CINXE.COM
Dénombrement — Wikipédia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="fr" dir="ltr"> <head> <meta charset="UTF-8"> <title>Dénombrement — Wikipédia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )frwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","janvier","février","mars","avril","mai","juin","juillet","août","septembre","octobre","novembre","décembre"],"wgRequestId":"ba25ab5e-d5b7-4c2c-be2a-a5015d5a0707","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Dénombrement","wgTitle":"Dénombrement","wgCurRevisionId":215407407,"wgRevisionId":215407407,"wgArticleId":885924,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Article à référence nécessaire","Portail:Mathématiques/Articles liés","Portail:Sciences/Articles liés","Projet:Mathématiques/Articles","Numération","Combinatoire"],"wgPageViewLanguage":"fr","wgPageContentLanguage":"fr","wgPageContentModel":"wikitext","wgRelevantPageName":"Dénombrement","wgRelevantArticleId":885924,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject": "wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"fr","pageLanguageDir":"ltr","pageVariantFallbacks":"fr"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q3044523","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready", "site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ArchiveLinks","ext.gadget.Wdsearch","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions" ,"wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=fr&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=fr&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=fr&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="noindex,nofollow,max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Dénombrement — Wikipédia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//fr.m.wikipedia.org/wiki/D%C3%A9nombrement"> <link rel="alternate" type="application/x-wiki" title="Modifier" href="/w/index.php?title=D%C3%A9nombrement&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (fr)"> <link rel="EditURI" type="application/rsd+xml" href="//fr.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://fr.wikipedia.org/wiki/D%C3%A9nombrement"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr"> <link rel="alternate" type="application/atom+xml" title="Flux Atom de Wikipédia" href="/w/index.php?title=Sp%C3%A9cial:Modifications_r%C3%A9centes&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Dénombrement rootpage-Dénombrement skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Aller au contenu</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menu principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menu principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menu principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">masquer</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_principal" title="Accueil général [z]" accesskey="z"><span>Accueil</span></a></li><li id="n-thema" class="mw-list-item"><a href="/wiki/Portail:Accueil"><span>Portails thématiques</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Page_au_hasard" title="Affiche un article au hasard [x]" accesskey="x"><span>Article au hasard</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Contact"><span>Contact</span></a></li> </ul> </div> </div> <div id="p-Contribuer" class="vector-menu mw-portlet mw-portlet-Contribuer" > <div class="vector-menu-heading"> Contribuer </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-aboutwp" class="mw-list-item"><a href="/wiki/Aide:D%C3%A9buter"><span>Débuter sur Wikipédia</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Aide:Accueil" title="Accès à l’aide"><span>Aide</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Accueil_de_la_communaut%C3%A9" title="À propos du projet, ce que vous pouvez faire, où trouver les informations"><span>Communauté</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Modifications_r%C3%A9centes" title="Liste des modifications récentes sur le wiki [r]" accesskey="r"><span>Modifications récentes</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikip%C3%A9dia:Accueil_principal" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="l'encyclopédie libre" src="/static/images/mobile/copyright/wikipedia-tagline-fr.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Sp%C3%A9cial:Recherche" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Rechercher sur Wikipédia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Rechercher</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Rechercher sur Wikipédia" aria-label="Rechercher sur Wikipédia" autocapitalize="sentences" title="Rechercher sur Wikipédia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Spécial:Recherche"> </div> <button class="cdx-button cdx-search-input__end-button">Rechercher</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Outils personnels"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Modifier l'apparence de la taille, de la largeur et de la couleur de la police de la page" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Apparence" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Apparence</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_fr.wikipedia.org&uselang=fr" class=""><span>Faire un don</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&returnto=D%C3%A9nombrement&returntoquery=section%3D3%26veaction%3Dedit" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire." class=""><span>Créer un compte</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Sp%C3%A9cial:Connexion&returnto=D%C3%A9nombrement&returntoquery=section%3D3%26veaction%3Dedit" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o" class=""><span>Se connecter</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Plus d’options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Outils personnels" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Outils personnels</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menu utilisateur" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_fr.wikipedia.org&uselang=fr"><span>Faire un don</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Cr%C3%A9er_un_compte&returnto=D%C3%A9nombrement&returntoquery=section%3D3%26veaction%3Dedit" title="Nous vous encourageons à créer un compte utilisateur et vous connecter ; ce n’est cependant pas obligatoire."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Créer un compte</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Connexion&returnto=D%C3%A9nombrement&returntoquery=section%3D3%26veaction%3Dedit" title="Nous vous encourageons à vous connecter ; ce n’est cependant pas obligatoire. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Se connecter</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages pour les contributeurs déconnectés <a href="/wiki/Aide:Premiers_pas" aria-label="En savoir plus sur la contribution"><span>en savoir plus</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_contributions" title="Une liste des modifications effectuées depuis cette adresse IP [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Mes_discussions" title="La page de discussion pour les contributions depuis cette adresse IP [n]" accesskey="n"><span>Discussion</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Sommaire" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Sommaire</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">masquer</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Début</div> </a> </li> <li id="toc-Perception_immédiate" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Perception_immédiate"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Perception immédiate</span> </div> </a> <ul id="toc-Perception_immédiate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Symbolisation_par_une_même_quantité" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Symbolisation_par_une_même_quantité"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Symbolisation par une même quantité</span> </div> </a> <ul id="toc-Symbolisation_par_une_même_quantité-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Comptage" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Comptage"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Comptage</span> </div> </a> <ul id="toc-Comptage-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Calcul" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Calcul"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Calcul</span> </div> </a> <ul id="toc-Calcul-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Propriétés_fondamentales" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Propriétés_fondamentales"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Propriétés fondamentales</span> </div> </a> <ul id="toc-Propriétés_fondamentales-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dénombrement_dans_des_ensembles_finis" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Dénombrement_dans_des_ensembles_finis"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Dénombrement dans des ensembles finis</span> </div> </a> <button aria-controls="toc-Dénombrement_dans_des_ensembles_finis-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Afficher / masquer la sous-section Dénombrement dans des ensembles finis</span> </button> <ul id="toc-Dénombrement_dans_des_ensembles_finis-sublist" class="vector-toc-list"> <li id="toc-Théorèmes_fondamentaux" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Théorèmes_fondamentaux"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Théorèmes fondamentaux</span> </div> </a> <ul id="toc-Théorèmes_fondamentaux-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Propriétés" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Propriétés"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Propriétés</span> </div> </a> <ul id="toc-Propriétés-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notes_et_références" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes_et_références"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Notes et références</span> </div> </a> <ul id="toc-Notes_et_références-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voir_aussi" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Voir_aussi"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Voir aussi</span> </div> </a> <ul id="toc-Voir_aussi-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Sommaire" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Basculer la table des matières" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Basculer la table des matières</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Dénombrement</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Cet article n’existe que dans cette langue. Ajouter l’article pour d’autres langues." > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-0" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">Ajouter des langues</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> <div class="after-portlet after-portlet-lang"><span class="uls-after-portlet-link"></span><span class="wb-langlinks-add wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q3044523#sitelinks-wikipedia" title="Ajouter des liens interlangues" class="wbc-editpage">Ajouter des liens</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espaces de noms"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/D%C3%A9nombrement" title="Voir le contenu de la page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discussion:D%C3%A9nombrement" rel="discussion" title="Discussion au sujet de cette page de contenu [t]" accesskey="t"><span>Discussion</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Modifier la variante de langue" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">français</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Affichages"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/D%C3%A9nombrement"><span>Lire</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=D%C3%A9nombrement&veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=D%C3%A9nombrement&action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=D%C3%A9nombrement&action=history" title="Historique des versions de cette page [h]" accesskey="h"><span>Voir l’historique</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Outils" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Outils</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Outils</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">masquer</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Plus d’options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/D%C3%A9nombrement"><span>Lire</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=D%C3%A9nombrement&veaction=edit" title="Modifier cette page [v]" accesskey="v"><span>Modifier</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=D%C3%A9nombrement&action=edit" title="Modifier le wikicode de cette page [e]" accesskey="e"><span>Modifier le code</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=D%C3%A9nombrement&action=history"><span>Voir l’historique</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Général </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_li%C3%A9es/D%C3%A9nombrement" title="Liste des pages liées qui pointent sur celle-ci [j]" accesskey="j"><span>Pages liées</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Suivi_des_liens/D%C3%A9nombrement" rel="nofollow" title="Liste des modifications récentes des pages appelées par celle-ci [k]" accesskey="k"><span>Suivi des pages liées</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Aide:Importer_un_fichier" title="Téléverser des fichiers [u]" accesskey="u"><span>Téléverser un fichier</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Sp%C3%A9cial:Pages_sp%C3%A9ciales" title="Liste de toutes les pages spéciales [q]" accesskey="q"><span>Pages spéciales</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=D%C3%A9nombrement&oldid=215407407" title="Adresse permanente de cette version de cette page"><span>Lien permanent</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=D%C3%A9nombrement&action=info" title="Davantage d’informations sur cette page"><span>Informations sur la page</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Citer&page=D%C3%A9nombrement&id=215407407&wpFormIdentifier=titleform" title="Informations sur la manière de citer cette page"><span>Citer cette page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:UrlShortener&url=https%3A%2F%2Ffr.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DD%25C3%25A9nombrement%26section%3D3%26veaction%3Dedit"><span>Obtenir l'URL raccourcie</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:QrCode&url=https%3A%2F%2Ffr.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DD%25C3%25A9nombrement%26section%3D3%26veaction%3Dedit"><span>Télécharger le code QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimer / exporter </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:Livre&bookcmd=book_creator&referer=D%C3%A9nombrement"><span>Créer un livre</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Sp%C3%A9cial:DownloadAsPdf&page=D%C3%A9nombrement&action=show-download-screen"><span>Télécharger comme PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=D%C3%A9nombrement&printable=yes" title="Version imprimable de cette page [p]" accesskey="p"><span>Version imprimable</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Dans d’autres projets </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q3044523" title="Lien vers l’élément dans le dépôt de données connecté [g]" accesskey="g"><span>Élément Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Outils de la page"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Apparence"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Apparence</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">déplacer vers la barre latérale</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">masquer</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Un article de Wikipédia, l'encyclopédie libre.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="fr" dir="ltr"><div class="bandeau-container metadata homonymie hatnote"><div class="bandeau-cell bandeau-icone" style="display:table-cell;padding-right:0.5em"><span class="noviewer" typeof="mw:File"><a href="/wiki/Aide:Homonymie" title="Aide:Homonymie"><img alt="Page d’aide sur l’homonymie" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Confusion_colour.svg/20px-Confusion_colour.svg.png" decoding="async" width="20" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Confusion_colour.svg/30px-Confusion_colour.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Confusion_colour.svg/40px-Confusion_colour.svg.png 2x" data-file-width="260" data-file-height="200" /></a></span></div><div class="bandeau-cell" style="display:table-cell;padding-right:0.5em"> <p>Ne pas confondre avec la notion de <a href="/wiki/D%C3%A9nombrement_(d%C3%A9mographie)" class="mw-redirect" title="Dénombrement (démographie)">dénombrement</a> comme recensement de la population en France sous l'Ancien Régime. </p> </div></div> <p>En <a href="/wiki/Math%C3%A9matiques" title="Mathématiques">mathématiques</a>, le <b>dénombrement</b> est la détermination du <a href="/wiki/Nombre" title="Nombre">nombre</a> d'éléments d'un <a href="/wiki/Ensemble" title="Ensemble">ensemble</a>. Il s'obtient en général par un comptage ou par un calcul de son <a href="/wiki/Cardinal_d%27un_ensemble_fini" class="mw-redirect" title="Cardinal d'un ensemble fini">cardinal</a> à l'aide de techniques <a href="/wiki/Combinatoire" title="Combinatoire">combinatoires</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Perception_immédiate"><span id="Perception_imm.C3.A9diate"></span>Perception immédiate</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D%C3%A9nombrement&veaction=edit&section=1" title="Modifier la section : Perception immédiate" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=D%C3%A9nombrement&action=edit&section=1" title="Modifier le code source de la section : Perception immédiate"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Face à une collection d'au plus quatre objets, l'être humain, avant même l'acquisition du langage, et certains animaux<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite_crochet">[</span>1<span class="cite_crochet">]</span></a></sup> semblent avoir une notion immédiate de la quantité présentée sans énumération. Ce phénomène est appelé <a href="/wiki/Subitisation" title="Subitisation">subitisation</a><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite_crochet">[</span>2<span class="cite_crochet">]</span></a></sup>. </p><p>Il peut être étendu au-delà de quatre dans certaines configurations, comme les points sur les faces d'un <a href="/wiki/D%C3%A9" title="Dé">dé</a> <sup class="need_ref_tag" style="padding-left:2px;"><a href="/wiki/Aide:R%C3%A9f%C3%A9rence_n%C3%A9cessaire" title="Aide:Référence nécessaire"><span title="Ce passage nécessite une référence (demandé le 24 septembre 2016) ; voir l'aide.">[réf. nécessaire]</span></a></sup>. Les <a href="/wiki/Nombre_figur%C3%A9" title="Nombre figuré">nombres figurés</a> peuvent être ainsi plus facilement repérables. </p> <div class="mw-heading mw-heading2"><h2 id="Symbolisation_par_une_même_quantité"><span id="Symbolisation_par_une_m.C3.AAme_quantit.C3.A9"></span>Symbolisation par une même quantité</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D%C3%A9nombrement&veaction=edit&section=2" title="Modifier la section : Symbolisation par une même quantité" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=D%C3%A9nombrement&action=edit&section=2" title="Modifier le code source de la section : Symbolisation par une même quantité"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Les premières évaluations de quantités n'ont pas nécessairement été exprimées à l'aide d'un nombre ou d'une notation <a href="/wiki/Chiffre" title="Chiffre">chiffrée</a>. Or, de telles évaluations ont pu être utiles pour suivre l'évolution d'un troupeau, d'une production manufacturée, des récoltes ou d'une population humaine, notamment dans les corps d'armée. En l'absence de système de numération, il est possible de représenter chaque élément d'une collection, par exemple, à l'aide d'une encoche sur un morceau de bois ou un os. Un autre exemple est visible dans le film <i><a href="/wiki/Ivan_le_Terrible_(film)" title="Ivan le Terrible (film)">Ivan le Terrible</a></i> de <a href="/wiki/Sergue%C3%AF_Eisenstein" title="Sergueï Eisenstein">Sergueï Eisenstein</a>, où avant un combat, les soldats jettent chacun à leur tour une pièce dans un sac. </p> <div class="mw-heading mw-heading2"><h2 id="Comptage">Comptage</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D%C3%A9nombrement&veaction=edit&section=3" title="Modifier la section : Comptage" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=D%C3%A9nombrement&action=edit&section=3" title="Modifier le code source de la section : Comptage"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>L'évaluation d'une quantité d'objets à l'aide d'un terme particulier nécessite l'établissement d'une liste de termes qui puisse être apprise et transmise. Certains peuples <a href="/wiki/Oc%C3%A9anie" title="Océanie">océaniens</a> parcourent ainsi une vingtaine de parties du corps selon un ordre fixe (mais dépendant de la localisation du peuple)<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite_crochet">[</span>3<span class="cite_crochet">]</span></a></sup>. Chaque langue a développé un système de désignation des premiers nombres entiers, éventuellement lié à un <a href="/wiki/Syst%C3%A8me_de_num%C3%A9ration" title="Système de numération">système de numération</a> particulier. </p><p>Le dénombrement consiste alors à parcourir simultanément la <a href="/wiki/Chaine_num%C3%A9rique" class="mw-redirect" title="Chaine numérique">chaine numérique</a> et la collection d'objets de façon que chaque objet ne soit considéré qu'une seule fois. La compréhension de cette technique de dénombrement est décomposée en cinq principes<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite_crochet">[</span>4<span class="cite_crochet">]</span></a></sup> : </p> <ul><li>principe d'adéquation unique : chaque mot n'est associé qu'à un et un seul élément de la collection ;</li> <li>principe d'ordre stable : les mots-nombres sont toujours récités dans le même ordre ;</li> <li>principe du cardinal : pour désigner la taille d'une collection, il suffit d'énoncer le dernier mot-nombre utilisé ;</li> <li>principe d'abstraction : les objets peuvent être de natures différentes ;</li> <li>principe de non pertinence de l'ordre : les objets peuvent être parcourus dans n'importe quel ordre.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Calcul">Calcul</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D%C3%A9nombrement&veaction=edit&section=4" title="Modifier la section : Calcul" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=D%C3%A9nombrement&action=edit&section=4" title="Modifier le code source de la section : Calcul"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pour des grandes quantités ou pour des ensembles abstraits et en particulier pour des <a href="/wiki/Ensemble" title="Ensemble">ensembles</a> mathématiques, le dénombrement se fait à l'aide d'opérations <a href="/wiki/Arithm%C3%A9tique" title="Arithmétique">arithmétiques</a> ou de considérations <a href="/wiki/Combinatoire" title="Combinatoire">combinatoires</a>.. </p> <div class="mw-heading mw-heading2"><h2 id="Propriétés_fondamentales"><span id="Propri.C3.A9t.C3.A9s_fondamentales"></span>Propriétés fondamentales</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D%C3%A9nombrement&veaction=edit&section=5" title="Modifier la section : Propriétés fondamentales" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=D%C3%A9nombrement&action=edit&section=5" title="Modifier le code source de la section : Propriétés fondamentales"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Principe_des_tiroirs" title="Principe des tiroirs">Principe des tiroirs</a> : si l'on dispose de <i>m</i> ensemble(s) et que l'on y range <i>n</i> objet(s) avec <i>n > m</i>, alors au moins un de ces ensembles contiendra plusieurs objets.<br /><i>Exemple</i> : dans une classe de 20 élèves, si tous sont nés la même année, alors plusieurs d'entre eux sont forcément nés le même mois.</li> <li><a href="/wiki/Nombre_cardinal" title="Nombre cardinal">Cardinal</a> d'un <a href="/wiki/Produit_cart%C3%A9sien" title="Produit cartésien">produit cartésien</a> : si un arbre comporte <i>n</i> branche(s) et que celle(s)-ci comporte(nt) chacune <i>p</i> sous-branche(s), alors cet arbre comporte <i>n × p</i> sous-branche(s).<br /><i>Exemple en <a href="/wiki/Probabilit%C3%A9s_%C3%A9l%C3%A9mentaires" class="mw-redirect" title="Probabilités élémentaires">probabilités élémentaires</a></i> : supposons qu'on tire une carte au hasard dans un <a href="/wiki/Jeu_de_52_cartes" class="mw-redirect" title="Jeu de 52 cartes">jeu de 52 cartes</a>. Si l'on tente d'en deviner la couleur (trèfle, carreau, cœur ou pique), on a 1 chance sur 4 de tomber juste. Par ailleurs, si l'on tente d'en deviner la valeur (as, roi, dame, valet, <abbr class="abbr" title="et cetera">etc.</abbr>), on a 1 chance sur 13 de tomber juste. Enfin, si l'on tente d'en deviner la couleur et la valeur, on a une chance sur 52 (4 × 13) de tomber juste.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Dénombrement_dans_des_ensembles_finis"><span id="D.C3.A9nombrement_dans_des_ensembles_finis"></span>Dénombrement dans des ensembles finis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D%C3%A9nombrement&veaction=edit&section=6" title="Modifier la section : Dénombrement dans des ensembles finis" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=D%C3%A9nombrement&action=edit&section=6" title="Modifier le code source de la section : Dénombrement dans des ensembles finis"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Théorèmes_fondamentaux"><span id="Th.C3.A9or.C3.A8mes_fondamentaux"></span>Théorèmes fondamentaux</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D%C3%A9nombrement&veaction=edit&section=7" title="Modifier la section : Théorèmes fondamentaux" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=D%C3%A9nombrement&action=edit&section=7" title="Modifier le code source de la section : Théorèmes fondamentaux"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dans cette section, si <i>A</i> est un <a href="/wiki/Ensemble_fini" title="Ensemble fini">ensemble fini</a>, on note <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/324ecdd38658ebcae6d774ba0d5c2342b197f417" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.951ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (A)}"></span> (lire « <a href="/wiki/Cardinal_d%27un_ensemble_fini" class="mw-redirect" title="Cardinal d'un ensemble fini">cardinal</a> de <i>A</i> ») le nombre de ses éléments. Par exemple, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (\{e,f,g\})=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">{</mo> <mi>e</mi> <mo>,</mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (\{e,f,g\})=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03c27700d4b38f7b0665ee2c1de15ced7b8bad1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.34ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (\{e,f,g\})=3}"></span>. </p> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Théorème 1</strong><span class="theoreme-tiret"> — </span>Soit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> une partie d'un ensemble fini <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>. <br /> Alors A est elle-même finie et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/324ecdd38658ebcae6d774ba0d5c2342b197f417" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.951ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (A)}"></span> ≤ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4401585b589e3931781bd74c5a30ca14b13b1c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.984ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (E)}"></span>.<br /> Si en outre <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (A)=\mathrm {card} (E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (A)=\mathrm {card} (E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e12010206218e17b6adee11768dd4ef81590bdae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.034ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (A)=\mathrm {card} (E)}"></span>, alors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1209333a6d4ae4980f3bb4a0d1fd60004fe8c4af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.617ex; height:2.176ex;" alt="{\displaystyle A=E}"></span>. </p> </div> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Caractérisation des applications injectives</strong><span class="theoreme-tiret"> — </span>Soit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> un ensemble fini, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> un ensemble et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> une application de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>.<br />On a : </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (f(E))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (f(E))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84168df0b09e20b94d6285e5013bceefc01d21f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.072ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (f(E))}"></span> ≤ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4401585b589e3931781bd74c5a30ca14b13b1c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.984ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (E)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> est injective <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (f(E))=\mathrm {card} (E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (f(E))=\mathrm {card} (E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/248d9412e53112f2f8a65a2ac21514ecb5080040" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.154ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (f(E))=\mathrm {card} (E)}"></span></li></ol> </div> <div class="NavFrame" style="border: thin solid #aaaaaa; margin:1em 2em; padding: 0 1em; font-size:100%; text-align:justify; overflow:hidden;"> <div class="NavHead" style="background-color:transparent; color:inherit; padding:0;">Démonstration</div><div class="NavContent" style="padding-bottom:0.4em"> <p>Pour démontrer le point 1, on peut s'intéresser à l'ensemble des éléments de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> qui ont une image par <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>. Si on le note <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, alors l'application induite par <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3465496148d29e6543003de4cdbac8e9ce6beda7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.864ex; height:2.843ex;" alt="{\displaystyle f(E)}"></span> est une bijection. Comme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> est un sous-ensemble de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>, il est fini et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (f(E))=\mathrm {card} (A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (f(E))=\mathrm {card} (A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5ef3436252a8bbd8552fab05693621e45630b02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.122ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (f(E))=\mathrm {card} (A)}"></span> ≤ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4401585b589e3931781bd74c5a30ca14b13b1c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.984ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (E)}"></span>.<br /> Le point 2 vient du fait que lorsque <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> est injective, tous les éléments de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3465496148d29e6543003de4cdbac8e9ce6beda7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.864ex; height:2.843ex;" alt="{\displaystyle f(E)}"></span> ont un antécédent unique, donc l'application induite de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3465496148d29e6543003de4cdbac8e9ce6beda7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.864ex; height:2.843ex;" alt="{\displaystyle f(E)}"></span> est une bijection. Donc <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (f(E))=\mathrm {card} (E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (f(E))=\mathrm {card} (E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/248d9412e53112f2f8a65a2ac21514ecb5080040" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.154ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (f(E))=\mathrm {card} (E)}"></span>. Réciproquement si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (f(E))=\mathrm {card} (E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (f(E))=\mathrm {card} (E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/248d9412e53112f2f8a65a2ac21514ecb5080040" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.154ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (f(E))=\mathrm {card} (E)}"></span>, alors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (A)=\mathrm {card} (E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (A)=\mathrm {card} (E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e12010206218e17b6adee11768dd4ef81590bdae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.034ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (A)=\mathrm {card} (E)}"></span> puis il vient que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1209333a6d4ae4980f3bb4a0d1fd60004fe8c4af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.617ex; height:2.176ex;" alt="{\displaystyle A=E}"></span>. </p> </div><div class="clear" style="clear:both;"></div> </div> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Corollaire</strong><span class="theoreme-tiret"> — </span>Soit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> une application injective d'un ensemble <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> dans un ensemble <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>.<br /> si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3465496148d29e6543003de4cdbac8e9ce6beda7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.864ex; height:2.843ex;" alt="{\displaystyle f(E)}"></span> est fini, alors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> est fini et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E)=\mathrm {card} (f(E))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E)=\mathrm {card} (f(E))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a53ddb9fbf2eb1eb9bfc9961da5dd46f3f6935cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.154ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (E)=\mathrm {card} (f(E))}"></span>. </p> </div> <p>Ce corollaire n'est en fait que l'application de la caractérisation des applications injectives dans le cas particulier où l'ensemble d'arrivée de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> est <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3465496148d29e6543003de4cdbac8e9ce6beda7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.864ex; height:2.843ex;" alt="{\displaystyle f(E)}"></span>. </p> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Théorème</strong><span class="theoreme-tiret"> — </span>Soit E et F deux ensembles finis tels que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E)=\mathrm {card} (F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E)=\mathrm {card} (F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d89ed89393092f7aa8b80703749bcaa5afc6552a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.031ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (E)=\mathrm {card} (F)}"></span>. Si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> est une application de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> on a :<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> est injective <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> est surjective <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> est bijective. </p> </div> <div class="mw-heading mw-heading3"><h3 id="Propriétés"><span id="Propri.C3.A9t.C3.A9s"></span>Propriétés</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D%C3%A9nombrement&veaction=edit&section=8" title="Modifier la section : Propriétés" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=D%C3%A9nombrement&action=edit&section=8" title="Modifier le code source de la section : Propriétés"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Cardinal de l'union de deux ensembles finis disjoints</strong><span class="theoreme-tiret"> — </span> Soient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> deux ensembles finis disjoints avec <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E)=k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E)=k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62e43e0356df8c02df9038371283e534ff6bd429" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.294ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (E)=k}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (F)=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (F)=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/715211d34d91cdd8bf622e8a0481bd1de2786217" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.442ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (F)=n}"></span>.<br /> Alors on a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E\cup F)=\mathrm {card} (E)+\mathrm {card} (F)=n+k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>∪<!-- ∪ --></mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E\cup F)=\mathrm {card} (E)+\mathrm {card} (F)=n+k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/caee9f2346995219b95d65b2b4d280d01346df31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.724ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (E\cup F)=\mathrm {card} (E)+\mathrm {card} (F)=n+k}"></span>. </p> </div> <div class="NavFrame" style="border: thin solid #aaaaaa; margin:1em 2em; padding: 0 1em; font-size:100%; text-align:justify; overflow:hidden;"> <div class="NavHead" style="background-color:transparent; color:inherit; padding:0;">Démonstration</div><div class="NavContent" style="padding-bottom:0.4em"> <p>En effet soient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> une bijection de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\![1,k]\!]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\![1,k]\!]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52c0a5317ca4a03c61aa20f4d1a45691a0459c9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.221ex; height:2.843ex;" alt="{\displaystyle [\![1,k]\!]}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> une bijection de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\![1+k,n+k]\!]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">[</mo> <mn>1</mn> <mo>+</mo> <mi>k</mi> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\![1+k,n+k]\!]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f2d6edd1faaf4a3e92ba6f8c5b6110dab182d73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.508ex; height:2.843ex;" alt="{\displaystyle [\![1+k,n+k]\!]}"></span>, alors on peut construire <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> l'application de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\cup F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>∪<!-- ∪ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\cup F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4be5e4f6b6ada64e2b11ae3128c7eb15d2a140d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.099ex; height:2.176ex;" alt="{\displaystyle E\cup F}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\![1,n+k]\!]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\![1,n+k]\!]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b50faf12bff048eb576692857e4a415d069c8e9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.456ex; height:2.843ex;" alt="{\displaystyle [\![1,n+k]\!]}"></span> dont la restriction à <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> est <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> et celle à <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> est <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>. Comme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> est une bijection, c'est une injection et le corollaire de caractérisation conclut que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (h(E\cup F))=\mathrm {card} ([\![1,n+k]\!])=n+k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo>∪<!-- ∪ --></mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mspace width="negativethinmathspace" /> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (h(E\cup F))=\mathrm {card} ([\![1,n+k]\!])=n+k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46146859dcb94528377f77cf8b88881722d38b4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.763ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (h(E\cup F))=\mathrm {card} ([\![1,n+k]\!])=n+k}"></span>. </p> </div><div class="clear" style="clear:both;"></div> </div> <p>Par récurrence, on généralise cette propriété à une famille d'ensembles finis disjoints deux à deux : </p> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Cardinal de l'union de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> ensembles finis deux à deux disjoints</strong><span class="theoreme-tiret"> — </span> Soit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E_{i})_{i=1}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E_{i})_{i=1}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41da7ccce5cf6f916fc03eb7264a1eb2a9cf9018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.224ex; height:3.009ex;" alt="{\displaystyle (E_{i})_{i=1}^{n}}"></span> une famille de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> ensembles finis deux à deux disjoints.<br /> Alors on a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (\bigcup _{i=1}^{n}E_{i})=\sum _{i=1}^{n}(\mathrm {card} (E_{i}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <munderover> <mo>⋃<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (\bigcup _{i=1}^{n}E_{i})=\sum _{i=1}^{n}(\mathrm {card} (E_{i}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d422e56e31083c50b09b8a7292109ea76949caa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.764ex; height:6.843ex;" alt="{\displaystyle \mathrm {card} (\bigcup _{i=1}^{n}E_{i})=\sum _{i=1}^{n}(\mathrm {card} (E_{i}))}"></span>. </p> </div> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Cardinal du complémentaire</strong><span class="theoreme-tiret"> — </span> Soit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> un ensemble fini, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\subset E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>⊂<!-- ⊂ --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\subset E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d6e74d09ede6537c5dc861cd10b6cbaca6c4171" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.617ex; height:2.176ex;" alt="{\displaystyle A\subset E}"></span>, et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92efef0e89bdc77f6a848764195ef5b9d9bfcc6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.858ex; height:3.009ex;" alt="{\displaystyle {\overline {A}}}"></span> son complémentaire dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>.<br /> Alors on a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (A)+\mathrm {card({\overline {A}})} =\mathrm {card} (E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">A</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (A)+\mathrm {card({\overline {A}})} =\mathrm {card} (E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b717b6111a336fe35e7f1436de6c97028997b08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.94ex; height:3.509ex;" alt="{\displaystyle \mathrm {card} (A)+\mathrm {card({\overline {A}})} =\mathrm {card} (E)}"></span>. </p> </div> <div class="NavFrame" style="border: thin solid #aaaaaa; margin:1em 2em; padding: 0 1em; font-size:100%; text-align:justify; overflow:hidden;"> <div class="NavHead" style="background-color:transparent; color:inherit; padding:0;">Démonstration</div><div class="NavContent" style="padding-bottom:0.4em"> <p>Démonstration : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92efef0e89bdc77f6a848764195ef5b9d9bfcc6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.858ex; height:3.009ex;" alt="{\displaystyle {\overline {A}}}"></span> sont deux ensembles finis d'intersection vide et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cup {\overline {A}}=E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∪<!-- ∪ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cup {\overline {A}}=E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9598564ba4a14639a9d827916ec40d2a9ff96e82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.058ex; height:3.009ex;" alt="{\displaystyle A\cup {\overline {A}}=E}"></span>. La première propriété permet de conclure. </p> </div><div class="clear" style="clear:both;"></div> </div> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Cardinal de l'union de deux ensembles finis</strong><span class="theoreme-tiret"> — </span> Soient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> deux ensembles finis.<br /> Alors on a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E\cup F)=\mathrm {card} (E)+\mathrm {card} (F)-\mathrm {card} (E\cap F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>∪<!-- ∪ --></mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>∩<!-- ∩ --></mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E\cup F)=\mathrm {card} (E)+\mathrm {card} (F)-\mathrm {card} (E\cap F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d5531ea6a5be3ba8c856b9b24ce6e0b6fe65de7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.327ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (E\cup F)=\mathrm {card} (E)+\mathrm {card} (F)-\mathrm {card} (E\cap F)}"></span>. </p> </div> <div class="NavFrame" style="border: thin solid #aaaaaa; margin:1em 2em; padding: 0 1em; font-size:100%; text-align:justify; overflow:hidden;"> <div class="NavHead" style="background-color:transparent; color:inherit; padding:0;">Démonstration</div><div class="NavContent" style="padding-bottom:0.4em"> <p>Démonstration : Comme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∩<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb27b38cf9eac6060e67b61f66cd9beec5067f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cap B}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A-B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>−<!-- − --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A-B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fc58c452f31f578fdf98cafc1c53fe98a0c0975" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\displaystyle A-B}"></span> sont complémentaires dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, la propriété précédente s'applique et on a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (A\cap B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∩<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (A\cap B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0be24d87b9e636ec2c57a1f0b6906c7aad08fb7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.298ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (A\cap B)}"></span> + <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (A-B)=\mathrm {card} (A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>−<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (A-B)=\mathrm {card} (A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4fedab8e27bb9ccb42bd7f2b34c92f829ed9efd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.606ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (A-B)=\mathrm {card} (A)}"></span>. Ce même raisonnement s'applique pour <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B-A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>−<!-- − --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B-A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cad6e00a7c33e826eea086f6fdde72cb4aa9c27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\displaystyle B-A}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∩<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb27b38cf9eac6060e67b61f66cd9beec5067f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cap B}"></span>. Remarquons enfin que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A-B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>−<!-- − --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A-B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fc58c452f31f578fdf98cafc1c53fe98a0c0975" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\displaystyle A-B}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∩<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb27b38cf9eac6060e67b61f66cd9beec5067f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cap B}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B-A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>−<!-- − --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B-A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cad6e00a7c33e826eea086f6fdde72cb4aa9c27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\displaystyle B-A}"></span> forment une partition de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cup B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∪<!-- ∪ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cup B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdb575990bcfbcdf616aa6fd76e8b30bf7fd2169" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cup B}"></span>. L'identité se déduit des trois résultats précédents. </p> </div><div class="clear" style="clear:both;"></div> </div> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Cardinal de la <a href="/wiki/R%C3%A9union_disjointe" title="Réunion disjointe">réunion disjointe</a> de deux ensembles finis</strong><span class="theoreme-tiret"> — </span>Soient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> deux ensembles finis de cardinaux respectifs <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>.<br /> Alors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\sqcup F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>⊔<!-- ⊔ --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\sqcup F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb458908dc881726687dff3c4e7b8f84089bb754" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.099ex; height:2.176ex;" alt="{\displaystyle E\sqcup F}"></span> est finie de cardinal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E\sqcup F)=\mathrm {card} (E)+\mathrm {card} (F)=n+k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>⊔<!-- ⊔ --></mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E\sqcup F)=\mathrm {card} (E)+\mathrm {card} (F)=n+k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f978a3fc252b460cc8b991d245a0e909461e429" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.724ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (E\sqcup F)=\mathrm {card} (E)+\mathrm {card} (F)=n+k}"></span>. </p> </div> <p>Ce résultat peut se généraliser à plus de deux ensembles. </p> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Cardinal de la réunion disjointe de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> ensembles finis</strong><span class="theoreme-tiret"> — </span>Soit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ba9f6e3041b052cf13a0ede4ecf35fb4c9cd16c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.515ex; height:2.509ex;" alt="{\displaystyle E_{i}}"></span> une famille d'ensembles finis.<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E_{1}\sqcup E_{2}\sqcup E_{3}\,\dots \,\sqcup E_{n})=\sum _{i=1}^{n}\mathrm {card} (E_{i}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⊔<!-- ⊔ --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⊔<!-- ⊔ --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>…<!-- … --></mo> <mspace width="thinmathspace" /> <mo>⊔<!-- ⊔ --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E_{1}\sqcup E_{2}\sqcup E_{3}\,\dots \,\sqcup E_{n})=\sum _{i=1}^{n}\mathrm {card} (E_{i}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7059542c504008b58369c78a20101694f2a8f94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:45.293ex; height:6.843ex;" alt="{\displaystyle \mathrm {card} (E_{1}\sqcup E_{2}\sqcup E_{3}\,\dots \,\sqcup E_{n})=\sum _{i=1}^{n}\mathrm {card} (E_{i}).}"></span> </p> </div> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Cardinal du <a href="/wiki/Produit_cart%C3%A9sien" title="Produit cartésien">produit cartésien</a> de deux ensembles finis</strong><span class="theoreme-tiret"> — </span>Soient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> deux ensembles finis de cardinaux respectif <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>.<br /> Alors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\times F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>×<!-- × --></mo> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\times F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea8736b40a0533aa9bc44eb0e8525b39459bdc2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.357ex; height:2.176ex;" alt="{\displaystyle E\times F}"></span> est fini de cardinal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E\times F)=\mathrm {card} (E)\times \mathrm {card} (F)=nk}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>×<!-- × --></mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E\times F)=\mathrm {card} (E)\times \mathrm {card} (F)=nk}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87c119476ddd252aaffe7cdd020b7acb06089288" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.141ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (E\times F)=\mathrm {card} (E)\times \mathrm {card} (F)=nk}"></span>. </p> </div> <p>Plus généralement, pour une suite d'ensembles finis : </p> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Cardinal du produit cartésien d'une suite d'ensembles finis</strong><span class="theoreme-tiret"> — </span>Soit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ba9f6e3041b052cf13a0ede4ecf35fb4c9cd16c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.515ex; height:2.509ex;" alt="{\displaystyle E_{i}}"></span> une famille d'ensembles finis.<br /> Alors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E_{1}\times E_{2}\times E_{3}\,\dots \,\times E_{n})=\prod _{i=1}^{n}\mathrm {card} (E_{i}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>…<!-- … --></mo> <mspace width="thinmathspace" /> <mo>×<!-- × --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E_{1}\times E_{2}\times E_{3}\,\dots \,\times E_{n})=\prod _{i=1}^{n}\mathrm {card} (E_{i}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3fee7989f41627a3d5dbfdef1a6327c8df091a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:45.681ex; height:6.843ex;" alt="{\displaystyle \mathrm {card} (E_{1}\times E_{2}\times E_{3}\,\dots \,\times E_{n})=\prod _{i=1}^{n}\mathrm {card} (E_{i}).}"></span> </p> </div> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Cardinal de l'<a href="/wiki/Ensemble_des_parties_d%27un_ensemble" title="Ensemble des parties d'un ensemble">ensemble des parties d'un ensemble</a> fini</strong><span class="theoreme-tiret"> — </span>Soit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> un ensemble fini de cardinal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>.<br /> Comme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}(E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}(E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdb9a5a97c7cb3db567ed6d470b51883427bb06a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.289ex; height:2.843ex;" alt="{\displaystyle {\mathcal {P}}(E)}"></span> est en correspondance biunivoque avec l'ensemble des applications de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{0,1\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{0,1\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdfe27fdfdb264632bd34d428d513ec5e90083cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.684ex; height:2.843ex;" alt="{\displaystyle \left\{0,1\right\}}"></span>, alors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}(E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}(E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdb9a5a97c7cb3db567ed6d470b51883427bb06a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.289ex; height:2.843ex;" alt="{\displaystyle {\mathcal {P}}(E)}"></span> est un ensemble fini et on a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} ({\mathcal {P}}(E))=2^{\mathrm {card} (E)}=2^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} ({\mathcal {P}}(E))=2^{\mathrm {card} (E)}=2^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec8c60fa917f4dda3aa96b6ba5c8caa4d1a57855" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.985ex; height:3.343ex;" alt="{\displaystyle \mathrm {card} ({\mathcal {P}}(E))=2^{\mathrm {card} (E)}=2^{k}}"></span>. </p> </div> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Cardinal de l'ensemble des <a href="/wiki/Correspondance_et_relation" class="mw-redirect" title="Correspondance et relation">correspondances</a> de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span></strong><span class="theoreme-tiret"> — </span>Soient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> deux ensembles finis.<br /> L'ensemble des correspondances de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>, noté habituellement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Corr} (E,F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">r</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Corr} (E,F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a6e2cce36a829831aecf0ebb798dd3d10bc48f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.023ex; height:2.843ex;" alt="{\displaystyle \mathrm {Corr} (E,F)}"></span>, s'identifie à <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {P}}(E\times F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>×<!-- × --></mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {P}}(E\times F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0dc57d6ec128c9bbffb202d4cfa49d3ba7366b5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.87ex; height:2.843ex;" alt="{\displaystyle {\mathcal {P}}(E\times F)}"></span> donc est fini de cardinal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mathrm {card} (\mathrm {Corr} (E,F))=2^{\mathrm {card} (E)\times \mathrm {card} (F)}=2^{nk}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">r</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mathrm {card} (\mathrm {Corr} (E,F))=2^{\mathrm {card} (E)\times \mathrm {card} (F)}=2^{nk}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8732658ed6ec2c00bf01ab11847a906c61e863e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.186ex; height:3.343ex;" alt="{\displaystyle \ \mathrm {card} (\mathrm {Corr} (E,F))=2^{\mathrm {card} (E)\times \mathrm {card} (F)}=2^{nk}}"></span>. </p> </div> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Cardinal de l'ensemble des <a href="/wiki/Application_(math%C3%A9matiques)" title="Application (mathématiques)">applications</a> de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span></strong><span class="theoreme-tiret"> — </span>Soient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> deux ensembles finis de cardinaux respectifs <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.<br /> L'ensemble des applications de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>, souvent noté <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}(E,F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}(E,F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdfe270fc36f7e46daed045d4b8e1ec9b3493655" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.286ex; height:2.843ex;" alt="{\displaystyle {\mathcal {F}}(E,F)}"></span>, est fini de cardinal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mathrm {card} ({\mathcal {F}}(E,F))=\mathrm {card} (F)^{\mathrm {card} (E)}=n^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>F</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mathrm {card} ({\mathcal {F}}(E,F))=\mathrm {card} (F)^{\mathrm {card} (E)}=n^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58818747235f935ee36f15c05ef21a121a8084a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.582ex; height:3.343ex;" alt="{\displaystyle \ \mathrm {card} ({\mathcal {F}}(E,F))=\mathrm {card} (F)^{\mathrm {card} (E)}=n^{k}}"></span> avec la <a href="/wiki/Puissance_(math%C3%A9matiques_%C3%A9l%C3%A9mentaires)#Puissance_à_exposant_zéro" class="mw-redirect" title="Puissance (mathématiques élémentaires)">convention 0<sup>0</sup>=1</a> si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> sont tous deux vides. </p> </div> <p>Cette propriété justifie la notation plus courante <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{E}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{E}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8cba2085fd49a93c35cf948a9801aaca06f57a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.303ex; height:2.676ex;" alt="{\displaystyle F^{E}}"></span>. </p> <div class="theoreme" style="margin: 1em 2em; padding: 0.5em 1em 0.4em; border: 1px solid #aaa; text-align: justify;"> <p><strong class="theoreme-nom">Cardinal de l'ensemble des <a href="/wiki/Surjection" title="Surjection">surjections</a> de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span></strong><span class="theoreme-tiret"> — </span>Soient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> deux ensembles finis de cardinaux respectifs <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> et <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.<br /> L'ensemble des surjections de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> dans <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>, noté habituellement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {Surj} (E,F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">j</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {Surj} (E,F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19d3737e0d3de4b11482b716c42097194fdddf54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.568ex; height:2.843ex;" alt="{\displaystyle \mathrm {Surj} (E,F)}"></span>, a pour cardinal la somme suivante:<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mathrm {card} (\mathrm {Surj} (E,F))=\sum _{i=0}^{n}(-1)^{i}{\frac {n!}{i!(n-i)!}}(n-i)^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">j</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mi>F</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mi>i</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mathrm {card} (\mathrm {Surj} (E,F))=\sum _{i=0}^{n}(-1)^{i}{\frac {n!}{i!(n-i)!}}(n-i)^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6655a4e92836abe6aa87a3a3e2f8a38d939673cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:47.105ex; height:6.843ex;" alt="{\displaystyle \ \mathrm {card} (\mathrm {Surj} (E,F))=\sum _{i=0}^{n}(-1)^{i}{\frac {n!}{i!(n-i)!}}(n-i)^{k}}"></span>.<br /> Cette somme est nulle si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {card} (E)<\mathrm {card} (F)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">)</mo> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {card} (E)<\mathrm {card} (F)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/694a36c7775ca74abfc16f98bcdc1fbcabc77067" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.031ex; height:2.843ex;" alt="{\displaystyle \mathrm {card} (E)<\mathrm {card} (F)}"></span>. </p> </div> <p>Les applications injectives, qui jouent un rôle important en combinatoire, sont traitées de manière plus approfondie dans les paragraphes suivants. </p> <div class="mw-heading mw-heading2"><h2 id="Notes_et_références"><span id="Notes_et_r.C3.A9f.C3.A9rences"></span>Notes et références</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D%C3%A9nombrement&veaction=edit&section=9" title="Modifier la section : Notes et références" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=D%C3%A9nombrement&action=edit&section=9" title="Modifier le code source de la section : Notes et références"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="references-small decimal" style=""><div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink noprint"><a href="#cite_ref-1">↑</a> </span><span class="reference-text">Certaines observations sont relatées dans le premier chapitre de l'<i>Histoire universelle des chiffres</i> de Georges Ifrah, page 22, Éditions Robert Laffont, Paris 1981.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink noprint"><a href="#cite_ref-2">↑</a> </span><span class="reference-text"><span class="ouvrage" id="Goswami2008"><span class="ouvrage" id="Usha_Goswami2008"><abbr class="abbr indicateur-langue" title="Langue : anglais">(en)</abbr> <a href="/wiki/Usha_Goswami" title="Usha Goswami">Usha Goswami</a>, <cite class="italique" lang="en">Cognitive development: The learning brain</cite>, New York, Psychology Press, <time>2008</time><span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Cognitive+development%3A+The+learning+brain&rft.place=New+York&rft.pub=Psychology+Press&rft.aulast=Goswami&rft.aufirst=Usha&rft.date=2008&rfr_id=info%3Asid%2Ffr.wikipedia.org%3AD%C3%A9nombrement"></span></span></span>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink noprint"><a href="#cite_ref-3">↑</a> </span><span class="reference-text">Georges Ifrah, <i>Histoire universelle des chiffres</i>, page 46, Éditions Robert Laffont, Paris 1981.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink noprint"><a href="#cite_ref-4">↑</a> </span><span class="reference-text">D'après les travaux de R. Gellman et C. R. Gallistel, cités dans l'article de Roger Bastien <a rel="nofollow" class="external text" href="http://www.ia94.ac-creteil.fr/mathematiques/reflexion/nombre/bastien.pdf">« L'acquisition du nombre chez l'enfant »</a>.</span> </li> </ol></div> </div> <div class="mw-heading mw-heading2"><h2 id="Voir_aussi">Voir aussi</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=D%C3%A9nombrement&veaction=edit&section=10" title="Modifier la section : Voir aussi" class="mw-editsection-visualeditor"><span>modifier</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=D%C3%A9nombrement&action=edit&section=10" title="Modifier le code source de la section : Voir aussi"><span>modifier le code</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r194021218">.mw-parser-output .autres-projets>.titre{text-align:center;margin:0.2em 0}.mw-parser-output .autres-projets>ul{margin:0;padding:0}.mw-parser-output .autres-projets>ul>li{list-style:none;margin:0.2em 0;text-indent:0;padding-left:24px;min-height:20px;text-align:left;display:block}.mw-parser-output .autres-projets>ul>li>a{font-style:italic}@media(max-width:720px){.mw-parser-output .autres-projets{float:none}}</style><div class="autres-projets boite-grise boite-a-droite noprint js-interprojets"> <p class="titre">Sur les autres projets Wikimedia :</p> <ul class="noarchive plainlinks"> <li class="wiktionary"><a href="https://fr.wiktionary.org/wiki/d%C3%A9nombrement" class="extiw" title="wikt:dénombrement">dénombrement</a>, <span class="nowrap">sur le <span class="project">Wiktionnaire</span></span></li> </ul> </div> <ul><li><a href="/wiki/Compte" title="Compte">Compte</a></li> <li><a href="/wiki/Dactylonomie" title="Dactylonomie">Dactylonomie (compter sur ses doigts)</a></li> <li><a href="/wiki/Construction_du_nombre_chez_l%27enfant" title="Construction du nombre chez l'enfant">Construction du nombre chez l'enfant</a></li> <li><a href="/wiki/Nombre" title="Nombre">Nombre</a></li> <li><a href="/wiki/Num%C3%A9ration" title="Numération">Numération</a></li> <li><a href="/wiki/Syst%C3%A8me_de_num%C3%A9ration" title="Système de numération">Système de numération</a></li> <li><a href="/wiki/Combinatoire" title="Combinatoire">Combinatoire</a></li></ul> <ul id="bandeau-portail" class="bandeau-portail"><li><span class="bandeau-portail-element"><span class="bandeau-portail-icone"><span class="noviewer skin-invert-image" typeof="mw:File"><a href="/wiki/Portail:Math%C3%A9matiques" title="Portail des mathématiques"><img alt="icône décorative" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Racine_carr%C3%A9e_bleue.svg/24px-Racine_carr%C3%A9e_bleue.svg.png" decoding="async" width="24" height="24" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Racine_carr%C3%A9e_bleue.svg/36px-Racine_carr%C3%A9e_bleue.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Racine_carr%C3%A9e_bleue.svg/48px-Racine_carr%C3%A9e_bleue.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span> <span class="bandeau-portail-texte"><a href="/wiki/Portail:Math%C3%A9matiques" title="Portail:Mathématiques">Portail des mathématiques</a></span> </span></li> </ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6d64f599dc‐jc4xz Cached time: 20241202131040 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.317 seconds Real time usage: 0.523 seconds Preprocessor visited node count: 1722/1000000 Post‐expand include size: 27205/2097152 bytes Template argument size: 12448/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 0/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 8818/5000000 bytes Lua time usage: 0.067/10.000 seconds Lua memory usage: 3366753/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 222.675 1 -total 30.19% 67.215 1 Modèle:Références 25.95% 57.782 1 Modèle:Ouvrage 22.29% 49.636 1 Modèle:Portail 18.13% 40.378 1 Modèle:Autres_projets 12.14% 27.041 1 Modèle:Confusion 12.04% 26.820 1 Modèle:Suivi_des_biographies 11.26% 25.070 1 Modèle:Méta_bandeau 5.78% 12.872 1 Modèle:Catégorisation_badges 5.63% 12.528 16 Modèle:Théorème --> <!-- Saved in parser cache with key frwiki:pcache:885924:|#|:idhash:canonical and timestamp 20241202131040 and revision id 215407407. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Ce document provient de « <a dir="ltr" href="https://fr.wikipedia.org/w/index.php?title=Dénombrement&oldid=215407407">https://fr.wikipedia.org/w/index.php?title=Dénombrement&oldid=215407407</a> ».</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Cat%C3%A9gorie:Accueil" title="Catégorie:Accueil">Catégories</a> : <ul><li><a href="/wiki/Cat%C3%A9gorie:Num%C3%A9ration" title="Catégorie:Numération">Numération</a></li><li><a href="/wiki/Cat%C3%A9gorie:Combinatoire" title="Catégorie:Combinatoire">Combinatoire</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Catégories cachées : <ul><li><a href="/wiki/Cat%C3%A9gorie:Article_%C3%A0_r%C3%A9f%C3%A9rence_n%C3%A9cessaire" title="Catégorie:Article à référence nécessaire">Article à référence nécessaire</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Math%C3%A9matiques/Articles_li%C3%A9s" title="Catégorie:Portail:Mathématiques/Articles liés">Portail:Mathématiques/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Portail:Sciences/Articles_li%C3%A9s" title="Catégorie:Portail:Sciences/Articles liés">Portail:Sciences/Articles liés</a></li><li><a href="/wiki/Cat%C3%A9gorie:Projet:Math%C3%A9matiques/Articles" title="Catégorie:Projet:Mathématiques/Articles">Projet:Mathématiques/Articles</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> La dernière modification de cette page a été faite le 26 mai 2024 à 14:28.</li> <li id="footer-info-copyright"><span style="white-space: normal"><a href="/wiki/Wikip%C3%A9dia:Citation_et_r%C3%A9utilisation_du_contenu_de_Wikip%C3%A9dia" title="Wikipédia:Citation et réutilisation du contenu de Wikipédia">Droit d'auteur</a> : les textes sont disponibles sous <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.fr">licence Creative Commons attribution, partage dans les mêmes conditions</a> ; d’autres conditions peuvent s’appliquer. Voyez les <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/fr">conditions d’utilisation</a> pour plus de détails, ainsi que les <a href="/wiki/Wikip%C3%A9dia:Cr%C3%A9dits_graphiques" title="Wikipédia:Crédits graphiques">crédits graphiques</a>. En cas de réutilisation des textes de cette page, voyez <a href="/wiki/Sp%C3%A9cial:Citer/D%C3%A9nombrement" title="Spécial:Citer/Dénombrement">comment citer les auteurs et mentionner la licence</a>.<br /> Wikipedia® est une marque déposée de la <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, organisation de bienfaisance régie par le paragraphe <a href="/wiki/501c" title="501c">501(c)(3)</a> du code fiscal des États-Unis.</span><br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/fr">Politique de confidentialité</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:%C3%80_propos_de_Wikip%C3%A9dia">À propos de Wikipédia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Avertissements_g%C3%A9n%C3%A9raux">Avertissements</a></li> <li id="footer-places-contact"><a href="//fr.wikipedia.org/wiki/Wikipédia:Contact">Contact</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code de conduite</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Développeurs</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/fr.wikipedia.org">Statistiques</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Déclaration sur les témoins (cookies)</a></li> <li id="footer-places-mobileview"><a href="//fr.m.wikipedia.org/w/index.php?title=D%C3%A9nombrement&section=3&veaction=edit&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Version mobile</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6dfcdd5ff5-mjptv","wgBackendResponseTime":166,"wgPageParseReport":{"limitreport":{"cputime":"0.317","walltime":"0.523","ppvisitednodes":{"value":1722,"limit":1000000},"postexpandincludesize":{"value":27205,"limit":2097152},"templateargumentsize":{"value":12448,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":8818,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 222.675 1 -total"," 30.19% 67.215 1 Modèle:Références"," 25.95% 57.782 1 Modèle:Ouvrage"," 22.29% 49.636 1 Modèle:Portail"," 18.13% 40.378 1 Modèle:Autres_projets"," 12.14% 27.041 1 Modèle:Confusion"," 12.04% 26.820 1 Modèle:Suivi_des_biographies"," 11.26% 25.070 1 Modèle:Méta_bandeau"," 5.78% 12.872 1 Modèle:Catégorisation_badges"," 5.63% 12.528 16 Modèle:Théorème"]},"scribunto":{"limitreport-timeusage":{"value":"0.067","limit":"10.000"},"limitreport-memusage":{"value":3366753,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-6d64f599dc-jc4xz","timestamp":"20241202131040","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"D\u00e9nombrement","url":"https:\/\/fr.wikipedia.org\/wiki\/D%C3%A9nombrement","sameAs":"http:\/\/www.wikidata.org\/entity\/Q3044523","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q3044523","author":{"@type":"Organization","name":"Contributeurs aux projets Wikimedia"},"publisher":{"@type":"Organization","name":"Fondation Wikimedia, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-06-30T16:28:30Z","dateModified":"2024-05-26T13:28:06Z","headline":"d\u00e9termination du nombre d'\u00e9l\u00e9ments d'un ensemble"}</script> </body> </html>