CINXE.COM

Search results for: variational iteration method

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: variational iteration method</title> <meta name="description" content="Search results for: variational iteration method"> <meta name="keywords" content="variational iteration method"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="variational iteration method" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="variational iteration method"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19019</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: variational iteration method</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19019</span> Numerical Iteration Method to Find New Formulas for Nonlinear Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kholod%20Mohammad%20Abualnaja">Kholod Mohammad Abualnaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method" title="variational iteration method">variational iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20equations" title=" nonlinear equations"> nonlinear equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrange%20multiplier" title=" Lagrange multiplier"> Lagrange multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms "> algorithms </a> </p> <a href="https://publications.waset.org/abstracts/12184/numerical-iteration-method-to-find-new-formulas-for-nonlinear-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19018</span> Numerical Solutions of Generalized Burger-Fisher Equation by Modified Variational Iteration Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Olayiwola">M. O. Olayiwola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical solutions of the generalized Burger-Fisher are obtained using a Modified Variational Iteration Method (MVIM) with minimal computational efforts. The computed results with this technique have been compared with other results. The present method is seen to be a very reliable alternative method to some existing techniques for such nonlinear problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burger-fisher" title="burger-fisher">burger-fisher</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20variational%20iteration%20method" title=" modified variational iteration method"> modified variational iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=lagrange%20multiplier" title=" lagrange multiplier"> lagrange multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%E2%80%99s%20series" title=" Taylor’s series"> Taylor’s series</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a> </p> <a href="https://publications.waset.org/abstracts/3943/numerical-solutions-of-generalized-burger-fisher-equation-by-modified-variational-iteration-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19017</span> A New Computational Method for the Solution of Nonlinear Burgers&#039; Equation Arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olayiwola%20Moruf%20Oyedunsi">Olayiwola Moruf Oyedunsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the Modified Variational Iteration Method (MVIM) for the solution of nonlinear Burgers’ equation arising in longitudinal dispersion phenomena in fluid flow through porous media. The method is an elegant combination of Taylor’s series and the variational iteration method (VIM). Using Maple 18 for implementation, it is observed that the procedure provides rapidly convergent approximation with less computational efforts. The result shows that the concentration C(x,t) of the contaminated water decreases as distance x increases for the given time t. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20variational%20iteration%20method" title="modified variational iteration method">modified variational iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=Burger%E2%80%99s%20equation" title=" Burger’s equation"> Burger’s equation</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation" title=" partial differential equation"> partial differential equation</a> </p> <a href="https://publications.waset.org/abstracts/44343/a-new-computational-method-for-the-solution-of-nonlinear-burgers-equation-arising-in-longitudinal-dispersion-phenomena-in-fluid-flow-through-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19016</span> Further Results on Modified Variational Iteration Method for the Analytical Solution of Nonlinear Advection Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Gbolagade">A. W. Gbolagade</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Olayiwola"> M. O. Olayiwola</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20O.%20Kareem"> K. O. Kareem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, further to our result on recent paper on the solution of nonlinear advection equations, we present further results on the nonlinear nonhomogeneous advection equations using a modified variational iteration method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lagrange%20multiplier" title="lagrange multiplier">lagrange multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=non-homogeneous%20equations" title=" non-homogeneous equations"> non-homogeneous equations</a>, <a href="https://publications.waset.org/abstracts/search?q=advection%20equations" title=" advection equations"> advection equations</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics" title=" mathematics"> mathematics</a> </p> <a href="https://publications.waset.org/abstracts/3945/further-results-on-modified-variational-iteration-method-for-the-analytical-solution-of-nonlinear-advection-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19015</span> Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desmond%20Adair">Desmond Adair</a>, <a href="https://publications.waset.org/abstracts/search?q=Kairat%20Ismailov"> Kairat Ismailov</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Jaeger"> Martin Jaeger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam&rsquo;s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model&rsquo;s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20beam" title="Timoshenko beam">Timoshenko beam</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method" title=" variational iteration method"> variational iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=two-parameter%20elastic%20foundation%20model" title=" two-parameter elastic foundation model"> two-parameter elastic foundation model</a> </p> <a href="https://publications.waset.org/abstracts/95779/vibration-of-a-beam-on-an-elastic-foundation-using-the-variational-iteration-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19014</span> A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Acan">O. Acan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Keskin"> Y. Keskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduced%20differential%20transform%20method" title="reduced differential transform method">reduced differential transform method</a>, <a href="https://publications.waset.org/abstracts/search?q=adomian%20decomposition%20method" title=" adomian decomposition method"> adomian decomposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method" title=" variational iteration method"> variational iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=homotopy%20analysis%20method" title=" homotopy analysis method"> homotopy analysis method</a> </p> <a href="https://publications.waset.org/abstracts/17555/a-study-on-the-solutions-of-the-2-dimensional-and-forth-order-partial-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19013</span> Variational Evolutionary Splines for Solving a Model of Temporomandibular Disorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alberto%20Hananel">Alberto Hananel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to modelize the occlusion of a person with temporomandibular disorders as an evolutionary equation and approach its solution by the construction and characterizing of discrete variational splines. To formulate the problem, certain boundary conditions have been considered. After showing the existence and the uniqueness of the solution of such a problem, a convergence result of a discrete variational evolutionary spline is shown. A stress analysis of the occlusion of a human jaw with temporomandibular disorders by finite elements is carried out in FreeFem++ in order to prove the validity of the presented method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximation" title="approximation">approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20PDE" title=" evolutionary PDE"> evolutionary PDE</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Method" title=" Finite Element Method"> Finite Element Method</a>, <a href="https://publications.waset.org/abstracts/search?q=temporomandibular%20disorders" title=" temporomandibular disorders"> temporomandibular disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20spline" title=" variational spline"> variational spline</a> </p> <a href="https://publications.waset.org/abstracts/51438/variational-evolutionary-splines-for-solving-a-model-of-temporomandibular-disorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19012</span> Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Juntarasaid">C. Juntarasaid</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Pulngern"> T. Pulngern</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chucheepsakul"> S. Chucheepsakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A formulation of postbuckling analysis of end supported rods under self-weight has been presented by the variational method. The variational formulation involving the strain energy due to bending and the potential energy of the self-weight, are expressed in terms of the intrinsic coordinates. The variational formulation is accomplished by introducing the Lagrange multiplier technique to impose the boundary conditions. The finite element method is used to derive a system of nonlinear equations resulting from the stationary of the total potential energy and then Newton-Raphson iterative procedure is applied to solve this system of equations. The numerical results demonstrate the postbluckled configurations of end supported rods under self-weight. This finite element method based on variational formulation expressed in term of intrinsic coordinate is highly recommended for postbuckling analysis of end-supported rods under self-weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=postbuckling" title="postbuckling">postbuckling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20method" title=" variational method"> variational method</a>, <a href="https://publications.waset.org/abstracts/search?q=intrinsic%20coordinate" title=" intrinsic coordinate"> intrinsic coordinate</a> </p> <a href="https://publications.waset.org/abstracts/112297/postbuckling-analysis-of-end-supported-rods-under-self-weight-using-intrinsic-coordinate-finite-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19011</span> Multiscale Simulation of Ink Seepage into Fibrous Structures through a Mesoscopic Variational Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athmane%20Bakhta">Athmane Bakhta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Leclaire"> Sebastien Leclaire</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Vidal"> David Vidal</a>, <a href="https://publications.waset.org/abstracts/search?q=Francois%20Bertrand"> Francois Bertrand</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Cheriet"> Mohamed Cheriet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a new three-dimensional variational model proposed for the simulation of ink seepage into paper sheets at the fiber level. The model, inspired by the Hising model, takes into account a finite volume of ink and describes the system state through gravity, cohesion, and adhesion force interactions. At the mesoscopic scale, the paper substrate is modeled using a discretized fiber structure generated using a numerical deposition procedure. A modified Monte Carlo method is introduced for the simulation of the ink dynamics. Besides, a multiphase lattice Boltzmann method is suggested to fine-tune the mesoscopic variational model parameters, and it is shown that the ink seepage behaviors predicted by the proposed model can resemble those predicted by a method relying on first principles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fibrous%20media" title="fibrous media">fibrous media</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20Boltzmann" title=" lattice Boltzmann"> lattice Boltzmann</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20and%20simulation" title=" modelling and simulation"> modelling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20model" title=" variational model"> variational model</a> </p> <a href="https://publications.waset.org/abstracts/129077/multiscale-simulation-of-ink-seepage-into-fibrous-structures-through-a-mesoscopic-variational-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19010</span> On Algebraic Structure of Improved Gauss-Seide Iteration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Bamigbola">O. M. Bamigbola</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Ibrahim"> A. A. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined a priori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss-Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss-Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20algebraic%20system" title="linear algebraic system">linear algebraic system</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss-Seidel%20iteration" title=" Gauss-Seidel iteration"> Gauss-Seidel iteration</a>, <a href="https://publications.waset.org/abstracts/search?q=algebraic%20structure" title=" algebraic structure"> algebraic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence" title=" convergence"> convergence</a> </p> <a href="https://publications.waset.org/abstracts/15521/on-algebraic-structure-of-improved-gauss-seide-iteration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19009</span> A Deep Learning Based Method for Faster 3D Structural Topology Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arya%20Prakash%20Padhi">Arya Prakash Padhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupam%20Chakrabarti"> Anupam Chakrabarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajib%20Chowdhury"> Rajib Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20generative%20adversarial%20network" title="3D generative adversarial network">3D generative adversarial network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20topology%20optimization" title=" structural topology optimization"> structural topology optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20auto%20encoder" title=" variational auto encoder"> variational auto encoder</a> </p> <a href="https://publications.waset.org/abstracts/110331/a-deep-learning-based-method-for-faster-3d-structural-topology-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19008</span> Approximations of Fractional Derivatives and Its Applications in Solving Non-Linear Fractional Variational Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harendra%20Singh">Harendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Pandey"> Rajesh Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a numerical method based on operational matrix of integration and Ryleigh method for the solution of a class of non-linear fractional variational problems (NLFVPs). Chebyshev first kind polynomials are used for the construction of operational matrix. Using operational matrix and Ryleigh method the NLFVP is converted into a system of non-linear algebraic equations, and solving these equations we obtained approximate solution for NLFVPs. Convergence analysis of the proposed method is provided. Numerical experiment is done to show the applicability of the proposed numerical method. The obtained numerical results are compared with exact solution and solution obtained from Chebyshev third kind. Further the results are shown graphically for different fractional order involved in the problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20fractional%20variational%20problems" title="non-linear fractional variational problems">non-linear fractional variational problems</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh-Ritz%20method" title=" Rayleigh-Ritz method"> Rayleigh-Ritz method</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence%20analysis" title=" convergence analysis"> convergence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20analysis" title=" error analysis"> error analysis</a> </p> <a href="https://publications.waset.org/abstracts/57497/approximations-of-fractional-derivatives-and-its-applications-in-solving-non-linear-fractional-variational-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19007</span> Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanhyun%20Cho">Wanhyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonja%20Kang"> Soonja Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangkyoon%20Kim"> Sangkyoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonyoung%20Park"> Soonyoung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20action%20recognition" title="human action recognition">human action recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20HMM" title=" Bayesian HMM"> Bayesian HMM</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirichlet%20process%20mixture%20model" title=" Dirichlet process mixture model"> Dirichlet process mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian-Wishart%20emission%20model" title=" Gaussian-Wishart emission model"> Gaussian-Wishart emission model</a>, <a href="https://publications.waset.org/abstracts/search?q=Variational%20Bayesian%20inference" title=" Variational Bayesian inference"> Variational Bayesian inference</a>, <a href="https://publications.waset.org/abstracts/search?q=prior%20distribution%20and%20approximate%20posterior%20distribution" title=" prior distribution and approximate posterior distribution"> prior distribution and approximate posterior distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=KTH%20dataset" title=" KTH dataset"> KTH dataset</a> </p> <a href="https://publications.waset.org/abstracts/49713/human-action-recognition-using-variational-bayesian-hmm-with-dirichlet-process-mixture-of-gaussian-wishart-emission-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19006</span> Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiangyong%20Liu">Jiangyong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangxiang%20Xu"> Xiangxiang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bote%20Luo"> Bote Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoxue%20Luo"> Xiaoxue Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Zhu"> Jiang Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingzhi%20Yi"> Lingzhi Yi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20forecasting" title="load forecasting">load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20mode%20decomposition" title=" variational mode decomposition"> variational mode decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=improved%20sparrow%20search%20algorithm" title=" improved sparrow search algorithm"> improved sparrow search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square%20support%20vector%20machine" title=" least square support vector machine"> least square support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/170283/short-term-load-forecasting-based-on-variational-mode-decomposition-and-least-square-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19005</span> An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soyoon%20Bak">Soyoon Bak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunyoung%20Bu"> Sunyoung Bu</a>, <a href="https://publications.waset.org/abstracts/search?q=Philsu%20Kim"> Philsu Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration-free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results are in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes. Semi-Lagrangian method, iteration-free method, nonlinear advection-diffusion equation, second-order backward difference formula <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semi-Lagrangian%20method" title="Semi-Lagrangian method">Semi-Lagrangian method</a>, <a href="https://publications.waset.org/abstracts/search?q=iteration%20free%20method" title=" iteration free method"> iteration free method</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20advection-diffusion%20equation" title=" nonlinear advection-diffusion equation"> nonlinear advection-diffusion equation</a>, <a href="https://publications.waset.org/abstracts/search?q=second-order%20backward%20difference%20formula" title=" second-order backward difference formula"> second-order backward difference formula</a> </p> <a href="https://publications.waset.org/abstracts/12922/an-efficient-backward-semi-lagrangian-scheme-for-nonlinear-advection-diffusion-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19004</span> Solving Linear Systems Involved in Convex Programming Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yixun%20Shi">Yixun Shi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many interior point methods for convex programming solve an (n+m)x(n+m)linear system in each iteration. Many implementations solve this system in each iteration by considering an equivalent mXm system (4) as listed in the paper, and thus the job is reduced into solving the system (4). However, the system(4) has to be solved exactly since otherwise the error would be entirely passed onto the last m equations of the original system. Often the Cholesky factorization is computed to obtain the exact solution of (4). One Cholesky factorization is to be done in every iteration, resulting in higher computational costs. In this paper, two iterative methods for solving linear systems using vector division are combined together and embedded into interior point methods. Instead of computing one Cholesky factorization in each iteration, it requires only one Cholesky factorization in the entire procedure, thus significantly reduces the amount of computation needed for solving the problem. Based on that, a hybrid algorithm for solving convex programming problems is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convex%20programming" title="convex programming">convex programming</a>, <a href="https://publications.waset.org/abstracts/search?q=interior%20point%20method" title=" interior point method"> interior point method</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20systems" title=" linear systems"> linear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20division" title=" vector division"> vector division</a> </p> <a href="https://publications.waset.org/abstracts/39573/solving-linear-systems-involved-in-convex-programming-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19003</span> Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azeddine%20El-Hassouny">Azeddine El-Hassouny</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrashekhar%20Meshram"> Chandrashekhar Meshram</a>, <a href="https://publications.waset.org/abstracts/search?q=Geraldin%20Nanfack"> Geraldin Nanfack</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=label%20noise" title="label noise">label noise</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20latent%20variable" title=" discrete latent variable"> discrete latent variable</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20inference" title=" variational inference"> variational inference</a>, <a href="https://publications.waset.org/abstracts/search?q=MNIST" title=" MNIST"> MNIST</a>, <a href="https://publications.waset.org/abstracts/search?q=CIFAR32" title=" CIFAR32"> CIFAR32</a> </p> <a href="https://publications.waset.org/abstracts/142809/deep-learning-with-noisy-labels-learning-true-labels-as-discrete-latent-variable" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19002</span> New Variational Approach for Contrast Enhancement of Color Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanhyun%20Cho">Wanhyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongchae%20Seo"> Seongchae Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonja%20Kang"> Soonja Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we propose a variational technique for image contrast enhancement which utilizes global and local information around each pixel. The energy functional is defined by a weighted linear combination of three terms which are called on a local, a global contrast term and dispersion term. The first one is a local contrast term that can lead to improve the contrast of an input image by increasing the grey-level differences between each pixel and its neighboring to utilize contextual information around each pixel. The second one is global contrast term, which can lead to enhance a contrast of image by minimizing the difference between its empirical distribution function and a cumulative distribution function to make the probability distribution of pixel values becoming a symmetric distribution about median. The third one is a dispersion term that controls the departure between new pixel value and pixel value of original image while preserving original image characteristics as well as possible. Second, we derive the Euler-Lagrange equation for true image that can achieve the minimum of a proposed functional by using the fundamental lemma for the calculus of variations. And, we considered the procedure that this equation can be solved by using a gradient decent method, which is one of the dynamic approximation techniques. Finally, by conducting various experiments, we can demonstrate that the proposed method can enhance the contrast of colour images better than existing techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20image" title="color image">color image</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20enhancement%20technique" title=" contrast enhancement technique"> contrast enhancement technique</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20approach" title=" variational approach"> variational approach</a>, <a href="https://publications.waset.org/abstracts/search?q=Euler-Lagrang%20equation" title=" Euler-Lagrang equation"> Euler-Lagrang equation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20approximation%20method" title=" dynamic approximation method"> dynamic approximation method</a>, <a href="https://publications.waset.org/abstracts/search?q=EME%20measure" title=" EME measure"> EME measure</a> </p> <a href="https://publications.waset.org/abstracts/10574/new-variational-approach-for-contrast-enhancement-of-color-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19001</span> An Accelerated Stochastic Gradient Method with Momentum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Liu">Liang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaopeng%20Luo"> Xiaopeng Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose an accelerated stochastic gradient method with momentum. The momentum term is the weighted average of generated gradients, and the weights decay inverse proportionally with the iteration times. Stochastic gradient descent with momentum (SGDM) uses weights that decay exponentially with the iteration times to generate the momentum term. Using exponential decay weights, variants of SGDM with inexplicable and complicated formats have been proposed to achieve better performance. However, the momentum update rules of our method are as simple as that of SGDM. We provide theoretical convergence analyses, which show both the exponential decay weights and our inverse proportional decay weights can limit the variance of the parameter moving directly to a region. Experimental results show that our method works well with many practical problems and outperforms SGDM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20decay%20rate%20weight" title="exponential decay rate weight">exponential decay rate weight</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20descent" title=" gradient descent"> gradient descent</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20proportional%20decay%20rate%20weight" title=" inverse proportional decay rate weight"> inverse proportional decay rate weight</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum" title=" momentum"> momentum</a> </p> <a href="https://publications.waset.org/abstracts/133507/an-accelerated-stochastic-gradient-method-with-momentum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19000</span> Weak Convergence of Mann Iteration for a Hybrid Pair of Mappings in a Banach Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alemayehu%20Geremew%20Geremew">Alemayehu Geremew Geremew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We prove the weak convergence of Mann iteration for a hybrid pair of maps to a common fixed point of a selfmap f and a multivalued f nonexpansive mapping T in Banach space E. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20fixed%20point" title="common fixed point">common fixed point</a>, <a href="https://publications.waset.org/abstracts/search?q=Mann%20iteration" title=" Mann iteration"> Mann iteration</a>, <a href="https://publications.waset.org/abstracts/search?q=multivalued%20mapping" title=" multivalued mapping"> multivalued mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20convergence" title=" weak convergence"> weak convergence</a> </p> <a href="https://publications.waset.org/abstracts/5913/weak-convergence-of-mann-iteration-for-a-hybrid-pair-of-mappings-in-a-banach-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18999</span> Explicit Iterative Scheme for Approximating a Common Solution of Generalized Mixed Equilibrium Problem and Fixed Point Problem for a Nonexpansive Semigroup in Hilbert Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Farid">Mohammad Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we introduce and study an explicit iterative method based on hybrid extragradient method to approximate a common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. Further, we prove that the sequence generated by the proposed iterative scheme converge strongly to the common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup. This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results presented in this paper are the supplement, extension and generalization of the previously known results in this area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20mixed%20equilibrium%20problem" title="generalized mixed equilibrium problem">generalized mixed equilibrium problem</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-point%20problem" title=" fixed-point problem"> fixed-point problem</a>, <a href="https://publications.waset.org/abstracts/search?q=nonexpansive%20semigroup" title=" nonexpansive semigroup"> nonexpansive semigroup</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20inequality%20problem" title=" variational inequality problem"> variational inequality problem</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20algorithms" title=" iterative algorithms"> iterative algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20extragradient%20method" title=" hybrid extragradient method"> hybrid extragradient method</a> </p> <a href="https://publications.waset.org/abstracts/14070/explicit-iterative-scheme-for-approximating-a-common-solution-of-generalized-mixed-equilibrium-problem-and-fixed-point-problem-for-a-nonexpansive-semigroup-in-hilbert-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18998</span> Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanhyun%20Cho">Wanhyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonja%20Kang"> Soonja Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanggoon%20Kim"> Sanggoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonyoung%20Park"> Soonyoung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered an efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multinomial%20dirichlet%20classification%20model" title="multinomial dirichlet classification model">multinomial dirichlet classification model</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20process%20priors" title=" Gaussian process priors"> Gaussian process priors</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20Bayesian%20approximation" title=" variational Bayesian approximation"> variational Bayesian approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=importance%20sampling" title=" importance sampling"> importance sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=approximate%20posterior%20distribution" title=" approximate posterior distribution"> approximate posterior distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20likelihood%20evidence" title=" marginal likelihood evidence"> marginal likelihood evidence</a> </p> <a href="https://publications.waset.org/abstracts/33816/multinomial-dirichlet-gaussian-process-model-for-classification-of-multidimensional-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18997</span> Numerical Pricing of Financial Options under Irrational Exercise Times and Regime-Switching Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saber%20Rohi">Mohammad Saber Rohi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saghar%20Heidari"> Saghar Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we studied the pricing problem of American options under a regime-switching model with the possibility of a non-optimal exercise policy (early or late exercise time) which is called an irrational strategy. For this, we consider a Markovmodulated model for the dynamic of the underlying asset as an alternative model to the classical Balck-Scholes-Merton model (BSM) and an intensity-based model for the irrational strategy, to provide more realistic results for American option prices under the irrational behavior in real financial markets. Applying a partial differential equation (PDE) approach, the pricing problem of American options under regime-switching models can be formulated as coupled PDEs. To solve the resulting systems of PDEs in this model, we apply a finite element method as the numerical solving procedure to the resulting variational inequality. Under some appropriate assumptions, we establish the stability of the method and compare its accuracy to some recent works to illustrate the suitability of the proposed model and the accuracy of the applied numerical method for the pricing problem of American options under the regime-switching model with irrational behaviors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrational%20exercise%20strategy" title="irrational exercise strategy">irrational exercise strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=rationality%20parameter" title=" rationality parameter"> rationality parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=regime-switching%20model" title=" regime-switching model"> regime-switching model</a>, <a href="https://publications.waset.org/abstracts/search?q=American%20option" title=" American option"> American option</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20inequality" title=" variational inequality"> variational inequality</a> </p> <a href="https://publications.waset.org/abstracts/160801/numerical-pricing-of-financial-options-under-irrational-exercise-times-and-regime-switching-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18996</span> Research on Straightening Process Model Based on Iteration and Self-Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Lu">Hong Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiong%20Xiao"> Xiong Xiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shaft parts are widely used in machinery industry, however, bending deformation often occurred when this kind of parts is being heat treated. This parts needs to be straightened to meet the requirement of straightness. As for the pressure straightening process, a good straightening stroke algorithm is related to the precision and efficiency of straightening process. In this paper, the relationship between straightening load and deflection during the straightening process is analyzed, and the mathematical model of the straightening process has been established. By the mathematical model, the iterative method is used to solve the straightening stroke. Compared to the traditional straightening stroke algorithm, straightening stroke calculated by this method is much more precise; because it can adapt to the change of material performance parameters. Considering that the straightening method is widely used in the mass production of the shaft parts, knowledge base is used to store the data of the straightening process, and a straightening stroke algorithm based on empirical data is set up. In this paper, the straightening process control model which combine the straightening stroke method based on iteration and straightening stroke algorithm based on empirical data has been set up. Finally, an experiment has been designed to verify the straightening process control model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=straightness" title="straightness">straightness</a>, <a href="https://publications.waset.org/abstracts/search?q=straightening%20stroke" title=" straightening stroke"> straightening stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20parts" title=" shaft parts"> shaft parts</a> </p> <a href="https://publications.waset.org/abstracts/40679/research-on-straightening-process-model-based-on-iteration-and-self-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18995</span> Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taysir%20Soliman">Taysir Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20clustering" title="spectral clustering">spectral clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20iteration%20clustering" title=" power iteration clustering"> power iteration clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=deflation-based%20power%20iteration%20clustering" title=" deflation-based power iteration clustering"> deflation-based power iteration clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=Apache%20spark" title=" Apache spark"> Apache spark</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20graph" title=" large graph"> large graph</a> </p> <a href="https://publications.waset.org/abstracts/120360/power-iteration-clustering-based-on-deflation-technique-on-large-scale-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18994</span> Large Amplitude Free Vibration of a Very Sag Marine Cable</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Punjarat">O. Punjarat</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chucheepsakul"> S. Chucheepsakul</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Phanyasahachart"> T. Phanyasahachart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on a variational formulation of large amplitude free vibration behavior of a very sag marine cable. In the static equilibrium state, the marine cable has a very large sag configuration. In the motion state, the marine cable is assumed to vibrate in in-plane motion with large amplitude from the static equilibrium position. The total virtual work-energy of the marine cable at the dynamic state is formulated which involves the virtual strain energy due to axial deformation, the virtual work done by effective weight, and the inertia forces. The equations of motion for the large amplitude free vibration of marine cable are obtained by taking into account the difference between the Euler&rsquo;s equation in the static state and the displaced state. Based on the Galerkin finite element procedure, the linear and nonlinear stiffness matrices, and mass matrices of the marine cable are obtained and the eigenvalue problem is solved. The natural frequency spectrum and the large amplitude free vibration behavior of marine cable are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20deformation" title="axial deformation">axial deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20finite%20element%20method" title=" Galerkin finite element method"> Galerkin finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20amplitude" title=" large amplitude"> large amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20method" title=" variational method"> variational method</a> </p> <a href="https://publications.waset.org/abstracts/114132/large-amplitude-free-vibration-of-a-very-sag-marine-cable" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18993</span> Taguchi Method for Analyzing a Flexible Integrated Logistics Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Behmanesh">E. Behmanesh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pannek"> J. Pannek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Logistics network design is known as one of the strategic decision problems. As these kinds of problems belong to the category of NP-hard problems, traditional ways are failed to find an optimal solution in short time. In this study, we attempt to involve reverse flow through an integrated design of forward/reverse supply chain network that formulated into a mixed integer linear programming. This Integrated, multi-stages model is enriched by three different delivery path which makes the problem more complex. To tackle with such an NP-hard problem a revised random path direct encoding method based memetic algorithm is considered as the solution methodology. Each algorithm has some parameters that need to be investigate to reveal the best performance. In this regard, Taguchi method is adapted to identify the optimum operating condition of the proposed memetic algorithm to improve the results. In this study, four factors namely, population size, crossover rate, local search iteration and a number of iteration are considered. Analyzing the parameters and improvement in results are the outlook of this research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20logistics%20network" title="integrated logistics network">integrated logistics network</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20path" title=" flexible path"> flexible path</a>, <a href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm" title=" memetic algorithm"> memetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/81485/taguchi-method-for-analyzing-a-flexible-integrated-logistics-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18992</span> Mathematical Reconstruction of an Object Image Using X-Ray Interferometric Fourier Holography Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Balyan">M. K. Balyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main principles of X-ray Fourier interferometric holography method are discussed. The object image is reconstructed by the mathematical method of Fourier transformation. The three methods are presented &ndash; method of approximation, iteration method and step by step method. As an example the complex amplitude transmission coefficient reconstruction of a beryllium wire is considered. The results reconstructed by three presented methods are compared. The best results are obtained by means of step by step method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamical%20diffraction" title="dynamical diffraction">dynamical diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=hologram" title=" hologram"> hologram</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20image" title=" object image"> object image</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20holography" title=" X-ray holography"> X-ray holography</a> </p> <a href="https://publications.waset.org/abstracts/56283/mathematical-reconstruction-of-an-object-image-using-x-ray-interferometric-fourier-holography-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18991</span> Anisotropic Approach for Discontinuity Preserving in Optical Flow Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pushpendra%20Kumar">Pushpendra Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar"> Sanjeev Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Balasubramanian"> R. Balasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of optical flow from a sequence of images using variational methods is one of the most successful approach. Discontinuity between different motions is one of the challenging problem in flow estimation. In this paper, we design a new anisotropic diffusion operator, which is able to provide smooth flow over a region and efficiently preserve discontinuity in optical flow. This operator is designed on the basis of intensity differences of the pixels and isotropic operator using exponential function. The combination of these are used to control the propagation of flow. Experimental results on the different datasets verify the robustness and accuracy of the algorithm and also validate the effect of anisotropic operator in the discontinuity preserving. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20flow" title="optical flow">optical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20methods" title=" variational methods"> variational methods</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20operator" title=" anisotropic operator"> anisotropic operator</a> </p> <a href="https://publications.waset.org/abstracts/20827/anisotropic-approach-for-discontinuity-preserving-in-optical-flow-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">873</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18990</span> Specification and Unification of All Fundamental Forces Exist in Universe in the Theoretical Perspective – The Universal Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surendra%20Mund">Surendra Mund</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the beginning, the physical entity force was defined mathematically by Sir Isaac Newton in his Principia Mathematica as F ⃗=(dp ⃗)/dt in form of his second law of motion. Newton also defines his Universal law of Gravitational force exist in same outstanding book, but at the end of 20th century and beginning of 21st century, we have tried a lot to specify and unify four or five Fundamental forces or Interaction exist in universe, but we failed every time. Usually, Gravity creates problems in this unification every single time, but in my previous papers and presentations, I defined and derived Field and force equations for Gravitational like Interactions for each and every kind of central systems. This force is named as Variational Force by me, and this force is generated by variation in the scalar field density around the body. In this particular paper, at first, I am specifying which type of Interactions are Fundamental in Universal sense (or in all type of central systems or bodies predicted by my N-time Inflationary Model of Universe) and then unify them in Universal framework (defined and derived by me as Universal Mechanics in a separate paper) as well. This will also be valid in Universal dynamical sense which includes inflations and deflations of universe, central system relativity, Universal relativity, ϕ-ψ transformation and transformation of spin, physical perception principle, Generalized Fundamental Dynamical Law and many other important Generalized Principles of Generalized Quantum Mechanics (GQM) and Central System Theory (CST). So, In this article, at first, I am Generalizing some Fundamental Principles, and then Unifying Variational Forces (General form of Gravitation like Interactions) and Flow Generated Force (General form of EM like Interactions), and then Unify all Fundamental Forces by specifying Weak and Strong Interactions in form of more basic terms - Variational, Flow Generated and Transformational Interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Central%20System%20Force" title="Central System Force">Central System Force</a>, <a href="https://publications.waset.org/abstracts/search?q=Disturbance%20Force" title=" Disturbance Force"> Disturbance Force</a>, <a href="https://publications.waset.org/abstracts/search?q=Flow%20Generated%20Forces" title=" Flow Generated Forces"> Flow Generated Forces</a>, <a href="https://publications.waset.org/abstracts/search?q=Generalized%20Nuclear%20Force" title=" Generalized Nuclear Force"> Generalized Nuclear Force</a>, <a href="https://publications.waset.org/abstracts/search?q=Generalized%20Weak%20Interactions" title=" Generalized Weak Interactions"> Generalized Weak Interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=Generalized%20EM-Like%20Interactions" title=" Generalized EM-Like Interactions"> Generalized EM-Like Interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=Imbalance%20Force" title=" Imbalance Force"> Imbalance Force</a>, <a href="https://publications.waset.org/abstracts/search?q=Spin%20Generated%20Forces" title=" Spin Generated Forces"> Spin Generated Forces</a>, <a href="https://publications.waset.org/abstracts/search?q=Transformation%20Generated%20Force" title=" Transformation Generated Force"> Transformation Generated Force</a>, <a href="https://publications.waset.org/abstracts/search?q=Unified%20Force" title=" Unified Force"> Unified Force</a>, <a href="https://publications.waset.org/abstracts/search?q=Universal%20Mechanics" title=" Universal Mechanics"> Universal Mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Uniform%20And%20Non-Uniform%20Variational%20Interactions" title=" Uniform And Non-Uniform Variational Interactions"> Uniform And Non-Uniform Variational Interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=Variational%20Interactions" title=" Variational Interactions"> Variational Interactions</a> </p> <a href="https://publications.waset.org/abstracts/169765/specification-and-unification-of-all-fundamental-forces-exist-in-universe-in-the-theoretical-perspective-the-universal-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method&amp;page=633">633</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method&amp;page=634">634</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10