class="nowrap">Zbl 1304.92113</a>&nbsp;&middot; <a href="https://doi.org/10.1007/s11009-013-9321-3" class="nowrap">doi:10.1007/s11009-013-9321-3</a></td> </tr><tr> <td>[132]</td> <td class="space">Hössjer, O., Ryman, N.: Quasi equilibrium, variance effective size and fixation index for populations with substructure. J. Math. Biol. 69(5), 1057&ndash;1128 (2014) &middot; <a href="/1311.92161" class="nowrap">Zbl 1311.92161</a>&nbsp;&middot; <a href="https://doi.org/10.1007/s00285-013-0728-9" class="nowrap">doi:10.1007/s00285-013-0728-9</a></td> </tr><tr> <td>[133]</td> <td class="space">Howlett, P., Albrecht, A., Pearce, C.: Laurent series for inversion of linearly perturbed bounded linear operators on Banach space. J. Math. Anal. Appl. 366(1), 112&ndash;123 (2010) &middot; <a href="/1192.47010" class="nowrap">Zbl 1192.47010</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.jmaa.2009.12.007" class="nowrap">doi:10.1016/j.jmaa.2009.12.007</a></td> </tr><tr> <td>[134]</td> <td class="space">Howlett, P., Avrachenkov, K.: Laurent series for the inversion of perturbed linear operators on Hilbert space. In: Glover, B.M., Rubinov, A.M. (eds.) Optimization and Related Topics. Applied Optimisation, vol. 47, pp. 325&ndash;342. Kluwer, Dordrecht (2001) &middot; <a href="/1007.47008" class="nowrap">Zbl 1007.47008</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-1-4757-6099-6_16" class="nowrap">doi:10.1007/978-1-4757-6099-6_16</a></td> </tr><tr> <td>[135]</td> <td class="space">Howlett, P., Avrachenkov, K., Pearce, C., Ejov, V.: Inversion of analytically perturbed linear operators that are singular at the origin. J. Math. Anal. Appl. 353(1), 68&ndash;84 (2009) &middot; <a href="/1216.47020" class="nowrap">Zbl 1216.47020</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.jmaa.2008.11.074" class="nowrap">doi:10.1016/j.jmaa.2008.11.074</a></td> </tr><tr> <td>[136]</td> <td class="space">Howlett, P., Pearce, C., Torokhti, A.: On nonlinear operator approximation with preassigned accuracy. J. Comput. Anal. Appl. 5(3), 273&ndash;297 (2003) &middot; <a href="/1052.41009" class="nowrap">Zbl 1052.41009</a></td> </tr><tr> <td>[137]</td> <td class="space">Hunter, J.J.: Stationary distributions of perturbed Markov chains. Linear Algebr. Appl. 82, 201&ndash;214 (1986) &middot; <a href="/0608.60062" class="nowrap">Zbl 0608.60062</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0024-3795(86)90152-7" class="nowrap">doi:10.1016/0024-3795(86)90152-7</a></td> </tr><tr> <td>[138]</td> <td class="space">Hunter, J.J.: The computation of stationary distributions of Markov chains through perturbations. J. Appl. Math. Stoch. Anal. 4(1), 29&ndash;46 (1991) &middot; <a href="/0719.60069" class="nowrap">Zbl 0719.60069</a>&nbsp;&middot; <a href="https://doi.org/10.1155/S1048953391000023" class="nowrap">doi:10.1155/S1048953391000023</a></td> </tr><tr> <td>[139]</td> <td class="space">Hunter, J.J.: A survey of generalized inverses and their use in applied probability. Math. Chron. 20, 13&ndash;26 (1991) &middot; <a href="/0756.15006" class="nowrap">Zbl 0756.15006</a></td> </tr><tr> <td>[140]</td> <td class="space">Hunter, J.J.: Stationary distributions and mean first passage times of perturbed Markov chains. Linear Algebr. Appl. 410, 217&ndash;243 (2005) &middot; <a href="/1126.60055" class="nowrap">Zbl 1126.60055</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.laa.2005.08.005" class="nowrap">doi:10.1016/j.laa.2005.08.005</a></td> </tr><tr> <td>[141]</td> <td class="space">Hunter, J.J.: Generalized inverses of Markovian kernels in terms of properties of the Markov chain. Linear Algebr. Appl. 447, 38&ndash;55 (2014) &middot; <a href="/1288.15005" class="nowrap">Zbl 1288.15005</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.laa.2013.08.037" class="nowrap">doi:10.1016/j.laa.2013.08.037</a></td> </tr><tr> <td>[142]</td> <td class="space">Kalashnikov, V.V.: Qualitative Analysis of the Behaviour of Complex Systems by the Method of Test Functions. Theory and Methods of Systems Analysis, 247 pp. Nauka, Moscow (1978) &middot; <a href="/0451.93002" class="nowrap">Zbl 0451.93002</a></td> </tr><tr> <td>[143]</td> <td class="space">Kalashnikov, V.V.: Solution of the problem of approximating a denumerable Markov chain. Eng. Cybern. (3), 92&ndash;95 (1997)</td> </tr><tr> <td>[144]</td> <td class="space">Kalashnikov, V.V.: Geometric Sums: Bounds for Rare Events with Applications. Mathematics and its Applications, vol. 413, ix+265 pp. Kluwer, Dordrecht (1997) &middot; <a href="/0881.60043" class="nowrap">Zbl 0881.60043</a></td> </tr><tr> <td>[145]</td> <td class="space">Kalashnikov, V.V., Anichkin, S.A.: Continuity of random sequences and approximation of Markov chains. Adv. Appl. Probab. 13(2), 402&ndash;414 (1981) &middot; <a href="/0469.60067" class="nowrap">Zbl 0469.60067</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0001867800036089" class="nowrap">doi:10.1017/S0001867800036089</a></td> </tr><tr> <td>[146]</td> <td class="space">Kaplan, E.I.: Limit theorems for exit times of random sequences with mixing. Teor. Veroyatn. Mat. Stat. 21, 53&ndash;59 (1979). (English translation in Theory Probab. Math. Stat. 21, 59&ndash;65) &middot; <a href="/0486.60027" class="nowrap">Zbl 0486.60027</a></td> </tr><tr> <td>[147]</td> <td class="space">Kaplan, E.I.: Limit Theorems for Sum of Switching Random Variables with an Arbitrary Phase Space of Switching Component. Candidate of Science dissertation, Kiev State University (1980)</td> </tr><tr> <td>[148]</td> <td class="space">Kartashov, N.V.: Inequalities in stability and ergodicity theorems for Markov chains with a general phase space. I. Teor. Veroyatn. Primen. vol. 30, 230&ndash;240 (1985). (English translation in Theory Probab. Appl. 30, 247&ndash;259) &middot; <a href="/0584.60077" class="nowrap">Zbl 0584.60077</a></td> </tr><tr> <td>[149]</td> <td class="space">Kartashov, N.V.: Inequalities in stability and ergodicity theorems for Markov chains with a general phase space. II. Teor. Veroyatn. Primen. 30, 478&ndash;485 (1985). (English translation in Theory Probab. Appl. 30, 507&ndash;515)</td> </tr><tr> <td>[150]</td> <td class="space">Kartashov, N.V.: Asymptotic representations in an ergodic theorem for general Markov chains and their applications. Teor. Veroyatn. Mat. Stat. 32, 113&ndash;121 (1985). (English translation in Theory Probab. Math. Stat. 32, 131&ndash;139)</td> </tr><tr> <td>[151]</td> <td class="space">Kartashov, N.V.: Asymptotic expansions and inequalities in stability theorems for general Markov chains under relatively bounded perturbations. In: Stability Problems for Stochastic Models, Varna, 1985, pp. 75&ndash;85. VNIISI, Moscow (1985). (English translation in J. Soviet Math. 40(4), 509&ndash;518)</td> </tr><tr> <td>[152]</td> <td class="space">Kartashov, N.V.: Inequalities in theorems of consolidation of Markov chains. Theor. Veroyatn. Mat. Stat. 34, 62&ndash;73 (1986). (English translation in Theory Probab. Math. Stat. 34, 67&ndash;80)</td> </tr><tr> <td>[153]</td> <td class="space">Kartashov, N.V.: Estimates for the geometric asymptotics of Markov times on homogeneous chains. Teor. Veroyatn. Mat. Stat. 37, 66&ndash;77 (1987). (English translation in Theory Probab. Math. Stat. 37, 75&ndash;88)</td> </tr><tr> <td>[154]</td> <td class="space">Kartashov, M.V.: Computation and estimation of the exponential ergodicity exponent for general Markov processes and chains with recurrent kernels. Teor. \[ \check{\mathrm I}{\mathrm movirn} \] I movirn . Mat. Stat. 54, 47&ndash;57 (1996). (English translation in Theory Probab. Math. Stat. 54, 49&ndash;60)</td> </tr><tr> <td>[155]</td> <td class="space">Kartashov, M.V.: Strong Stable Markov Chains, 138 pp. VSP, Utrecht and TBiMC, Kiev (1996) &middot; <a href="/0874.60082" class="nowrap">Zbl 0874.60082</a></td> </tr><tr> <td>[156]</td> <td class="space">Kartashov, M.V.: Calculation of the spectral ergodicity exponent for the birth and death process. Ukr. Mat. Zh. 52, 889&ndash;897 (2000) (English translation in Ukr. Math. J. 52, 1018&ndash;1028) &middot; <a href="/0973.60091" class="nowrap">Zbl 0973.60091</a></td> </tr><tr> <td>[157]</td> <td class="space">Kartashov, M.V.: Ergodicity and stability of quasihomogeneous Markov semigroups of operators. Teor. \[ \check{\mathrm I}{\mathrm movirn} \] I movirn . Mat. Stat. 72, 54&ndash;62 (2005). (English translation in Theory Probab. Math. Stat. 72, 59&ndash;68)</td> </tr><tr> <td>[158]</td> <td class="space">Kartashov, M.V.: Quantitative and qualitative limits for exponential asymptotics of hitting times for birth-and-death chains in a scheme of series. Teor. Imovirn. Mat. Stat. 89, 40&ndash;50 (2013). (English translation in Theory Probab. Math. Stat. 89, 45&ndash;56 (2014))</td> </tr><tr> <td>[159]</td> <td class="space">Kato, T.: Perturbation Theory for Linear Operators. Classics of Mathematics, 623 pp. Springer, Berlin (2013). (2nd edition of Perturbation Theory for Linear Operators, xix+592 pp. Springer, New York)</td> </tr><tr> <td>[160]</td> <td class="space">Keilson, J.: A limit theorem for passage times in ergodic regenerative processes. Ann. Math. Stat. 37, 866&ndash;870 (1966) &middot; <a href="/0143.19101" class="nowrap">Zbl 0143.19101</a>&nbsp;&middot; <a href="https://doi.org/10.1214/aoms/1177699368" class="nowrap">doi:10.1214/aoms/1177699368</a></td> </tr><tr> <td>[161]</td> <td class="space">Keilson, J.: Markov Chain Models &ndash; Rarity and Exponentiality. Applied Mathematical Sciences, vol. 28, xiii+184 pp. Springer, New York (1979) &middot; <a href="/0411.60068" class="nowrap">Zbl 0411.60068</a></td> </tr><tr> <td>[162]</td> <td class="space">Kemeny, J.G., Snell, J.L.: Finite Markov Chains. The University Series in Undergraduate Mathematics, viii+210 pp. D. Van Nostrand, Princeton, NJ (1960) &middot; <a href="/0089.13704" class="nowrap">Zbl 0089.13704</a></td> </tr><tr> <td>[163]</td> <td class="space">Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics. Applied Mathematical Sciences, vol. 34, x+558 pp. Springer, New York (1981) &middot; <a href="/0456.34001" class="nowrap">Zbl 0456.34001</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-1-4757-4213-8" class="nowrap">doi:10.1007/978-1-4757-4213-8</a></td> </tr><tr> <td>[164]</td> <td class="space">Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Applied Mathematical Sciences, vol. 114, viii+632 pp. Springer, New York (1996) &middot; <a href="/0846.34001" class="nowrap">Zbl 0846.34001</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-1-4612-3968-0" class="nowrap">doi:10.1007/978-1-4612-3968-0</a></td> </tr><tr> <td>[165]</td> <td class="space">Khasminskii, R.Z., Yin, G., Zhang, Q.: Singularly perturbed Markov chains: quasi-stationary distribution and asymptotic expansion. In: Proceedings of Dynamic Systems and Applications, vol. 2, pp. 301&ndash;308. Atlanta, GA, 1995. Dynamic, Atlanta, GA (1996) &middot; <a href="/0867.34044" class="nowrap">Zbl 0867.34044</a></td> </tr><tr> <td>[166]</td> <td class="space">Khasminskii, R.Z., Yin, G., Zhang, Q.: Asymptotic expansions of singularly perturbed systems involving rapidly fluctuating Markov chains. SIAM J. Appl. Math. 56(1), 277&ndash;293 (1996) &middot; <a href="/0849.34047" class="nowrap">Zbl 0849.34047</a>&nbsp;&middot; <a href="https://doi.org/10.1137/S0036139993259933" class="nowrap">doi:10.1137/S0036139993259933</a></td> </tr><tr> <td>[167]</td> <td class="space">Kijima, M.: Markov Processes for Stochastic Modelling. Stochastic Modeling Series, x+341 pp. Chapman &amp; Hall, London (1997) &middot; <a href="/0866.60056" class="nowrap">Zbl 0866.60056</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-1-4899-3132-0" class="nowrap">doi:10.1007/978-1-4899-3132-0</a></td> </tr><tr> <td>[168]</td> <td class="space">Kim, D.S., Smith, R.L.: An exact aggregation/disaggregation algorithm for large scale Markov chains. Nav. Res. Logist. 42(7), 1115&ndash;1128 (1995) &middot; <a href="/0834.60100" class="nowrap">Zbl 0834.60100</a>&nbsp;&middot; <a href="https://doi.org/10.1002/1520-6750(199510)42:7&lt;1115::AID-NAV3220420710&gt;3.0.CO;2-W" class="nowrap">doi:10.1002/1520-6750(199510)42:7&lt;1115::AID-NAV3220420710&gt;3.0.CO;2-W</a></td> </tr><tr> <td>[169]</td> <td class="space">Kingman, J.F.: The exponential decay of Markovian transition probabilities. Proc. Lond. Math. Soc. 13, 337&ndash;358 (1963) &middot; <a href="/0154.43003" class="nowrap">Zbl 0154.43003</a>&nbsp;&middot; <a href="https://doi.org/10.1112/plms/s3-13.1.337" class="nowrap">doi:10.1112/plms/s3-13.1.337</a></td> </tr><tr> <td>[170]</td> <td class="space">Kokotović, P.V., Phillips, R.G., Javid, S.H.: Singular perturbation modeling of Markov processes. In: Bensoussan, A., Lions, J.L. (eds.) Analysis and optimization of systems: Proceedings of the Fourth International Conference on Analysis and Optimization. Lecture Notes in Control and Information Science, vol. 28, pp. 3&ndash;15. Springer, Berlin (1980)&nbsp;&middot; <a href="https://doi.org/10.1007/BFb0004030" class="nowrap">doi:10.1007/BFb0004030</a></td> </tr><tr> <td>[171]</td> <td class="space">Konstantinov, M. Gu, D.W., Mehrmann, V., Petkov, P.: Perturbation Theory for Matrix Equations. Studies in Computational Mathematics, vol. 9, xii+429 pp. North-Holland, Amsterdam (2003) &middot; <a href="/1025.15017" class="nowrap">Zbl 1025.15017</a></td> </tr><tr> <td>[172]</td> <td class="space">Konstantinov, M.M., Petkov, P.H.: Perturbation methods in linear algebra and control. Appl. Comput. Math. 7(2), 141&ndash;161 (2008) &middot; <a href="/1209.15020" class="nowrap">Zbl 1209.15020</a></td> </tr><tr> <td>[173]</td> <td class="space">Kontoyiannis, I., Meyn, S.P.: Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Probab. 13(1), 304&ndash;362 (2003) &middot; <a href="/1016.60066" class="nowrap">Zbl 1016.60066</a>&nbsp;&middot; <a href="https://doi.org/10.1214/aoap/1042765670" class="nowrap">doi:10.1214/aoap/1042765670</a></td> </tr><tr> <td>[174]</td> <td class="space">Korolyuk, D.V.: Limit theorems for hitting time type functionals defined on processes with semi-Markov switchings. Candidate of Science Dissertation, Kiev State University (1983)</td> </tr><tr> <td>[175]</td> <td class="space">Korolyuk, D.V., Silvestrov D.S.: Entry times into asymptotically receding domains for ergodic Markov chains. Teor. Veroyatn. Primen. 28, 410&ndash;420 (1983). (English translation in Theory Probab. Appl. 28, 432&ndash;442)</td> </tr><tr> <td>[176]</td> <td class="space">Korolyuk, D.V., Silvestrov D.S.: Entry times into asymptotically receding regions for processes with semi-Markov switchings. Teor. Veroyatn. Primen. 29, 539&ndash;544 (1984). (English translation in Theory Probab. Appl. 29, 558&ndash;563)</td> </tr><tr> <td>[177]</td> <td class="space">Korolyuk, V.S.: On asymptotical estimate for time of a semi-Markov process being in the set of states. Ukr. Mat. Zh. 21, 842&ndash;845 (1969). (English translation in Ukr. Math. J. 21, 705&ndash;710) &middot; <a href="/0185.46203" class="nowrap">Zbl 0185.46203</a></td> </tr><tr> <td>[178]</td> <td class="space">Korolyuk, V.S.: Stochastic Models of Systems, 208 pp. Naukova Dumka, Kiev (1989) &middot; <a href="/0753.60083" class="nowrap">Zbl 0753.60083</a></td> </tr><tr> <td>[179]</td> <td class="space">Korolyuk, V.S., Brodi, S.M., Turbin, A.F.: Semi-Markov processes and their application. Probability Theory. Mathematical Statistics. Theoretical Cybernetics, vol. 11, pp. 47&ndash;97. VINTI, Moscow (1974)</td> </tr><tr> <td>[180]</td> <td class="space">Korolyuk, V.S., Korolyuk, V.V.: Stochastic Models of Systems. Mathematics and its Applications, vol. 469, xii+185 pp. Kluwer, Dordrecht (1999) &middot; <a href="/0960.60004" class="nowrap">Zbl 0960.60004</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-94-011-4625-8" class="nowrap">doi:10.1007/978-94-011-4625-8</a></td> </tr><tr> <td>[181]</td> <td class="space">Korolyuk, V.S., Limnios, N.: Diffusion approximation of integral functionals in merging and averaging scheme. Teor. \[ \check{\mathrm I}{\mathrm movirn} \] I movirn . Mat. Stat. 59, 99&ndash;105 (1998). (English translation in Theory Probab. Math. Stat. 59, 101&ndash;107) &middot; <a href="/0958.60038" class="nowrap">Zbl 0958.60038</a></td> </tr><tr> <td>[182]</td> <td class="space">Korolyuk, V.S., Limnios, N.: Diffusion approximation for integral functionals in the double merging and averaging scheme. Teor. \[ \check{\mathrm I}{\mathrm movirn} \] I movirn . Mat. Stat. 60, 77&ndash;84 (1999). (English translation in Theory Probab. Math. Stat. 60, 87&ndash;94) &middot; <a href="/0955.60041" class="nowrap">Zbl 0955.60041</a></td> </tr><tr> <td>[183]</td> <td class="space">Korolyuk, V.S., Limnios, N.: Evolutionary systems in an asymptotic split phase space. In: Limnios, N., Nikulin, M. (eds.) Recent Advances in Reliability Theory: Methodology, Practice and Inference, pp. 145&ndash;161. Birkhäuser, Boston (2000) &middot; <a href="/0965.60086" class="nowrap">Zbl 0965.60086</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-1-4612-1384-0_10" class="nowrap">doi:10.1007/978-1-4612-1384-0_10</a></td> </tr><tr> <td>[184]</td> <td class="space">Korolyuk, V.S., Limnios, N.: Markov additive processes in a phase merging scheme. In: Korolyuk, V., Prokhorov, Yu., Khokhlov, V., Klesov, O. (eds.) Proceedings of the Conference Dedicated to the 90th Anniversary of Boris Vladimirovich Gnedenko, Kiev (2002). (Theory Stoch. Process., 8(3&ndash;4), 213&ndash;225)</td> </tr><tr> <td>[185]</td> <td class="space">Korolyuk, V.S., Limnios, N.: Average and diffusion approximation of stochastic evolutionary systems in an asymptotic split state space. Ann. Appl. Probab. 14, 489&ndash;516 (2004) &middot; <a href="/1041.60061" class="nowrap">Zbl 1041.60061</a>&nbsp;&middot; <a href="https://doi.org/10.1214/aoap/1075828059" class="nowrap">doi:10.1214/aoap/1075828059</a></td> </tr><tr> <td>[186]</td> <td class="space">Korolyuk, V.S., Limnios, N.: Diffusion approximation of evolutionary systems with equilibrium in asymptotic split phase space. Teor. \[ \check{\mathrm I}{\mathrm movirn} \] I movirn . Mat. Stat. 70, 63&ndash;73 (2004). (English translation in Theory Probab. Math. Stat. 70, 71&ndash;82)</td> </tr><tr> <td>[187]</td> <td class="space">Koroliuk, V.S., Limnios, N.: Stochastic Systems in Merging Phase Space, xv+331 pp. World Scientific, Singapore (2005) &middot; <a href="/1101.60003" class="nowrap">Zbl 1101.60003</a></td> </tr><tr> <td>[188]</td> <td class="space">Koroliuk, V.S., Limnios, N.: Reliability of semi-Markov systems with asymptotic merging phase space. In: Rykov, V.V., Balakrishnan, N., Nikulin, M.S. (eds.) Mathematical and Statistical Models and Methods in Reliability, pp. 3&ndash;18. Birkhäuser, Boston (2010)&nbsp;&middot; <a href="https://doi.org/10.1007/978-0-8176-4971-5_1" class="nowrap">doi:10.1007/978-0-8176-4971-5_1</a></td> </tr><tr> <td>[189]</td> <td class="space">Korolyuk, V.S., Penev, I.P., Turbin, A.F.: The asymptotic behavior of the distribution of the absorption time of a Markov chain. Kibernetika (2), 20&ndash;22 (1972) &middot; <a href="/0235.60062" class="nowrap">Zbl 0235.60062</a></td> </tr><tr> <td>[190]</td> <td class="space">Korolyuk, V.S., Penev, I.P., Turbin, A.F.: Asymptotic expansion for the distribution of the absorption time of a weakly inhomogeneous Markov chain. In: Korolyuk, V.S. (ed.) Analytic Methods of Investigation in Probability Theory, pp. 97&ndash;105. Akad. Nauk Ukr. SSR, Inst. Mat., Kiev (1981) &middot; <a href="/0478.60079" class="nowrap">Zbl 0478.60079</a></td> </tr><tr> <td>[191]</td> <td class="space">Korolyuk, V., Swishchuk, A.: Semi-Markov Random Evolutions, 254 pp. Naukova Dumka, Kiev (1992). (English revised edition of Semi-Markov Random Evolutions. Mathematics and its Applications, vol. 308, x+310 pp. Kluwer, Dordrecht, 1995)</td> </tr><tr> <td>[192]</td> <td class="space">Korolyuk, V.V., Tadzhiev, A.: Asymptotic behavior of Markov evolutions prior to the time of absorption. Ukr. Mat. Zh. 38, 248&ndash;251 (1986). (English translation in Ukr. Math. J. 38, 219&ndash;222) &middot; <a href="/0607.60062" class="nowrap">Zbl 0607.60062</a></td> </tr><tr> <td>[193]</td> <td class="space">Korolyuk, V.S., Turbin, A.F.: On the asymptotic behaviour of the occupation time of a semi-Markov process in a reducible subset of states. Teor. Veroyatn. Mat. Stat. 2, 133&ndash;143 (1970). (English translation in Theory Probab. Math. Stat. 2, 133&ndash;143)</td> </tr><tr> <td>[194]</td> <td class="space">Korolyuk, V.S., Turbin, A.F.: A certain method of proving limit theorems for certain functionals of semi-Markov processes. Ukr. Mat. Zh. 24, 234&ndash;240 (1972) &middot; <a href="/0246.60063" class="nowrap">Zbl 0246.60063</a></td> </tr><tr> <td>[195]</td> <td class="space">Korolyuk, V.S., Turbin, A.F.: Semi-Markov Processes and its Applications, 184 pp. Naukova Dumka, Kiev (1976)</td> </tr><tr> <td>[196]</td> <td class="space">Korolyuk, V.S., Turbin, A.F.: Mathematical Foundations of the State Lumping of Large Systems, 218 pp.. Naukova Dumka, Kiev (1978). (English edition: Mathematical Foundations of the State Lumping of Large Systems. Mathematics and its Applications, vol. 264, x+278 pp. Kluwer, Dordrecht, 1993) &middot; <a href="/0411.60003" class="nowrap">Zbl 0411.60003</a></td> </tr><tr> <td>[197]</td> <td class="space">Korolyuk, V.S., Turbin, A.F., Tomusjak, A.A.: Sojourn time of a semi-Markov process in a decomposing set of states. Analytical Methods of Probability Theory, vol. 152, pp. 69&ndash;79. Naukova Dumka, Kiev (1979)</td> </tr><tr> <td>[198]</td> <td class="space">Koury, J.R., McAllister, D.F., Stewart, W.J.: Iterative methods for computing stationary distributions of nearly completely decomposable Markov chains. SIAM J. Algebr. Discret. Methods 5, 164&ndash;186 (1984) &middot; <a href="/0605.60064" class="nowrap">Zbl 0605.60064</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0605019" class="nowrap">doi:10.1137/0605019</a></td> </tr><tr> <td>[199]</td> <td class="space">Kovalenko, I.N.: An algorithm of asymptotic analysis of a sojourn time of Markov chain in a set of states. Dokl. Acad. Nauk Ukr. SSR, Ser. A 6, 422&ndash;426 (1973)</td> </tr><tr> <td>[200]</td> <td class="space">Kovalenko, I.N.: Studies in the Reliability Analysis of Complex Systems, 210 pp. Naukova Dumka, Kiev (1975)</td> </tr><tr> <td>[201]</td> <td class="space">Kovalenko, I.N.: Rare events in queuing theory - a survey. Queuing Syst. Theory Appl. 16(1&ndash;2), 1&ndash;49 (1994) &middot; <a href="/0804.90059" class="nowrap">Zbl 0804.90059</a>&nbsp;&middot; <a href="https://doi.org/10.1007/BF01158947" class="nowrap">doi:10.1007/BF01158947</a></td> </tr><tr> <td>[202]</td> <td class="space">Kovalenko, I.N., Kuznetsov, M.Ju.: Renewal process and rare events limit theorems for essentially multidimensional queueing processes. Math. Oper. Stat. Ser. Stat. 12(2), 211&ndash;224 (1981) &middot; <a href="/0477.60093" class="nowrap">Zbl 0477.60093</a></td> </tr><tr> <td>[203]</td> <td class="space">Kovalenko, I.N., Kuznetsov, N.Y., Pegg, P.A.: Mathematical Theory of Reliability of Time Dependent Systems with Practical Applications. Wiley Series in Probability and Statistics, 316 pp. Wiley, New York (1997) &middot; <a href="/0899.60074" class="nowrap">Zbl 0899.60074</a></td> </tr><tr> <td>[204]</td> <td class="space">Kupsa, M., Lacroix, Y.: Asymptotics for hitting times. Ann. Probab. 33(2), 610&ndash;619 (2005) &middot; <a href="/1065.37006" class="nowrap">Zbl 1065.37006</a>&nbsp;&middot; <a href="https://doi.org/10.1214/009117904000000883" class="nowrap">doi:10.1214/009117904000000883</a></td> </tr><tr> <td>[205]</td> <td class="space">Langville, A.N., Meyer, C.D.: Updating Markov chains with an eye on Google&rsquo;s PageRank. SIAM J. Matrix Anal. Appl. 27(4), 968&ndash;987 (2006) &middot; <a href="/1098.60073" class="nowrap">Zbl 1098.60073</a>&nbsp;&middot; <a href="https://doi.org/10.1137/040619028" class="nowrap">doi:10.1137/040619028</a></td> </tr><tr> <td>[206]</td> <td class="space">Lasserre, J.B.: A formula for singular perturbations of Markov chains. J. Appl. Probab. 31, 829&ndash;833 (1994) &middot; <a href="/0815.60060" class="nowrap">Zbl 0815.60060</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0021900200045381" class="nowrap">doi:10.1017/S0021900200045381</a></td> </tr><tr> <td>[207]</td> <td class="space">Latouche, G.: Perturbation analysis of a phase-type queue with weakly correlated arrivals. Adv. Appl. Probab. 20, 896&ndash;912 (1988) &middot; <a href="/0678.60091" class="nowrap">Zbl 0678.60091</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0001867800018437" class="nowrap">doi:10.1017/S0001867800018437</a></td> </tr><tr> <td>[208]</td> <td class="space">Latouche, G.: First passage times in nearly decomposable Markov chains. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Probability: Pure and Applied, vol. 8, pp. 401&ndash;411. Marcel Dekker, New York (1991) &middot; <a href="/0744.60077" class="nowrap">Zbl 0744.60077</a></td> </tr><tr> <td>[209]</td> <td class="space">Latouche, G., Louchard, G.: Return times in nearly decomposable stochastic processes. J. Appl. Probab. 15, 251&ndash;267 (1978) &middot; <a href="/0378.60054" class="nowrap">Zbl 0378.60054</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0021900200045551" class="nowrap">doi:10.1017/S0021900200045551</a></td> </tr><tr> <td>[210]</td> <td class="space">Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability, xiv+334 pp. SIAM, Philadelphia, PA and ASA, Alexandria, VA (1999) &middot; <a href="/0922.60001" class="nowrap">Zbl 0922.60001</a>&nbsp;&middot; <a href="https://doi.org/10.1137/1.9780898719734" class="nowrap">doi:10.1137/1.9780898719734</a></td> </tr><tr> <td>[211]</td> <td class="space">Leadbetter, M.R.: On series expansion for the renewal moments. Biometrika 50(1&ndash;2), 75&ndash;80 (1963) &middot; <a href="/0126.14202" class="nowrap">Zbl 0126.14202</a>&nbsp;&middot; <a href="https://doi.org/10.1093/biomet/50.1-2.75" class="nowrap">doi:10.1093/biomet/50.1-2.75</a></td> </tr><tr> <td>[212]</td> <td class="space">Li, R.C., Stewart, G.W.: A new relative perturbation theorem for singular subspaces. Linear Algebr. Appl. 313(1&ndash;3), 41&ndash;51 (2000) &middot; <a href="/0962.15012" class="nowrap">Zbl 0962.15012</a></td> </tr><tr> <td>[213]</td> <td class="space">Li, X., Yin, G., Yin, K., Zhang, Q.: A numerical study of singularly perturbed Markov chains: quasi-equilibrium distributions and scaled occupation measures. Dyn. Contin. Discret. Impuls. Syst. 5(1&ndash;4), 295&ndash;304 (1999) &middot; <a href="/0946.60074" class="nowrap">Zbl 0946.60074</a></td> </tr><tr> <td>[214]</td> <td class="space">Louchard, G., Latouche, G.: Random times in nearly-completely decomposable, transient Markov chains. Cahiers Centre Études Rech. Opér. 24(2&ndash;4), 321&ndash;352 (1982) &middot; <a href="/0539.60068" class="nowrap">Zbl 0539.60068</a></td> </tr><tr> <td>[215]</td> <td class="space">Louchard, G., Latouche, G.: Geometric bounds on iterative approximations for nearly completely decomposable Markov chains. J. Appl. Probab. 27(3), 521&ndash;529 (1990) &middot; <a href="/0721.60069" class="nowrap">Zbl 0721.60069</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0021900200039085" class="nowrap">doi:10.1017/S0021900200039085</a></td> </tr><tr> <td>[216]</td> <td class="space">Marek, I., Mayer, P.: Convergence analysis of an iterative aggregation/disaggregation method for computing stationary probability vectors of stochastic matrices. Numer. Linear Algebr. Appl. 5(4), 253&ndash;274 (1998) &middot; <a href="/0937.65047" class="nowrap">Zbl 0937.65047</a>&nbsp;&middot; <a href="https://doi.org/10.1002/(SICI)1099-1506(199807/08)5:4&lt;253::AID-NLA124&gt;3.0.CO;2-B" class="nowrap">doi:10.1002/(SICI)1099-1506(199807/08)5:4&lt;253::AID-NLA124&gt;3.0.CO;2-B</a></td> </tr><tr> <td>[217]</td> <td class="space">Marek, I., Mayer, P., Pultarová, I.: Convergence issues in the theory and practice of iterative aggregation/disaggregation methods. Electron. Trans. Numer. Anal. 35, 185&ndash;200 (2009) &middot; <a href="/1190.65013" class="nowrap">Zbl 1190.65013</a></td> </tr><tr> <td>[218]</td> <td class="space">Marek, I., Pultarová, I.: A note on local and global convergence analysis of iterative aggregation-disaggregation methods. Linear Algebr. Appl. 413(2&ndash;3), 327&ndash;341 (2006) &middot; <a href="/1087.65030" class="nowrap">Zbl 1087.65030</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.laa.2005.08.001" class="nowrap">doi:10.1016/j.laa.2005.08.001</a></td> </tr><tr> <td>[219]</td> <td class="space">Mattingly, R.B., Meyer, C.D.: Computing the stationary distribution vector of an irreducible Markov chain on a shared-memory multiprocessor. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Probability: Pure and Applied, vol. 8, pp. 491&ndash;510. Marcel Dekker, New York (1991) &middot; <a href="/0735.60073" class="nowrap">Zbl 0735.60073</a></td> </tr><tr> <td>[220]</td> <td class="space">McAllister, D.F., Stewart, G.W., Stewart, W.J.: On a Rayleigh-Ritz refinement technique for nearly uncoupled stochastic matrices. Linear Algebr. Appl. 60, 1&ndash;25 (1984) &middot; <a href="/0539.65018" class="nowrap">Zbl 0539.65018</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0024-3795(84)90067-3" class="nowrap">doi:10.1016/0024-3795(84)90067-3</a></td> </tr><tr> <td>[221]</td> <td class="space">Meshalkin, L.D.: Limit theorems for Markov chains with a finite number of states. Teor. Veroyatn. Primen. 3, 361&ndash;385 (1958). (English translation in Theory Probab. Appl. 3, 335&ndash;357)</td> </tr><tr> <td>[222]</td> <td class="space">Masol, V.I., Silvestrov, D.S.: Record values of the occupation time of a semi-Markov process. Visnik Kiev. Univ. Ser. Mat. Meh. 14, 81&ndash;89 (1972)</td> </tr><tr> <td>[223]</td> <td class="space">Motsa, A.I., Silvestrov, D.S.: Asymptotics of extremal statistics and functionals of additive type for Markov chains. In: Klesov, O., Korolyuk, V., Kulldorff, G., Silvestrov, D. (eds.) Proceedings of the First Ukrainian&ndash;Scandinavian Conference on Stochastic Dynamical Systems, Uzhgorod, 1995 (1996). (Theory Stoch. Proces., 2(18)(1&ndash;2), 217&ndash;224) &middot; <a href="/0893.60042" class="nowrap">Zbl 0893.60042</a></td> </tr><tr> <td>[224]</td> <td class="space">Meyer, C.D.: Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev. 31(2), 240&ndash;272 (1989) &middot; <a href="/0685.65129" class="nowrap">Zbl 0685.65129</a>&nbsp;&middot; <a href="https://doi.org/10.1137/1031050" class="nowrap">doi:10.1137/1031050</a></td> </tr><tr> <td>[225]</td> <td class="space">Meyer, C.D.: Sensitivity of the stationary distribution of a Markov chain. SIAM J. Matrix Anal. Appl. 15(3), 715&ndash;728 (1994) &middot; <a href="/0809.65143" class="nowrap">Zbl 0809.65143</a>&nbsp;&middot; <a href="https://doi.org/10.1137/S0895479892228900" class="nowrap">doi:10.1137/S0895479892228900</a></td> </tr><tr> <td>[226]</td> <td class="space">Meyer, C.D. (2000). Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA, xii+718 pp&nbsp;&middot; <a href="https://doi.org/10.1137/1.9780898719512" class="nowrap">doi:10.1137/1.9780898719512</a></td> </tr><tr> <td>[227]</td> <td class="space">Meyer, C.D.: Continuity of the Perron root. Linear Multilinear Algebr. 63(7), 1332&ndash;1336 (2015) &middot; <a href="/1316.15012" class="nowrap">Zbl 1316.15012</a>&nbsp;&middot; <a href="https://doi.org/10.1080/03081087.2014.934233" class="nowrap">doi:10.1080/03081087.2014.934233</a></td> </tr><tr> <td>[228]</td> <td class="space">Meyer Jr., C.D.: The condition of a finite Markov chain and perturbation bounds for the limiting probabilities. SIAM J. Algebr. Discret. Methods 1(3), 273&ndash;283 (1980) &middot; <a href="/0498.60071" class="nowrap">Zbl 0498.60071</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0601031" class="nowrap">doi:10.1137/0601031</a></td> </tr><tr> <td>[229]</td> <td class="space">Meyer, C.D., Stewart, G.W.: Derivatives and perturbations of eigenvectors. SIAM J. Numer. Anal. 25(3), 679&ndash;691 (1988) &middot; <a href="/0646.15005" class="nowrap">Zbl 0646.15005</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0725041" class="nowrap">doi:10.1137/0725041</a></td> </tr><tr> <td>[230]</td> <td class="space">Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability, xxviii+594 pp. Cambridge University Press, Cambridge (2009). (2nd edition of Markov Chains and Stochastic Stability. Communications and Control Engineering Series, xvi+ 548 pp. Springer, London, 1993) &middot; <a href="/1165.60001" class="nowrap">Zbl 1165.60001</a>&nbsp;&middot; <a href="https://doi.org/10.1017/CBO9780511626630" class="nowrap">doi:10.1017/CBO9780511626630</a></td> </tr><tr> <td>[231]</td> <td class="space">Mitrophanov, A.Y.: Stability and exponential convergence of continuous-time Markov chains. J. Appl. Probab. 40, 970&ndash;979 (2003) &middot; <a href="/1049.60069" class="nowrap">Zbl 1049.60069</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0021900200020234" class="nowrap">doi:10.1017/S0021900200020234</a></td> </tr><tr> <td>[232]</td> <td class="space">Mitrophanov, A.Y.: Sensitivity and convergence of uniformly ergodic Markov chains. J. Appl. Probab. 42, 1003&ndash;1014 (2005) &middot; <a href="/1092.60027" class="nowrap">Zbl 1092.60027</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0021900200001066" class="nowrap">doi:10.1017/S0021900200001066</a></td> </tr><tr> <td>[233]</td> <td class="space">Mitrophanov, A.Y.: Ergodicity coefficient and perturbation bounds for continuous-time Markov chains. Math. Inequal. Appl. 8(1), 159&ndash;168 (2005) &middot; <a href="/1071.60066" class="nowrap">Zbl 1071.60066</a></td> </tr><tr> <td>[234]</td> <td class="space">Mitrophanov, A.Y.: Stability estimates for finite homogeneous continuous-time Markov chains. Theory Probab. Appl. 50(2), 319&ndash;326 (2006) &middot; <a href="/1089.60045" class="nowrap">Zbl 1089.60045</a>&nbsp;&middot; <a href="https://doi.org/10.1137/S0040585X97981718" class="nowrap">doi:10.1137/S0040585X97981718</a></td> </tr><tr> <td>[235]</td> <td class="space">Mitrophanov, A.Y., Lomsadze, A., Borodovsky, M.: Sensitivity of hidden Markov models. J. Appl. Probab. 42, 632&ndash;642 (2005) &middot; <a href="/1138.93331" class="nowrap">Zbl 1138.93331</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S002190020000067X" class="nowrap">doi:10.1017/S002190020000067X</a></td> </tr><tr> <td>[236]</td> <td class="space">Nagaev, S.V.: Some limit theorems for stationary Markov chains. Teor. Veroyatn. Primen. 2, 389&ndash;416 (1957). (English translation in Theory Probab. Appl. 2, 378&ndash;406) &middot; <a href="/0078.31804" class="nowrap">Zbl 0078.31804</a></td> </tr><tr> <td>[237]</td> <td class="space">Nagaev, S.V.: A refinement of limit theorems for homogeneous Markov chains. Teor. Veroyatn. Primen. 6, 67&ndash;86 (1961). (English translation in Theory Probab. Appl. 6, 62&ndash;81)</td> </tr><tr> <td>[238]</td> <td class="space">Ni, Y.: Perturbed renewal equations with multivariate nonpolynomial perturbations. In: Frenkel, I., Gertsbakh, I., Khvatskin, L., Laslo, Z., Lisnianski, A. (eds.) Proceedings of the International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management, pp. 754&ndash;763. Beer Sheva, Israel (2010)</td> </tr><tr> <td>[239]</td> <td class="space">Ni, Y.: Analytical and numerical studies of perturbed renewal equations with multivariate non-polynomial perturbations. J. Appl. Quant. Methods 5(3), 498&ndash;515 (2010)</td> </tr><tr> <td>[240]</td> <td class="space">Ni, Y.: Nonlinearly perturbed renewal equations: asymptotic results and applications. Doctoral Dissertation, 106, Mälardalen University, Västerås (2011)</td> </tr><tr> <td>[241]</td> <td class="space">Ni, Y.: Nonlinearly perturbed renewal equations: the non-polynomial case. Teor. \[ \check{\mathrm I}{\mathrm movirn} \] I movirn . Mat. Stat. 84, 111&ndash;122 (2012). (Also in Theory Probab. Math. Stat. 84, 117&ndash;129) &middot; <a href="/1279.60116" class="nowrap">Zbl 1279.60116</a>&nbsp;&middot; <a href="https://doi.org/10.1090/S0094-9000-2012-00865-X" class="nowrap">doi:10.1090/S0094-9000-2012-00865-X</a></td> </tr><tr> <td>[242]</td> <td class="space">Ni, Y.: Exponential asymptotical expansions for ruin probability in a classical risk process with non-polynomial perturbations. In: Silvestrov, D., Martin-Löf, A. (eds.) Modern Problems in Insurance Mathematics. Chap. 6, EAA series, pp. 67&ndash;91. Springer, Cham (2014) &middot; <a href="/1325.60009" class="nowrap">Zbl 1325.60009</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-3-319-06653-0_6" class="nowrap">doi:10.1007/978-3-319-06653-0_6</a></td> </tr><tr> <td>[243]</td> <td class="space">Ni, Y., Silvestrov, D., Malyarenko, A.: Exponential asymptotics for nonlinearly perturbed renewal equation with non-polynomial perturbations. J. Numer. Appl. Math. 1(96), 173&ndash;197 (2008) &middot; <a href="/1164.60062" class="nowrap">Zbl 1164.60062</a></td> </tr><tr> <td>[244]</td> <td class="space">Nåsell, I.: Extinction and Quasi-Stationarity in the Stochastic Logistic SIS Model. Lecture Notes in Mathematics, Mathematical Biosciences Subseries, vol. 2022, xii+199 pp. Springer, Heidelberg (2011) &middot; <a href="/1320.92019" class="nowrap">Zbl 1320.92019</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-3-642-20530-9" class="nowrap">doi:10.1007/978-3-642-20530-9</a></td> </tr><tr> <td>[245]</td> <td class="space">Paige, C.C., Styan, G.P.H., Wachter, P.G.: Computation of the stationary distribution of a Markov chain. J. Stat. Comput. Simul. 4, 173&ndash;186 (1975) &middot; <a href="/0331.60040" class="nowrap">Zbl 0331.60040</a>&nbsp;&middot; <a href="https://doi.org/10.1080/00949657508810122" class="nowrap">doi:10.1080/00949657508810122</a></td> </tr><tr> <td>[246]</td> <td class="space">Pervozvanskiĭ, A.A., Gaitsgori, V.G.: Theory of Suboptimal Decisions Decomposition and Aggregation. Mathematics and Its Applications (Soviet Series), vol. 12, xviii+384 pp. Kluwer, Dordrecht (1988)&nbsp;&middot; <a href="https://doi.org/10.1007/978-94-009-2833-6" class="nowrap">doi:10.1007/978-94-009-2833-6</a></td> </tr><tr> <td>[247]</td> <td class="space">Pervozvanskiĭ, A.A., Smirnov, I.N.: An estimate of the steady state of a complex system with slowly varying constraints. Kibernetika (4), 45&ndash;51 (1974). (English translation in Cybernetics 10(4), 603&ndash;611)</td> </tr><tr> <td>[248]</td> <td class="space">Petersson, M.: Quasi-stationary distributions for perturbed discrete time regenerative processes. Teor. \[ \check{\mathrm I}{\mathrm movirn} \] I movirn . Mat. Stat. 89, 140&ndash;155 (2013). (Also in Theor. Probab. Math. Stat. 89, 153&ndash;168)</td> </tr><tr> <td>[249]</td> <td class="space">Petersson, M.: Asymptotics of ruin probabilities for perturbed discrete time risk processes. In: Silvestrov, D., Martin-Löf, A. (eds.) Modern Problems in Insurance Mathematics. Chapter 7, EAA series, pp. 93&ndash;110. Springer, Cham (2014) &middot; <a href="/1325.91031" class="nowrap">Zbl 1325.91031</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-3-319-06653-0_7" class="nowrap">doi:10.1007/978-3-319-06653-0_7</a></td> </tr><tr> <td>[250]</td> <td class="space">Petersson, M.: Asymptotic expansions for moment functionals of perturbed discrete time semi-Markov processes. In: Silvestrov, S., Rančić, M. (eds.) Engineering Mathematics II. Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization. Springer, Heidelberg (2016)</td> </tr><tr> <td>[251]</td> <td class="space">Petersson, M.: Asymptotic for quasi-stationary distributions of perturbed discrete time semi-Markov processes. In: Silvestrov, S., Rančić, M. (eds.) Engineering Mathematics II. Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization. Springer, Heidelberg (2016)</td> </tr><tr> <td>[252]</td> <td class="space">Petersson, M.: Perturbed discrete time stochastic models. Doctoral Dissertation, Stockholm University (2016)</td> </tr><tr> <td>[253]</td> <td class="space">Phillips, R.G., Kokotović, P.V.: A singular perturbation approach to modeling and control of Markov chains. IEEE Trans. Autom. Control 26, 1087&ndash;1094 (1981) &middot; <a href="/0475.93079" class="nowrap">Zbl 0475.93079</a>&nbsp;&middot; <a href="https://doi.org/10.1109/TAC.1981.1102780" class="nowrap">doi:10.1109/TAC.1981.1102780</a></td> </tr><tr> <td>[254]</td> <td class="space">Plotkin, J.D., Turbin, A.F.: Inversion of linear operators that are perturbed on the spectrum. Ukr. Mat. Zh. 23, 168&ndash;176 (1971)</td> </tr><tr> <td>[255]</td> <td class="space">Plotkin, J.D., Turbin, A.F.: Inversion of normally solvable linear operators that are perturbed on the spectrum. Ukr. Mat. Zh. 27(4), 477&ndash;486 (1975) &middot; <a href="/0316.47004" class="nowrap">Zbl 0316.47004</a></td> </tr><tr> <td>[256]</td> <td class="space">Poliščuk, L.I., Turbin, A.F.: Asymptotic expansions for certain characteristics of semi-Markov processes. Teor. Veroyatn. Mat. Stat. 8, 122&ndash;127 (1973). (English translation in Theory Probab. Math. Stat. 8, 121&ndash;126)</td> </tr><tr> <td>[257]</td> <td class="space">Pollett, P.K., Stewart, D.E.: An efficient procedure for computing quasi-stationary distributions of Markov chains with sparse transition structure. Adv. Appl. Probab. 26, 68&ndash;79 (1994) &middot; <a href="/0797.60060" class="nowrap">Zbl 0797.60060</a></td> </tr><tr> <td>[258]</td> <td class="space">Quadrat, J.P.: Optimal control of perturbed Markov chains: the multitime scale case. In: Ardema, M.D. (ed.) Singular Perturbations in Systems and Control. CISM Courses and Lectures, vol. 280, pp. 215&ndash;239. Springer, Vienna (1983) &middot; <a href="/0526.90091" class="nowrap">Zbl 0526.90091</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-3-7091-2638-7_9" class="nowrap">doi:10.1007/978-3-7091-2638-7_9</a></td> </tr><tr> <td>[259]</td> <td class="space">Rohlichek, J.R.: Aggregation and time scale analysis of perturbed markov systems. Ph.D. thesis, Massachusetts Inst. Tech., Cambridge, MA (1987)</td> </tr><tr> <td>[260]</td> <td class="space">Rohlicek, J.R., Willsky, A.S.: Multiple time scale decomposition of discrete time Markov chains. Syst. Control Lett. 11(4), 309&ndash;314 (1988) &middot; <a href="/0658.60102" class="nowrap">Zbl 0658.60102</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0167-6911(88)90075-8" class="nowrap">doi:10.1016/0167-6911(88)90075-8</a></td> </tr><tr> <td>[261]</td> <td class="space">Rohlicek, J.R., Willsky, A.S.: The reduction of perturbed Markov generators: an algorithm exposing the role of transient states. J. Assoc. Comput. Mach. 35(3), 675&ndash;696 (1988) &middot; <a href="/0643.60057" class="nowrap">Zbl 0643.60057</a>&nbsp;&middot; <a href="https://doi.org/10.1145/44483.44497" class="nowrap">doi:10.1145/44483.44497</a></td> </tr><tr> <td>[262]</td> <td class="space">Romanovskiĭ, V.I.: Discrete Markov Chains, 436 pp. Gostehizdat, Moscow-Leningrad (1949)</td> </tr><tr> <td>[263]</td> <td class="space">Samoĭlenko, \[ \bar{\mathrm I} \] I \={} .V.: Asymptotic expansion of Markov random evolution. Ukr. Mat. Visn. 3(3), 394&ndash;407 (2006). (English translation in Ukr. Math. Bull. 3(3), 381&ndash;394)</td> </tr><tr> <td>[264]</td> <td class="space">Samoĭlenko, \[ \bar{\mathrm I} \] I \={} .V.: Asymptotic expansion of semi-Markov random evolution. Ukr. Mat. Zh. 58, 1234&ndash;1248 (2006). (English translation in Ukr. Math. J. 58, 1396&ndash;1414) &middot; <a href="/1116.60052" class="nowrap">Zbl 1116.60052</a></td> </tr><tr> <td>[265]</td> <td class="space">Schweitzer, P.J.: Perturbation theory and finite Markov chains. J. Appl. Probab. 5, 401&ndash;413 (1968) &middot; <a href="/0196.19803" class="nowrap">Zbl 0196.19803</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0021900200110083" class="nowrap">doi:10.1017/S0021900200110083</a></td> </tr><tr> <td>[266]</td> <td class="space">Schweitzer, P.J.: Aggregation methods for large Markov chains. In: Iazeolla, G., Courtois, P.J., Hordijk, A. (eds.) Mathematical Computer Performance and Reliability, pp. 275&ndash;286. North-Holland, Amsterdam (1984)</td> </tr><tr> <td>[267]</td> <td class="space">Schweitzer, P.J.: Posterior bounds on the equilibrium distribution of a finite Markov chain. Commun. Stat. Stoch. Models 2(3), 323&ndash;338 (1986) &middot; <a href="/0607.60054" class="nowrap">Zbl 0607.60054</a>&nbsp;&middot; <a href="https://doi.org/10.1080/15326348608807040" class="nowrap">doi:10.1080/15326348608807040</a></td> </tr><tr> <td>[268]</td> <td class="space">Schweitzer, P.J.: Dual bounds on the equilibrium distribution of a finite Markov chain. J. Math. Anal. Appl. 126(2), 478&ndash;482 (1987) &middot; <a href="/0627.60064" class="nowrap">Zbl 0627.60064</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0022-247X(87)90055-2" class="nowrap">doi:10.1016/0022-247X(87)90055-2</a></td> </tr><tr> <td>[269]</td> <td class="space">Schweitzer, P.J.: A survey of aggregation-disaggregation in large Markov chains. In: Stewart, W.J. (ed.) Numerical solution of Markov chains. Probability: Pure and Applied, vol. 8, pp. 63&ndash;88. Marcel Dekker, New York (1991) &middot; <a href="/0736.60058" class="nowrap">Zbl 0736.60058</a></td> </tr><tr> <td>[270]</td> <td class="space">Schweitzer, P.J., Kindle, K.W.: Iterative aggregation for solving undiscounted semi-Markovian reward processes. Commun. Stat. Stoch. Models 2(1), 1&ndash;41 (1986) &middot; <a href="/0596.60084" class="nowrap">Zbl 0596.60084</a>&nbsp;&middot; <a href="https://doi.org/10.1080/15326348608807023" class="nowrap">doi:10.1080/15326348608807023</a></td> </tr><tr> <td>[271]</td> <td class="space">Schweitzer, P.J., Puterman, M.L., Kindle, K.W.: Iterative aggregation-disaggregation procedures for discounted semi-Markov reward processes. Oper. Res. 33(3), 589&ndash;605 (1985) &middot; <a href="/0571.90094" class="nowrap">Zbl 0571.90094</a>&nbsp;&middot; <a href="https://doi.org/10.1287/opre.33.3.589" class="nowrap">doi:10.1287/opre.33.3.589</a></td> </tr><tr> <td>[272]</td> <td class="space">Schweitzer, P., Stewart, G.W.: The Laurent expansion of pencils that are singular at the origin. Linear Algebr. Appl. 183, 237&ndash;254 (1993) &middot; <a href="/0813.15008" class="nowrap">Zbl 0813.15008</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0024-3795(93)90435-Q" class="nowrap">doi:10.1016/0024-3795(93)90435-Q</a></td> </tr><tr> <td>[273]</td> <td class="space">Seneta, E.: Finite approximations to infinite non-negative matrices. Proc. Camb. Philos. Soc. 63, 983&ndash;992 (1967) &middot; <a href="/0178.20602" class="nowrap">Zbl 0178.20602</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0305004100042006" class="nowrap">doi:10.1017/S0305004100042006</a></td> </tr><tr> <td>[274]</td> <td class="space">Seneta, E.: Finite approximations to infinite non-negative matrices. II. Refinements and applications. Proc. Camb. Philos. Soc. 64, 465&ndash;470 (1968) &middot; <a href="/0197.02802" class="nowrap">Zbl 0197.02802</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0305004100043061" class="nowrap">doi:10.1017/S0305004100043061</a></td> </tr><tr> <td>[275]</td> <td class="space">Seneta, E.: The principle of truncations in applied probability. Comment. Math. Univ. Carolinae 9, 237&ndash;242 (1968) &middot; <a href="/0243.60038" class="nowrap">Zbl 0243.60038</a></td> </tr><tr> <td>[276]</td> <td class="space">Seneta, E.: Nonnegative Matrices. An Introduction to Theory and Applications, x+214 pp. Wiley, New York (1973) &middot; <a href="/0278.15011" class="nowrap">Zbl 0278.15011</a></td> </tr><tr> <td>[277]</td> <td class="space">Seneta, E.: Iterative aggregation: convergence rate. Econ. Lett. 14(4), 357&ndash;361 (1984) &middot; <a href="/1273.65051" class="nowrap">Zbl 1273.65051</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0165-1765(84)90011-9" class="nowrap">doi:10.1016/0165-1765(84)90011-9</a></td> </tr><tr> <td>[278]</td> <td class="space">Seneta, E.: Sensitivity to perturbation of the stationary distribution: some refinements. Linear Algebr. Appl. 108, 121&ndash;126 (1988) &middot; <a href="/0657.60096" class="nowrap">Zbl 0657.60096</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0024-3795(88)90181-4" class="nowrap">doi:10.1016/0024-3795(88)90181-4</a></td> </tr><tr> <td>[279]</td> <td class="space">Seneta, E.: Perturbation of the stationary distribution measured by ergodicity coefficients. Adv. Appl. Probab. 20, 228&ndash;230 (1988) &middot; <a href="/0645.60070" class="nowrap">Zbl 0645.60070</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0001867800018012" class="nowrap">doi:10.1017/S0001867800018012</a></td> </tr><tr> <td>[280]</td> <td class="space">Seneta, E.: Sensitivity analysis, ergodicity coefficients, and rank-one updates for finite Markov chains. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Probability: Pure and Applied, vol. 8, pp. 121&ndash;129. Marcel Dekker, New York (1991) &middot; <a href="/0744.60078" class="nowrap">Zbl 0744.60078</a></td> </tr><tr> <td>[281]</td> <td class="space">Seneta, E.: Sensitivity of finite Markov chains under perturbation. Stat. Probab. Lett. 17(2), 163&ndash;168 (1993) &middot; <a href="/0777.60065" class="nowrap">Zbl 0777.60065</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0167-7152(93)90011-7" class="nowrap">doi:10.1016/0167-7152(93)90011-7</a></td> </tr><tr> <td>[282]</td> <td class="space">Seneta, E.: Nonnegative Matrices and Markov chains. Springer Series in Statistics, xvi+287 pp. Springer, New York (2006). (A revised reprint of 2nd edition of Nonnegative Matrices and Markov Chains. Springer Series in Statistics, xiii+279 pp. Springer, New York, 1981)</td> </tr><tr> <td>[283]</td> <td class="space">Serlet, L.: Hitting times for the perturbed reflecting random walk. Stoch. Process. Appl. 123(1), 110&ndash;130 (2013) &middot; <a href="/1259.82045" class="nowrap">Zbl 1259.82045</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.spa.2012.09.003" class="nowrap">doi:10.1016/j.spa.2012.09.003</a></td> </tr><tr> <td>[284]</td> <td class="space">Sheskin, T.J.: A Markov chain partitioning algorithm for computing steady state probabilities. Oper. Res. 33, 228&ndash;235 (1985) &middot; <a href="/0569.90092" class="nowrap">Zbl 0569.90092</a>&nbsp;&middot; <a href="https://doi.org/10.1287/opre.33.1.228" class="nowrap">doi:10.1287/opre.33.1.228</a></td> </tr><tr> <td>[285]</td> <td class="space">Shurenkov, V.M.: Transition phenomena of the renewal theory in asymptotical problems of theory of random processes 1. Mat. Sbornik, 112, 115&ndash;132 (1980). (English translation in Math. USSR: Sbornik, 40(1), 107&ndash;123) &middot; <a href="/0434.60090" class="nowrap">Zbl 0434.60090</a></td> </tr><tr> <td>[286]</td> <td class="space">Shurenkov, V.M.: Transition phenomena of the renewal theory in asymptotical problems of theory of random processes 2. Mat. Sbornik 112, 226&ndash;241 (1980). (English translation in Math. USSR: Sbornik, 40(2), 211&ndash;225) &middot; <a href="/0444.60071" class="nowrap">Zbl 0444.60071</a></td> </tr><tr> <td>[287]</td> <td class="space">Silvestrov, D.S.: Limit theorems for a non-recurrent walk connected with a Markov chain. Ukr. Mat. Zh. 21, 790&ndash;804 (1969). (English translation in Ukr. Math. J. 21, 657&ndash;669)</td> </tr><tr> <td>[288]</td> <td class="space">Silvestrov, D.S.: Limit theorems for semi-Markov processes and their applications. 1, 2. Teor. Veroyatn. Mat. Stat. 3, 155&ndash;172, 173&ndash;194 (1970). (English translation in Theory Probab. Math. Stat. 3, 159&ndash;176, 177&ndash;198)</td> </tr><tr> <td>[289]</td> <td class="space">Silvestrov, D.S.: Limit theorems for semi-Markov summation schemes. 1. Teor. Veroyatn. Mat. Stat. 4, 153&ndash;170 (1971). (English translation in Theory Probab. Math. Stat. 4, 141&ndash;157)</td> </tr><tr> <td>[290]</td> <td class="space">Silvestrov, D.S.: Uniform estimates of the rate of convergencxe for sums of random variables defined on a finite homogeneous Markov chain with absorption. Theor. Veroyatn. Mat. Stat. 5, 116&ndash;127 (1971). (English translation in Theory Probab. Math. Stat. 5, 123&ndash;135)</td> </tr><tr> <td>[291]</td> <td class="space">Silvestrov, D.S.: Limit distributions for sums of random variables that are defined on a countable Markov chain with absorption. Dokl. Acad. Nauk Ukr. SSR, Ser. A (4), 337&ndash;340 (1972)</td> </tr><tr> <td>[292]</td> <td class="space">Silvestrov, D.S.: Estimation of the rate of convergence for sums of random variables that are defined on a countable Markov chain with absorption. Dokl. Acad. Nauk Ukr. SSR, Ser. A 5, 436&ndash;438 (1972)</td> </tr><tr> <td>[293]</td> <td class="space">Silvestrov, D.S.: Limit Theorems for Composite Random Functions, 318 pp. Vysshaya Shkola and Izdatel&rsquo;stvo Kievskogo Universiteta, Kiev (1974)</td> </tr><tr> <td>[294]</td> <td class="space">Silvestrov, D.S.: A generalization of the renewal theorem. Dokl. Akad. Nauk Ukr. SSR, Ser. A 11, 978&ndash;982 (1976)</td> </tr><tr> <td>[295]</td> <td class="space">Silvestrov, D.S.: The renewal theorem in a series scheme. 1. Teor. Veroyatn. Mat. Stat. 18, 144&ndash;161 (1978). (English translation in Theory Probab. Math. Stat. 18, 155&ndash;172)</td> </tr><tr> <td>[296]</td> <td class="space">Silvestrov, D.S.: The renewal theorem in a series scheme 2. Teor. Veroyatn. Mat. Stat. 20, 97&ndash;116 (1979). (English translation in Theory Probab. Math. Stat. 20, 113&ndash;130)</td> </tr><tr> <td>[297]</td> <td class="space">Silvestrov, D.S.: A remark on limit distributions for times of attainment for asymptotically recurrent Markov chains. Theory Stoch. Process. 7, 106&ndash;109 (1979) &middot; <a href="/0423.60024" class="nowrap">Zbl 0423.60024</a></td> </tr><tr> <td>[298]</td> <td class="space">Silvestrov, D.S.: Semi-Markov Processes with a Discrete State Space, 272 pp. Library for the Engineer in Reliability, Sovetskoe Radio, Moscow (1980)</td> </tr><tr> <td>[299]</td> <td class="space">Silvestrov, D.S.: Mean hitting times for semi-Markov processes, and queueing networks. Elektron. Infor. Kybern. 16, 399&ndash;415 (1980) &middot; <a href="/0474.60076" class="nowrap">Zbl 0474.60076</a></td> </tr><tr> <td>[300]</td> <td class="space">Silvestrov, D.S.: Theorems of large deviations type for entry times of a sequence with mixing. Teor. Veroyatn. Mat. Stat. 24, 129&ndash;135 (1981). (English translation in Theory Probab. Math. Stat. 24, 145&ndash;151)</td> </tr><tr> <td>[301]</td> <td class="space">Silvestrov, D.S.: Exponential asymptotic for perturbed renewal equations. Teor. Imovirn. Mat. Stat. 52, 143&ndash;153 (1995). (English translation in Theory Probab. Math. Stat. 52, 153&ndash;162) &middot; <a href="/0946.60080" class="nowrap">Zbl 0946.60080</a></td> </tr><tr> <td>[302]</td> <td class="space">Silvestrov, D.S.: Recurrence relations for generalised hitting times for semi-Markov processes. Ann. Appl. Probab. 6, 617&ndash;649 (1996) &middot; <a href="/0869.60082" class="nowrap">Zbl 0869.60082</a>&nbsp;&middot; <a href="https://doi.org/10.1214/aoap/1034968147" class="nowrap">doi:10.1214/aoap/1034968147</a></td> </tr><tr> <td>[303]</td> <td class="space">Silvestrov, D.S.: Nonlinearly perturbed Markov chains and large deviations for lifetime functionals. In: Limnios, N., Nikulin, M. (eds.) Recent Advances in Reliability Theory: Methodology, Practice and Inference, pp. 135&ndash;144. Birkhäuser, Boston (2000) &middot; <a href="/0961.60072" class="nowrap">Zbl 0961.60072</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-1-4612-1384-0_9" class="nowrap">doi:10.1007/978-1-4612-1384-0_9</a></td> </tr><tr> <td>[304]</td> <td class="space">Silvestrov, D.S.: Asymptotic expansions for quasi-stationary distributions of nonlinearly perturbed semi-Markov processes. Theory Stoch. Process. 13(1&ndash;2), 267&ndash;271 (2007) &middot; <a href="/1142.60397" class="nowrap">Zbl 1142.60397</a></td> </tr><tr> <td>[305]</td> <td class="space">Silvestrov D.S.: Nonlinearly perturbed stochastic processes and systems. In: Rykov, V., Balakrishnan, N., Nikulin, M. (eds.) Mathematical and Statistical Models and Methods in Reliability, Chapter 2, pp. 19&ndash;38. Birkhäuser (2010)&nbsp;&middot; <a href="https://doi.org/10.1007/978-0-8176-4971-5_2" class="nowrap">doi:10.1007/978-0-8176-4971-5_2</a></td> </tr><tr> <td>[306]</td> <td class="space">Silvestrov, D.S.: Improved asymptotics for ruin probabilities. In: Silvestrov, D., Martin-Löf, A. (eds.) Modern Problems in Insurance Mathematics, Chap. 5. EAA series, pp. 93&ndash;110. Springer, Cham (2014) &middot; <a href="/1325.60145" class="nowrap">Zbl 1325.60145</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-3-319-06653-0_5" class="nowrap">doi:10.1007/978-3-319-06653-0_5</a></td> </tr><tr> <td>[307]</td> <td class="space">Silvestrov D.S.: American-Type Options. Stochastic Approximation Methods, Volume 1. De Gruyter Studies in Mathematics, vol. 56, x+509 pp. Walter de Gruyter, Berlin (2014) &middot; <a href="/1282.91007" class="nowrap">Zbl 1282.91007</a></td> </tr><tr> <td>[308]</td> <td class="space">Silvestrov D.S.: American-Type Options. Stochastic Approximation Methods, Volume 2. De Gruyter Studies in Mathematics, vol. 57, xi+558 pp. Walter de Gruyter, Berlin (2015) &middot; <a href="/1380.91006" class="nowrap">Zbl 1380.91006</a>&nbsp;&middot; <a href="https://doi.org/10.1515/9783110329841" class="nowrap">doi:10.1515/9783110329841</a></td> </tr><tr> <td>[309]</td> <td class="space">Silvestrov D.: Necessary and sufficient conditions for convergence of first-rare-event times for perturbed semi-Markov processes. Research Report 2016:4, Department of Mathematics, Stockholm University, 39 pp. (2016). arXiv:1603.04344</td> </tr><tr> <td>[310]</td> <td class="space">Silvestrov, D.S., Abadov, Z.A.: Asymptotic behaviour for exponential moments of sums of random variables defined on exponentially ergodic Markov chains. Dokl. Acad. Nauk Ukr. SSR, Ser. A (4), 23&ndash;25 (1984) &middot; <a href="/0535.60056" class="nowrap">Zbl 0535.60056</a></td> </tr><tr> <td>[311]</td> <td class="space">Silvestrov, D.S., Abadov, Z.A.: Uniform asymptotic expansions for exponential moments of sums of random variables defined on a Markov chain and distributions of passage times. 1. Teor. Veroyatn. Mat. Stat. 45, 108&ndash;127 (1991). (English translation in Theory Probab. Math. Stat. 45, 105&ndash;120)</td> </tr><tr> <td>[312]</td> <td class="space">Silvestrov, D.S., Abadov, Z.A.: Uniform representations of exponential moments of sums of random variables defined on a Markov chain and of distributions of passage times. 2. Teor. Veroyatn. Mat. Stat. 48, 175&ndash;183 (1993). (English translation in Theory Probab. Math. Stat. 48, 125&ndash;130)</td> </tr><tr> <td>[313]</td> <td class="space">Silvestrov, D.S., Drozdenko, M.O.: Necessary and sufficient conditions for the weak convergence of the first-rare-event times for semi-Markov processes. Dopov. Nac. Akad. Nauk Ukr., Mat. Prirodozn. Tekh Nauki (11), 25&ndash;28 (2005) &middot; <a href="/1088.60088" class="nowrap">Zbl 1088.60088</a></td> </tr><tr> <td>[314]</td> <td class="space">Silvestrov, D.S., Drozdenko, M.O.: Necessary and sufficient conditions for weak convergence of first-rare-event times for semi-Markov processes. Theory Stoch. Process., 12(28), no. 3&ndash;4, Part I: 151&ndash;186. Part II, 187&ndash;202 (2006) &middot; <a href="/1141.60054" class="nowrap">Zbl 1141.60054</a></td> </tr><tr> <td>[315]</td> <td class="space">Silvestrov, D., Manca, R.: Reward algorithms for semi-Markov processes. Research Report 2015:16, Department of Mathematics, Stockholm University, 23 pp. (2015). arXiv:1603.05693 &middot; <a href="/1387.60114" class="nowrap">Zbl 1387.60114</a></td> </tr><tr> <td>[316]</td> <td class="space">Silvestrov, D., Manca, R.: Reward algorithms for exponential moments of hitting times for semi-Markov processes. Research Report 2016:1, Department of Mathematics, Stockholm University, 23 pp. (2016)</td> </tr><tr> <td>[317]</td> <td class="space">Silvestrov, D., Manca, R., Silvestrova, E.: Computational algorithms for moments of accumulated Markov and semi-Markov rewards. Commun. Stat. Theory, Methods 43(7), 1453&ndash;1469 (2014) &middot; <a href="/1422.91772" class="nowrap">Zbl 1422.91772</a>&nbsp;&middot; <a href="https://doi.org/10.1080/03610926.2013.800882" class="nowrap">doi:10.1080/03610926.2013.800882</a></td> </tr><tr> <td>[318]</td> <td class="space">Silvestrov, D.S., Petersson, M.: Exponential expansions for perturbed discrete time renewal equations. In: Karagrigoriou, A., Lisnianski, A., Kleyner, A., Frenkel, I. (eds.) Applied Reliability Engineering and Risk Analysis. Probabilistic Models and Statistical Inference. Chapter 23, pp. 349&ndash;362. Wiley, New York (2013)&nbsp;&middot; <a href="https://doi.org/10.1002/9781118701881.ch23" class="nowrap">doi:10.1002/9781118701881.ch23</a></td> </tr><tr> <td>[319]</td> <td class="space">Silvestrov, D.S., Petersson, M., Hössjer, O.: Nonlinearly perturbed birth-death-type models. Research Report 2016:6, Department of Mathematics, Stockholm University, 63 pp. (2016). arXiv:1604.02295</td> </tr><tr> <td>[320]</td> <td class="space">Silvestrov, D., Silvestrov, S.: Asymptotic expansions for stationary distributions of perturbed semi-Markov processes. Research Report 2015:9, Department of Mathematics, Stockholm University, 75 pp. (2015). arXiv:1603.03891 &middot; <a href="/1142.60397" class="nowrap">Zbl 1142.60397</a></td> </tr><tr> <td>[321]</td> <td class="space">Silvestrov, D., Silvestrov, S.: Asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes. I, II. (2016). Part I: arXiv:1603.04734 , 30 pp., Part II: arXiv:1603.04743 , 33 pp &middot; <a href="/1361.60062" class="nowrap">Zbl 1361.60062</a></td> </tr><tr> <td>[322]</td> <td class="space">Silvestrov, D.S., Velikii, Y.A.: Necessary and sufficient conditions for convergence of attainment times. In: Zolotarev, V.M., Kalashnikov, V.V. (eds.) Stability Problems for Stochastic Models. Trudy Seminara, VNIISI, Moscow, 129&ndash;137 (1988). (English translation in J. Soviet. Math. 57, 3317&ndash;3324)</td> </tr><tr> <td>[323]</td> <td class="space">Simon, H.A., Ando, A.: Aggregation of variables in dynamic systems. Econometrica 29, 111&ndash;138 (1961) &middot; <a href="/0121.15103" class="nowrap">Zbl 0121.15103</a>&nbsp;&middot; <a href="https://doi.org/10.2307/1909285" class="nowrap">doi:10.2307/1909285</a></td> </tr><tr> <td>[324]</td> <td class="space">Sirl, D., Zhang, H., Pollett, P.: Computable bounds for the decay parameter of a birth-death process. J. Appl. Probab. 44(2), 476&ndash;491 (2007) &middot; <a href="/1203.60132" class="nowrap">Zbl 1203.60132</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0021900200117966" class="nowrap">doi:10.1017/S0021900200117966</a></td> </tr><tr> <td>[325]</td> <td class="space">Stewart, G.W.: On the continuity of the generalized inverse. SIAM J. Appl. Math. 17, 33&ndash;45 (1969) &middot; <a href="/0172.03801" class="nowrap">Zbl 0172.03801</a>&nbsp;&middot; <a href="https://doi.org/10.1137/0117004" class="nowrap">doi:10.1137/0117004</a></td> </tr><tr> <td>[326]</td> <td class="space">Stewart, G.W.: Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev. 15, 727&ndash;764 (1973) &middot; <a href="/0297.65030" class="nowrap">Zbl 0297.65030</a>&nbsp;&middot; <a href="https://doi.org/10.1137/1015095" class="nowrap">doi:10.1137/1015095</a></td> </tr><tr> <td>[327]</td> <td class="space">Stewart, G.W.: Perturbation bounds for the definite generalized eigenvalue problem. Linear Algebr. Appl. 23, 69&ndash;85 (1979) &middot; <a href="/0407.15012" class="nowrap">Zbl 0407.15012</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0024-3795(79)90094-6" class="nowrap">doi:10.1016/0024-3795(79)90094-6</a></td> </tr><tr> <td>[328]</td> <td class="space">Stewart, G.W.: Computable error bounds for aggregated Markov chains. J. Assoc. Comput. Mach. 30(2), 271&ndash;285 (1983) &middot; <a href="/0523.60062" class="nowrap">Zbl 0523.60062</a>&nbsp;&middot; <a href="https://doi.org/10.1145/322374.322377" class="nowrap">doi:10.1145/322374.322377</a></td> </tr><tr> <td>[329]</td> <td class="space">Stewart, G.W.: On the structure of nearly uncoupled Markov chains. In: Iazeolla, G., Courtois, P.J., Hordijk, A. (eds.) Mathematical Computer Performance and Reliability, pp. 287&ndash;302. North-Holland, Amsterdam (1984)</td> </tr><tr> <td>[330]</td> <td class="space">Stewart, G.W.: A second order perturbation expansion for small singular values. Linear Algebr. Appl. 56, 231&ndash;235 (1984) &middot; <a href="/0532.15008" class="nowrap">Zbl 0532.15008</a>&nbsp;&middot; <a href="https://doi.org/10.1016/0024-3795(84)90128-9" class="nowrap">doi:10.1016/0024-3795(84)90128-9</a></td> </tr><tr> <td>[331]</td> <td class="space">Stewart, G.W.: Stochastic perturbation theory. SIAM Rev. 32(4), 579&ndash;610 (1990) &middot; <a href="/0722.15002" class="nowrap">Zbl 0722.15002</a>&nbsp;&middot; <a href="https://doi.org/10.1137/1032121" class="nowrap">doi:10.1137/1032121</a></td> </tr><tr> <td>[332]</td> <td class="space">Stewart, G.W.: On the sensitivity of nearly uncoupled Markov chains. In: Stewart, W.J. (ed.) Numerical Solution of Markov Chains. Probability: Pure and Applied, vol. 8, pp. 105&ndash;119. Marcel Dekker, New York (1991) &middot; <a href="/0736.60059" class="nowrap">Zbl 0736.60059</a></td> </tr><tr> <td>[333]</td> <td class="space">Stewart, G.W.: Gaussian elimination, perturbation theory, and Markov chains. In: Meyer, C.D., Plemmons, R.J. (eds). Linear Algebra, Markov Chains, and Queueing Models. IMA Volumes in Mathematics and its Applications, vol. 48, pp. 59&ndash;69. Springer, New York (1993) &middot; <a href="/0789.65102" class="nowrap">Zbl 0789.65102</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-1-4613-8351-2_5" class="nowrap">doi:10.1007/978-1-4613-8351-2_5</a></td> </tr><tr> <td>[334]</td> <td class="space">Stewart, G.W.: On the perturbation of Markov chains with nearly transient states. Numer. Math. 65(1), 135&ndash;141 (1993) &middot; <a href="/0797.15019" class="nowrap">Zbl 0797.15019</a>&nbsp;&middot; <a href="https://doi.org/10.1007/BF01385745" class="nowrap">doi:10.1007/BF01385745</a></td> </tr><tr> <td>[335]</td> <td class="space">Stewart, G.W.: Matrix Algorithms. Vol. I. Basic Decompositions, xx+458 pp. SIAM, Philadelphia, PA (1998)&nbsp;&middot; <a href="https://doi.org/10.1137/1.9781611971408" class="nowrap">doi:10.1137/1.9781611971408</a></td> </tr><tr> <td>[336]</td> <td class="space">Stewart, G.W.: Matrix Algorithms. Vol. II. Eigensystems, xx+469 pp. SIAM, Philadelphia, PA (2001) &middot; <a href="/0984.65031" class="nowrap">Zbl 0984.65031</a>&nbsp;&middot; <a href="https://doi.org/10.1137/1.9780898718058" class="nowrap">doi:10.1137/1.9780898718058</a></td> </tr><tr> <td>[337]</td> <td class="space">Stewart, G.W.: On the powers of a matrix with perturbations. Numer. Math. 96(2), 363&ndash;376 (2003) &middot; <a href="/1089.15028" class="nowrap">Zbl 1089.15028</a>&nbsp;&middot; <a href="https://doi.org/10.1007/s00211-003-0470-0" class="nowrap">doi:10.1007/s00211-003-0470-0</a></td> </tr><tr> <td>[338]</td> <td class="space">Stewart, G.W., Stewart, W.J., McAllister, D.F.: A two-stage iteration for solving nearly completely decomposable Markov chains. In: Golub, G., Greenbaum, A., Luskin, M. (eds.) Recent Advances in Iterative Methods. IMA Volumes in Mathematics and its Applications, vol. 60, pp. 201&ndash;216. Springer, New York (1994) &middot; <a href="/0804.65148" class="nowrap">Zbl 0804.65148</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-1-4613-9353-5_12" class="nowrap">doi:10.1007/978-1-4613-9353-5_12</a></td> </tr><tr> <td>[339]</td> <td class="space">Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Computer Science and Scientific Computing, xvi+365 pp. Academic Press, Boston (1990) &middot; <a href="/0706.65013" class="nowrap">Zbl 0706.65013</a></td> </tr><tr> <td>[340]</td> <td class="space">Stewart, G.W., Zhang, G.: On a direct method for the solution of nearly uncoupled Markov chains. Numer. Math. 59(1), 1&ndash;11 (1991) &middot; <a href="/0697.65016" class="nowrap">Zbl 0697.65016</a>&nbsp;&middot; <a href="https://doi.org/10.1007/BF01385767" class="nowrap">doi:10.1007/BF01385767</a></td> </tr><tr> <td>[341]</td> <td class="space">Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains, xx+539 pp. Princeton University Press, Princeton, NJ (1994)</td> </tr><tr> <td>[342]</td> <td class="space">Sumita, U., Reiders, M.: A new algorithm for computing the ergodic probability vector for large Markov chains: Replacement process approach. Probab. Eng. Inf. Sci. 4, 89&ndash;116 (1988) &middot; <a href="/1134.60361" class="nowrap">Zbl 1134.60361</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0269964800001479" class="nowrap">doi:10.1017/S0269964800001479</a></td> </tr><tr> <td>[343]</td> <td class="space">Torokhti, A., Howlett, P., Pearce, C.: Method of best successive approximations for nonlinear operators. J. Comput. Anal. Appl. 5(3), 299&ndash;312 (2003) &middot; <a href="/1087.41020" class="nowrap">Zbl 1087.41020</a></td> </tr><tr> <td>[344]</td> <td class="space">Turbin, A.F.: On asymptotic behavior of time of a semi-Markov process being in a reducible set of states. Linear case. Teor. Veroyatn. Mat. Stat. 4, 179&ndash;194 (1971). (English translation in Theory Probab. Math. Stat. 4, 167&ndash;182)</td> </tr><tr> <td>[345]</td> <td class="space">Turbin, A.F.: An application of the theory of perturbations of linear operators to the solution of certain problems that are connected with Markov chains and semi-Markov processes. Teor. Veroyatn. Mat. Stat. 6, 118&ndash;128 (1972). (English translation in Theory Probab. Math. Stat. 6, 119&ndash;130)</td> </tr><tr> <td>[346]</td> <td class="space">Van Doorn, E.A., Pollett, P.K.: Quasi-stationary distributions for discrete-state models. Eur. J. Oper. Res. 230, 1&ndash;14 (2013) &middot; <a href="/1317.60093" class="nowrap">Zbl 1317.60093</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.ejor.2013.01.032" class="nowrap">doi:10.1016/j.ejor.2013.01.032</a></td> </tr><tr> <td>[347]</td> <td class="space">Vantilborgh, H.: Aggregation with an error of O( \[ \varepsilon ^2 \] {\(\epsilon\)} 2 ). J. Assoc. Comput. Mach. 32(1), 162&ndash;190 (1985) &middot; <a href="/0628.65146" class="nowrap">Zbl 0628.65146</a>&nbsp;&middot; <a href="https://doi.org/10.1145/2455.214107" class="nowrap">doi:10.1145/2455.214107</a></td> </tr><tr> <td>[348]</td> <td class="space">Verhulst, F.: Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics. Texts in Applied Mathematics, vol. 50, xvi+324 pp. Springer, New York (2005) &middot; <a href="/1148.35006" class="nowrap">Zbl 1148.35006</a></td> </tr><tr> <td>[349]</td> <td class="space">Vishik, M.I., Lyusternik, L.A.: The solution of some perturbation problems in the case of matrices and self-adjoint and non-self-adjoint differential equations. Uspehi Mat. Nauk 15, 3&ndash;80 (1960)</td> </tr><tr> <td>[350]</td> <td class="space">Wentzell, A.D.: Asymptotic expansions in limit theorems for stochastic processes I. Probab. Theory Relat. Fields 106(3), 331&ndash;350 (1996) &middot; <a href="/0858.60035" class="nowrap">Zbl 0858.60035</a>&nbsp;&middot; <a href="https://doi.org/10.1007/s004400050067" class="nowrap">doi:10.1007/s004400050067</a></td> </tr><tr> <td>[351]</td> <td class="space">Wentzell, A.D.: Asymptotic expansions in limit theorems for stochastic processes II. Probab. Theory Relat. Fields 113(2), 255&ndash;271 (1999) &middot; <a href="/0992.60040" class="nowrap">Zbl 0992.60040</a>&nbsp;&middot; <a href="https://doi.org/10.1007/s004400050207" class="nowrap">doi:10.1007/s004400050207</a></td> </tr><tr> <td>[352]</td> <td class="space">Wentzell, A.D., Freidlin, M.I. (1979). Fluctuations in Dynamical Systems Subject to Small Random Perturbations. Probability Theory and Mathematical Statistics, Nauka, Moscow, 424 pp. (English edition: Random Perturbations of Dynamical Systems. Fundamental Principles of Mathematical Sciences, 260, Springer, New York (1998, 2012), xxviii+458 pp)</td> </tr><tr> <td>[353]</td> <td class="space">Wilkinson, J.H.: Error analysis of direct method of matrix inversion. J. Assoc. Comput. Mach. 8, 281&ndash;330 (1961) &middot; <a href="/0109.09005" class="nowrap">Zbl 0109.09005</a>&nbsp;&middot; <a href="https://doi.org/10.1145/321075.321076" class="nowrap">doi:10.1145/321075.321076</a></td> </tr><tr> <td>[354]</td> <td class="space">Yin, G.G., Zhang, Q.: Continuous-time Markov Chains and Applications. A Singular Perturbation Approach. Applications of Mathematics, vol. 37, ivx+349 pp. Springer, New York (1998) &middot; <a href="/0896.60039" class="nowrap">Zbl 0896.60039</a></td> </tr><tr> <td>[355]</td> <td class="space">Yin, G., Zhang, Q.: Discrete-time singularly perturbed Markov chains. In: Yao, D.D., Zhang, H., Zhou, X.Y. (eds.) Stochastic Modeling and Optimization, pp. 1&ndash;42. Springer, New York (2003) &middot; <a href="/1031.60067" class="nowrap">Zbl 1031.60067</a>&nbsp;&middot; <a href="https://doi.org/10.1007/978-0-387-21757-4_1" class="nowrap">doi:10.1007/978-0-387-21757-4_1</a></td> </tr><tr> <td>[356]</td> <td class="space">Yin, G.G., Zhang, Q.: Discrete-time Markov chains. Two-time-scale methods and applications. Stochastic Modelling and Applied Probability, xix+348 pp. Springer, New York (2005)</td> </tr><tr> <td>[357]</td> <td class="space">Yin, G.G., Zhang, Q.: Continuous-Time Markov Chains and Applications. A Two-Time-Scale Approach. Stochastic Modelling and Applied Probability, vol. 37, xxii+427 pp. Springer, New York (2013). (2nd revised edition of Continuous-Time Markov Chains and Applications. A Singular Perturbation Approach. Applications of Mathematics, vol. 37, xvi+349 pp. Springer, New York, 1998)</td> </tr><tr> <td>[358]</td> <td class="space">Yin, G., Zhang, Q., Badowski, G.: Discrete-time singularly perturbed Markov chains: aggregation, occupation measures, and switching diffusion limit. Adv. Appl. Probab. 35(2), 449&ndash;476 (2003) &middot; <a href="/1048.60058" class="nowrap">Zbl 1048.60058</a>&nbsp;&middot; <a href="https://doi.org/10.1017/S0001867800012337" class="nowrap">doi:10.1017/S0001867800012337</a></td> </tr><tr> <td>[359]</td> <td class="space">Yin, G., Zhang, Q., Yang, H., Yin, K.: Discrete-time dynamic systems arising from singularly perturbed Markov chains. In: Proceedings of the Third World Congress of Nonlinear Analysts, Part 7, Catania, 2000 (2001). (Nonlinear Anal., 47(7), 4763&ndash;4774) &middot; <a href="/1042.60523" class="nowrap">Zbl 1042.60523</a>&nbsp;&middot; <a href="https://doi.org/10.1016/S0362-546X(01)00588-0" class="nowrap">doi:10.1016/S0362-546X(01)00588-0</a></td> </tr><tr> <td>[360]</td> <td class="space">Zakusilo, O.K.: Thinning semi-Markov processes. Teor. Veroyatn. Mat. Stat. 6, 54&ndash;59 (1972). (English translation in Theory Probab. Math. Stat. 6, 53&ndash;58)</td> </tr><tr> <td>[361]</td> <td class="space">Zakusilo, O.K.: Necessary conditions for convergence of semi-Markov processes that thin. Teor. Veroyatn. Mat. Stat. 7, 65&ndash;69 (1972). (English translation in Theory Probab. Math. Stat. 7, 63&ndash;66)</td> </tr><tr> <td>[362]</td> <td class="space">Zhang, Q., Yin, G.: Exponential bounds for discrete-time singularly perturbed Markov chains. J. Math. Anal. Appl. 293(2), 645&ndash;662 (2004) &middot; <a href="/1049.60065" class="nowrap">Zbl 1049.60065</a>&nbsp;&middot; <a href="https://doi.org/10.1016/j.jmaa.2004.01.025" class="nowrap">doi:10.1016/j.jmaa.2004.01.025</a></td> </tr></table> <div class="reference_disclaimer"> This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH&nbsp;Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching. </div> </div></article> </div></div> </div> </div> <div class="clearfix"></div> </div> </div> <div id="foot"><div class="copyright"> &copy; 2025 <a target="fiz" href="https://www.fiz-karlsruhe.de/en">FIZ Karlsruhe GmbH</a> <a href="/privacy-policy/">Privacy Policy</a> <a href="/legal-notices/">Legal Notices</a> <a href="/terms-conditions/">Terms &amp; Conditions</a> <div class="info"> <ul class="nav"> <li class="mastodon"> <a href="https://mathstodon.xyz/@zbMATH" target="_blank" class="no-new-tab-icon"> <img src="/static/mastodon.png" title="zbMATH at Mathstodon (opens in new tab)" alt="Mastodon logo"> </a> </li> </ul> </div> </div> <div class="clearfix" style="height: 0px;"></div> </div> </div> <script src="https://static.zbmath.org/contrib/jquery/1.9.1/jquery.min.js"></script> <script src="https://static.zbmath.org/contrib/jquery-caret/1.5.2/jquery.caret.min.js"></script> <script src="/static/js/jquery-ui-1.10.1.custom.min.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap/v3.3.7zb1/js/bootstrap.min.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap-lightbox/v0.7.0/bootstrap-lightbox.min.js"></script> <script src="https://static.zbmath.org/contrib/retina/unknown/retina.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap-select/v1.13.14/js/bootstrap-select.min.js"></script> <script> var SCRIPT_ROOT = ""; </script> <script src="/static/scripts.js?v=20250307"></script> <script src="https://static.zbmath.org/contrib/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { preferredFont: "TeX", availableFonts: [ "STIX", "TeX" ], linebreaks: { automatic: true }, EqnChunk: (MathJax.Hub.Browser.isMobile ? 10 : 50) }, tex2jax: { processEscapes: true, ignoreClass: "tex2jax_ignore|dno" }, TeX: { Macros: { Aut: "\\operatorname{Aut}", Hom: "\\operatorname{Hom}" }, noUndefined: { attributes: { mathcolor: "#039", //"red", mathbackground: "white", //"#FFEEEE", mathsize: "90%" } } }, messageStyle: "none" }); </script> <script type="text/javascript"> $(document).ready(function() { $("#MathInput").stop(true, true).keyup(function() { $.ajax({ url: "/mwsq/", type: "POST", data: { query : $("#MathInput").val() }, dataType: "text" }) .done(function(xml) { $("#MathPreview").html(xml); $(window).resize(); }); }); var press = jQuery.Event("keyup"); press.ctrlKey = false; press.which = 40; $("#MathInput").trigger(press); }); </script> <div id="new_tab_icon" style="display: none">&nbsp;<span class="glyphicon glyphicon-new-window" aria-hidden="true"></span><span class="sr-only">(opens in new tab)</span></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10